第1章:流体力学基本概念
第一章 流体力学的基本概念
![第一章 流体力学的基本概念](https://img.taocdn.com/s3/m/83930346c850ad02de80413b.png)
第一章 流体力学的基本概念
x x( x0 , y 0 , z 0 , t , ) y y ( x0 , y 0 , z 0 , t , ) z z ( x , y , z , t , ) 0 0 0
τ固定,t变化时,迹线;
第一章 流体力学的基本概念
§1.1 拉格朗日参考系和欧拉参考系
一、拉格朗日参考系
1.流动的描述
流体的物理量表示为流体质点和时间的函数。
p p( x0 , y0 , z0 , t )
T T ( x0 , y0 , z0 , t )
( x0 , y0 , z0 , t )
(x0 , y0 , z0) 固定,t 变化: 表示某一确定流体质点的空间位臵及相 关物理量随时间的变化规律。 (x0 , y0 , z0)变化,t 固定: 表示同一时刻不同流体质点的空间位臵 及相关物理量。
0
有限大的正数
r0 , r 互为反函数。
第一章 流体力学的基本概念
§1.1 拉格朗日参考系和欧拉参考系
三、两个参考系间的相互转换
2.两个参考系间的相互转换
r0 r0 (r , t )
x0i x0i ( x j , t )
x0 x0 ( x, y, z , t ) y0 y0 ( x , y , z , t ) z z ( x, y , z , t ) 0 0
三、两个参考系间的相互转换
2.两个参考系间的相互转换
(2) 已知欧拉参考系的物理量
u u (r , t )
积分 代入
dr u (r , t ) dt
dx dt u ( x, y , z , t ) dy v ( x, y , z , t ) dt dz dt w( x, y , z , t )
工程流体力学课件-第一章
![工程流体力学课件-第一章](https://img.taocdn.com/s3/m/110afa00a6c30c2259019e13.png)
二、流体力学在石油化工工业中的应用
流体力学是一门重要的工程学科,它的应用几乎遍及国民经济的各个部门, 尤其在石油工程和石油化工工业中,流体力学是其重要的理论核心之一。
在石油工业中 ,用到流体力学原理分析流体在管内的流动规律,压力、阻 力、流速和输量的关系,据此设计管径,校核管材强度,布置管线及选择泵的类 型和大小,设计泵的安装位置等;在校核油罐和其他储液容器的结构强度,估算 容器、油槽车、油罐的装卸时间,解释气蚀、水击等现象 。
实验方法的优点是能直接解决生产中的复杂问题,能发现流动中的新现象。
它的结果往往可作为检验其他方法是否正确的依据。这种方法的缺点是对不同 情况,需作不同的实验,也即所得结果的普适性较差。
3 、数值计算方法
数值计算方法是按照理论分析方法建立数学模型,在此基础上选择合理 的计算方法,如有限差分法、特征线法、有限元法、边界元法、谱方法等,将 方程组离散化,变成代数方程组,编制程序,然后用计算机计算,得到流动问 题的近似解。数值计算方法是理论分析法的延伸和拓展。
两板间流体沿y方向的速度呈线性分布。
上面的现象说明,当流体中发生了层与层之间的相对运动时,速度快的流层对 速度慢的流层产生了一个拉力使它加速,而速度慢的流层对速度快的流层就有 一个阻止它向前运动的阻力,拉力和阻力是大小相等方向相反的一对力,分别 作用在两个流体层的接触面上,这就是流体黏性的表现,这种力称为内摩擦力 或黏性力。
体积弹性模量:在工程上流体的压缩性也常用p的倒数即体积弹性模量来描述
E 1 dp
p dV /V
2.可压缩流动与不可压缩流动
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。
第一章 流体力学基础(10)
![第一章 流体力学基础(10)](https://img.taocdn.com/s3/m/56d1fcdb4028915f814dc200.png)
Pa s
在物理单位制中: P,泊 SI单位制和物理单位制粘度单位的换算关系为:
1Pa s 10P 第一章 流体力学基础
牛顿型流体和非流动流体
1)凡遵循牛顿粘性定义的流体称为牛顿型流体;否则 为非流动型流体。 牛顿型流体,如水、空气等; 2) 非流动型流体,如某些高分子溶液、悬浮液、泥浆 和血液等。 3) 本书所涉及的流体多为牛顿型流体。
第一章 流体力学基础
(2)通过喷嘴的流动
1 2
q+w=△h+ g△Z+
1 2 △ u 2
u2 2h1 h2
流体流过收缩喷嘴时获得的动能等于流体韩志的增加
第一章 流体力学基础
(3)通过节流阀的流动
q+w=△h+ g△Z+
1 2 △ u 2
h1 h2
流体截流前后的焓值不变
第一章 流体力学基础
在过程生产中,有些仪表是以静力学基本方程式为理论依
一、压强与压强差测量
1 U型管液柱压差计 指示液密度ρ0,被测流体密度为ρ,图中a、 b两点的压力是相等的,因为这两点都在同一 种静止液体(指示液)的同一水平面上。通 过这个关系,便可求出p1-p2的值。
指示剂的选择
@ 指示液必须与被测流体不 互容; @ 不起化学反应; @ 大于被测流体的密度。 指示液随被测流体的 不同而不同。
实际上流体都是可压缩的,一般把液体当作不可压缩流体; 气体应当属于可压缩流体。但是,如果压力或温度变化率很小 时,通常也可以当作不可压缩流体处理。
第一章 流体力学基础
稳定流动(定态流动)
稳定流动:流体在流动时,在任一点上的流速、压力等有关 物理参数仅随位置变化而不随时间改变。
流体力学课件(全)
![流体力学课件(全)](https://img.taocdn.com/s3/m/3791229bb9d528ea81c779ff.png)
Y 1 p 0 y
欧拉平衡方程
Z 1 p 0 z
p p( , T )
t
1 V V T p
1 V V p T
p p(V , T )
1 t T p
p
p
1 p T
V
p y = pn pz = pn
px = p y = pz = pn = p
28/34
第二章
流体静力学
§1 静压强及其特性 §2 流体静力学平衡方程 §3 压力测量 §4 作用在平面上的静压力 §5 作用在曲面上的静压力 §6 物体在流体中的潜浮原理
29/34
§2流体静力学平衡方程
通过分析静止流体中流体微团的受力,可以建立 起平衡微分方程式,然后通过积分便可得到各种不同 情况下流体静压力的分布规律。 why 因此,首先要建立起流体平衡微分方程式。 现在讨论在平衡状态下作用在流体上的力应满足 的关系,建立平衡条件下的流体平衡微分方程式。
《流体力学》
汪志明教授
5/24
第一章 流体的流动性质
§1 流体力学的基本概念
§2 流体的连续介质假设 §3 状态方程 §4 传导系数 §5 表面张力与毛细现象
《流体力学》
汪志明教授
6/24
§2 流体的连续介质假设
虽然流体的真实结构是由分子构成,分子间有一定的孔隙,但流 体力学研究的并不是个别分子微观的运动,而是研究大量分子组成的 宏观流体在外力的作用下所引起的机械运动。 因此在流体力学中引入连续介质假设:即认为流体质点是微观上 充分大,宏观上充分小的流体微团,它完全充满所占空间,没有孔隙 存在。这就摆脱了复杂的分子运动,而着眼于宏观机械运动。
(完整版)流体力学知识点总结汇总
![(完整版)流体力学知识点总结汇总](https://img.taocdn.com/s3/m/2993b14a50e2524de4187e18.png)
流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。
2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。
3 流体力学的研究方法:理论、数值、实验。
4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。
作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。
(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。
质量越大,惯性越大,运动状态越难改变。
常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。
B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。
即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。
由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。
动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。
运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。
2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。
无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。
大学流体力学课件5——第一章流体的基本概念(粘性)
![大学流体力学课件5——第一章流体的基本概念(粘性)](https://img.taocdn.com/s3/m/29167ae09b89680203d82593.png)
牛顿内摩擦定律
粘度
粘温特性
牛顿流体
§1-2
流体的主要物理性质
二、粘性
1. 粘性的定义
现象: # 手粘油或水,感觉不同; # 油加温,变稀,易流
# 右图:下盘转动,会带动上盘
§1-2
流体的主要物理性质
二、粘性 1.粘性的定义
一般分析:
定义:
流体内部质点间或流层间因相对运动而产生 内摩擦力,以反抗相对运动的性质。
流体的主要物理性质
二、粘性
3. 粘度 粘性大小的度量 (2) :运动粘度
量纲和单位:
国际单位制:
物理单位制:
工程单位制:
例: 机械油的牌号 液压油 20#: N32:
§1-2
流体的主要物理性质
二、粘性
3. 粘度 粘性大小的度量 (3) 相对粘度
恩氏粘度计
恩氏粘度
§1-2
流体的主要物理性质
二、粘性
间隙中速度梯度近似按线性分布处理; 计算过程中注意单位统一; 作业中应作图,并分析
§1-2
流体的主要物理性质
二、粘性
4.粘~温, 粘~压特性
一般
粘温特性是工程液体的重要技术参量 粘性阻力的微观机理: 分子引力产生粘阻 (液体中为主) 分子动量交换产生粘阻 (气体中为主)
§1-2
流体的主要物理性质
流体力学中分两步走的研究方法: 分析无粘性流体模型 ----→初步运动规律
考虑粘性影响修正
----→实际运动规律
§1-2
流体的主要物理性质 小 结
二、粘性
0. 粘性是流体区别于固体的重要特性
是产生流动阻力的内因
1. 粘性:流体质点间可流层间因相对运动而产生 摩擦力以反抗相对运动的性质 2. 牛顿内摩擦定律反映粘性的数值关系 3. 粘度是粘性的度量 4. 符合牛顿内摩擦定律的流体为牛顿流体 5. 不考虑粘性的流体称为理想气体
(完整版)流体力学
![(完整版)流体力学](https://img.taocdn.com/s3/m/7e181e46b94ae45c3b3567ec102de2bd9605de68.png)
(完整版)流体力学第1章绪论一、概念1、什么是流体?在任何微小剪切力持续作用下连续变形的物质叫做流体(易流动性是命名的由来)流体质点的物理含义和尺寸限制?宏观尺寸非常小,微观尺寸非常大的任意一个物理实体宏观体积极限为零,微观体积大于流体分子尺寸的数量级什么是连续介质模型?连续介质模型的适用条件;假设组成流体的最小物质是流体质点,流体是由无限多个流体质点连绵不断组成,质点之间不存在间隙。
分子平均自由程远远小于流动问题特征尺寸2、可压缩性的定义;作用在一定量的流体上的压强增加时,体积减小体积弹性模量的定义、与流体可压缩性之间的关系及公式;Ev=-dp/(dV/V) 压强的改变量和体积的相对改变量之比Ev=1/Κt 体积弹性模量越大,流体可压缩性越小气体等温过程、等熵过程的体积弹性模量;等温Ev=p等嫡Ev=kp k=Cp/Cv不可压缩流体的定义及体积弹性模量;作用在一定量的流体上的压强增加时,体积不变(低速流动气体不可压缩)Ev=dp/(dρ/ρ)3、流体粘性的定义;流体抵抗剪切变形的一种属性动力粘性系数、运动粘性系数的定义、公式;动力粘度:μ,单位速度梯度下的切应力μ=τ/(dv/dy)运动粘度:ν,动力粘度与密度之比,v=μ/ρ理想流体的定义及数学表达;v=μ=0的流体牛顿内摩擦定律(两个表达式及其物理意义);τ=+-μdv/dy(τ大于零)、τ=μv/δ切应力和速度梯度成正比粘性产生的机理,粘性、粘性系数同温度的关系;液体:液体分子间的距离和分子间的吸引力,温度升高粘性下降气体:气体分子热运动所产生的动量交换,温度升高粘性增大牛顿流体的定义;符合牛顿内摩擦定律的流体4、作用在流体上的两种力。
质量力:与流体微团质量大小有关的并且集中在微团质量中心上的力表面力:大小与表面面积有关而且分布在流体表面上的力二、计算1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动。
第2章流体静力学一、概念1、流体静压强的特点;理想流体压强的特点(无论运动还是静止);流体内任意点的压强大小都与都与其作用面的方位无关2、静止流体平衡微分方程,物理意义及重力场下的简化微元平衡流体的质量力和表面力无论在任何方向上都保持平衡欧拉方程=0 流体平衡微分方程重力场下的简化:dρ=-ρdW=-ρgdz3、不可压缩流体静压强分布(公式、物理意义),帕斯卡原理;=C不可压缩流体静压强基本公式z+p/ρg不可压缩流体静压强分布规律p=p0+ρgh平衡流体中各点的总势能是一定的静止流体中的某一面上的压强变化会瞬间传至静止流体内部各点4、绝对压强、计示压强(表压)、真空压强的定义及相互之间的关系;绝对压强:以绝对真空为起点计算压强大小记示压强:比当地大气压大多少的压强真空压强:比当地大气压小多少的压强绝对压强=当地大气压+表压表压=绝对压强-当地大气压真空压强=当地大气压-绝对压强5、各种U型管测压计的优缺点;单管式:简单准确;缺点:只能用来测量液体压强,且容器内压强必须大于大气压强,同时被测压强又要相对较小,保证玻璃管内液柱不会太高U:可测液体压强也可测气体压强;缺:复杂倾斜管:精度高;缺点:??6、作用在平面上静压力的大小(公式、物理意义)。
第1章流体力学的基本概念
![第1章流体力学的基本概念](https://img.taocdn.com/s3/m/db37daf8c5da50e2534d7f4d.png)
第1章流体力学的基本概念流体力学是研究流体的运动规律及具与物体相互作用的机理的一门专门学科。
本章叙述在以后章节中经常用到的一些基础知识,对于具它基5岀内容在本科的流体力学或水力学中已作介绍,这里不再叙述。
1.1连续介质与流体物理量111连续介质流体^任何物质一样,都是由分子组成的,分子与分子之间是不连续而有空隙的。
例如, 常温下每立方厘米水中约含有3x1022个水分子,相邻分子间距离约为3x10-8厘米。
因而,从微观结构上说,流体是有空隙的、不连续的介质。
但是,详细研究分子的微观运动不是流体力学的任务,我们所关心的不是个别分子的微观运动,而是大呈分子"集体"所显示的特性,也就是所谓的宏观特性或宏观星,这是因为分子间的孔隙与实际所研究的流体尺度相比是极其微小的。
因此,可以设想把所讨论的流体分割成为无数无限小的基元个体,相当于微小的分子集团,称之为流体的"质点"。
从而认为,輕体就是由这样的一个紧挨看f 的连那质点所组成的,没有任何空隙的够体,即所谓的"连续介质"。
[同时认为,流体的物理力学性质,例如密度、速度、压强和育僵等,具有随同位置而连续变化的特性,即视为空间坐标和时间的连续函数。
因此,不再从那些永远运动的分子岀发,而是在宏观上从质点岀发来硏究流体的运动规律,从而可以利用连续函数的分析方法。
长期的实践和科学实验证明,利用连续介质假走所得出的有关流体运动规律的基本理论与客观实际是符合的。
所谓流体质点,是J旨微小体积內所有流体分子的总体而该微小体积是几何尺寸很(N但远大于分子平均自由行程)但包含足够多分子的特征体积,其宏观特性就是大呈分子的统计平均特性,且具有确定性。
1.1.2流体物理量根据流体连续介质模型,任一时刻流体所在空间的每一点都为相应的流体质点所占据。
流体的物理量是指反映流体宏观特性的物理臺,如密度、速度、压强、温度和能呈等。
对于流体物理呈,如流体质点的密度何以地定义为微小特征体积内大呈数目分子的统计质星除 以该特征体积所得的平均值,即r AM p = InnAV 式中,表示体积AV中所含流体的质呈。
化工原理第一章流体力学
![化工原理第一章流体力学](https://img.taocdn.com/s3/m/14300c8f0d22590102020740be1e650e52eacf2c.png)
反映管路对流体的阻力特性
表示管路中流量与压力损失之间 关系的曲线
管路特性曲线的概念
01
03 02
管路特性曲线及其应用
管路特性曲线的绘制方法 通过实验测定一系列流量下的压力损失数据 将数据绘制在坐标图上,并进行曲线拟合
管路特性曲线及其应用
01 管路特性曲线的应用
02
用于分析管路的工作状态,如是否出现阻塞、泄漏等
流速和流量测量误差分析
• 信号处理误差:如模拟信号转换为数字信 号时的量化误差、信号传输过程中的干扰 等。
流速和流量测量误差分析
管道截面形状不规则
导致实际流通面积与计算流通面积存在偏差。
流体流动状态不稳定
如脉动流、涡街流等导致流量波动较大。
流速和流量测量误差分析
仪表精度限制
仪表本身的精度限制以及长期使用后的磨损等因素导 致测量误差增大。
流体静压强的表示
方法
绝对压强、相对压强和真空受力平衡条件,推导出流体平 衡微分方程。
流体平衡微分方程的物理意义
描述流体在静止状态下,压强、密度和重力 之间的关系。
流体平衡微分方程的应用
用于求解流体静力学问题,如液柱高度、液 面形状等。
重力作用下流体静压强的分布规律
连续介质模型的意义
连续介质模型是流体力学的基础,它 使得我们可以运用数学分析的方法来 研究流体的运动规律,从而建立起流 体力学的基本方程。
流体力学的研究对象和任务
流体力学的研究对象
流体力学的研究对象是流体(包括液体和气体)的平衡、运动及其与固体边界的相互作 用。
流体力学的任务
流体力学的任务是揭示流体运动的内在规律,建立描述流体运动的数学模型,并通过实验和 计算手段对流体运动进行预测和控制。具体来说,流体力学需要解决以下问题:流体的静力
第1章 流体力学基本知识
![第1章 流体力学基本知识](https://img.taocdn.com/s3/m/9099ccd849649b6648d74721.png)
数学表达式:
二、流体的粘滞性 粘滞性 :流体内部质点间或层流间因相对运动 而产生内摩擦力(切力)以反抗相对运动的 性质。
牛顿内摩擦定律:
F-内摩擦力,N; S-摩擦流层的接触面面积,m2;
τ-流层单位面积上的内摩擦力(切应力),N/
m2;
du/dn-流速梯度,沿垂直流速方向单位长度 的流速增值;
hω1-2 =Σhf+Σhj
二、流动的两种型态--层流和紊流
二、流动的两种型态--层流和紊流
实验研究发现,圆管内流型由层流向湍流 的转变不仅与流速u有关,而且还与流体的 密度、粘度 以及流动管道的直径d有关。 将这些变量组合成一个数群du/,根据该 数群数值的大小可以判断流动类型。这个 数群称为雷诺数,用符号Re表示,即
从元流推广到总流,得:
由于过流断面上密度ρ为常数,以
u d u d
1 1 1 2 2 1 2
2
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv ρ1ω1v 1=ρ2ω2v 2
(1-11)
(1-11a)
(1-11)、 (1-11a) --质量流量的连 续性方程式。
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
v
2 2 2
2g
h12
第1章流体力学基本知识-PPT精品
![第1章流体力学基本知识-PPT精品](https://img.taocdn.com/s3/m/9eea1dc3dd88d0d233d46a5d.png)
从元流推广到总流,得:
1u1d1 2u2d2
1
2
由于过流断面上密度ρ为常数,以
带入上式,得:
ρ1Q1 =ρ2 Q2 Q=ωv
ρ1ω1v 1=ρ2ω2v 2
(1-11) (1-11a)
单位时间内通过过流断面dω的液体体积为 udω =dQ
4.流量:单位时间内通过某一过流断面的流体 体积。一般流量指的是体积流量,单位是 m3/s或L/s。
5.断面平均流速:断面上各点流速的平均值。 通过过流断面的流量为
Qvud
断面平均流速为:
v
ud
Q
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介
本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。
确定流体等压面的方法,有三个条件:
必须在静止状态;在同一种流体中; 而且为连续液体。
2.分析静止液体中压强分布:
静止液体中压强分布
分析铅直小圆柱体,作用于轴向的外力有: 上表面压力
分析铅直小圆柱体,作用于轴向的外力有: 下底面的静水压力
分析铅直小圆柱体,作用于轴向的外力有: 柱体重力
静压。 rv2/2g--工程上称动压。
p12vg12 p22vg22h12
p + rv2/2g--过流断面的静压与动 压之和,工程上称全压。
(新)第一章 流体力学(讲解教学课件)
![(新)第一章 流体力学(讲解教学课件)](https://img.taocdn.com/s3/m/10c261725bcfa1c7aa00b52acfc789eb172d9ec8.png)
mgz 1 mu 2 m p
2
J
1kg流体的总机械能为: zg u 2 p
2
J/kg
1N流体的总机械能为: z u 2 p J/N
2g g
(新)第一章 流体力学(讲解教学课件)
压头:每牛顿的流体所具有的能量 静压头;
2、外加能量:1kg流体从输送机械所获得的机械能 。
符号:We;
单位:J/kg ;
和其深度有关。 (2)在静止的、连续的同一液体内,处于同一水平面
上各点的压力均相等。
(新)第一章 流体力学(讲解教学课件)
• (2) 当液体上方的压力有变化时,液体内 部各点的压力也发生同样大小的变化。
(新)第一章 流体力学(讲解教学课件)
三、静力学基本方程的应用 (1)测量流体的压力或压差
① U管压差计 对指示液的要求:指示液要与被测流体 不互溶,不起化学作用;其密度应大于 被测流体的密度。
• 如:4×103Pa(真空度)、200KPa (表压)。
(新)第一章 流体力学(讲解教学课件)
【例题1-1】 在兰州操作的苯乙烯精馏塔塔顶的真空度 为620mmHg。在天津操作时,若要求塔内维持相同 的绝对压力,真空表的读数应为多少?兰州地区的 大气压力为640mmHg,天津地区的大气压力为 760mmHg。
p1-p2=(指-)Rg
若被测流体是气体上式可简化为
p1-p2=指Rg
(新)第一章 流体力学(讲解教学课件)
• 通常采用的指示液有:着色水、油、四氯化碳、 水银等。
• U形管压差计在使用时,两端口与被测液体的 测压点相连接。
• U形管压差计所测压差,只与读数R、指示液 和被测液体的密度有关,而与U形管的粗细、 长短、形状无关,在此基础上又产生了斜管压 差计、双液柱微差计、倒U形管压差计等。
贾月梅主编《流体力学》第一章课后习题答案
![贾月梅主编《流体力学》第一章课后习题答案](https://img.taocdn.com/s3/m/b6409767de80d4d8d15a4f70.png)
《流体力学》习题与答案周立强中南大学机电工程学院液压研究所第1章流体力学的基本概念1-1.是非题(正确的打“√”,错误的打“”)1. 理想流体就是不考虑粘滞性的、实际不存在的,理想化的流体。
(√)2. 在连续介质假设的条件下,液体中各种物理量的变化是连续的。
(√ )3. 粘滞性是引起流体运动能量损失的根本原因。
(√ )4. 牛顿内摩擦定律适用于所有的流体。
()5. 牛顿内摩擦定律只适用于管道中的层流。
()6. 有旋运动就是流体作圆周运动。
()7. 温度升高时,空气的粘度减小。
()8. 流体力学中用欧拉法研究每个质点的轨迹。
()9. 平衡流体不能抵抗剪切力。
(√ )10. 静止流体不显示粘性。
(√ )11. 速度梯度实质上是流体的粘性。
(√ )12. 流体运动的速度梯度是剪切变形角速度。
(√ )13. 恒定流一定是均匀流,层流也一定是均匀流。
()14. 牛顿内摩擦定律中,粘度系数m和v均与压力和温度有关。
()15. 迹线与流线分别是Lagrange和Euler几何描述;它们是对同一事物的不同说法;因此迹线就是流线,流线就是迹线。
()16. 如果流体的线变形速度θ=θx+θy+θz=0,则流体为不可压缩流体。
(√ )17. 如果流体的角变形速度ω=ωx+ωy+ωz=0,则流体为无旋流动。
(√ )18. 流体的表面力不仅与作用的表面积的外力有关,而且还与作用面积的大小、体积和密度有关。
()19. 对于平衡流体,其表面力就是压强。
(√ )20. 边界层就是流体的自由表明和容器壁的接触面。
()1-2已知作用在单位质量物体上的体积力分布为:,物体的密度,坐标量度单位为m;其中,,,;,,。
试求:如图1-2所示区域的体积力、、各为多少?题1-2图解:答:各体积力为:、、1-3作用在物体上的单位质量力分布为:,物体的密度为,如图1-3所示,其中,,,;。
试求:作用在图示区域内的质量总力?解:题图1-3答:各质量力为:、、,总质量力。
流体力学重点概念总结(可直接打印版)
![流体力学重点概念总结(可直接打印版)](https://img.taocdn.com/s3/m/ad6b2bc37d1cfad6195f312b3169a4517723e5e8.png)
流体力学重点概念总结(可直接打印版)第一章绪论表面力,也称面积力,是指直接施加在隔离体表面上的接触力,其大小与作用面积成比例。
剪力、拉力和压力都属于表面力。
质量力是指作用于隔离体内每个流体质点上的力,其大小与质量成正比。
重力和惯性力都属于质量力。
流体的平衡或机械运动取决于流体本身的物理性质(内因)和作用在流体上的力(外因)。
XXX通过著名的平板实验,说明了流体的粘滞性,并提出了牛顿内摩擦定律。
根据该定律,剪切应力τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ是反映流体粘滞性大小的系数,单位为N•s/m2.运动粘度ν等于动力粘度μ除以流体密度ρ。
第二章流体静力学流体静压强具有以下特性:首先,流体静压强是一种压应力,其方向总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
其次,在静止的流体中,任何点上的流体静压强大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
流体静力学基本方程为P=Po+pgh,其中Po为参考压力,p为流体密度,g为重力加速度,h为液体高度。
等压面是压强相等的空间点构成的面。
绝对压强以无气体分子存在的完全真空为基准起算,而相对压强以当地大气压为基准起算。
真空度是绝对压强不足当地大气压的差值,即相对压强的负值。
测压管水头是单位重量液体具有的总势能。
在平面上,净水总压力是潜没于液体中的任意形状平面的总静水压力P,其大小等于受压面面积A与其形心点的静压强pc之积。
需要注意的是,只要平面面积与形心深度不变,面积上的总压力就与平面倾角θ无关,压心的位置与受压面倾角θ无直接关系,是通过XXX表现的,而压心总是在形心之下。
对于作用在曲面壁上的总压力,水平分力Px等于作用于该曲面的在铅直投影面上的投影(矩形平面)上的静水总压力,方向水平指向受力面,作用线通过面积Az的压强分布图体积的形心。
垂直分力Pz等于该曲面上的压力体所包含的液体重,其作用线通过压力体的重心,方向铅垂指向受力面。
大学物理第1章流体力学
![大学物理第1章流体力学](https://img.taocdn.com/s3/m/17e64ae6376baf1ffd4fad0c.png)
2. R越小, 附加压强越大
4
PS R
表面张力系数均匀
肺泡大小不均:肺泡合并, 表面积减少 大学物理第1章流体力学
补充例题3, 温度为20℃时,一滴水珠内部的压强为外 部压强的2倍,求水珠的半径。设大气压强 P0=1.013105Pa,20℃时水的表面张力系 数为72.810-3N/m
2
P内P外 RP0
• 液体没有一定形状,并具有流动性。
这是由于液体分子振动的平衡位置不固定,是近程有序,即 在很小范围内在一短暂时间里保持一定的规则性。
由于液体分子间距小,分子间相互作用力较大, 当液体与气体、固体接触时,交界处由于分子力作 用而产生一系列特殊现象,即:液体表面现象。
表面张力现象
为什么水面上的小昆虫能在水面上 行走,而不会沉入水中?
大学物理第1章流体力学
大大学物珠理第小1章流珠体力落学 玉盘
水黾的高明之处:
1、既不会划破水面,也不会 浸湿自己的腿。 2、它在水面上每秒钟可滑行 100倍于身体长度的距离,这 相当于一位身高1.8米的人以 每小时400英里的速度大游学物泳理。第1章流体力学
肥皂泡!!
问题1:为什么小液滴和小气泡总是成球状而不会
1.2 液体的表面现象
理解液体表面张力产生的微观本质; 掌握表面张力系数的两种定义; 掌握弯曲液面的附加压强及计算; 掌握毛细管现象中的朱仑公式。
大学物理第1章流体力学
大学物理第1章流体力学
大学物理第1章流体力学
叶面:疏水、不吸 水的表面,永遠保 持一塵不染。
荷花效应
大学物理第1章流体力学
增溶作用在工业、农业及日常生活等各方面得到广泛应用。在制备农 药时,为使一些不溶于水的药物成为乳浊液,常加入增溶剂,以提高 药效;
流体力学 第一章
![流体力学 第一章](https://img.taocdn.com/s3/m/1731a9797fd5360cba1adb9d.png)
二、连续介质的概念(2)
问题:按连续介质的概念,流体质点是指 A、流体的分子 B、流体内的固体颗粒 C、几何的点 D、几何尺寸同流动空间相比是极小量, 又含有大量分子的微元体
连续介质:质点连续地充满所占空间的流体。
连续介质模型
组成流体的最小物质实体是流体质点 流体由无限多的流体质点连绵不断地组成,质点之 间无间隙
流体的主要物理性质
?问题:与牛顿内摩擦定律直接有关的因素是: A、切应力和压强 B、切应力和剪切变形速率 C、切应力和剪切变形 D、切应力和流速
牛顿流体:内摩擦力按粘性定律变化的流体 非牛顿流体:内摩擦力不按粘性定律变化的流体
流体的主要物理性质
动力粘性系数μ:又称绝对粘度、动力粘度、粘 度,是反映流体粘滞性大小的系数。
二、连续介质的概念(2)
连续介质模型的优点:
1、排除了分子运动的复杂性。 2、物理量作为时空连续函数,可以利用连续函 数这一数学工具来研究问题。
二、连续介质的概念(2)
连续介质模型 不适用
稀薄气体, 激波面等
第二节
流体的主要物理性质
流体的主要物理性质
流体的主要性质
可流动性 惯性 粘性 可压缩性
流体的粘度是由流动流体的内聚力和分子的动量交换所引 起的
y F C u+u u U
τ
τ
h B
U=0
x
流体的主要物理性质
粘性是流体抵抗剪切变形(相对运动)的一种属性 流体层间无相对运动时不表现粘性
粘性产生的机理
液体
分子间内聚力
流体团剪切变形
改变分子间距离
分子间引力阻止 距离改变 内摩擦抵抗变形
1流体力学基本知识
![1流体力学基本知识](https://img.taocdn.com/s3/m/deea91946bec0975f465e2af.png)
(kg/m3)
密度: 单位体积的质量称为流体的密度
(N/m3)
容重: 单位体积的重量称为流体的密度
二、流体的流动性和粘滞性
流体在运动状态时,由于流体各层的流速不同,就会在流层 粘滞性: 间产生阻滞相对运动和剪切变形的内摩擦力,称为粘滞力也 称粘滞性。
u ν0 = y h
作业:
1、名词解释: 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 压缩性、膨胀性、密度、容重、黏滞性、流体静压力的基本特性、流量。 2、写出流体的柏努利方程,并解释各部分意义。 写出流体的柏努利方程,并解释各部分意义。 3、如图判断压力的大小 4、判断图 中,A—A(a、b、c 、d),B—B,E—E是否为等压面,并说 判断图2中 是否为等压面, 明理由。 明理由。 5、如图3,液体1和液体3的密度相等,ρ1g=ρ3g=8.14 kN/m3,液体2的 如图3 液体1和液体3的密度相等, 1g=ρ = =ρ3g kN/m3,液体2 2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。( 。(1 ρ2g=133.3kN/m3。已知:h1=16cm,h2=8cm,h3=12cm。(1)当 pB=68950Pa时,pA等于多少?(2)当pA=137900Pa时,且大气压力计 pB=68950Pa时 pA等于多少 等于多少? pA=137900Pa时 的读数为95976Pa时 点的表压力为多少? 的读数为95976Pa时,求B点的表压力为多少?
qv = ∫∫ v cos(v , x)dA
A
有效截面: 有效截面:
qv = ∫∫ vdA
A
3.平均流速: 3.平均流速:流经有效截 平均流速 面的体积流量除以有效截 面积而得到的商
第一章 流体力学基础ppt课件(共105张PPT)
![第一章 流体力学基础ppt课件(共105张PPT)](https://img.taocdn.com/s3/m/69431b53e418964bcf84b9d528ea81c758f52eee.png)
原
力〔垂直于作用面,记为 ii〕和两个切向 应力〔又称为剪应力,平行于作用面,记为
理
ij,i j),例如图中与z轴垂直的面上受
到的应力为 zz〔法向)、 zx和 zy〔切
电 向),它们的矢量和为:
子
课
件 τ zzix zjy zkz
返回
前页
后页
主题
西
1.1 概述
安
交 • 3 作用在流体上的力
大 化
子 课 件
返回
前页
后页
主题
西
1.2.3 静力学原理在压力和压力差测量上的应用
安
交
大 思索:若U形压差计安装在倾斜管路中,此时读数 R反
化 映了什么?
工 原
理 p1p2
p2
p1 z2
电 子
(0)gR(z2z1)g z1
课
R
件
A A’
返回
前页
后页
主题
西 1.2.3 静力学原理在压力和压力差测量上的应用
安
交 大
•
2.压差计
化 • (2〕双液柱压差计
p1
p2
工•
原•
理
电•
子•
课
件
又称微差压差计适用于压差较小的场合。
z1
1
z1
密度接近但不互溶的两种指示
液1和2 , 1略小于 2 ;
R
扩p 大1 室p 内2 径与2 U 管1 内g 径之R 比应大于10 。 2
图 1-8 双 液 柱 压 差 计
返回
安
交 大
•
1.压力计
化 • (2〕U形压力计
pa
工 • 设U形管中指示液液面高度差为RA,1 指• 示液
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t 时刻,
t t 时刻,
泰勒级数展开, ( x x, y y, z z , t t )
( x, y , z , t )
t x y z t x y z
D 1 lim ( x x, y y, z z , t t ) ( x, y, z, t ) Dt t 0 t x y z lim t 0 t t x t y t z u v w t x y z
x t
x0 , y0 , z0
x y
x , z ,t
y t
x0 , y0 , z0
z
x , y ,t
z t
x0 , y0 , z0
u v w t x y z
矢量和张量形式的随体导数
D u1 u2 u3 uk Dt t x1 x2 x3 t xk
1.1 连续介质假说
流体质点 由确定流体分子组成的流体团,流体由流体质点连续无间隙地 组成,流体质点的体积在微观上充分大,在宏观上充分小。 流体质点是流体力学研究的最小单元。 当讨论流体速度、密度等变量时,实际上是指流体质点的速 度和密度。
1.2 欧拉和拉格朗日参考系
欧拉参考系 着眼于空间点,在空间的每一点上描述流体运动随时间的变化。 独立变量x, y, z, t
连续介质方法
1.1 连续介质假说
当流体分子的平均自由程远远小于流场的最小宏观尺度时, 可用统计平场的方法定义场变量如下:
u lim (
V
v m ) m
lim (
V
m ) V
在微观上充分大,宏观上充分小。
连续介质方法的适用条件
1.1 连续介质假说
1 L3 n
d t CV
u ndA CS
高斯公式,
D D dv [ ( u )] dv , dv [ ( uk )]dv V V V V Dt t Dt t xk
1.5
流线、迹线和脉线
1.流线
某一时刻,由许多流体质点构成流场中的一条空间曲线,曲 线上各点的速度矢量方向和曲线在该点的切线方向相同。
n为单位体积的分子数(特征微观尺度是分子自由程), L为最小宏观尺度。 在通常温度和压强下,边长2微米的立方体中大约包含2×108个气 体分子或2×1011液体分子;在日常生活和工程中,绝大多数场合 均满足上述条件,连续介质方法无论对气体和液体都适用。
1.1 连续介质假说
连续介质方法失效场合
导弹和卫星在高空的稀薄气体中飞行,此时微观特征尺度接近宏 观特征尺度; 研究激波结构,此时宏观特征尺度接近微观特征尺度。
CSI
I
dA1
II
u
dA3
III
n
u
D DN d Dt Dt
t
n
t t
N sys (t t ) N sys (t ) DN lim Dt t 0 t {N (t t ) N I (t t ) N III (t t )} NCV (t ) lim CV t t 0 N (t t ) NCV (t ) N I (t t ) N III (t t ) lim CV lim lim t t t t 0 t 0 t 0
式中x0, y0, z0 是 t =t 0 时刻流体质点空间位置的坐标。可以是曲
线坐标,也可以是直角坐标,是流体质点的标号。
独立变量x0, y0, z0, t。 x, y, z 不再是独立变量,x - x0 = u ( t - t0), y - y0 = v (t - t0), z - z0 = w (t - t0), T =T(x0, y0, z0, t), ρ=ρ(x0, y0, z0, t)。 用x0, y0, z0来区分不同的流体质点,而用t来确定流体质点 的不同空间位置。
,即一个观察者随同流体一起运动,并且一直盯着某一特定流 体质点时所看到的 随时间的变化。
D 是拉格朗日参考系下的时间导数。 Dt
D Dt
在欧拉参考系下的表达式(在欧拉参考系下推导 )
( x, y, z, t )
( x x, y y, z z, t t )
把时间当作常数积分以上方程组,即可得流线方程。 电力线,磁力线,用于理论分析。
V
l
流线的性质
v1
(1)流线彼此不能相交。
交点
v2
s1
(2)流线是一条光滑的曲线, 不可能出现折点。
s2
v1
折点
v2
s
(3)定常流动时流线形状不变,流线和迹线重合;非定 常流动时流线形状发生变化。
流线的性质
(4)流场中每一点都有流线通过,流线充满整个流场, 这些流线构成某一时刻流场内的流谱。
欧拉和拉格朗日参考系中的时间导数
1.2 欧拉和拉格朗日参考系
欧拉参考系: u u ( x, y, z, t ) u 某一空间点上的流体速度变化,称当地导数或局部 导数。 t x , y , z
拉格朗日参考系:
u u ( x0 , y0 , z0 , t )
t 0
DN d u ndA u ndA CS1 CS III Dt t CV CS1 CSIII CS DN d u ndA CS Dt t CV
CSIII CSI I
dA1
II
u
dA3
III
n
u
t
n
u t x0 , y0 , z0
流体质点的速度变化,即加速度。
Du 在欧拉参考系下用 表示流体质点的速度变化。 Dt
随体导数
流体质点携带的物理量随时间的变化率称为质点的随体倒数。 随体导数又称质点导数,物质导数。
设场变量 ,则
D 表示某一流体质点的 随时间的变化 Dt
t t
物理意义
DN d u ndA CS Dt t CV
CSIII
CSI I
dA1
II
u
dA3
III
n
u
t
DN Dt
n
t t
系统中的变量N对时间的变化率 固定控制体内的变量N对时间的变化率, 由 的不定常性引起 N 流出控制体的净流率,由于系统的 空间位置和体积随时间改变引起
u u ( x, y, z, t )
( x, y, z, t )
当采用欧拉参考系时,定义了空间的场。
1.2 欧拉和拉格朗日参考系
拉格朗日参考系
着眼于每个流体质点,描述每个流体质点自始至终的运动过 程,即它们的位置随时间变化的规律,
r r ( x0 , y0 , z0 , t )
第一章
流体力学基本概念
1.1 连续介质假说
推导流体力学基本方程的两条途径
统计方法
把流体看作由运动的分子组成,认为宏观现象起源于分子运动,采用统 计平均的方法建立宏观物理量满足的方程,并确定流体的性质。 对于偏离平衡态不远的流体可推导出质量、动量和能量方程,给出输运 系数(μ ,κ )的表达式。 对于单原子气体已有成熟理论,对多原子气体和液体理论尚不完整。 连续介质方法 把流体看作连续介质,认为流体是由质点组成的,质点是由分子组 成的,质点在微观上充分大,在宏观上充分小。假设场变量(速度 、密度、压强等)在连续介质的每一点都有唯一确定的值,连续介 质遵守质量、动量和能量守恒定律。从而推导出场变量的微分方程 组。流体力学采用连续介质的方法。
D u Dt t
D Dt
u u i v j w k i j k u v w x y z x y z
随体导数; 欧拉时间导数,称局部导数或就地导数,表示空间某一点流 体物理量随时间的变化; 称对流导数或位变导数,流体物性随空间坐标变化而变化,当流 体质点空间位置随时间变化时,在流动过程中会取不同的 值, 因此也会引起 的改变。
D DtBiblioteka 在欧拉参考系下的表达式(在拉格朗日参考系下推导)
x x( x 0 , y 0 , z 0 , t )
y y( x0 , y0 , z0 , t )
z z ( x0 , y 0 , z 0 , t )
此时 x, y , z 不再是独立变量,而是
x0 , y0 , z 0 , t 的函数
设 (r , t ) 是单位体积流体的物理分布函数,而 统体积内包含的总物理量,则
DN D dv V Dt Dt
N dv 是系 V
举例, 取 " , u,
1 2 u ", 则 N 为 "M , 1 MU , 1 MU 2 " 2 2 2
公式推导
CSIII
系统和CV 在初始时刻 重合,CV固定不动
t
uk
x k
上式把拉格朗日导数和欧拉参考系中的就地导数和对流导数联系起来。
1.4
雷诺输运定理
对系统体积分的随体导数
通常的力学和热力学定理都是应用于系统的,于是就会遇到求对系 统体积分的随体导数。 D dk 动量定理 F udv k udv F V Dt V dt
系统和控制体
系统
1.2 欧拉和拉格朗日参考系
某一确定流体质点集合的总体。随时间改变其空间位置、大小和形状;系统边 界上没有质量交换;始终由同一些流体质点组成。 在拉格朗日参考系中,通常把注意力集中在流动的系统上,应用质量、动量和 能量守恒定律于系统,即可得到拉格朗日参考系中的基本方程组