2015年云南省曲靖市中考数学试题及解析

合集下载

最新曲靖市2015届初中学业水平、高中阶段招生统一数学试卷(一)

最新曲靖市2015届初中学业水平、高中阶段招生统一数学试卷(一)

曲靖市2015届初中学业水平、高中阶段招生统一考试数学样卷(一)(满分120分,考试用时120分钟,命题罗平县板桥二中金保林) 一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1有意义的x 的取值范围是( )A .13x >B .13x >-C .13x ≥D .13x ≥- 2.如图,1502110AB CD ∠=∠=∥,°,°,则3∠=( ).A .60°B .50° C . 70°D .80°3.下列计算中正确的一个是( )A .a 5+ a 5 =2a 10B .a 3·a 5= a 15C .(a 2b )3=a 2b 3D .(2)(2)a a +-= 24a - 4.下列事件是确定事件的是A .阴天一定会下雨B .黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C .打开电视机,任选一个频道,屏幕上正在播放新闻联播D .在学校操场上向上抛出的篮球一定会下落5.不等式组的解集在数轴上表示为( )..C ..6.下列各点中,在函数y=x2图象上的点是 ( )A .(2,4)B .(-1,2)C .(-2,-1)D .(-21,-1) 7.如图,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则BCDE的值为 A .32 B .21 C .31 D .41 8. 如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,则sin ∠AOB 的值等于 A.12 二、填空题(本大题共8个小题,每小题3分,满分24分) 9.-2015的倒数的相反数是10. 一个几何体的三视图完全相同,该几何体可以是 .(写出一个即可).11. 据2015年1月24日某报报道,某县2014年财政收入突破20亿元。

将20亿用科学记数法表示为12.随着国家抑制房价政策的出台,某楼盘房价连续两次下跌,由原来的每平方米5000元降至 每平方米4050元,设每次降价的百分率相同,则降价百分率 13.如图,在小山的东侧A 点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C 处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A 、B 14.如图,在ABC ∆中,065=∠CAB ,在同一平面内, 将ABC ∆绕点A 逆时针旋转到''C AB ∆的位置,使得AB C(第2题图)1 23C C '∥AB ,则AB B '∠等于15.一只小鸟自由自在地在空中飞行,然后随意落在如图7所示的某个方 格中(每个小方格都是边长相等的正方形),那么小鸟停在黑色方格中的 概率是 .16.如图在坐标系中放置一菱形OABC ,已知∠ABC=60°,OA=1.先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B 的落点依次为B 1,B 2,B 3,…,则B 2015的坐标为 . 三、解答题(本大题共8个小题,满分72分)17.(本题满分6分)计算:11(1)52-⎛⎫π-+-+ ⎪⎝⎭18.(本题满分8分) 先化简,再求值:)1x 1x 21x (1x 2x 2+---÷--,其中x 是方程x 2+x -6=0的根.19.(本题满分8分)我市通过网络投票选出了一批“最有孝心的美少年”.根据部分县市区的入选结果制作出如下统计表,后来发现,统计表中前三行的所有数据都是正确的,后三行中有一个数据是错误的.请回答下列问题:(1)统计表中a= ,b= ;(2)统计表后三行中哪一个数据是错误的?该数据的正确值是多少?(3)市里决定从来自罗平县的4位“最有孝心的美少年”中,任选两位作为市级形象代言人.A 、B 是罗平县“最有孝心的美少年”中的两位,问A 、B 同时入选的概率是多少?20. (本题满分8分)甲,乙两辆汽车分别从A ,B 两地同时出发,沿同一条公路相向而行,乙车出发2小时后休 息,与甲车相遇后,继续行驶.设甲,乙两车与B 地的路程分别为y 甲(km ),y乙(km ),甲车行驶的时间为x (h ),y 甲,y 乙与x 之间的函数图象如图所示,结合图象解答下列问题: (1)乙车休息了 h ;(2)求乙车与甲车相遇后y 乙与x 的函数解析式,并写出自变量x 的取值范围;(3)当两车相距40km 时,求出x 的值.21.(本题满分10分)在美丽家园建设中,罗平县某商铺用3000元批发某种旅游纪念品销售,由于销售状况良好,该商铺又筹集9000元资金再次批进该种纪念品,但这次的进价比第一次的进价提高了20%,购进的纪念品数量是第一次的2倍还多300个,如果商铺按9元/个的价格出售,当大部分纪念品售出后,余下的600个按售价的8折售完. (1)该种纪念品第一次的进货单价是多少元? (2)该商铺销售这种纪念品共盈利多少元?22.(本题满分10分) 已知:如图,在△ABC 中,AB =AC ,D 为边BC AB 平移至DE ,连接AE 、AD 、EC .(1)求证:AD=EC ;(2)当点D 在什么位置时,四边形ADCE 是矩形,请说明理由.23. (本题满分10分)如图,⊙O 是△ABC 的外接圆,AB 是直径,作OD ∥BC 与过点A 的切线交于点D ,连接DC 并延长交AB 的延长线于点E . (1)求证:DE 是⊙O 的切线;(2)若AE=6,CE=32,求线段BC 的长24.(本题满分12分)如图,直线221+-=x y 与x 轴交于点B ,与y 轴交于点C ,已知二次函数的图象经过点B 、C 和点()0,1-A .(1)求B 、C 两点坐标; (2)求该二次函数的关系式;(3)若抛物线的对称轴与x 轴的交点为点D ,则在抛物线的对称轴上是否存在点P ,使△PCD是以CD 为腰的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由;附加题:(4分,计入总分满分为120)(4)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF 的最大面积及此时E 点的坐标.。

2015年云南省中考数学试卷及解析

2015年云南省中考数学试卷及解析

2015年云南省中考数学试卷及解析1.2015年云南省中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2015·云南)-2的相反数是()A -2B 2C - D2.(3分)(2015·云南)不等式2x-6>的解集是()A x>1B x3 D x<33.(3分)(2015·云南)若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A 正方体B 圆锥C 圆柱D 球4.(3分)(2015·云南)2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营养改善试点中小学达所,这个数用科学记数法可表示为()A 17.58×10^3B 175.8×10^4C 1.758×10^5D 1.758×10^45.(3分)(2015·云南)下列运算正确的是()A a^2·a^5=a^10B (π-3.14)=0C -2=D(a+b)^2=a^2+b^26.(3分)(2015·云南)下列一元二次方程中,没有实数根的是()A 4x-5x+2=0B x^2-6x+9=0C 5x^2-4x-1=0D 3x^2-4x+1=07.(3分)(2015·云南)为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果:州(市) A B C D E F推荐数(个) 3 6 2 7 31 56在上表统计的数据中,平均数和中位数分别为()A 42,43.5B 42,42C 31,42D 36,548.(3分)(2015·云南)若扇形面积为3π,圆心角为60°,则该扇形的半径为()A 3B 9C 2D 3二、填空题(本大题共6小题,每小题3分,满分18分)9.(3分)(2015·云南)分解因式:3x-12=10.(3分)(2015·云南)函数y=的自变量x的取值范围是。

2015年度云南地区中考数学试题及解析

2015年度云南地区中考数学试题及解析

2015年云南省中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2015•云南)﹣2的相反数是()A.﹣2 B.2C.D.﹣2.(3分)(2015•云南)不等式2x﹣6>0的解集是()A.x>1 B.x<﹣3 C.x>3 D.x<33.(3分)(2015•云南)若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球4.(3分)(2015•云南)2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营养改善试点中小学达17580所,17580这个数用科学记数法可表示为()A.17.58×103B.175.8×104C.1.758×105D.1.758×1045.(3分)(2015•云南)下列运算正确的是()A.a2•a5=a10B.(π﹣3.14)0=0 C.﹣2=D.(a+b)2=a2+b26.(3分)(2015•云南)下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0 B.x2﹣6x+9=0 C.5x2﹣4x﹣1=0 D.3x2﹣4x+1=07.(3分)(2015•云南)为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果:州(市) A B C D E F推荐数(个)36 27 31 56 48 54在上表统计的数据中,平均数和中位数分别为()A.42,43.5 B.42,42 C.31,42 D.36,548.(3分)(2015•云南)若扇形面积为3π,圆心角为60°,则该扇形的半径为()A.3B.9C.2D.3二、填空题(本大题共6小题,每小题3分,满分18分)9.(3分)(2015•云南)分解因式:3x2﹣12=.10.(3分)(2015•云南)函数y=的自变量x的取值范围是.11.(3分)(2015•云南)如图,直线l1∥l2,并且被直线l3,l4所截,则∠α=.12.(3分)(2015•云南)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要元.13.(3分)(2015•云南)如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为.14.(3分)(2015•云南)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n为正整数).三、解答题(本大题共9小题,满分58分)15.(5分)(2015•云南)化简求值:[﹣]•,其中x=+1.16.(5分)(2015•云南)如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.17.(7分)(2015•云南)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?18.(5分)(2015•云南)已知A,B两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.(1)求y与x的函数关系,并写出自变量x的取值范围;(2)当汽车行驶了2小时时,求汽车距B地有多少千米?19.(6分)(2015•云南)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)20.(7分)(2015•云南)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.21.(7分)(2015•云南)2015年某省为加快建设综合交通体系,对铁路、公路、机场三个重大项目加大了建设资金的投入.(1)机场建设项目中所有6个机场投入的建设资金金额统计如图1,已知机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,求机场E投入的建设资金金额是多少亿元?并补全条形统计图;(2)将铁路、公路机场三项建设所投入的资金金额绘制成了如图2扇形统计图以及统计表,根据扇形统计图及统计表中信息,求得a=,b=,c,d,m.(请直接填写计算结果)铁路公路机场铁路、公路、机场三项投入建设资金总金额(亿元)投入资金(亿元)300 a b m所占百分比 c 34% 6%所占圆心角216° d 21.6°22.(7分)(2015•云南)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD 的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.23.(9分)(2015•云南)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2015年云南省中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2015•云南)﹣2的相反数是()A.﹣2 B.2C.D.﹣考点:相反数.分析:根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.解答:解:﹣2的相反数是:﹣(﹣2)=2,故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2015•云南)不等式2x﹣6>0的解集是()A.x>1 B.x<﹣3 C.x>3 D.x<3考点:解一元一次不等式.分析:利用不等式的基本性质:移项,系数化1来解答.解答:解:移项得,2x>6,两边同时除以2得,x>3.故选C.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.3.(3分)(2015•云南)若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球考点:由三视图判断几何体.分析:找到从正面、左面和上面看得到的图形是正方形的几何体即可.解答:解:∵主视图和左视图都是正方形,∴此几何体为柱体,∵俯视图是一个正方形,∴此几何体为正方体.故选A.点评:此题考查三视图,关键是根据:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.4.(3分)(2015•云南)2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营养改善试点中小学达17580所,17580这个数用科学记数法可表示为()A.17.58×103B.175.8×104C.1.758×105D.1.758×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将17580用科学记数法表示为1.758×104.故选D.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2015•云南)下列运算正确的是()A.a2•a5=a10B.(π﹣3.14)0=0 C.﹣2=D.(a+b)2=a2+b2考点:二次根式的加减法;同底数幂的乘法;完全平方公式;零指数幂.分析:根据同底数幂的乘法、零指数幂、二次根式的加减和完全平方公式计算判断即可.解答:解:A、a2•a5=a7,错误;B、(π﹣3.14)0=1,错误;C、,正确;D、(a+b)2=a2+2ab+b2,错误;故选C.点评:此题考查同底数幂的乘法、零指数幂、二次根式的加减和完全平方公式,关键是根据法则进行计算.6.(3分)(2015•云南)下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0 B.x2﹣6x+9=0 C.5x2﹣4x﹣1=0 D.3x2﹣4x+1=0考点:根的判别式.分析:分别计算出每个方程的判别式即可判断.解答:解:A、∵△=25﹣4×2×4=﹣7<0,∴方程没有实数根,故本选项正确;B、∵△=36﹣4×1×4=0,∴方程有两个相等的实数根,故本选项错误;C、∵△=16﹣4×5×(﹣1)=36>0,∴方程有两个相等的实数根,故本选项错误;D、∵△=16﹣4×1×3=4>0,∴方程有两个相等的实数根,故本选项错误;故选A.点评:本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.(3分)(2015•云南)为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果:州(市) A B C D E F推荐数(个)36 27 31 56 48 54在上表统计的数据中,平均数和中位数分别为()A.42,43.5 B.42,42 C.31,42 D.36,54考点:中位数;加权平均数.分析:根据平均数的公式求得上表统计的数据中的平均数,将其按从小到大的顺序排列中间的那个是中位数.解答:解:P=(36+27+31+56+48+54)=42,把这几个数据按从小到大顺序排列为:27,31,36,48,54,56,中位数W=(36+48)=42.故选B.点评:本题考查了平均数和中位数的知识,属于基础题,解答本题的关键是熟练掌握平均数和中位数的定义.8.(3分)(2015•云南)若扇形面积为3π,圆心角为60°,则该扇形的半径为()A.3B.9C.2D.3考点:扇形面积的计算.分析:已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.解答:解:扇形的面积==3π.解得:r=3.故选D.点评:本题主要考查了扇形的面积公式=.熟练将公式变形是解题关键.二、填空题(本大题共6小题,每小题3分,满分18分)9.(3分)(2015•云南)分解因式:3x2﹣12=3(x﹣2)(x+2).考点:提公因式法与公式法的综合运用.分析:原式提取3,再利用平方差公式分解即可.解答:解:原式=3(x2﹣4)=3(x+2)(x﹣2).故答案为:3(x+2)(x﹣2).点评:本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以提取公因式的要先提取公因式.10.(3分)(2015•云南)函数y=的自变量x的取值范围是x≥7.考点:函数自变量的取值范围.分析:函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.解答:解:根据题意得:x﹣7≥0,解得x≥7,故答案为x≥7.点评:本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.11.(3分)(2015•云南)如图,直线l1∥l2,并且被直线l3,l4所截,则∠α=64°.考点:平行线的性质.分析:首先根据三角形外角的性质,求出∠1的度数是多少;然后根据直线l1∥l2,可得∠α=∠1,据此求出∠α的度数是多少即可.解答:解:如图1,,∵∠1+56°=120°,∴∠1=120°﹣56°=64°,又∵直线l1∥l2,∴∠α=∠1=64°.故答案为:64°.点评:此题主要考查了平行线的性质,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.12.(3分)(2015•云南)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要2000a元.考点:列代数式.分析:现在以8折出售,就是现价占原价的80%,把原价看作单位“1”,根据一个数乘百分数的意义,用乘法解答.解答:解:2500a×80%=2000a(元).故答案为2000a元.点评:本题考查了列代数式,解题的关键是理解打折问题在实际问题中的应用.13.(3分)(2015•云南)如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为30°.考点:圆周角定理;等边三角形的判定与性质.分析:由OA=AB,OA=OB,可得△OAB是等边三角形,即可得∠AOB=60°,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠C 的度数.解答:解:∵OA=AB,OA=OB,∴OA=OB=AB,即△OAB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=30°.故答案为30°.点评:此题考查了圆周角定理与等边三角形的判定与性质.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.14.(3分)(2015•云南)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n为正整数).考点:三角形中位线定理.专题:规律型.分析:根据中位线的定理得出规律解答即可.解答:解:在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,可得:P1M1=,P2M2=,故P n M n=,故答案为:点评:此题考查三角形中位线定理,关键是根据中位线得出规律进行解答.三、解答题(本大题共9小题,满分58分)15.(5分)(2015•云南)化简求值:[﹣]•,其中x=+1.考点:分式的化简求值.分析:首先将中括号内的部分进行通分,然后按照同分母分式的减法法则进行计算,再按照分式的乘法法则计算、化简,最后再代数求值即可.解答:解:原式===,将x=+1代入得:原式==.点评:本题主要考查的是分式的化简以及二次根式的运算,掌握分式的通分、加减、乘除等运算法则是解题的关键.16.(5分)(2015•云南)如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.考点:全等三角形的判定.专题:开放型.分析:已知这两个三角形的一个边与一个角相等,所以再添加一个对应角相等即可.解答:解:添加∠BAC=∠DAC.理由如下:在△ABC与△ADC中,,∴△ABC≌△ADC(AAS).点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17.(7分)(2015•云南)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?考点:一元一次方程的应用.分析:设胜了x场,那么负了(8﹣x)场,根据得分为13分可列方程求解.解答:解:设胜了x场,那么负了(8﹣x)场,根据题意得:2x+1•(8﹣x)=13,x=5,13﹣5=8.答:九年级一班胜、负场数分别是5和8.点评:本题考查了一元一次方程的应用,还考查了学生的理解题意能力,关键设出胜的场数,以总分数做为等量关系列方程求解.18.(5分)(2015•云南)已知A,B两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.(1)求y与x的函数关系,并写出自变量x的取值范围;(2)当汽车行驶了2小时时,求汽车距B地有多少千米?考点:一次函数的应用.分析:(1)根据剩余的路程=两地的距离﹣行驶的距离即可得到y与x的函数关系式,然后再求得汽车行驶200千米所需要的时间即可求得x的取值范围.(2)将x=2代入函数关系式,求得y值即可.解答:解:(1)y=200﹣60x(0≤x≤);(2)将x=2代入函数关系式得:y=200﹣60×2=80千米.答:汽车距离B地80千米.点评:本题主要考查的是列函数关系式,读懂题意,明确剩余的路程=两地的距离﹣行驶的距离是解答本题的关键.19.(6分)(2015•云南)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)考点:解直角三角形的应用.分析:如图,过点C作CD⊥AB于点D,通过解直角△ACD和直角△BCD来求CD的长度.解答:解:如图,过点C作CD⊥AB于点D,设CD=x.∵在直角△ACD中,∠CAD=30°,∴AD==x.同理,在直角△BCD中,BD==x.又∵AB=30米,∴AD+BD=30米,即x+x=30.解得x=13.答:河的宽度的13米.点评:本题考查了解直角三角形的应用.关键把实际问题转化为数学问题加以计算.20.(7分)(2015•云南)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)列举出所有情况,看向上一面出现的数字与卡片上的数字之积为6的情况数占总情况数的多少即可.(2)概率问题中的公平性问题,解题的关键是计算出各种情况的概率,然后比较即可.解答:解:(1)如图所示:共18种情况,数字之积为6的情况数有3种,P(数字之积为6)==.(2)由上表可知,该游戏所有可能的结果共18种,其中骰子向上一面出现的数字与卡片上的数字之积大于7的有7种,骰子向上一面出现的数字与卡片上的数字之积小于7的有11种,所以小明赢的概率=,小王赢的概率=,故小王赢的可能性更大.点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21.(7分)(2015•云南)2015年某省为加快建设综合交通体系,对铁路、公路、机场三个重大项目加大了建设资金的投入.(1)机场建设项目中所有6个机场投入的建设资金金额统计如图1,已知机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,求机场E投入的建设资金金额是多少亿元?并补全条形统计图;(2)将铁路、公路机场三项建设所投入的资金金额绘制成了如图2扇形统计图以及统计表,根据扇形统计图及统计表中信息,求得a=170,b=30,c60%,d122.4°,m =500.(请直接填写计算结果)铁路公路机场铁路、公路、机场三项投入建设资金总金额(亿元)投入资金(亿元)300 a b m所占百分比 c 34% 6%所占圆心角216° d 21.6°考点:条形统计图;统计表;扇形统计图.分析:(1)由机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,即可得到结果;(2)根据扇形统计图及统计表中提供的信息,列式计算即可得到结果.解答:解:(1)(2+4)×=4,答:机场E投入的建设资金金额是4亿元,如图所示:(2)c=1﹣34%﹣6%=60%,300÷(1﹣34%﹣6%)=500(亿)a=500×34%=170(亿),b=500×6%=30(亿),d=360°﹣216°﹣21.6°=122.4°,m=300+170+30=500(亿).故答案为:170,30,60%,122.4°,500.点评:本题主要考查了条形统计图与扇形统计图的应用,根据图象得出正确的信息是解题关键.22.(7分)(2015•云南)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD 的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.考点:矩形的性质;全等三角形的判定与性质;角平分线的性质.专题:计算题.分析:(1)由MN∥BC,易得∠CBN=∠MNB,由已知∠PNB=3∠CBN,根据角的和差不难得出结论;(2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,由(1)知∠PNM=2∠CBN=2∠PAN,由AD∥MN,可知∠PAN=∠ANM,所以∠PAN=∠PNA,根据等角对等边得到AP=PN,再用勾股定理列方程求出AP.解答:解:(1)∵四边形ABCD是矩形,M,N分别是AB,CD的中点,∴MN∥BC,∴∠CBN=∠MNB,∵∠PNB=3∠CBN,∴∠PNM=2∠CBN;(2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,∵MN∥AD,∴∠PAN=∠ANM,由(1)知∠PNM=2∠CBN,∴∠PAN=∠PNA,∴AP=PN,∵AB=CD=4,M,N分别为AB,CD的中点,∴DN=2,设AP=x,则PD=6﹣x,在Rt△PDN中PD2+DN2=PN2,∴(6﹣x)2+22=x2,解得:x=所以AP=.点评:本题主要考查了矩形的性质、平行线的性质、等腰三角形的判定与性质、勾股定理的综合运用,难度不大,根据角的倍差关系得到∠PAN=∠PNA,发现AP=PN是解决问题的关键.23.(9分)(2015•云南)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)由C的坐标确定出OC的长,在直角三角形BOC中,利用勾股定理求出OB的长,确定出点B坐标,把B与C坐标代入直线解析式求出k与n的值,确定出直线BC解析式,把A与B坐标代入抛物线解析式求出a的值,确定出抛物线解析式即可;(2)在抛物线的对称轴上不存在点P,使得以B,C,P三点为顶点的三角形是直角三角形,如图所示,分两种情况考虑:当PC⊥CB时,△PBC为直角三角形;当P′B⊥BC 时,△BCP′为直角三角形,分别求出P的坐标即可.解答:解:(1)∵C(0,3),即OC=3,BC=5,∴在Rt△BOC中,根据勾股定理得:OB==4,即B(4,0),把B与C坐标代入y=kx+n中,得:,解得:k=﹣,n=3,∴直线BC解析式为y=﹣x+3;由A(1,0),B(4,0),设抛物线解析式为y=a(x﹣1)(x﹣4)=ax2﹣5ax+4a,把C(0,3)代入得:a=,则抛物线解析式为y=x2﹣x+3;(2)存在.如图所示,分两种情况考虑:∵抛物线解析式为y=x2﹣x+3,∴其对称轴x=﹣=﹣=.当PC⊥CB时,△PBC为直角三角形,∵直线BC的斜率为﹣,∴直线PC斜率为,∴直线PC解析式为y﹣3=x,即y=x+3,与抛物线对称轴方程联立得,解得:,此时P(,);当P′B⊥BC时,△BCP′为直角三角形,同理得到直线P′B的斜率为,∴直线P′B方程为y=(x﹣4)=x﹣,与抛物线对称轴方程联立得:,解得:,此时P′(,﹣2).综上所示,P(,)或P′(,﹣2).点评:此题考查的是二次函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,二次函数的性质,以及两直线垂直时斜率的关系,熟练掌握待定系数法是解本题的关键.。

云南省中考数学真题试题(含扫描答案)

云南省中考数学真题试题(含扫描答案)

云南省2015年中考数学真题试题(全卷三个大题,共23个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷。

考生必须在答题卡上解题作答。

答案应书写在答题卡的相应位置上,在试题卷、草稿纸上作答无效。

2.考试结束后,请将试题卷和答题卡一并交回。

一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.−2的相反数是A .−2B .2C .12-D .122.不等式26x ->0的解集是A .x >1B .x <−3C .x >3D .x <33.若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是A .正方体B .圆锥C .圆柱D .球4.2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营养改善试点中小学达17580所.17580这个数用科学记数法可表示为A .17.58×103B .175.8×104C .1.758 ×105D .1.758×1045.下列运算正确的是A .2510a a a ⋅=B .0( 3.14)0π-=C D .222()a b a b +=+ 6.下列一元二次方程中,没有实数根的是A .24520x x -+=B .2690x x -+=C .25410x x --=D .23410x x -+=7.为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果:在上表统计的数据中,平均数和中位数分别为A .42,43.5B . 42,42C .31,42D .36,548.若扇形的面积为3π,圆心角为60°,则该扇形的半径为l 1l 2 l 3 l 4 56° 120° αA B C A B C P 1 M 1 A B C P 1 M 1 P 2 M 2 A B C P 1 M 1 P 2 M 2 P 3 M 3 …… 图1 图2 图3OA BC A .3 B .9 C. D .二、填空题(本大题共6个小题,每小题3分,满分18分)9.分解因式:2312x -= .10.函数y =x 的取值范围是 .11.如图,直线l 1∥l 2,并且被直线l 3、l 4所截,则∠α= .12.一台电视机原价是2500元,现按原价的8折出售,则购买a 台这样的电视机需要元.13.如图,点A 、B 、C 是⊙O上的点,OA AB =,则C ∠的度数为 .14.如图,在△ABC 中,1BC =,点P 1、M 1分别是AB 、AC 边的中点,点P 2、M 2分别是AP 1、AM 1的中点,点P 3、M 3分别是AP 2、AM 2的中点,按这样的规律下去,P n M n 的长为 (n 为正整数).三、解答题(本大题共9个小题,满分58分)15.(本小题5分)化简求值:21(1)11x x x x x x ⎡⎤+-⋅⎢⎥---⎦⎣,其中1x =.16.(本小题5分)如图,B D ∠=∠,请添加一个条件(不得添加辅助线),使得△ABC ≌△ADC ,并说明理由.17.(本小题7分)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?18.(本小题5分)已知A 、B 两地相距200千米,一辆汽车以每小时60千米的速度从A 地匀速驶往B 地,到达B 地后不再行驶.设汽车行驶的时间为x 小时,汽车与B 地的距离为y 千米.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)当汽车行驶了2小时时,求汽车距B 地有多少千米?AB D C19.(本小题6分)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥.建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB = 30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA = 60°.请你根据以上测量数据求出河的宽度.(参考数据: 1.41≈,1.73≈;结果保留整数)20.(本小题7分)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方体骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其它都相同).先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢.问小明和小王谁赢的可能性更大?请说明理由.21.(本小题7分)2015年某省为加快建设综合交通体系,对铁路、公路、机场三个重大项目加大了建设资金的投入.(1)机场建设项目中所有6个机场投入的建设资金金额统计如下图,已知机场E投入的建设资金金额是机场C、D所投入建设资金金额之和的三分之二,求机场E投入的建设资金金A BCMNA B CD N M P机场 6个机场投入建设资金金额条形统计图 额是多少亿元?并补全条形统计图.(2)将铁路、公路、机场三项建设所投入的资金金额绘制成如下扇形统计图以及统计表,根据扇形统计图及统计表中的信息,求得a = ;b = ;c = ;d = ;m = .(请直接填写计算结果)22.(本小题7分)如图,在矩形ABCD 中,4AB =,6AD =.M 、N 分别是AB 、CD 边的中点,P是AD 上的点,且3PNB CBN ∠=∠.(1)求证:2PNM CBN ∠=∠;(2)求线段AP 的长.23.(本小题9分)如图,在平面直角坐标系中,抛物线2y ax bx c =++(0a ≠)与x 轴相交于A 、B 两点,与y 轴相交于点C ,直线y kx n =+(0k ≠)经过B 、C 两点.已知(1,0)A ,(0,3)C ,且5BC =.(1)分别求直线BC 和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P ,使得以B 、C 、P 三点为顶点的三角形是直角三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.。

2015云南省中考数学试卷

2015云南省中考数学试卷

8.(2015 云南省,8,3 分)若扇形的面积为 3π,圆心角为 60°,则该扇形的半径为 A.3 【答案】D B.9 C.2 3 D.3 2
【解析】扇形面积为 S=
n r 2 60 r 2 1 = lr.代入得 =3π.解得 r=3 2 . 2 360 360
二、填空题(本大题共 6 个小题,每小题 3 分,满分 18 分) 9.(2015 云南省,9,3 分)分解因式:3x2-12= . 【答案】3(x+2)(x-2) 【解析】根据公式法:a2-b2=(a+b)(a-b)即可解答.因式分解的方法:(1)提公因式法;(2)公式 法.(3).公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数 (取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂). 10.(2015 云南省,10,3 分)函数 y= x 7 的自变量 x 的取值范围是 【答案】x≥7 .
A A P2 P1 M1 P1 A M2 M1 P1 P3 P2 A M3 M2 M1 „„
B
C
B 图1
C
B 图2
C
B 图3
C
1 【答案】 n 2
【解析】 考察的是中位线定理, BC=1, 所以 P1M1=
1 1 1 1 ; P2M2= ; P3M3= ; „„所以 PnMn= n . 2 2 2 2
3
ABC≌△ADC,并说明理由.
A
B
D
C
【答案】答案不唯一.如: 解:加∠BAC=∠DAC; 证明:在△ABC 和△ADC, B D BAC DAC AC AC ∴△ABC≌△DC(AAS) 【解析】有一边和一个角对应相等,可以有:(SAS) (ASA) (AAS)来证明全等. 判定三角形全等的方法: 边角边(SAS):有两条边和它们的夹角对应相等的两个三角形全等. 角边角(ASA):有两个角和它们的夹边对应相等的两个三角形全等. 角角边(AAS):有两角和其中一角的对边对应相等的两个三角形全等. 边边边(SSS):三边对应相等的两个三角形全等. HL 公理:两直角三角形中斜边和一条直角边对应相等的两个直角三角形全等. 17.(2015 云南省,17,7 分)(本小题 7 分)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班 级篮球比赛,每场比赛都要决出胜负,每队胜一场得 2 分,负一场得 1 分.已知九年级一班在 8 场比赛中 得到 13 分,问九年级一班胜、负场数分别是多少? 【答案】 解:设九年级一班胜 x 场,则负(8-x)场,根据题意得 2x+(8-x)=13 解之得 x=5 负:8-x=8-5=3 答:九年级一班胜 5 场,负 3 场. 【解析】此题比较简单,胜场的分数加负场的分数等于总分 13 分即可求解. 18.(2015 云南省,18,5 分)(本小题 5 分)已知 A、B 两地相距 200 千米,一辆汽车以每小时 60 千米的速 度从 A 地匀速驶往 B 地, 到达 B 地后不再行驶. 设汽车行驶的时间为 x 小时, 汽车与 B 地的距离为 y 千米. (1)求 y 与 x 的函数关系式,并写出自变量 x 的取值范围; (2)当汽车行驶了 2 小时时,求汽车距地有多少千米? 【答案】 10 解:(1)根据题意得:y=200-60x (0≤x≤ ) 3 (2)当 x=2 时 y=200-60×2 =80 则当汽车行驶了 2 小时时,求汽车距地有 80 千米. 【解析】(1)根据总路程-所走路程=汽车与 B 地的距离.得:y=200-60x 而时间从 0 开始,走到 B 地 10 为止.所以是 0≤x≤ . 3 (2)当 x=2 时,代入 y=200-60x 即可计算得 y=80. 19.(2015 云南省,19,6 分) (本小题 6 分)为解决江北学校学生上学过河难的问题,乡政府决定修建一座

2015年云南省中考数学试卷

2015年云南省中考数学试卷

2015年云南省中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)﹣2的相反数是()A.﹣2 B.2 C.﹣D.2.(3分)不等式2x﹣6>0的解集是()A.x>1 B.x<﹣3 C.x>3 D.x<33.(3分)若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球4.(3分)2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营养改善试点中小学达17580所,17580这个数用科学记数法可表示为()A.17.58×103B.175.8×104 C.1.758×105 D.1.758×1045.(3分)下列运算正确的是()A.a2•a5=a10B.(π﹣3.14)0=0 C.﹣2=D.(a+b)2=a2+b26.(3分)下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0 B.x2﹣6x+9=0 C.5x2﹣4x﹣1=0 D.3x2﹣4x+1=07.(3分)为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果:在上表统计的数据中,平均数和中位数分别为()A.42,43.5 B.42,42 C.31,42 D.36,548.(3分)若扇形面积为3π,圆心角为60°,则该扇形的半径为()A.3 B.9 C.2D.3二、填空题(本大题共6小题,每小题3分,满分18分)9.(3分)分解因式:3x2﹣12= .10.(3分)函数y=的自变量x的取值范围是.11.(3分)如图,直线l1∥l2,并且被直线l3,l4所截,则∠α= .12.(3分)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要元.13.(3分)如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为.14.(3分)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n为正整数).三、解答题(本大题共9小题,满分58分)15.(5分)化简求值:[﹣]•,其中x=+1.16.(5分)如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.17.(7分)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?18.(5分)已知A,B两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B 地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.(1)求y与x的函数关系,并写出自变量x的取值范围;(2)当汽车行驶了2小时时,求汽车距B地有多少千米?19.(6分)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)20.(7分)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.21.(7分)2015年某省为加快建设综合交通体系,对铁路、公路、机场三个重大项目加大了建设资金的投入.(1)机场建设项目中所有6个机场投入的建设资金金额统计如图1,已知机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,求机场E投入的建设资金金额是多少亿元?并补全条形统计图;(2)将铁路、公路机场三项建设所投入的资金金额绘制成了如图2扇形统计图以及统计表,根据扇形统计图及统计表中信息,求得a= ,b= ,c ,d ,m .(请直接填写计算结果)22.(7分)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.23.(9分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2015年云南省中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2015•云南)﹣2的相反数是()A.﹣2 B.2 C.﹣D.【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣2的相反数是:﹣(﹣2)=2,故选B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2015•云南)不等式2x﹣6>0的解集是()A.x>1 B.x<﹣3 C.x>3 D.x<3【考点】C6:解一元一次不等式.【分析】利用不等式的基本性质:移项,系数化1来解答.【解答】解:移项得,2x>6,两边同时除以2得,x>3.故选C.【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.3.(3分)(2015•云南)若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球【考点】U3:由三视图判断几何体.【分析】找到从正面、左面和上面看得到的图形是正方形的几何体即可.【解答】解:∵主视图和左视图都是正方形,∴此几何体为柱体,∵俯视图是一个正方形,∴此几何体为正方体.故选A.【点评】此题考查三视图,关键是根据:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.4.(3分)(2015•云南)2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营养改善试点中小学达17580所,17580这个数用科学记数法可表示为()A.17.58×103B.175.8×104 C.1.758×105 D.1.758×104【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将17580用科学记数法表示为1.758×104.故选D.【点评】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)(2015•云南)下列运算正确的是()A.a2•a5=a10B.(π﹣3.14)0=0 C.﹣2=D.(a+b)2=a2+b2【考点】78:二次根式的加减法;46:同底数幂的乘法;4C:完全平方公式;6E:零指数幂.【分析】根据同底数幂的乘法、零指数幂、二次根式的加减和完全平方公式计算判断即可.【解答】解:A、a2•a5=a7,错误;B、(π﹣3.14)0=1,错误;C、,正确;D、(a+b)2=a2+2ab+b2,错误;故选C.【点评】此题考查同底数幂的乘法、零指数幂、二次根式的加减和完全平方公式,关键是根据法则进行计算.6.(3分)(2015•云南)下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0 B.x2﹣6x+9=0 C.5x2﹣4x﹣1=0 D.3x2﹣4x+1=0【考点】AA:根的判别式.【分析】分别计算出每个方程的判别式即可判断.【解答】解:A、∵△=25﹣4×2×4=﹣7<0,∴方程没有实数根,故本选项正确;B、∵△=36﹣4×1×4=0,∴方程有两个相等的实数根,故本选项错误;C、∵△=16﹣4×5×(﹣1)=36>0,∴方程有两个相等的实数根,故本选项错误;D、∵△=16﹣4×1×3=4>0,∴方程有两个相等的实数根,故本选项错误;故选A.【点评】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.7.(3分)(2015•云南)为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果:在上表统计的数据中,平均数和中位数分别为()A.42,43.5 B.42,42 C.31,42 D.36,54【考点】W4:中位数;W2:加权平均数.【分析】根据平均数的公式求得上表统计的数据中的平均数,将其按从小到大的顺序排列中间的那个是中位数.【解答】解:P=(36+27+31+56+48+54)=42,把这几个数据按从小到大顺序排列为:27,31,36,48,54,56,中位数W=(36+48)=42.故选B.【点评】本题考查了平均数和中位数的知识,属于基础题,解答本题的关键是熟练掌握平均数和中位数的定义.8.(3分)(2015•云南)若扇形面积为3π,圆心角为60°,则该扇形的半径为()A.3 B.9 C.2D.3【考点】MO:扇形面积的计算.【分析】已知了扇形的圆心角和面积,可直接根据扇形的面积公式求半径长.【解答】解:扇形的面积==3π.解得:r=3.故选D.【点评】本题主要考查了扇形的面积公式=.熟练将公式变形是解题关键.二、填空题(本大题共6小题,每小题3分,满分18分)9.(3分)(2015•云南)分解因式:3x2﹣12= 3(x﹣2)(x+2).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取3,再利用平方差公式分解即可.【解答】解:原式=3(x2﹣4)=3(x+2)(x﹣2).故答案为:3(x+2)(x﹣2).【点评】本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以提取公因式的要先提取公因式.10.(3分)(2015•云南)函数y=的自变量x的取值范围是x≥7 .【考点】E4:函数自变量的取值范围.【分析】函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:x﹣7≥0,解得x≥7,故答案为x≥7.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.11.(3分)(2015•云南)如图,直线l1∥l2,并且被直线l3,l4所截,则∠α= 64°.【考点】JA:平行线的性质.【分析】首先根据三角形外角的性质,求出∠1的度数是多少;然后根据直线l1∥l2,可得∠α=∠1,据此求出∠α的度数是多少即可.【解答】解:如图1,,∵∠1+56°=120°,∴∠1=120°﹣56°=64°,又∵直线l1∥l2,∴∠α=∠1=64°.故答案为:64°.【点评】此题主要考查了平行线的性质,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.12.(3分)(2015•云南)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要2000a 元.【考点】32:列代数式.【分析】现在以8折出售,就是现价占原价的80%,把原价看作单位“1”,根据一个数乘百分数的意义,用乘法解答.【解答】解:2500a×80%=2000a(元).故答案为2000a元.【点评】本题考查了列代数式,解题的关键是理解打折问题在实际问题中的应用.13.(3分)(2015•云南)如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为30°.【考点】M5:圆周角定理;KM:等边三角形的判定与性质.【分析】由OA=AB,OA=OB,可得△OAB是等边三角形,即可得∠AOB=60°,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠C的度数.【解答】解:∵OA=AB,OA=OB,∴OA=OB=AB,即△OAB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=30°.故答案为30°.【点评】此题考查了圆周角定理与等边三角形的判定与性质.此题比较简单,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.14.(3分)(2015•云南)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n为正整数).【考点】KX:三角形中位线定理.【专题】16 :压轴题;2A :规律型.【分析】根据中位线的定理得出规律解答即可.【解答】解:在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,可得:P1M1=,P2M2=,故P n M n=,故答案为:【点评】此题考查三角形中位线定理,关键是根据中位线得出规律进行解答.三、解答题(本大题共9小题,满分58分)15.(5分)(2015•云南)化简求值:[﹣]•,其中x=+1.【考点】6D:分式的化简求值.【分析】首先将中括号内的部分进行通分,然后按照同分母分式的减法法则进行计算,再按照分式的乘法法则计算、化简,最后再代数求值即可.【解答】解:原式===,将x=+1代入得:原式==.【点评】本题主要考查的是分式的化简以及二次根式的运算,掌握分式的通分、加减、乘除等运算法则是解题的关键.16.(5分)(2015•云南)如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.【考点】KB:全等三角形的判定.【专题】26 :开放型.【分析】已知这两个三角形的一个边与一个角相等,所以再添加一个对应角相等即可.【解答】解:添加∠BAC=∠DAC.理由如下:在△ABC与△ADC中,,∴△ABC≌△ADC(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17.(7分)(2015•云南)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?【考点】8A:一元一次方程的应用.【分析】设胜了x场,那么负了(8﹣x)场,根据得分为13分可列方程求解.【解答】解:设胜了x场,那么负了(8﹣x)场,根据题意得:2x+1•(8﹣x)=13,x=5,8﹣5=3.答:九年级一班胜、负场数分别是5和3.【点评】本题考查了一元一次方程的应用,还考查了学生的理解题意能力,关键设出胜的场数,以总分数做为等量关系列方程求解.18.(5分)(2015•云南)已知A,B两地相距200千米,一辆汽车以每小时60千米的速度从A 地匀速驶往B地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.(1)求y与x的函数关系,并写出自变量x的取值范围;(2)当汽车行驶了2小时时,求汽车距B地有多少千米?【考点】FH:一次函数的应用.【分析】(1)根据剩余的路程=两地的距离﹣行驶的距离即可得到y与x的函数关系式,然后再求得汽车行驶200千米所需要的时间即可求得x的取值范围.(2)将x=2代入函数关系式,求得y值即可.【解答】解:(1)y=200﹣60x(0≤x≤);(2)将x=2代入函数关系式得:y=200﹣60×2=80千米.答:汽车距离B地80千米.【点评】本题主要考查的是列函数关系式,读懂题意,明确剩余的路程=两地的距离﹣行驶的距离是解答本题的关键.19.(6分)(2015•云南)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B 处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)【考点】T8:解直角三角形的应用.【分析】如图,过点C作CD⊥AB于点D,通过解直角△ACD和直角△BCD来求CD的长度.【解答】解:如图,过点C作CD⊥AB于点D,设CD=x.∵在直角△ACD中,∠CAD=30°,∴AD==x.同理,在直角△BCD中,BD==x.又∵AB=30米,∴AD+BD=30米,即x+x=30.解得x=13.答:河的宽度的13米.【点评】本题考查了解直角三角形的应用.关键把实际问题转化为数学问题加以计算.20.(7分)(2015•云南)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.【考点】X7:游戏公平性;X6:列表法与树状图法.【分析】(1)列举出所有情况,看向上一面出现的数字与卡片上的数字之积为6的情况数占总情况数的多少即可.(2)概率问题中的公平性问题,解题的关键是计算出各种情况的概率,然后比较即可.【解答】解:(1)如图所示:共18种情况,数字之积为6的情况数有3种,P(数字之积为6)==.(2)由上表可知,该游戏所有可能的结果共18种,其中骰子向上一面出现的数字与卡片上的数字之积大于7的有7种,骰子向上一面出现的数字与卡片上的数字之积小于7的有11种,所以小明赢的概率=,小王赢的概率=,故小王赢的可能性更大.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21.(7分)(2015•云南)2015年某省为加快建设综合交通体系,对铁路、公路、机场三个重大项目加大了建设资金的投入.(1)机场建设项目中所有6个机场投入的建设资金金额统计如图1,已知机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,求机场E投入的建设资金金额是多少亿元?并补全条形统计图;(2)将铁路、公路机场三项建设所投入的资金金额绘制成了如图2扇形统计图以及统计表,根据扇形统计图及统计表中信息,求得a= 170 ,b= 30 ,c 60% ,d 122.4°,m =500 .(请直接填写计算结果)【考点】VC:条形统计图;VA:统计表;VB:扇形统计图.【分析】(1)由机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,即可得到结果;(2)根据扇形统计图及统计表中提供的信息,列式计算即可得到结果.【解答】解:(1)(2+4)×=4,答:机场E投入的建设资金金额是4亿元,如图所示:(2)c=1﹣34%﹣6%=60%,300÷(1﹣34%﹣6%)=500(亿)a=500×34%=170(亿),b=500×6%=30(亿),d=360°﹣216°﹣21.6°=122.4°,m=300+170+30=500(亿).故答案为:170,30,60%,122.4°,500.【点评】本题主要考查了条形统计图与扇形统计图的应用,根据图象得出正确的信息是解题关键.22.(7分)(2015•云南)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.【考点】LB:矩形的性质;KD:全等三角形的判定与性质;KF:角平分线的性质.【专题】11 :计算题.【分析】(1)由MN∥BC,易得∠CBN=∠MNB,由已知∠PNB=3∠CBN,根据角的和差不难得出结论;(2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,由(1)知∠PNM=2∠CBN=2∠PAN,由AD∥MN,可知∠PAN=∠ANM,所以∠PAN=∠PNA,根据等角对等边得到AP=PN,再用勾股定理列方程求出AP.【解答】解:(1)∵四边形ABCD是矩形,M,N分别是AB,CD的中点,∴MN∥BC,∴∠CBN=∠MNB,∵∠PNB=3∠CBN,∴∠PNM=2∠CBN;(2)连接AN,根据矩形的轴对称性,可知∠PAN=∠CBN,∵MN∥AD,∴∠PAN=∠ANM,由(1)知∠PNM=2∠CBN,∴∠PAN=∠PNA,∴AP=PN,∵AB=CD=4,M,N分别为AB,CD的中点,∴DN=2,设AP=x,则PD=6﹣x,在Rt△PDN中PD2+DN2=PN2,∴(6﹣x)2+22=x2,解得:x=所以AP=.【点评】本题主要考查了矩形的性质、平行线的性质、等腰三角形的判定与性质、勾股定理的综合运用,难度不大,根据角的倍差关系得到∠PAN=∠PNA,发现AP=PN是解决问题的关键.23.(9分)(2015•云南)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】16 :压轴题.【分析】(1)由C的坐标确定出OC的长,在直角三角形BOC中,利用勾股定理求出OB的长,确定出点B坐标,把B与C坐标代入直线解析式求出k与n的值,确定出直线BC解析式,把A 与B坐标代入抛物线解析式求出a的值,确定出抛物线解析式即可;(2)在抛物线的对称轴上不存在点P,使得以B,C,P三点为顶点的三角形是直角三角形,如图所示,分两种情况考虑:当PC⊥CB时,△PBC为直角三角形;当P′B⊥BC时,△BCP′为直角三角形,分别求出P的坐标即可.【解答】解:(1)∵C(0,3),即OC=3,BC=5,∴在Rt△BOC中,根据勾股定理得:OB==4,即B(4,0),把B与C坐标代入y=kx+n中,得:,解得:k=﹣,n=3,∴直线BC解析式为y=﹣x+3;由A(1,0),B(4,0),设抛物线解析式为y=a(x﹣1)(x﹣4)=ax2﹣5ax+4a,把C(0,3)代入得:a=,则抛物线解析式为y=x2﹣x+3;(2)存在.如图所示,分两种情况考虑:∵抛物线解析式为y=x2﹣x+3,∴其对称轴x=﹣=﹣=.当P1C⊥CB时,△P1BC为直角三角形,∵直线BC的斜率为﹣,∴直线P1C斜率为,∴直线P1C解析式为y﹣3=x,即y=x+3,与抛物线对称轴方程联立得,解得:,此时P(,);当P2B⊥BC时,△BCP2为直角三角形,同理得到直线P2B的斜率为,∴直线P2B方程为y=(x﹣4)=x﹣,与抛物线对称轴方程联立得:,解得:,此时P2(,﹣2).综上所示,P1(,)或P2(,﹣2).当点P为直角顶点时,设P(,y),∵B(4,0),C(0,3),∴BC=5,∴BC2=PC2+PB2,即25=()2+(y﹣3)2+(﹣4)2+y2,解得y=,∴P3(,),P4(,).综上所述,P1(,),P2(,﹣2),P3(,),P4(,).【点评】此题考查的是二次函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,二次函数的性质,以及两直线垂直时斜率的关系,熟练掌握待定系数法是解本题的关键.。

2015年度云南地区曲靖市中考数学试题及解析

2015年度云南地区曲靖市中考数学试题及解析

2015年云南省曲靖市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2015•曲靖)﹣2的倒数是()B.﹣2 C.D.2A.﹣2.(3分)(2015•曲靖)如图是一个六角螺栓,它的主视图和俯视图都正确的是()A.B.C.3.(3分)(2015•曲靖)下列运算正确的是()A.4a2﹣2a2=2 B.a7÷a3=a4C.5a2•a4=5a8D.(a2b3)2=a4b54.(3分)(2015•曲靖)不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(3分)(2015•曲靖)某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论正确的是()A.样本中位数是200元B.样本容量是20C.该企业员工捐款金额的极差是450元D.该企业员工最大捐款金额是500元6.(3分)(2015•曲靖)方程=﹣1的解是()A.x=2 B.x=1 C.x=0 D.无实数解7.(3分)(2015•曲靖)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)8.(3分)(2015•曲靖)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是()A.15°B.20°C.25°D.30°二、填空题(共8小题,每小题3分,满分24分)9.(3分)(2015•曲靖)2015年云南省约有272000名学生参加高考,272000用科学记数法表示为2.72×10n,则n=.10.(3分)(2015•曲靖)若平行四边形中两个内角的度数比为1:2,则其中较大的内角是度.11.(3分)(2015•曲靖)若△ADE∽△ACB,且=,DE=10,则BC=.12.(3分)(2015•曲靖)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD=.13.(3分)(2015•曲靖)一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有颗.14.(3分)(2015•曲靖)一元二次方程x2﹣5x+c=0有两个不相等的实数根且两根之积为正数,若c是整数,则c=.(只需填一个).15.(3分)(2015•曲靖)用火柴棒按下图所示的方式摆大小不同的“H”:依此规律,摆出第9个“H”需用火柴棒根.16.(3分)(2015•曲靖)如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为.三、解答题(共8小题,满分72分)17.(6分)(2015•曲靖)计算:(﹣1)2015﹣()﹣2+(2﹣)0﹣|﹣2|.18.(8分)(2015•曲靖)先化简,再求值:÷(1﹣),其中a=﹣2.19.(8分)(2015•曲靖)水龙头关闭不严会造成滴水,容器内盛水时w(L)与滴水时间t (h)的关系用可以显示水量的容器做如图1的试验,并根据试验数据绘制出如图2的函数图象,结合图象解答下列问题.(1)容器内原有水多少升?(2)求w与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?20.(9分)(2015•曲靖)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?21.(9分)(2015•曲靖)如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.22.(10分)(2015•曲靖)某中学需在短跑、跳远、乒乓球、跳高四类体育项目中各选一名同学参加中学生运动会,根据平时成绩,把各项目进入复选的人员情况绘制成不完整的统计图、表如下:复选人员扇形统计图:复选人员统计表:项目/人数/性别男女短跑 1 2跳远 a 6乒乓球 2 1跳高 3 b(1)求a、b的值;(2)求扇形统计图中跳远项目对应圆心角的度数;(3)用列表法或画树状图的方法求在短跑和乒乓球项目中选出的两位同学都为男生的概率.23.(10分)(2015•曲靖)如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E 是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.24.(12分)(2015•曲靖)如图,在平面直角坐标系xOy中,直线l⊥y轴于点B(0,﹣2),A为OB的中点,以A为顶点的抛物线y=ax2+c与x轴交于C、D两点,且CD=4,点P为抛物线上的一个动点,以P为圆心,PO为半径画圆.(1)求抛物线的解析式;(2)若⊙P与y轴的另一交点为E,且OE=2,求点P的坐标;(3)判断直线l与⊙P的位置关系,并说明理由.2015年云南省曲靖市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2015•曲靖)﹣2的倒数是()B.﹣2 C.D.2A.﹣考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:有理数﹣2的倒数是﹣.故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(2015•曲靖)如图是一个六角螺栓,它的主视图和俯视图都正确的是()A.B.C.考点:简单组合体的三视图.分析:根据从正面看得到的视图是主视图,从上边看得到的图形是俯视图,可得答案.解答:解:从正面看第一层中间是较长的矩形,两边是比较短的矩形,第二层是比较宽的矩形,从上面看外边是一个正六边形,里面是一个圆形,故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从上边看得到的图形是俯视图.3.(3分)(2015•曲靖)下列运算正确的是()A.4a2﹣2a2=2 B.a7÷a3=a4C.5a2•a4=5a8D.(a2b3)2=a4b5考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同类项、同底数幂的除法、单项式的乘法和积的乘方计算即可.解答:解:A、4a2﹣2a2=2a2,错误;B、a7÷a3=a4,正确;C、5a2•a4=5a6,错误;D、(a2b3)2=a4b6,错误;故选B.点评:此题考查同类项、同底数幂的除法、单项式的乘法和积的乘方,关键是根据法则进行计算判断.4.(3分)(2015•曲靖)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.解答:解:,解得:.故不等式组无解.故选:D.点评:本题考查了在数轴上表示不等式的解集,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥,≤”要用实心圆点表示;“<,>”要用空心圆点表示.5.(3分)(2015•曲靖)某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论正确的是()A.样本中位数是200元B.样本容量是20C.该企业员工捐款金额的极差是450元D.该企业员工最大捐款金额是500元考点:频数(率)分布直方图;总体、个体、样本、样本容量;中位数;极差.分析:利用总体、个体、样本、样本容量,中位数、极差等知识分别判断后即可确定正确的选项.解答:解:A、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为175元,错误;B、共20人,故样本容量为20,正确;C、极差为500﹣50=450元,正确;D、该企业员工最大捐款金额是500元,正确.故选:B.点评:本题考查的是频数分布直方图、平均数、样本容量、和极差的知识,掌握题目的概念并从频数分布直方图获取正确的信息是解题的关键.6.(3分)(2015•曲靖)方程=﹣1的解是()A.x=2 B.x=1 C.x=0 D.无实数解考点:解分式方程.分析:根据分式方程的解法,去分母转化为整式方程,求出解后检验即可.解答:解:去分母,方程两边都乘以(x﹣1)得,﹣1+x=﹣(x﹣1)解这个方程得:x=1,检验:当x=1时,x﹣1=0,所以x=1不是原方程的解,所以原方程无解.故选:D.点评:本题主要考查了分式方程的解法,注意解分式方程一定要检验.7.(3分)(2015•曲靖)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)考点:反比例函数与一次函数的交点问题.分析:根据自变量的值,可得相应的函数值,根据待定系数法,可得反比例函数的解析式,根据解方程组,可得答案.解答:解:当x=﹣2时,y=﹣×(﹣2)=1,即A(﹣2,1).将A点坐标代入y=,得k=﹣2×1=﹣2,反比例函数的解析式为y=,联立双曲线、直线,得,解得,,B(2,﹣1).故选:A.点评:本题考查了反比例函数与一次函数的交点问题,利用待定系数法求双曲线函数的解析式,又利用解方程组求图象的交点.8.(3分)(2015•曲靖)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是()A.15°B.20°C.25°D.30°考点:旋转的性质.分析:先根据正方形的性质和旋转的性质得到∠AOF的度数,OA=OF,再根据等腰三角形的性质即可求得∠OFA的度数.解答:解:∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,∴∠AOF=90°+40°=130°,OA=OF,∴∠OFA=(180°﹣130°)÷2=25°.故选:C.点评:考查了旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.同时考查了正方形的性质和等腰三角形的性质.二、填空题(共8小题,每小题3分,满分24分)9.(3分)(2015•曲靖)2015年云南省约有272000名学生参加高考,272000用科学记数法表示为2.72×10n,则n=5.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将272000用科学记数法表示为2.72×105.∴n=5.故答案为5.点评:本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2015•曲靖)若平行四边形中两个内角的度数比为1:2,则其中较大的内角是120度.考点:平行四边形的性质.分析:根据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=1:2,求出∠C即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=1:2,∴∠C=×180°=120°,故答案为:120.点评:本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.11.(3分)(2015•曲靖)若△ADE∽△ACB,且=,DE=10,则BC=15.考点:相似三角形的性质.分析:根据△ADE∽△ACB,得到=,代入已知数据计算即可.解答:解:∵△ADE∽△ACB,∴=,又=,DE=10,∴BC=15.点评:本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等并找准对应边是解题的关键.12.(3分)(2015•曲靖)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD=.考点:圆周角定理;解直角三角形.分析:连接BC,根据同弧所对的圆周角相等得到∠D=∠A,在直角三角形ABC中,根据余弦的定义即可得到结果.解答:解:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为:.点评:本题考查了圆周角定理,解直角三角形,连接BC构造直角三角形是解题的关键.13.(3分)(2015•曲靖)一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有14颗.考点:利用频率估计概率.分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解答:解:由题意可得,,解得n=14.故估计盒子中黑珠子大约有14个.点评:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.14.(3分)(2015•曲靖)一元二次方程x2﹣5x+c=0有两个不相等的实数根且两根之积为正数,若c是整数,则c=4.(只需填一个).考点:根的判别式;根与系数的关系.分析:根据判别式的意义得到△=(﹣5)2﹣4c>0,解不等式得c<,进一步根据根与系数的关系得到x1+x2=5,x1x2=c>0,然后在此范围内找出最大整数即可.解答:解:∵一元二次方程x2﹣5x+c=0有两个不相等的实数根,∴△=(﹣5)2﹣4c>0,解得c<,∵x1+x2=5,x1x2=c>0,c是整数,∴c=4.故答案为:4.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(3分)(2015•曲靖)用火柴棒按下图所示的方式摆大小不同的“H”:依此规律,摆出第9个“H”需用火柴棒29根.考点:规律型:图形的变化类.分析:根据已知图形得出数字变化规律,进而求出答案.解答:解:如图所示:第1个图形有3+2=5根火柴棒,第2个图形有3×2+2=8根火柴棒,第3个图形有3×3+2=11根火柴棒,故第n个图形有3n+2根火柴棒,则第9个“H”需用火柴棒:3×9+2=29(根).故答案为:29.点评:此题主要考查了图形变化类,根据题意得出火柴棒的变化规律是解题关键.16.(3分)(2015•曲靖)如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为(6+2)a.考点:含30度角的直角三角形;等边三角形的判定与性质;勾股定理.分析:先根据∠C=30°,∠BAC=90°,DE⊥AC可知BC=2AB,CD=2DE,再由AB=AD可知点D是斜边BC的中点,由此可用a表示出AB的长,根据勾股定理可得出AC的长,由此可得出结论.解答:解:∵∠C=30°,∠BAC=90°,DE⊥AC,∴BC=2AB,CD=2DE=2a.∵AB=AD,∴点D是斜边BC的中点,∴BC=2CD=4a,AB=BC=2a,∴AC===2a,∴△ABC的周长=AB+BC+AC=2a+4a+2a=(6+2)a.故答案为:(6+2)a.点评:本题考查的是含30°的直角三角形,熟知在直角三角形中,30°角所对的直角边等于斜边的一半是解答此题的关键.三、解答题(共8小题,满分72分)17.(6分)(2015•曲靖)计算:(﹣1)2015﹣()﹣2+(2﹣)0﹣|﹣2|.考点:实数的运算;零指数幂;负整数指数幂.分析:根据零指数幂、乘方、负整数指数幂、绝对值四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1﹣9+1﹣2=﹣11.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(8分)(2015•曲靖)先化简,再求值:÷(1﹣),其中a=﹣2.考点:分式的化简求值.分析:先通分,然后进行四则运算,最后将a=﹣2代入计算即可.解答:解:原式=×=,当a=﹣2时,原式===.点评:本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.19.(8分)(2015•曲靖)水龙头关闭不严会造成滴水,容器内盛水时w(L)与滴水时间t (h)的关系用可以显示水量的容器做如图1的试验,并根据试验数据绘制出如图2的函数图象,结合图象解答下列问题.(1)容器内原有水多少升?(2)求w与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?考点:一次函数的应用.分析:(1)根据图象可知,t=0时,w=0.3,即容器内原有水0.3升;(2)设w与t之间的函数关系式为w=kt+b,将(0,0.3),(1.5,0.9)代入,利用待定系数法求出w与t之间的函数关系式;再将t=24代入,计算即可求解.解答:解:(1)根据图象可知,t=0时,w=0.3,即容器内原有水0.3升;(2)设w与t之间的函数关系式为w=kt+b,将(0,0.3),(1.5,0.9)代入,得,解得,故w与t之间的函数关系式为w=0.4t+0.3;当t=24时,w=0.4×24+0.3=9.9(升),即在这种滴水状态下一天的滴水量是9.9升.点评:此题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.20.(9分)(2015•曲靖)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:类别/单价成本价销售价(元/箱)甲24 36乙33 48(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?考点:二元一次方程组的应用.分析:(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,根据投入13800元资金购进甲、乙两种矿泉水共500箱,列出方程组解答即可;(2)总利润=甲的利润+乙的利润.解答:解:(1)设商场购进甲种矿泉水x箱,购进乙种矿泉水y箱,由题意得,解得:.答:商场购进甲种矿泉水350箱,购进乙种矿泉水150箱.(2)350×(33﹣24)+150×(48﹣36)=3150+1800=4950(元).答:该商场共获得利润4950元.点评:本题考查了二元一次方程组的实际应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.21.(9分)(2015•曲靖)如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.考点:菱形的性质;矩形的判定;解直角三角形.分析:(1)利用菱形的对角线互相垂直结合平行线的性质得出∠BOC=∠OCE=∠OBE=90°,进而求出即可;(2)利用菱形的性质结合勾股定理得出CO,BO的长,进而求出四边形OBEC的面积.解答:(1)证明:∵菱形ABCD的对角线AC与BD相交于点O,∴AC⊥BD,∵BE∥AC,CE∥BD,∴∠BOC=∠OCE=∠OBE=90°,∴四边形OBEC是矩形;(2)解:∵菱形ABCD的周长是4,∴AB=BC=AD=DC=,∵tanα=,∴设CO=x,则BO=2x,∴x2+(2x)2=()2,解得:x=,∴四边形OBEC的面积为:×2=4.点评:此题主要考查了菱形的性质和判定以及勾股定理等知识,熟练利用菱形的性质是解题关键.22.(10分)(2015•曲靖)某中学需在短跑、跳远、乒乓球、跳高四类体育项目中各选一名同学参加中学生运动会,根据平时成绩,把各项目进入复选的人员情况绘制成不完整的统计图、表如下:复选人员扇形统计图:复选人员统计表:项目/人数/性别男女短跑 1 2跳远 a 6乒乓球 2 1跳高 3 b(1)求a、b的值;(2)求扇形统计图中跳远项目对应圆心角的度数;(3)用列表法或画树状图的方法求在短跑和乒乓球项目中选出的两位同学都为男生的概率.考点:列表法与树状图法;统计表;扇形统计图.分析:(1)根据短跑人数为1+2=3人占总人数的12%求得总人数,进一步求得跳远和和跳高的总人数,最后求得a、b的数值即可;(2)用跳远所占总人数的百分比乘360°即可得出;(3)画出树状图,然后根据概率公式列式计算即可得解.解答:解:(1)总人数:(1+2)÷12%=3÷12%=25(人),a=25×(1﹣36%﹣12%﹣12%)﹣6=10﹣6=4,b=25×36%﹣3=9﹣3=6.(2)360°×(1﹣36%﹣12%﹣12%)=144°.(3)根据题意画出树状图如下:一共有9种情况,恰好是两位男生的情况有2种,P(两位男生)=.点评:本题考查的是统计表和扇形统计图的综合运用,读懂统计图表,从中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23.(10分)(2015•曲靖)如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E 是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.考点:全等三角形的判定与性质;平行线的性质;等腰三角形的判定与性质.分析:首先根据OC是∠AOB的平分线,CD∥OB,判断出∠DOC=∠DC0,所以OD=CD=DM+CM;然后根据E是线段OC的中点,CD∥OB,推得CM=ON,即可判断出OD=DM+ON,据此解答即可.解答:解:线段OD、ON、DM之间的数量关系是:OD=DM+ON.证明:∵OC是∠AOB的平分线,∴∠DOC=∠C0B,又∵CD∥OB,∴∠DCO=∠C0B,∴∠DOC=∠DC0,∴OD=CD=DM+CM,∵E是线段OC的中点,∴CE=OE,∵CD∥OB,∴,∴CM=ON,又∵OD=DM+CM,∴OD=DM+ON.点评:(1)此题主要考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.(2)此题还考查了等腰三角形的判定和性质的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.24.(12分)(2015•曲靖)如图,在平面直角坐标系xOy中,直线l⊥y轴于点B(0,﹣2),A为OB的中点,以A为顶点的抛物线y=ax2+c与x轴交于C、D两点,且CD=4,点P为抛物线上的一个动点,以P为圆心,PO为半径画圆.(1)求抛物线的解析式;(2)若⊙P与y轴的另一交点为E,且OE=2,求点P的坐标;(3)判断直线l与⊙P的位置关系,并说明理由.考点:二次函数综合题.分析:(1)根据题意可知A(0,﹣1),C(﹣2,0),D(2,0),从而可求得抛物线的解析式;(2)根据OE=2可知点E的坐标为(0,2)或(0,﹣2),从而可确定出点P的纵坐标为1或﹣1;(3)设点P的坐标为(m,),然后求得圆P的半径OP和点P到直线l的距离,根据d=r,可知直线和圆相切.解答:解:(1)∵点A为OB的中点,∴点A的坐标为(0,﹣1).∵CD=4,由抛物线的对称性可知:点C(﹣2,0),D(2,0),将点A(0,﹣1),C(﹣2,0),D(2,0)代入抛物线的解析式得:,解得:,∴抛物线得解析式为y=.(2)如下图:过点P1作P1F⊥OE.∵OE=2,∴点E的坐标为(0,2).∵P1F⊥OE.∴EF=OF.∴点P1的纵坐标为1.同理点P2的纵坐标为1.将y=1代入抛物线的解析式得:x1=,x2=2.∴点P1(﹣2,1),P2(﹣2,1).如下图:当点E与点B重合时,点P3与点A重合,∴点P3的坐标为(0,﹣1).综上所述点P的坐标为(﹣2,1)或(2,1)或(0,﹣1).(3)设点P的坐标为(m,),∴圆的半径OP==,点P到直线l的距离=﹣(﹣2)=+1.∴d=r.^`∴直线l与圆P相切.点评:本题主要考查的是二次函数与圆的综合应用,根据题意确定出点E的坐标,然后再得出点P的纵坐标是解题的关键.。

【2015中考真题】云南省曲靖市中考数学试题及解析

【2015中考真题】云南省曲靖市中考数学试题及解析

2015年云南省曲靖市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2015•曲靖)﹣2的倒数是()A.﹣B.﹣2 C.D.22.(3分)(2015•曲靖)如图是一个六角螺栓,它的主视图和俯视图都正确的是()A .B.C.D.A.4a2﹣2a2=2 B.a7÷a3=a4C.5a2•a4=5a8D.(a2b3)2=a4b5 4.(3分)(2015•曲靖)不等式组的解集在数轴上表示正确的是()A .B.C.D.5.(3分)(2015•曲靖)某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论正确的是()A.样本中位数是200元B.样本容量是20C.该企业员工捐款金额的极差是450元D.该企业员工最大捐款金额是500元6.(3分)(2015•曲靖)方程=﹣1的解是()A.x=2 B.x=1 C.x=0 D.无实数解7.(3分)(2015•曲靖)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)8.(3分)(2015•曲靖)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA 的度数是()A.15°B.20°C.25°D.30°二、填空题(共8小题,每小题3分,满分24分)9.(3分)(2015•曲靖)2015年云南省约有272000名学生参加高考,272000用科学记数法表示为2.72×10n,则n=.10.(3分)(2015•曲靖)若平行四边形中两个内角的度数比为1:2,则其中较大的内角是度.11.(3分)(2015•曲靖)若△ADE∽△ACB,且=,DE=10,则BC=.12.(3分)(2015•曲靖)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD=.13.(3分)(2015•曲靖)一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有颗.14.(3分)(2015•曲靖)一元二次方程x2﹣5x+c=0有两个不相等的实数根且两根之积为正数,若c是整数,则c=.(只需填一个).15.(3分)(2015•曲靖)用火柴棒按下图所示的方式摆大小不同的“H”:依此规律,摆出第9个“H”需用火柴棒根.16.(3分)(2015•曲靖)如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为.三、解答题(共8小题,满分72分)17.(6分)(2015•曲靖)计算:(﹣1)2015﹣()﹣2+(2﹣)0﹣|﹣2|.18.(8分)(2015•曲靖)先化简,再求值:÷(1﹣),其中a=﹣2.19.(8分)(2015•曲靖)水龙头关闭不严会造成滴水,容器内盛水时w(L)与滴水时间t(h)的关系用可以显示水量的容器做如图1的试验,并根据试验数据绘制出如图2的函数图象,结合图象解答下列问题.(1)容器内原有水多少升?(2)求w与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?20.(9分)(2015•曲靖)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?21.(9分)(2015•曲靖)如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.22.(10分)(2015•曲靖)某中学需在短跑、跳远、乒乓球、跳高四类体育项目中各选一名同学参加中学生运动会,根据平时成绩,把各项目进入复选的人员情况绘制成不完整的统计图、表如下:复选人员扇形统计图:项目/人数/性别男女短跑 1 2跳远 a 6乒乓球 2 1跳高 3 b(2)求扇形统计图中跳远项目对应圆心角的度数;(3)用列表法或画树状图的方法求在短跑和乒乓球项目中选出的两位同学都为男生的概率.23.(10分)(2015•曲靖)如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.24.(12分)(2015•曲靖)如图,在平面直角坐标系xOy中,直线l⊥y轴于点B(0,﹣2),A为OB的中点,以A为顶点的抛物线y=ax2+c与x轴交于C、D两点,且CD=4,点P为抛物线上的一个动点,以P为圆心,PO为半径画圆.(1)求抛物线的解析式;(2)若⊙P与y轴的另一交点为E,且OE=2,求点P的坐标;(3)判断直线l与⊙P的位置关系,并说明理由.2015年云南省曲靖市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)A.﹣B.﹣2 C.D.2考点:倒数.分析:根据乘积是1的两个数互为倒数,可得一个数的倒数.解答:解:有理数﹣2的倒数是﹣.故选:A.点评:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(2015•曲靖)如图是一个六角螺栓,它的主视图和俯视图都正确的是()A .B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的视图是主视图,从上边看得到的图形是俯视图,可得答案.解答:解:从正面看第一层中间是较长的矩形,两边是比较短的矩形,第二层是比较宽的矩形,从上面看外边是一个正六边形,里面是一个圆形,故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从上边看得到的图形是俯视图.A.4a2﹣2a2=2 B.a7÷a3=a4C.5a2•a4=5a8D.(a2b3)2=a4b5考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同类项、同底数幂的除法、单项式的乘法和积的乘方计算即可.解答:解:A、4a2﹣2a2=2a2,错误;B、a7÷a3=a4,正确;C、5a2•a4=5a6,错误;D、(a2b3)2=a4b6,错误;故选B.点评:此题考查同类项、同底数幂的除法、单项式的乘法和积的乘方,关键是根据法则进行计算判断.4.(3分)(2015•曲靖)不等式组的解集在数轴上表示正确的是().5.(3分)(2015•曲靖)某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论正确的是()6.(3分)(2015•曲靖)方程=﹣1的解是()A.x=2 B.x=1 C.x=0 D.无实数解考点:解分式方程.分析:根据分式方程的解法,去分母转化为整式方程,求出解后检验即可.解答:解:去分母,方程两边都乘以(x﹣1)得,﹣1+x=﹣(x﹣1)解这个方程得:x=1,检验:当x=1时,x﹣1=0,所以x=1不是原方程的解,所以原方程无解.故选:D.点评:本题主要考查了分式方程的解法,注意解分式方程一定要检验.7.(3分)(2015•曲靖)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()A.(2,﹣1)B.(1,﹣2)C.(,﹣1)D.(﹣1,)考点:反比例函数与一次函数的交点问题.分析:根据自变量的值,可得相应的函数值,根据待定系数法,可得反比例函数的解析式,根据解方程组,可得答案.解答:解:当x=﹣2时,y=﹣×(﹣2)=1,即A(﹣2,1).将A点坐标代入y=,得k=﹣2×1=﹣2,反比例函数的解析式为y=,联立双曲线、直线,得,解得,,B(2,﹣1).故选:A.点评:本题考查了反比例函数与一次函数的交点问题,利用待定系数法求双曲线函数的解析式,又利用解方程组求图象的交点.8.(3分)(2015•曲靖)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA 的度数是()二、填空题(共8小题,每小题3分,满分24分)9.(3分)(2015•曲靖)2015年云南省约有272000名学生参加高考,272000用科学记数法表示为2.72×10n,则n=5.10.(3分)(2015•曲靖)若平行四边形中两个内角的度数比为1:2,则其中较大的内角是120度.出∠C即可.∴∠C=×180°=120°,解此题的关键,题目比较典型,难度不大.11.(3分)(2015•曲靖)若△ADE∽△ACB,且=,DE=10,则BC=15.考点:相似三角形的性质.分析:根据△ADE∽△ACB,得到=,代入已知数据计算即可.解答:解:∵△ADE∽△ACB,∴=,又=,DE=10,∴BC=15.故答案为:15.点评:本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等并找准对应边是解题的关键.12.(3分)(2015•曲靖)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD=.考点:圆周角定理;解直角三角形.分析:连接BC,根据同弧所对的圆周角相等得到∠D=∠A,在直角三角形ABC中,根据余弦的定义即可得到结果.解答:解:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为:.点评:本题考查了圆周角定理,解直角三角形,连接BC构造直角三角形是解题的关键.13.(3分)(2015•曲靖)一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有14颗.比例关系入手,列出方程求解.解答:解:由题意可得,,14.(3分)(2015•曲靖)一元二次方程x2﹣5x+c=0有两个不相等的实数根且两根之积为正数,若c是整数,则c=4.(只需填一个).:根的判别式;根与系数的关系.分析:根据判别式的意义得到△=(﹣5)2﹣4c>0,解不等式得c<,进一步根据根与系数的关系得到x1+x2=5,x1x2=c>0,然后在此范围内找出最大整数即可.2∴△=(﹣5)2﹣4c>0,解得c<,15.(3分)(2015•曲靖)用火柴棒按下图所示的方式摆大小不同的“H”:依此规律,摆出第9个“H”需用火柴棒29根.16.(3分)(2015•曲靖)如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为(6+2)a.考点:含30度角的直角三角形;等边三角形的判定与性质;勾股定理.分析:先根据∠C=30°,∠BAC=90°,DE⊥AC可知BC=2AB,CD=2DE,再由AB=AD可知点D是斜边BC的中点,由此可用a表示出AB的长,根据勾股定理可得出AC的长,由此可得出结论.解答:解:∵∠C=30°,∠BAC=90°,DE⊥AC,∴BC=2AB,CD=2DE=2a.∵AB=AD,∴点D是斜边BC的中点,∴BC=2CD=4a,AB=BC=2a,∴AC===2a,∴△ABC的周长=AB+BC+AC=2a+4a+2a=(6+2)a.故答案为:(6+2)a.点评:本题考查的是含30°的直角三角形,熟知在直角三角形中,30°角所对的直角边等于斜边的一半是解答此题的关键.三、解答题(共8小题,满分72分)17.(6分)(2015•曲靖)计算:(﹣1)2015﹣()﹣2+(2﹣)0﹣|﹣2|.考点:实数的运算;零指数幂;负整数指数幂.分析:根据零指数幂、乘方、负整数指数幂、绝对值四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1﹣9+1﹣2=﹣11.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.(8分)(2015•曲靖)先化简,再求值:÷(1﹣),其中a=﹣2.考点:分式的化简求值.分析:先通分,然后进行四则运算,最后将a=﹣2代入计算即可.解答:解:原式=×=,当a=﹣2时,原式===.19.(8分)(2015•曲靖)水龙头关闭不严会造成滴水,容器内盛水时w(L)与滴水时间t(h)的关系用可以显示水量的容器做如图1的试验,并根据试验数据绘制出如图2的函数图象,结合图象解答下列问题.(1)容器内原有水多少升?(2)求w与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?,20.(9分)(2015•曲靖)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销(2)全部售完500箱矿泉水,该商场共获得利润多少元?(2)总利润=甲的利润+乙的利润.解得:.21.(9分)(2015•曲靖)如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.,,)x=×22.(10分)(2015•曲靖)某中学需在短跑、跳远、乒乓球、跳高四类体育项目中各选一名同学参加中学生运动会,根据平时成绩,把各项目进入复选的人员情况绘制成不完整的统计图、表如下:复选人员扇形统计图:(2)求扇形统计图中跳远项目对应圆心角的度数;(3)用列表法或画树状图的方法求在短跑和乒乓球项目中选出的两位同学都为男生的概率.=23.(10分)(2015•曲靖)如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.24.(12分)(2015•曲靖)如图,在平面直角坐标系xOy中,直线l⊥y轴于点B(0,﹣2),A为OB的中点,以A为顶点的抛物线y=ax2+c与x轴交于C、D两点,且CD=4,点P为抛物线上的一个动点,以P为圆心,PO为半径画圆.(1)求抛物线的解析式;(2)若⊙P与y轴的另一交点为E,且OE=2,求点P的坐标;(3)判断直线l与⊙P的位置关系,并说明理由.)代入抛物线的解析式得:,∴抛物线得解析式为y=.=.,,,2(3)设点P的坐标为(m,),OP=,+1。

2015年云南省曲靖市中考数学试卷(word版解析版)

2015年云南省曲靖市中考数学试卷(word版解析版)

2015年云南省曲靖市中考数学试卷(解析版)一、选择题(共8小题,每小题3分,满分24分)1.(3分)(2015•云南曲靖)﹣2的倒数是( )A . ﹣21B . ﹣2C .21D . 2【考点】倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:有理数﹣2的倒数是﹣21. 故选:A .【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(2015•云南曲靖)如图是一个六角螺栓,它的主视图和俯视图都正确的是( )A .B .C .D .【考点】简单组合体的三视图.【分析】根据从正面看得到的视图是主视图,从上边看得到的图形是俯视图,可得答案.【解答】解:从正面看第一层中间是较长的矩形,两边是比较短的矩形,第二层是比较 宽的矩形,从上面看外边是一个正六边形,里面是一个圆形,故选:C .【点评】本题考查了简单组合体的三视图,从正面看得到的视图是主视图,从上边看得 到的图形是俯视图.3.(3分)(2015•云南曲靖)下列运算正确的是( )A.4a 2﹣2a 2=2 B .a 7÷a 3=a 4 C. 5a 2•a 4=5a 8 D. (a 2b 3)2=a 4b 5【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据同类项、同底数幂的除法、单项式的乘法和积的乘方计算即可.【解答】解:A 、4a 2﹣2a 2=2a 2,错误;B 、a 7÷a 3=a 4,正确;C 、5a 2•a 4=5a 6,错误;D 、(a 2b 3)2=a 4b 6,错误;故选B .【点评】此题考查同类项、同底数幂的除法、单项式的乘法和积的乘方,关键是根据法则进行计算判断.4.(3分)(2015•云南曲靖)不等式组 ⎪⎩⎪⎨⎧≤+≥-,1)3(21,03x x 的解集在数轴上表示正确的是( ) A. B.C. D. 【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】,解得:.故不等式组无解.故选:D .【点评】本题考查了在数轴上表示不等式的解集,不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥,≤”要用实心圆点表示;“<,>”要用空心圆点表示.5.(3分)(2015•云南曲靖)某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论错误的是( )A . 样本中位数是200元B . 样本容量是20C . 该企业员工捐款金额的极差是450元D . 该企业员工最大捐款金额是500元【考点】频数(率)分布直方图;总体、个体、样本、样本容量;中位数;极差.【分析】利用总体、个体、样本、样本容量,中位数、极差等知识分别判断后即可确定正确 的选项.【解答】解:A 、共2+8+5+4+1=20人,中位数为10和11的平均数,故中位数为175元,错误;B 、共20人,故样本容量为20,正确;C 、极差为500﹣50=450元,正确;D 、该企业员工最大捐款金额是500元,正确.故选:A .【点评】本题考查的是频数分布直方图、平均数、样本容量、和极差的知识,掌握题目的概念并从频数分布直方图获取正确的信息是解题的关键.6.(3分)(2015•云南曲靖)方程1111-=-+-x x x 的解是( ) A . x=2 B . x=1 C .x=0 D .无实数解【考点】解分式方程.【分析】根据分式方程的解法,去分母转化为整式方程,求出解后检验即可.【解答】解:去分母,方程两边都乘以(x ﹣1)得,﹣1+x=﹣(x ﹣1)解这个方程得:x=1,检验:当x=1时,x ﹣1=0,所以x=1不是原方程的解,所以原方程无解.故选:D .【点评】本题主要考查了分式方程的解法,注意解分式方程一定要检验.7.(3分)(2015•云南曲靖)如图,双曲线x k y =与直线x y 21-=交于A 、B 两点,且A (﹣2,m ),则点B 的坐标是( )A . (2,﹣1)B . (1,﹣2)C . (21,﹣1)D . (﹣1,21) 【考点】反比例函数与一次函数的交点问题.【分析】根据自变量的值,可得相应的函数值,根据待定系数法,可得反比例函数的解析式,根据解方程组,可得答案.【解答】解:当x=﹣2时,y=﹣×(﹣2)=1,即A (﹣2,1).将A 点坐标代入y=,得k=﹣2×1=﹣2,反比例函数的解析式为y=,联立双曲线、直线,得,解得,,B(2,﹣1).故选:A.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求双曲线函数的解析式,又利用解方程组求图象的交点.8. (3分)(2015•云南曲靖)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是()A. 15° B. 20° C. 25°D. 30°【考点】旋转的性质.【分析】先根据正方形的性质和旋转的性质得到∠AOF的度数,OA=OF,再根据等腰三角形的性质即可求得∠OFA的度数.【解答】解:∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,∴∠AOF=90°+40°=130°,OA=OF,∴∠OFA=(180°﹣130°)÷2=25°.故选:C.【点评】考查了旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.同时考查了正方形的性质和等腰三角形的性质.二、填空题(共8小题,每小题3分,满分24分)9.(3分)(2015•云南曲靖)2015年云南省约有272000名学生参加高考,272000用科学记数法表示为2.72×10n,则n= 5 .【考点】科学记数法—表示较大的数.10的形式,其中1≤|a|<10,n为整数.确定n的【分析】科学记数法的表示形式为a×n值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.10.【解答】解:将272000用科学记数法表示为2.72×5∴n=5.故答案为5.【点评】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(3分)(2015•云南曲靖)若平行四边形中两个内角的度数比为1:2,则其中较大的内角是120 度.【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=1:2,求出∠C即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=1:2,∴∠C=×180°=120°,故答案为:120.【点评】本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.11.(3分)(2015•云南曲靖)若△ADE∽△ACB,且=,DE=10,则BC= 15 .【考点】相似三角形的性质.【分析】根据△ADE∽△ACB,得到=,代入已知数据计算即可.【解答】解:∵△ADE∽△ACB,∴=,又=,DE=10,∴BC=15.故答案为:15.【点评】本题考查的是相似三角形的性质,掌握相似三角形的对应边的比相等并找准对应边是解题的关键.12.(3分)(2015•云南曲靖)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD= .【考点】圆周角定理;解直角三角形.【分析】连接BC,根据同弧所对的圆周角相等得到∠D=∠A,在直角三角形ABC中,根据余弦的定义即可得到结果.【解答】解:连接BC,∴∠D=∠A,∵AB是⊙O的直径,∴∠ACB=90°,∵AB=3×2=6,AC=2,∴cosD=cosA===.故答案为:.【点评】本题考查了圆周角定理,解直角三角形,连接BC构造直角三角形是解题的关键.13.(3分)(2015•云南曲靖)一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有14 颗.【考点】利用频率估计概率.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,,解得n=14.故估计盒子中黑珠子大约有14个.故答案为:14.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.14.(3分)(2015•云南曲靖)一元二次方程x2﹣5x+c=0有两个不相等的实数根且两根之积为正数,若c是整数,则c= (不唯一).(只需填一个).【考点】根的判别式;根与系数的关系.【分析】根据判别式的意义得到△=(﹣5)2﹣4c>0,解不等式得c<,进一步根据根与系数的关系得到x1+x2=5,x1x2=c>0,然后在此范围内找出最大整数即可.【解答】解:∵一元二次方程x2﹣5x+c=0有两个不相等的实数根,∴△=(﹣5)2﹣4c>0,解得c<,∵x1+x2=5,x1x2=c>0,c是整数,∴c=1,2,3,4,5,6.故答案为1,2,3,4,5,6中任意一个。

云南省曲靖市中考数学一模试题(含解析)

云南省曲靖市中考数学一模试题(含解析)

云南省曲靖市2015年中考数学一模试题一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.使有意义的x的取值范围是()A.B.C.D.2.如图,AB∥CD,∠1=50°,∠2=110°,则∠3=()A.60° B.50° C.70° D.80°3.下列计算正确的一个是()A.a5+a5=2a10 B.a3•a5=a15C.(a2b)3=a2b3D.(a+2)(a﹣2)=a2﹣44.下列事件是确定事件的是()A.阴天一定会下雨B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C.打开电视机,任选一个频道,屏幕上正在播放新闻联播D.在学校操场上向上抛出的篮球一定会下落5.不等式组的解集在数轴上表示为()A.B.C.D.6.下列各点中,在函数图象上的点是()A.(2,4) B.(﹣1,2)C.(﹣2,﹣1) D.(,﹣1)7.如图,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为()A.B.C.D.8.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于()A.B.C.D.二、填空题(本大题共8个小题,每小题3分,满分24分)9.﹣2015的倒数的相反数是.10.一个几何体的三视图完全相同,该几何体可以是.(写出一个即可).11.据2015年1月24日某报报道,某县2014年财政收入突破20亿元.将20亿用科学记数法表示为.12.随着国家抑制房价政策的出台,某楼盘房价连续两次下跌,由原来的每平方米5000元降至每平方米4050元,设每次降价的百分率相同,则降价百分率为.13.如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为米.14.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得C′C∥AB,则∠B′AB等于.15.一只小鸟自由自在地在空中飞行,然后随意落在如图所示的某个方格中(2015•曲靖一模)如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B的落点依次为B1,B2,B3,…,则B2015的坐标为.三、解答题(本大题共8个小题,满分72分)17.计算:(π﹣1)0++﹣2.18.先化简,再求值:,其中x是方程x2+x﹣6=0的根.19.我市通过网络投票选出了一批“最有孝心的美少年”.根据各县市区的入选结果制作出如下统计表,后来发现,统计表中前三行的所有数据都是正确的,后三行中有一个数据是错误的.请回答下列问题:(1)统计表中a= ,b= ;(2)统计表后三行中哪一个数据是错误的?该数据的正确值是多少?(3)株洲市决定从来自炎陵县的4位“最有孝心的美少年”中,任选两位作为市级形象代言人.A、B是炎陵县“最有孝心的美少年”中的两位,问A、B同时入选的概率是多少?区域频数频率炎陵县 4 a茶陵县 5 0.125攸县 b 0.15醴陵市8 0.2株洲县 5 0.125株洲市城区12 0.2520.甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)乙车休息了h;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)当两车相距40km时,直接写出x的值.21.今年是扬州城庆2500周年,东关历史街区某商铺用3000元批发某种城庆旅游纪念品销售,由于销售状况良好,该商铺又筹集9000元资金再次批进该种纪念品,但这次的进价比第一次的进价提高了20%,购进的纪念品数量是第一次的2倍还多300个,如果商铺按9元/个的价格出售,当大部分纪念品售出后,余下的600个按售价的8折售完.(1)该种纪念品第一次的进货单价是多少元?(2)该商铺销售这种纪念品共盈利多少元?22.已知:如图,在△ABC中,AB=AC,D为边BC上一点,将线段AB平移至DE,连接AE、AD、EC.(1)求证:AD=EC;(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.23.如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB 的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AE=6,CE=2,求线段CE、BE与劣弧BC所围成的图形面积.(结果保留根号和π)24.如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点A(﹣1,0).(1)求B、C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2015年云南省曲靖市中考数学一模试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分)1.使有意义的x的取值范围是()A.B.C.D.【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,解不等式即可.【解答】解:根据题意得:3x﹣1≥0,解得x≥.故选C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.2.如图,AB∥CD,∠1=50°,∠2=110°,则∠3=()A.60° B.50° C.70° D.80°【考点】平行线的性质.【分析】如图所示,可根据邻补角、内错角以及三角形内角和求出∠3的度数.【解答】解:∵∠2=110°,∴∠4=70°,∵AB∥CD,∴∠5=∠1=50°,∴∠3=180°﹣∠4﹣∠5=60°.故选A.【点评】本题考查了三角形的内角和定理,以及平行线的性质:两直线平行,同旁内角互补.3.下列计算正确的一个是()A.a5+a5=2a10 B.a3•a5=a15C.(a2b)3=a2b3D.(a+2)(a﹣2)=a2﹣4【考点】平方差公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【专题】计算题.【分析】根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘以及平方差公式,对各选项分析判断后利用排除法求解.【解答】解:A、应为a5+a5=2a5,故选项错误;B、应为a3•a5=a8,故选项错误;C、应为(a2b)3=a6b3,故选项错误;D、(a+2)(a﹣2)=a2﹣4,正确.故选D.【点评】本题考查合并同类项、同底数幂的乘法,积的乘方,平方差公式,熟练掌握运算性质和公式是解题的关键.4.下列事件是确定事件的是()A.阴天一定会下雨B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C.打开电视机,任选一个频道,屏幕上正在播放新闻联播D.在学校操场上向上抛出的篮球一定会下落【考点】随机事件.【分析】找到一定发生或一定不发生的事件即可.【解答】解:A、阴天一定会下雨,是随机事件;B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;D、在学校操场上向上抛出的篮球一定会下落,是必然事件.故选:D.【点评】用到的知识点为:确定事件包括必然事件和不可能事件;必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.不等式组的解集在数轴上表示为()A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【专题】计算题.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<4;由②得,x≥3,故此不等式组的解集为:3≤x<4,在数轴上表示为:故选D.【点评】本题考查的是在数轴上表示一元一次不等式组的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6.下列各点中,在函数图象上的点是()A.(2,4) B.(﹣1,2)C.(﹣2,﹣1) D.(,﹣1)【考点】反比例函数图象上点的坐标特征.【分析】根据y=得k=xy=2,所以只要点的横坐标与纵坐标的积等于2,就在函数图象上.【解答】解:∵函数中,k=2,∴只需把各选项的横纵坐标相乘,结果为2的即在函数图象上.四个选项中只有C:(﹣2)×(﹣1)=2.故选C.【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.7.如图,在△ABC中,DE∥BC,若AD=1,DB=2,则的值为()A.B.C.D.【考点】相似三角形的判定与性质.【分析】由AD=1,DB=2,即可求得AB的长,又由DE∥BC,根据平行线分线段成比例定理,可得DE:BC=AD:AB,则可求得答案.【解答】解:∵AD=1,DB=2,∴AB=AD+BD=1+2=3,∵DE∥BC,∴DE:BC=AD:AB=1:3=1:3.故选C.【点评】此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.8.如图,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,则sin∠AOB的值等于()A.B.C.D.【考点】特殊角的三角函数值;等边三角形的判定与性质;作图—复杂作图.【专题】探究型.【分析】连接AB,先根据题意判断出△AOB的形状,再得出∠AOB的度数,由特殊角的三角函数值即可得出结论.【解答】解:连接AB,∵以O为圆心,任意长为半径画弧,与射线OM交于点A,∴OA=OB,∵以A为圆心,AO长为半径画弧,两弧交于点B,∴△AOB是等边三角形,∴∠AOB=60°,∴sin∠AOB=sin60°=.故选C.【点评】本题考查的是特殊角的三角函数值及等边三角形的判定与性质,熟记各特殊角的三角函数值是解答此题的关键.二、填空题(本大题共8个小题,每小题3分,满分24分)9.﹣2015的倒数的相反数是.【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的倒数再利用相反数的定义求解即可.【解答】解:﹣2015的倒数是,的相反数是,故答案为:.【点评】本题考查了相反数和倒数,在一个数的前面加上符号就是这个数的相反数,倒数的定义.10.一个几何体的三视图完全相同,该几何体可以是球、正方体等(写一个即可).(写出一个即可).【考点】简单几何体的三视图.【专题】开放型.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:球的三视图都是圆,正方体的三视图都是正方形,∴几何体可以是球、正方体等.【点评】本题考查了三视图的知识,常见的三视图相同的几何体的名称要掌握.11.据2015年1月24日某报报道,某县2014年财政收入突破20亿元.将20亿用科学记数法表示为2×109.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将20亿用科学记数法表示为:2×109.故答案为:2×109.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.随着国家抑制房价政策的出台,某楼盘房价连续两次下跌,由原来的每平方米5000元降至每平方米4050元,设每次降价的百分率相同,则降价百分率为10% .【考点】一元二次方程的应用.【专题】增长率问题.【分析】设每次降价的百分率为x,则第一次降价后的单价是原价的1﹣x,第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.【解答】解:设降价百分率为x,则有:5000(1﹣x)2=4050,解得:x1=10%,x2=190%(舍去),答:降价百分率为10%.故答案为:10%.【点评】本题主要考查一元二次方程在实际中的应用:列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.13.如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为750米.【考点】解直角三角形的应用-仰角俯角问题.【专题】压轴题.【分析】作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD的度数,再求得AD 的长度,然后根据∠B=30°求出AB的长.【解答】解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×25=750(米),∴AD=AC•sin45°=375(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=750(米).故答案为:750.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形并解直角三角形,难度适中.14.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得C′C∥AB,则∠B′AB等于50°.【考点】旋转的性质.【分析】根据旋转的性质得AC=AC′,∠C′AC=∠B′AB,根据平行线的性质由C′C∥AB得到∠C′CA=∠CAB=65°,根据等腰三角形的性质得∠AC′C=∠C′CA=65°,然后根据三角形内角和定理得∠C′AC=50°,所以∠B′AB=50°.【解答】解:∵△ABC绕点A逆时针旋转到△AB′C′的位置,∴AC=AC′,∠C′AC=∠B′AB,∵C′C∥AB,∴∠C′CA=∠CAB=65°,∵AC=AC′,∴∠AC′C=∠C′CA=65°,∴∠C′AC=180°﹣2×65°=50°,∴∠B′AB=50°.故答案为:50°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.15.一只小鸟自由自在地在空中飞行,然后随意落在如图所示的某个方格中(2015•曲靖一模)如图,在坐标系中放置一菱形OABC,已知∠ABC=60°,OA=1.先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2015次,点B的落点依次为B1,B2,B3,…,则B2015的坐标为(1342.5,).【考点】菱形的性质;规律型:点的坐标.【分析】连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移4.由于2015=335×6+5,因此点B5向右平移1340(即335×4)即可到达点B2015,根据点B5的坐标就可求出点B2015的坐标.【解答】解:连接AC,如图所示.∵四边形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等边三角形.∴AC=AB.∴AC=OA.∵OA=1,∴A C=1.画出第5次、第6次、第7次翻转后的图形,如图所示.由图可知:每翻转6次,图形向右平移4.∵2015=335×6+5,∴点B5向右平移1340(即335×4)到点B2014.∵B5的坐标为(2.5,),∴B2014的坐标为(2.5+1340,),∴B2015的坐标为(1342.5,).故答案为:(1342.5,).【点评】本题考查了菱形的性质、等边三角形的判定与性质等知识,考查了操作、探究、发现规律的能力.发现“每翻转6次,图形向右平移4”是解决本题的关键.三、解答题(本大题共8个小题,满分72分)17.计算:(π﹣1)0++﹣2.【考点】实数的运算;零指数幂;负整数指数幂;二次根式的性质与化简.【专题】计算题.【分析】按照实数的运算法则依次计算;考查知识点:负指数幂、零指数幂、绝对值、二次根式的化简.【解答】解:原式=1+2+(﹣5)﹣2=3+3﹣5﹣2=﹣2.【点评】传统的小杂烩计算题.涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.18.先化简,再求值:,其中x是方程x2+x﹣6=0的根.【考点】分式的化简求值;解一元二次方程-因式分解法.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出方程的解得到x的值,代入计算即可求出值.【解答】解:原式=÷=•==,由x2+x﹣6=0,得x=﹣3或x=2(原分式无意义,舍去),则当x=﹣3时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.我市通过网络投票选出了一批“最有孝心的美少年”.根据各县市区的入选结果制作出如下统计表,后来发现,统计表中前三行的所有数据都是正确的,后三行中有一个数据是错误的.请回答下列问题:(1)统计表中a= 0.1 ,b= 6 ;(2)统计表后三行中哪一个数据是错误的?该数据的正确值是多少?(3)株洲市决定从来自炎陵县的4位“最有孝心的美少年”中,任选两位作为市级形象代言人.A、B是炎陵县“最有孝心的美少年”中的两位,问A、B同时入选的概率是多少?区域频数频率炎陵县 4 a茶陵县 5 0.125攸县 b 0.15醴陵市8 0.2株洲县 5 0.125株洲市城区12 0.25【考点】频数(率)分布表;列表法与树状图法.【专题】图表型.【分析】(1)由茶陵县频数为5,频率为0.125,求出数据总数,再用4除以数据总数求出a的值,用数据总数乘0.15得到b的值;(2)根据各组频数之和等于数据总数可知各组频数正确,根据频率=频数÷数据总数可知株洲市城区对应频率错误,进而求出正确值;(3)设来自炎陵县的4位“最有孝心的美少年”为A、B、C、D,根据题意列出表格,然后由表格求得所有等可能的结果与A、B同时入选的情况,再利用概率公式即可求得答案.【解答】解:(1)∵茶陵县频数为5,频率为0.125,∴数据总数为5÷0.125=40,∴a=4÷40=0.1,b=40×0.15=6.故答案为0.1,6;(2)∵4+5+6+8+5+12=40,∴各组频数正确,∵12÷40=0.3≠0.25,故株洲市城区对应频率0.25这个数据是错误的,该数据的正确值是0.3;(3)设来自炎陵县的4位“最有孝心的美少年”为A、B、C、D,列表如下:∵共有12种等可能的结果,A、B同时入选的有2种情况,∴A、B同时入选的概率是: =.【点评】本题考查读频数(率)分布表的能力和列表法与树状图法.同时考查了概率公式.用到的知识点:频率=频数÷总数,各组频数之和等于数据总数,概率=所求情况数与总情况数之比.20.甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)乙车休息了0.5 h;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)当两车相距40km时,直接写出x的值.【考点】一次函数的应用.【专题】数形结合;待定系数法.【分析】(1)根据待定系数法,可得y甲的解析式,根据函数值为200千米时,可得相应自变量的值,根据自变量的差,可得答案;(2)根据待定系数法,可得y乙的函数解析式;(3)分类讨论,0≤x≤2.5,y甲减y乙等于40千米,2.5≤x≤5时,y乙减y甲等于40千米,可得答案.【解答】解:(1)设甲车行驶的函数解析式为y甲=kx+b,(k是不为0的常数)y甲=kx+b图象过点(0,400),(5,0),得,解得,甲车行驶的函数解析式为y甲=﹣80x+400,当y=200时,x=2.5(h),2.5﹣2=0.5(h),故答案为:0.5;(2)设乙车与甲车相遇后y乙与x的函数解析式y乙=kx+b,y乙=kx+b图象过点(2.5,200),(5,400),得,解得,乙车与甲车相遇后y乙与x的函数解析式y乙=80x(2.5≤x≤5);(3)设乙车与甲车相遇前y乙与x的函数解析式y乙=kx,图象过点(2,200),解得k=100,∴乙车与甲车相遇前y乙与x的函数解析式y乙=100x,0≤x≤2.5,y甲减y乙等于40千米,即400﹣80x﹣100x=40,解得 x=2;2.5≤x≤5时,y乙减y甲等于40千米,即2.5≤x≤5时,80x﹣(﹣80x+400)=40,解得x=,综上所述:x=2或x=.【点评】本题考查了一次函数的应用,待定系数法是求函数解析式的关键.21.今年是扬州城庆2500周年,东关历史街区某商铺用3000元批发某种城庆旅游纪念品销售,由于销售状况良好,该商铺又筹集9000元资金再次批进该种纪念品,但这次的进价比第一次的进价提高了20%,购进的纪念品数量是第一次的2倍还多300个,如果商铺按9元/个的价格出售,当大部分纪念品售出后,余下的600个按售价的8折售完.(1)该种纪念品第一次的进货单价是多少元?(2)该商铺销售这种纪念品共盈利多少元?【考点】分式方程的应用.【分析】(1)设该种纪念品第一次的进货单价是x元,则第二次进货单价是(1+20%)x元.根据第二次购进的纪念品数量是第一次的2倍还多300个,列出方程,解方程即可求解;(2)根据利润=售价﹣进价,可求出结果.【解答】解:(1)设该种纪念品第一次的进货单价是x元,则第二次进货单价是(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种纪念品第一次的进货单价是5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:商铺销售这种纪念品共盈利5820元.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.已知:如图,在△ABC中,AB=AC,D为边BC上一点,将线段AB平移至DE,连接AE、AD、EC.(1)求证:AD=EC;(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.【考点】矩形的判定;全等三角形的判定与性质;平移的性质.【分析】(1)利用SAS证得△ACD≌△ECD后即可证得AD=EC;(2)当点D是BC中点时,四边形ADCE是矩形;首先证得四边形ADCE是平行四边形,然后证得AD⊥BC 即可利用有一个角是直角的平行四边形是矩形判定矩形.【解答】解:(1)由平移可得AB∥DE,AB=DE;∴∠B=∠EDC,∵AB=AC,∴∠B=∠ACD,AC=DE,∴∠EDC=∠ACD,∵DC=CD,∴△ACD≌△ECD(SAS),∴AD=EC;(2)当点D是BC中点时,四边形ADCE是矩形.理由如下:∵AB=AC,点D是BC中点,∴BD=DC,AD⊥BC,由平移性质可知四边形ABDE是平行四边形,∴AE=BD,AE∥BD,∴AE=DC,AE∥DC,∴四边形ADCE是平行四边形,∵AD⊥BC,∴四边形ADCE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质及全等三角形的判定与性质,能够正确的结合图形理解题意是解答本题的关键,难度不大.23.如图,⊙O是△ABC的外接圆,AB是直径,作OD∥BC与过点A的切线交于点D,连接DC并延长交AB 的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AE=6,CE=2,求线段CE、BE与劣弧BC所围成的图形面积.(结果保留根号和π)【考点】切线的判定;扇形面积的计算.【专题】证明题.【分析】(1)连结OC,如图,先根据切线的性质得∠BAD=90°,再根据平行线的性质,由OD∥BC得∠1=∠3,∠2=∠4,加上∠3=∠4,则∠1=∠2,接着证明△AOD≌△COD,得到∠OCD=∠OAD=90°,于是可根据切线的判定定理得到DE是⊙O的切线;(2)设半径为r,则OE=AE﹣OA=6﹣r,OC=r,在Rt△OCE中利用勾股定理得到r2+(2)2=(6﹣r)2,解得r=2,再利用正切函数求出∠COE=60°,然后根据扇形面积公式和S阴影部分=S△COE﹣S扇形BOC进行计算即可.【解答】解:(1)连结OC,如图,∵AD为⊙O的切线,∴AD⊥AB,∴∠BAD=90°,∵OD∥BC,∴∠1=∠3,∠2=∠4,∵OB=OC,∴∠3=∠4,∴∠1=∠2,在△OCD和△OAD中,,∴△AOD≌△COD(SAS);∴∠OCD=∠OAD=90°,∴OC⊥DE,∴DE是⊙O的切线;(2)设半径为r,则OE=AE﹣OA=6﹣r,OC=r,在Rt△OCE中,∵OC2+CE2=OE2,∴r2+(2)2=(6﹣r)2,解得r=2,∵tan∠COE===,∴∠COE=60°,∴S阴影部分=S△COE﹣S扇形BOC=×2×2﹣=2﹣π.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了扇形面积的计算.24.如图,直线y=﹣x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象经过点B、C和点A(﹣1,0).(1)求B、C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(4)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.【考点】二次函数综合题.【分析】(1)分别令解析式y=﹣x+2中x=0和y=0,求出点B、点C的坐标;(2)设二次函数的解析式为y=ax2+bx+c,将点A、B、C的坐标代入解析式,求出a、b、c的值,进而求得解析式;(3)由(2)的解析式求出顶点坐标,再由勾股定理求出CD的值,再以点C为圆心,CD为半径作弧交对称轴于P1,以点D为圆心CD为半径作圆交对称轴于点P2,P3,作CE垂直于对称轴与点E,由等腰三角形的性质及勾股定理就可以求出结论;(4)设出E点的坐标为(a,﹣ a+2),就可以表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF 求出S与a的关系式,由二次函数的性质就可以求出结论.【解答】解:(1)令x=0,可得y=2,令y=0,可得x=4,即点B(4,0),C(0,2);(2)设二次函数的解析式为y=ax2+bx+c,将点A、B、C的坐标代入解析式得,,解得:,即该二次函数的关系式为y=﹣x2+x+2;(3)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=DP2=DP3=CD.如图1所示,作CE⊥对称轴于E,∴EP1=ED=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(4)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).∵直线BC的解析式为:y=﹣x+2.如图2,过点C作CM⊥EF于M,设E(a,﹣ a+2),F(a,﹣ a2+a+2),∴EF=﹣a2+a+2﹣(﹣a+2)=﹣a2+2a(0≤x≤4).∵S四边形CDBF=S△BCD+S△CEF+S△BEF=BD•OC+EF•CM+EF•BN,=+a(﹣a2+2a)+(4﹣a)(﹣a2+2a),=﹣a2+4a+(0≤x≤4).=﹣(a﹣2)2+∴a=2时,S四边形CDBF的面积最大=,∴E(2,1).【点评】本题考查了二次函数的综合运用,涉及了待定系数法求二次函数的解析式的运用,勾股定理的运用,等腰三角形的性质的运用,四边形的面积的运用,解答时求出函数的解析式是关键.。

2015年云南省中考数学试卷及解析

2015年云南省中考数学试卷及解析

2015年云南省中考数学试卷一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2015•云南)﹣2的相反数是()A.﹣2 B.2C.D.﹣2.(3分)(2015•云南)不等式2x﹣6>0的解集是()A.x>1 B.x<﹣3 C.x>3 D.x<33.(3分)(2015•云南)若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球4.(3分)(2015•云南)2011年国家启动实施农村义务教育学生营养改善计划,截至2014年4月,我省开展营养改善试点中小学达17580所,17580这个数用科学记数法可表示为() A.17.58×103B.175.8×104C.1.758×105D.1.758×1045.(3分)(2015•云南)下列运算正确的是()A.a2•a5=a10B.(π﹣3.14)0=0 C.﹣2=D.(a+b)2=a2+b2 6.(3分)(2015•云南)下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0 B.x2﹣6x+9=0 C.5x2﹣4x﹣1=0 D.3x2﹣4x+1=0 7.(3分)(2015•云南)为加快新农村试点示范建设,我省开展了“美丽乡村”的评选活动,下表是我省六个州(市)推荐候选的“美丽乡村”个数统计结果:州(市) A B C D E F推荐数(个) 36 27 31 56 48 54在上表统计的数据中,平均数和中位数分别为()A.42,43.5 B.42,42 C.31,42 D.36,548.(3分)(2015•云南)若扇形面积为3π,圆心角为60°,则该扇形的半径为()A.3B.9C.2D.3二、填空题(本大题共6小题,每小题3分,满分18分)9.(3分)(2015•云南)分解因式:3x2﹣12=.10.(3分)(2015•云南)函数y=的自变量x的取值范围是.11.(3分)(2015•云南)如图,直线l1∥l2,并且被直线l3,l4所截,则∠α=.12.(3分)(2015•云南)一台电视机原价是2500元,现按原价的8折出售,则购买a台这样的电视机需要元.13.(3分)(2015•云南)如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为.14.(3分)(2015•云南)如图,在△ABC中,BC=1,点P1,M1分别是AB,AC边的中点,点P2,M2分别是AP1,AM1的中点,点P3,M3分别是AP2,AM2的中点,按这样的规律下去,P n M n的长为(n为正整数).三、解答题(本大题共9小题,满分58分)15.(5分)(2015•云南)化简求值:[﹣]•,其中x=+1.16.(5分)(2015•云南)如图,∠B=∠D,请添加一个条件(不得添加辅助线),使得△ABC≌△ADC,并说明理由.17.(7分)(2015•云南)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?18.(5分)(2015•云南)已知A,B两地相距200千米,一辆汽车以每小时60千米的速度从A地匀速驶往B地,到达B地后不再行驶,设汽车行驶的时间为x小时,汽车与B地的距离为y千米.(1)求y与x的函数关系,并写出自变量x的取值范围;(2)当汽车行驶了2小时时,求汽车距B地有多少千米?19.(6分)(2015•云南)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB与MN之间的距离).在测量时,选定河对岸MN上的点C处为桥的一端,在河岸点A处,测得∠CAB=30°,沿河岸AB前行30米后到达B处,在B 处测得∠CBA=60°,请你根据以上测量数据求出河的宽度.(参考数据:≈1.41,≈1.73,结果保留整数)20.(7分)(2015•云南)现有一个六面分别标有数字1,2,3,4,5,6且质地均匀的正方形骰子,另有三张正面分别标有数字1,2,3的卡片(卡片除数字外,其他都相同),先由小明投骰子一次,记下骰子向上一面出现的数字,然后由小王从三张背面朝上放置在桌面上的卡片中随机抽取一张,记下卡片上的数字.(1)请用列表或画树形图(树状图)的方法,求出骰子向上一面出现的数字与卡片上的数字之积为6的概率;(2)小明和小王做游戏,约定游戏规则如下:若骰子向上一面出现的数字与卡片上的数字之积大于7,则小明赢;若骰子向上一面出现的数字与卡片上的数字之积小于7,则小王赢,问小明和小王谁赢的可能性更大?请说明理由.21.(7分)(2015•云南)2015年某省为加快建设综合交通体系,对铁路、公路、机场三个重大项目加大了建设资金的投入.(1)机场建设项目中所有6个机场投入的建设资金金额统计如图1,已知机场E投入的建设资金金额是机场C,D所投入建设资金金额之和的三分之二,求机场E投入的建设资金金额是多少亿元?并补全条形统计图;(2)将铁路、公路机场三项建设所投入的资金金额绘制成了如图2扇形统计图以及统计表,根据扇形统计图及统计表中信息,求得a=,b=,c,d,m.(请直接填写计算结果)铁路公路机场铁路、公路、机场三项投入建设资金总金额(亿元)投入资金(亿元) 300 a b m所占百分比 c 34% 6%所占圆心角216° d 21.6°22.(7分)(2015•云南)如图,在矩形ABCD中,AB=4,AD=6,M,N分别是AB,CD的中点,P是AD 上的点,且∠PNB=3∠CBN.(1)求证:∠PNM=2∠CBN;(2)求线段AP的长.23.(9分)(2015•云南)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B 两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5.(1)分别求直线BC和抛物线的解析式(关系式);(2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2015年云南省中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题只有一个正确选项,每小题3分,满分24分)1.(3分)(2015•云南)﹣2的相反数是()A.﹣2 B.2C.D.﹣考点: 相反数.分析:根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.解答:解:﹣2的相反数是:﹣(﹣2)=2,故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2015•云南)不等式2x﹣6>0的解集是()A.x>1 B.x<﹣3 C.x>3 D.x<3考点: 解一元一次不等式.分析:利用不等式的基本性质:移项,系数化1来解答.解答:解:移项得,2x>6,两边同时除以2得,x>3.故选C.点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.3.(3分)(2015•云南)若一个几何体的主视图、左视图、俯视图都是正方形,则这个几何体是()A.正方体B.圆锥C.圆柱D.球考点: 由三视图判断几何体.分析:找到从正面、左面和上面看得到的图形是正方形的几何体即可.解答:解:∵主视图和左视图都是正方形,∴此几何体为柱体,∵俯视图是一个正方形,∴此几何体为正方体.故选A.点评:此题考查三视图,关键是根据:三视图里有两个相同可确定该几何体是柱体,锥体还是球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年云南省曲靖市中考数学试卷
一、选择题(共8小题,每小题3分,满分24分)

2.(3分)(2015•曲靖)如图是一个六角螺栓,它的主视图和俯视图都正确的是()
B
..D .
4.(3分)(2015•曲靖)不等式组的解集在数轴上表示正确的是()
B

5.(3分)(2015•曲靖)某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论正确的是()
6.(3分)(2015•曲靖)方程=﹣1的解是()
7.(3分)(2015•曲靖)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()
,﹣,
8.(3分)(2015•曲靖)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是()
二、填空题(共8小题,每小题3分,满分24分)
9.(3分)(2015•曲靖)2015年云南省约有272000名学生参加高考,272000用科学记数法表示为2.72×10n,则n=.
10.(3分)(2015•曲靖)若平行四边形中两个内角的度数比为1:2,则其中较大的内角是度.
11.(3分)(2015•曲靖)若△ADE∽△ACB,且=,DE=10,则BC=.
12.(3分)(2015•曲靖)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD=.
13.(3分)(2015•曲靖)一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有颗.
14.(3分)(2015•曲靖)一元二次方程x2﹣5x+c=0有两个不相等的实数根且两根之积为正数,若c是整数,则c=.(只需填一个).
15.(3分)(2015•曲靖)用火柴棒按下图所示的方式摆大小不同的“H”:
依此规律,摆出第9个“H”需用火柴棒根.
16.(3分)(2015•曲靖)如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为.
三、解答题(共8小题,满分72分)
17.(6分)(2015•曲靖)计算:(﹣1)2015﹣()﹣2+(2﹣)0﹣|﹣2|.
18.(8分)(2015•曲靖)先化简,再求值:÷(1﹣),其中a=﹣2.
19.(8分)(2015•曲靖)水龙头关闭不严会造成滴水,容器内盛水时w(L)与滴水时间t (h)的关系用可以显示水量的容器做如图1的试验,并根据试验数据绘制出如图2的函数图象,结合图象解答下列问题.
(1)容器内原有水多少升?
(2)求w与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?
20.(9分)(2015•曲靖)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉
(2)全部售完500箱矿泉水,该商场共获得利润多少元?
21.(9分)(2015•曲靖)如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.
(1)求证:四边形OBEC是矩形;
(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.
22.(10分)(2015•曲靖)某中学需在短跑、跳远、乒乓球、跳高四类体育项目中各选一名同学参加中学生运动会,根据平时成绩,把各项目进入复选的人员情况绘制成不完整的统计图、表如下:
复选人员扇形统计图:
(2)求扇形统计图中跳远项目对应圆心角的度数;
(3)用列表法或画树状图的方法求在短跑和乒乓球项目中选出的两位同学都为男生的概率.
23.(10分)(2015•曲靖)如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E 是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.
24.(12分)(2015•曲靖)如图,在平面直角坐标系xOy中,直线l⊥y轴于点B(0,﹣2),A为OB的中点,以A为顶点的抛物线y=ax2+c与x轴交于C、D两点,且CD=4,点P为抛物线上的一个动点,以P为圆心,PO为半径画圆.
(1)求抛物线的解析式;
(2)若⊙P与y轴的另一交点为E,且OE=2,求点P的坐标;
(3)判断直线l与⊙P的位置关系,并说明理由.
2015年云南省曲靖市中考数学试卷
参考答案与试题解析
一、选择题(共8小题,每小题3分,满分24分)

的倒数是﹣
2.(3分)(2015•曲靖)如图是一个六角螺栓,它的主视图和俯视图都正确的是()
B
..D .
4.(3分)(2015•曲靖)不等式组的解集在数轴上表示正确的是()
B


5.(3分)(2015•曲靖)某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论正确的是()
6.(3分)(2015•曲靖)方程=﹣1的解是()
7.(3分)(2015•曲靖)如图,双曲线y=与直线y=﹣x交于A、B两点,且A(﹣2,m),则点B的坐标是()
,﹣,
×
,得
y=

8.(3分)(2015•曲靖)如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是()
二、填空题(共8小题,每小题3分,满分24分)
9.(3分)(2015•曲靖)2015年云南省约有272000名学生参加高考,272000用科学记数法表示为2.72×10n,则n=5.
10.(3分)(2015•曲靖)若平行四边形中两个内角的度数比为1:2,则其中较大的内角是120度.
C=
11.(3分)(2015•曲靖)若△ADE∽△ACB,且=,DE=10,则BC=15.
,得到=
=,又=
12.(3分)(2015•曲靖)如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接
AC,BD,若AC=2,则cosD=.
==.
故答案为:.
13.(3分)(2015•曲靖)一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有14颗.
解:由题意可得,
14.(3分)(2015•曲靖)一元二次方程x2﹣5x+c=0有两个不相等的实数根且两根之积为正数,若c是整数,则c=4.(只需填一个).
,进一步根据根与系

15.(3分)(2015•曲靖)用火柴棒按下图所示的方式摆大小不同的“H”:
依此规律,摆出第9个“H”需用火柴棒29根.
16.(3分)(2015•曲靖)如图,在Rt△ABC中,∠C=30°,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为(6+2)a.
BC=2a
==2a
=AB+BC+AC=2a+4a+2)
6+2
三、解答题(共8小题,满分72分)
17.(6分)(2015•曲靖)计算:(﹣1)2015﹣()﹣2+(2﹣)0﹣|﹣2|.
18.(8分)(2015•曲靖)先化简,再求值:÷(1﹣),其中a=﹣2.
×


=.
19.(8分)(2015•曲靖)水龙头关闭不严会造成滴水,容器内盛水时w(L)与滴水时间t (h)的关系用可以显示水量的容器做如图1的试验,并根据试验数据绘制出如图2的函数图象,结合图象解答下列问题.
(1)容器内原有水多少升?
(2)求w与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?

20.(9分)(2015•曲靖)某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉
(2)全部售完500箱矿泉水,该商场共获得利润多少元?

21.(9分)(2015•曲靖)如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.
(1)求证:四边形OBEC是矩形;
(2)若菱形ABCD的周长是4,tanα=,求四边形OBEC的面积.



x=
22.(10分)(2015•曲靖)某中学需在短跑、跳远、乒乓球、跳高四类体育项目中各选一名同学参加中学生运动会,根据平时成绩,把各项目进入复选的人员情况绘制成不完整的统计图、表如下:
复选人员扇形统计图:
(2)求扇形统计图中跳远项目对应圆心角的度数;
(3)用列表法或画树状图的方法求在短跑和乒乓球项目中选出的两位同学都为男生的概率.
=
23.(10分)(2015•曲靖)如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E 是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.
24.(12分)(2015•曲靖)如图,在平面直角坐标系xOy中,直线l⊥y轴于点B(0,﹣2),A为OB的中点,以A为顶点的抛物线y=ax2+c与x轴交于C、D两点,且CD=4,点P为抛物线上的一个动点,以P为圆心,PO为半径画圆.
(1)求抛物线的解析式;
(2)若⊙P与y轴的另一交点为E,且OE=2,求点P的坐标;
(3)判断直线l与⊙P的位置关系,并说明理由.
)代入抛物线的解析式得:,
=.
,,
,2
OP=
+1。

相关文档
最新文档