五年级奥数.行程.环形跑道.教师版

合集下载

五年级奥数——环形路上的的行程问题

五年级奥数——环形路上的的行程问题

年 级五年级 授课日期 授课主题 第7讲——环形路上的行程问题教学内容i.检测定位在环形道路上的行程问题本质上就是追及问题或相遇问题.当两人(或物)同向运动时就是追及问题,追及距离是两人初始距离及环形道路之长的倍数之和;当两人(或物)反向运动时就是相遇问题,相遇问题是两人从出发到相遇所行路程和.【例1】如图7-1,两名运动员在沿湖的环形跑道上练习长跑.甲每分钟跑250米,乙每分钟跑200米.两人同时同地同向出发,45分钟后甲追上了乙.如果两人同时同地反向跑,经过多少分钟后两人相遇?分析与解 根据图7-1①用追及问题公式求出环形跑道的长,因从同一点出发,距离差=跑道长..225045200-250(米))(=⨯ 同理在环形跑道上,若反向而行,从同一点出发两人相遇所经过的路程和=跑道长.(图7-1②).52002502250(分钟))(=+÷即经过5分钟两人相遇.随堂练习1甲乙两运动员在周长为400米的环形跑道上同向竞走,已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处.问几分钟后,甲第1次追上乙?【例2】如图7-2是一个圆形中央花园,A 、B 是直径的两个端点.小军在A 点,小勇在B 点,同时出发相向而行.他俩第一次在C 点相遇,C 点离A 点有50米;第2次在D 点相遇,D 点离B 点有30米.问这个花园一周长多少米?分析与解 第1次相遇,两人合起来走了半周长,从C 点开始第2次在D 点相遇两人走了一周长,两次共走了一周长半.小军从A →C →D 走了50米的3倍,即走了.150350(米)=⨯去掉BD 之间30米的距离,就是半个圆周的长,所以一周的长度为.240230-150米)(=⨯ 随堂练习2如图7-3,A 、B 是圆直径的两个端点,亮亮在A 点,明明在B 点,相向而行.他们在C 点第一次相遇,C 点离A 点有100米;在D 点第2次相遇,D 点离B 点有80米.求圆的周长.【例3】如图7-4,一个边长为100米的正方形跑道.甲从A 点出发,乙从C 点出发都逆时针同时起跑,甲的速度每秒7米,乙的速度每秒5米.他们拐弯处都要停留5秒,当甲第一次追上乙时,乙跑了多少米?分析与解 如图7-4,由题意知甲(在后)、乙(在前)相距200米(即追及距离200米)且甲第一次追及乙要多拐两个弯,即要多休息.1025秒=⨯设甲纯跑步时间为y 秒,则乙纯跑步时间为秒10+y .则有,200)10(57+⨯-y y解得 ).(125秒=y甲应跑路程为.8757125米=⨯当甲跑了800米又到达A 点时,用时为秒,28.149757800≈⨯+÷他将在A 点逗留5秒,到秒28.154528.149=+又离开A 点.而乙跑完600(=800-200)米到达A 点时,用时.145555600秒=⨯+÷而在第秒1505145=+时离开A 点.因此,从起跑到149.28秒至150秒的间隔内甲、乙都在A 点,即甲第1次追上乙,此时乙跑了600米.随堂练习3如图7-5,有一条长方形跑道,甲从A 点出发,乙从C 点出发,同时按逆时针方向奔跑.甲速每秒6025米,乙速每秒5米.跑道长100米,宽为60米.当甲、乙每次跑到拐点A 、B 、C 、D 时都要停留5秒.问当甲第1次追上乙时,甲、乙各跑了多少米?【例4】图7-6所示是一个玩具火车轨道,A 点有个变轨开关,可以连结B 或者C 。

小学奥数行程问题(追击问题)(教师版)

小学奥数行程问题(追击问题)(教师版)

行程之相遇问题1、通过小组合作、自主探究,使学生知道速度的表示法;理解和掌握行程问题中速度、时间、路程三个数量的关系。

2、通过课堂上的合作学习、汇报展示、互动交流,提高学生分析处理信息的能力,培养学生解决实际问题的能力。

3、让学生通过提出问题、解决问题,感受数学来源于生活,在交流评价中培养学生的自信心,体验到成功的喜悦。

追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的。

由于速度不同,就发生快的追及慢的问题。

根据速度差、距离差和追及时间三者之间的关系,常用下面的公式:距离差=速度差×追及时间追及时间=距离差÷速度差速度差=距离差÷追及时间速度差=快速-慢速解题的关键是在互相关联、互相对应的距离差、速度差、追及时间三者之中,找出两者,然后运用公式求出第三者来达到解题目的。

1:甲、乙二人在同一条路上前后相距9千米。

他们同时向同一个方向前进。

甲在前,以每小时5千米的速度步行;乙在后,以每小时10千米的速度骑自行车追赶甲。

几小时后乙能追上甲?(适于高年级程度)解:求乙几小时追上甲,先求乙每小时能追上甲的路程,是:10-5=5(千米)再看,相差的路程9千米中含有多少个5千米,即得到乙几小时追上甲。

9÷5=1.8(小时)综合算式:9÷(10-5)=9÷5=1.8(小时)答略。

2:甲、乙二人在相距6千米的两地,同时同向出发。

乙在前,每小时行5千米;甲在后,每小时的速度是乙的1.2倍。

甲几小时才能追上乙?(适于高年级程度)解:甲每小时行:5×1.2=6(千米)甲每小时能追上乙:6-5=1(千米)相差的路程6千米中,含有多少个1千米,甲就用几小时追上乙。

6÷1=6(小时)答:甲6小时才能追上乙。

3:甲、乙二人围绕一条长400米的环形跑道练习长跑。

甲每分钟跑350米,乙每分钟跑250米。

二人从起跑线出发,经过多长时间甲能追上乙?(适于高年级程度)解:此题的运动路线是环形的。

行程问题教师版

行程问题教师版

行程问题例1.A、B两城相距240千米,一辆汽车计划用6小时从A城开到B城,汽车行驶了一半路程,因故障在中途停留了30分钟,如果按原计划到达B城,汽车在后半段路程时速度应加快多少?分析:对于求速度的题,首先一定是考虑用相应的路程和时间相除得到。

解:后半段路程长:240÷2=120(千米)后半段用时为:6÷2-0.5=2.5(小时)后半段行驶速度应为:120÷2.5=48(千米/时)原计划速度为:240÷6=40(千米/时)汽车在后半段加快了:48-40=8(千米/时)。

答:汽车在后半段路程时速度加快8千米/时。

例2.两码头相距231千米,轮船顺水行驶这段路程需要11小时,逆水每小时少行10千米,问行驶这段路程逆水比顺水需要多用几小时?分析:求时间的问题,先找相应的路程和速度。

解:轮船顺水速度为:231÷11=21(千米/时)轮船逆水速度为:21-10=11(千米/时),逆水比顺水多需要的时间为:21-11=10(小时)答:行驶这段路程逆水比顺水需要多用10小时。

例3.汽车以每小时72千米的速度从甲地到乙地,到达后立即以每小时48千米的速度返回到甲地,求该车的平均速度。

分析:求平均速度,就要考虑用总路程除以总时间。

解:设从甲地到乙地距离为S 千米。

则汽车往返用的时间为:S ÷48+S ÷72= + = 平均速度为:2S ÷ =144÷5×2=57.6(千米/时) 答:该车的平均速度为57.6千米/时例4.一辆汽车从甲地出发到300千米外的乙地去,在一开始的120千米内平均 速度为每小时40千米,要想使这辆车从甲地到乙地的平均速度为每小时50千米,剩下的路程应以什么速度行驶?分析:求速度,首先找相应的路程和时间,平均速度说明了总路程和总时间的关系。

解:剩下的路程为300-120=180(千米)计划总时间为:300÷50=6(小时)剩下的路程计划用时为:6-120÷40=3(小时)剩下的路程速度应为:180÷3=60(千米/小时)答:剩下的路程应以60千米/时行驶。

奥数行程问题——环形跑道

奥数行程问题——环形跑道

行程问题——环形跑道环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。

1、相遇问题:题型特点:甲、乙两人同时从同地反向出发。

解题规律:两人相遇时一起走一圈(跑道周长).之后每见面一次,就一起走1圈;见面n次,两人一起走n个周长。

2、追及问题:题型特点:甲、乙两人同时从同地同向出发。

解题规律:开始出发时由于速度不同两人之间的距离会越来越远,之后快的会追上慢的,此时快的人比慢的人多走1圈(路程差为跑道周长)。

之后每追上一次,就多走1圈;追上n次,快的就比慢的多走n个周长。

3、需要处理的问题:a、环形跑道中速度、时间、路程之间的关系处理。

b、多次追及问题的处理.c、不同地点出发的追及问题。

1、一个圆形荷花池的周长为400米,甲、乙两人绕荷花池顺时针跑步.甲每分钟跑250米,乙每分钟跑200米,现在甲在乙后面50米,甲第二次追上乙需要多少分钟?2、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑140米,两人同时反向出发,经过几分钟两人相遇?3、上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,小亚第一次追上小胖时,小胖跑了多少米?4、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第2次追上晶晶时,冬冬跑了多少圈?5、甲、乙二人骑自行车从环形公路上的同一地点出发,背向而行。

现在已知甲走一圈的时间为75分钟,如果在出发后第50分钟甲、乙两人相遇,那么乙走一圈的时间是多少分钟?6、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。

现在已知甲走一圈的时间是70 分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟?7、两名运动员在湖的周围环形道上练习长跑.甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过几分钟两人相遇?8、在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲的速度是多少米/秒?9、环形跑道的周长是800米,甲乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米。

五年级奥数行程环形跑道教师版

五年级奥数行程环形跑道教师版

五年级奥数行程环形跑道教师版The document was prepared on January 2, 2021本讲中的行程问题是特殊场地行程问题之一。

是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。

一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和 路程差=追及时间×速度差 二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

环线型同一出发点直径两端同向:路程差 nS nS +相对(反向):路程和nS【例 1】一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇【考点】行程问题之环形跑道 【难度】☆☆【题型】解答例题精讲知识框架环形跑道【解析】黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟).【答案】4分钟【巩固】周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。

已知林荫道周长是480米,他们从同一地点同时背向而行。

在他们第10次相遇后,王老师再走米就回到出发点。

【考点】行程问题之环形跑道【难度】☆☆【题型】填空【解析】几分钟相遇一次:480÷(55+65)=4(分钟)10次相遇共用:4×10=40(分钟)王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。

五年级奥数之《环形道路上的行程问题》+配套练习题 覆盖面广,条理性好,针对性强,提升效果快

五年级奥数之《环形道路上的行程问题》+配套练习题 覆盖面广,条理性好,针对性强,提升效果快

五年级奥数
环形道路上的行程问题
在环形道路上的行程问题,本质上讲就是追及问题或相遇问题。

当两人(或物)同向运动时就是追及问题,追及距离就是两人初始距离及环形道路之长的倍数之和;当两人(或物)反向运动时就是相遇问题,相遇距离是两人从出发到相遇所行路程和。

例1:
如图,两名运动员在沿湖的环形跑道上练习长跑.甲每分钟跑250米,乙每分钟跑200米.两人同时同向同地出发,45分钟后甲追上了乙.如果两人同时同地反向而跑,经过多少分钟后两人相遇?
例2:
如图,是一个圆形的中央花园,A、B是直径的两端.小军在A点,小勇在B点,同时出发相向而行.他俩第1次在C点相遇,C点离A点有50米;第2次在D点相遇,D点离B点有30米.这个花园一周长多少米?
随堂练习1
1、甲、乙两名运动员在周长400米的环形跑道上同向竞走.已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处.几分钟后,甲第一次追上乙?
2、如图,A、B是圆直径的两端点,亮亮在点A,明明在点B,相向而行.他们在C点第一次相。

五年级奥数-环形道路上的行程问题

五年级奥数-环形道路上的行程问题

第五讲环形道路上的行程问题一、知识要点和基本方法1.行程问题中的基本数量关系式: 速度×时间=路程;路程÷时间=速度; 路程÷速度=时间. 2.相遇问题中的数量关系式:速度和×相遇时间=相遇路程; 相遇路程÷速度和=相遇时间; 相遇路程÷相遇时间=速度和. 3.追及问题中的数量关系式:速度差×追及时间=追及距离; 追及距离÷速度差=追及时间; 追及距离÷追及时间=速度差. 4.流水问题中的数量关系式:顺水速度=船速十水速; 逆水速度=船速一水速;船速=(顺水速度+逆水速度)÷2; 水速=(顺水速度-逆水速度)÷2. 5.应该注意到:(1)顺逆风中的行走问题与顺逆水中的航行问题考虑方法类似; (2)在一条路上往返行走与在环形路上行走解题思考方法类似,因此不要机械地去理解环形道路长的行程问题.二、例题精讲例1 李明和王林在周长为400米的环形道路上练习跑步.李明每分钟跑200米,是王林每分钟所跑路程的89.如果两人从同一地点出发,沿同一方向前进,问至少要经过几分钟两人才能相遇?分析 由于两人从同一地点同向出发,因此是追及问题,追及距离是400米,可用公式“追及距离÷速度差=追及时间”. 解 追及距离=400米;返及时的速度差=200÷89-200.由公式列出追及时间=400÷(200÷89-200)=400 ÷(225-200) =400 ÷ 25 =16(分).答 至少经过16分钟两人才能相遇.例2 如图5-1,A、B是圆的直径的两个端点,亮亮在点A,明明在点B,他们同时出发,反向而行.他们在C点第一次相遇,C点离A点100米;在D 点第二次相遇,D点离B点80米.求这个圆的周长.图5-1分析第一次相遇,两人合起来走了半圈,第二次相遇,两个人合起来又走了一圈,所以从开始出发到第二次相遇,两个人合起来走了一圈半.也就是说,第二次相遇时两人合起来所走的行程是第一次相遇时合起来所走的行程的3倍,也就是每个人在第二次相遇时所走的行程是第一次相遇时所走的行程的3倍,所以从A到D(A→C→B→D)的距离应该是从A到C(A直接到C)的距离的3倍.于是有解法如下.解 A 到D(A→C→B→D)的距离:100 × 3=300(米).半个圆圈长:300-80=220(米).整个圆圈长:220 × 2=440(米).答这个圆的周长是440米.例3 一个圆的周长为1.44米,两只蚂蚁从一条直径的两端同时出发,沿圆周相向爬行.l分钟后它们都调头而行,再过3分钟,他们又调头爬行,依次按照1、3、5、7,…(连续奇数)分钟数调头爬行.这两只蚂蚁每分钟分别爬行5.5厘米和3.5厘米.那么经过多少时间它们初次相遇?再次相遇需要多少时间?分析半圆的周长是÷..(米)=72(厘米).1442=072先不考虑往返的情况,那么两只蚂蚁从出发到相遇所花时间为÷(..)=8(分).7255+35再考虑往返的情况,则有表5-1.表5-1经过时间(分) 1 3 5 7 9 11 13 15 16在上半圆爬行时间 1 3 5 7 8在下半圆爬行时间 2 4 6 8此可求出它们初次相遇和再次相遇的时间.解由题意可知它们从出发到初次相遇经过时间=1+3+5+7+9+11+13+15=64(分).第一次相遇时,它们位于下半圆,折返向上半圆爬去,须爬行17分钟,此时,爬行在下半圆的时间仍为8分钟(与上次在下半圆爬行时间相同),爬行在上半圆的时间应为9(=17-8)分钟,但在上半圆(相向)爬行8分钟就会相遇,此时总时间又用去了16(=8+8)分钟,因此,第二次相遇发生在第一次相遇后又经过了16分钟(从总时间计算则为64+16=80(分)).此时,相遇位置在上半圆.答它们经过时分钟初次相遇,再经过16分钟再次相遇,例4 一个圆周长70厘米,甲、乙两只爬虫从同一地点,同时出发同向爬行,用以每秒4厘米的速度不停地爬行,乙爬行15厘米后,立即反向爬行,并且速度增加1倍,在离出发点30厘米处与甲相遇,问爬虫乙原来的速度是多少?图5-2分析根据题意画出示意图5-2.观察示意图可知:甲共行了70-30=40(厘米),所需时间是40÷4=10(秒).在10秒内,乙按原速度走了15厘米,按2倍的速度走了15+30=45(厘米),假如全按原速走,乙10秒共走15+45÷2=37.5(厘米),由此可求出乙原来的速度.解(70-30)÷4=40 ÷ 4=10(秒),[(30+15)÷2+15]÷ 10.÷10=375?.(厘米/秒).=375?答爬虫乙原来的速度是每秒爬3.75厘米例5 如图5-3,沿着边长为90米的正方形,按逆时针方向,甲从A出发,每分钟走65米,乙从B出发,每分钟走72米,当乙第一次追上甲时是在正方形的哪一条边上?图5-3分析这是环形追及问题.这类问题可以先看成“直线”追及问题,求出乙追上甲所需要的时间,再回到“环形”追及问题,根据乙在这段时间内所走路程,推算出乙应在正方形哪一条边上.解设追上甲时乙走了x分钟.依题意,甲在乙前方3 × 90=270(米),故有72x =65x + 270, 解得x =2707在这段时间内乙走了72×2707=277717由于正方形边长为90米,共四条边,所以由277717=3 0× 90+7717=(4× 7+2)×90+7717,可以推算出这时甲和乙应在正方形的AD 边上.答 当乙第一次追上甲时在正方形的AD 边上.例6 150人要赶到90千米外的某地去执行任务.已知步行每小时可行10千米.现有一辆时速为70千米的卡车,可乘50人.请你设计一种乘车及步行的方案,能使这150人在最短的时间内全部赶到目的地.其中,在中途每次换车(上、下车)时间均忽略不计.解 显然,只有人、车不停地向目标前进,车一直不停地往返载人,最后使150人与车同时到达目的地时,所用的时间才会最短.由于这辆车只能乘坐50人,因此将150分为3组,每组50人来安排乘车与步行.图5-4中,实线表示汽车往返路线(AE →EC →CF →FD →DB ),虚线表示步行路段.显然每组乘车、步行的路程都应一样多.所以图5-4AE =CF =DB ,且AC =CD =EF =FB . 若没AE =CF =DB =x ,AC =CD =EF =FB =y ,则290x y +=.且因为汽车在AE 十EC 上所用的时间与步行AC 所用时间相同,所以 ()7010x x y y+-= 解方程组290x y +=()7010x x y y+-=得60,15x y ==.则150人全部从A 到B 最短时间为602156370107⨯+=小时 答 方案是50人一组,共分3组,先后分别乘60千米车,先后分段步行30千米,由A 同时出发,最后同时到B ,最短时间是637小时.例7 甲、乙二人沿椭圆形跑道作变速跑训练:他们从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈。

五年级奥数.行程. 环形跑道(C级)教师版

五年级奥数.行程. 环形跑道(C级)教师版

本讲中的行程问题是特殊场地行程问题之一。

是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。

一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

知识框架环形跑道【例 1】两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A ,B 两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B 点时,甲车过B 点后恰好又回到A 点.此时甲车立即返回(乙车过B 点继续行驶),再过多少分与乙车相遇?【考点】行程问题之环形跑道 【难度】☆☆☆【题型】解答 【解析】 右图中C 表示甲、乙第一次相遇地点.因为乙从B 到C 又返回B 时,甲恰好转一圈回到A ,所以甲、乙第一次相遇时,甲刚好走了半圈,因此C 点距B 点180-90=90(米).甲从A 到C 用了180÷20=9(分),所以乙每分行驶90÷9=10(米).甲、乙第二次相遇,即分别同时从A ,B 出发相向而行相遇需要90÷(20+10)=3(分).【答案】3分【巩固】 周长为400米的圆形跑道上,有相距100米的A ,B 两点.甲、乙两人分别从A ,B 两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A 时,乙恰好跑到B .如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米?【考点】行程问题之环形跑道 【难度】☆☆☆ 【题型】解答【解析】 如下图,记甲乙相遇点为C.当甲跑了AC 的路程时,乙跑了BC 的路程;而当甲跑了400米时,乙跑了2BC 的路程.由乙的速度保持不变,所以甲、乙第一次相向相遇所需的时间是甲再次到达A 点所需时间的12.即AC=12×400=200(米),也就是甲跑了200米时,乙跑了100米,所以甲的速度是乙速度的2倍.那么甲到达A ,乙到达B 时,甲追上乙时需比乙多跑400-100=300米的路程,所以此后甲还需跑300÷(2-1)×2=600米,加上开始跑的l 圈400米.所以甲从出发到甲追上乙时,共跑了600+400=1000米.例题精讲【答案】1000米【例 2】甲、乙两车同时从同一点A出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离有多少米?【考点】行程问题之环形跑道【难度】☆☆☆【题型】解答【解析】首先是一个相遇过程,相遇时间:6(6555)0.05⨯=千÷+=小时,相遇地点距离A点:550.05 2.75米.然后乙车调头,成为追及过程,追及时间:6(6555)0.6÷-=小时,乙车在此过程中走的路程:550.633⨯=千米,即5圈余3千米,那么这时距离A点3 2.750.25-=千米.甲车调头后又成为相遇过程,同样方法可计算出相遇地点距离A点0.25 2.753+=千米,而第4次相遇时两车又重新回到了A点,并且行驶的方向与开始相同.所以,第8次相遇时两车肯定还是相遇在A点,又11332÷=,所以第11次相遇的地点与第3次相遇的地点是相同的,距离A点是3000米.【答案】3000米【巩固】二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。

奥数行程问题环形跑道

奥数行程问题环形跑道

行程问题——环形跑道环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度.1、相遇问题:题型特点:甲、乙两人同时从同地反向出发.解题规律:两人相遇时一起走一圈〔跑道周长〕.之后每见面一次, 就一起走1圈;见面n次,两人一起走n个周长.2、追及问题:题型特点:甲、乙两人同时从同地同向出发.解题规律:开始出发时由于速度不同两人之间的距离会越来越远,之后快的会追上慢的,此时快的人比慢的人多走1圈〔路程差为跑道周长〕.之后每追上一次,就多走1圈;追上n次,快的就比慢的多走n个周长.3、需要处理的问题:a、环形跑道中速度、时间、路程之间的关系处理.b、屡次追及问题的处理.c、不同地点出发的追及问题.1、一个圆形荷花池的周长为400米,甲、乙两人绕荷花池顺时针跑步.甲每分钟跑250米,乙每分钟跑200米,现在甲在乙后面50米, 甲第二次追上乙需要多少分钟?2、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑140 米,两人同时反向出发,经过几分钟两人相遇?3、上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,小亚第一次追上小胖时,小胖跑了多少米?4、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第2次追上晶晶时,冬冬跑了多少圈?5、甲、乙二人骑自行车从环形公路上的同一地点出发,背向而行. 现在甲走一圈的时间为75分钟,如果在出发后第50分钟甲、乙两人相遇,那么乙走一圈的时间是多少分钟?6、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行现在甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是多少分钟?7、两名运发动在湖的周围环形道上练习长跑.甲每分钟跑250米, 乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过几分钟两人相遇?8、在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,甲比乙快,求甲的速度是多少米/秒?9、环形跑道的周长是800米,甲乙两名运发动同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米.多少分钟后两人第一次相遇?甲乙两名运发动各跑了多少米?甲乙两名运动员各跑了多少圈?10、环形跑道的周长是400米,甲、乙两名运发动同时顺时针自起点出发,甲的速度是每分钟300米,乙的速度是每分钟275米,两人第一次相遇时乙运发动跑了多少圈?11、A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.C离A有75 米,D离B有55米,求这个圆的周长是多少米?①点不在BC之间〕12、两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A, B两点相背而行, 相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车过B点后恰好又回到A 点.此时甲车立即返回〔乙车过B点继续行驶〕, 再过多少分与乙车相遇?13、周长为400米的圆形跑道上,有相距100米的A, B两点.甲、乙两人分别从A, B两点同时相背而跑,两人相遇后,乙即转身与甲同向而跑,当甲跑到A时,乙恰好跑到B.如果以后甲、乙跑的速度和方向都不变,那么甲追上乙时,甲从出发开始,共跑了多少米?14、在一圆形跑道上,甲从A点、乙从B点同时出发反向而行,6分后两人相遇,再过4分甲到达B点,又过8分两人再次相遇.乙环行一周需要多少时间?15、甲、乙、丙在湖边散步,三人同时从同一点出发,绕湖行走,甲速度是每小时千米,乙速度是每小时千米,她们二人同方向行走,丙与她们反方向行走,半个小时后甲和丙相遇,再过5分钟,乙与丙相遇.那么绕湖一周的行程是多少千米?16、甲、乙两车同时从同一点A出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,那么乙车马上调头;一旦甲车从后面追上一车,那么甲车马上调头,那么两车出发后第11次相遇的地点距离A有多少米?17、周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米.林荫道周长是480米,他们从同一地点同时背向而行.在他们第10次相遇后,王老师再走多少米就回到出发点. 18、二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发, 每次甲追上乙或迎面相遇时二人都要击掌.问第十五次击掌时,乙走多少米路程?〔保存2位小数点〕19、在400米的环行跑道上,A, B两点相距100米.甲、乙两人分别从A, B两点同时出发,按逆时针方向跑步.甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟.那么假设B在A前面时,甲追上乙需要时间是多少秒?20、下如右图所示,某单位沿着围墙外面的小路形成一个边长300米的正方形.甲、乙两人分别从两个对角处沿逆时针方向同时出发.如果甲每分走90米,乙每分走70米,那么经过多少时间甲才能看到乙?〔做题格式为几分几秒〕21、如图,一个长方形的房屋长13米,宽8米.甲、乙两人分别从房屋的两个墙角出发,甲每秒钟行3米,乙每秒钟行2米.问:经过多长时间甲第一次看见乙?〔结果保存2位小数〕1322、等边三角形ABC的周长为360米,甲从A点出发,按逆时针方向前进,每分钟走55米.乙从BC边上D点〔距C点30米〕出发, 按顺时针方向前进,每分钟走50米.两人同时出发,当乙到达A点时,甲在哪条边上?23、甲乙丙三人在圆形跑道上跑步,速度相等,每人跑完一圈都用14 分钟,并规定当两人相遇时立即各自反向以原速跑步.开始时,甲乙丙分别在圆形跑道直径的两个端点处,那么第一次全部都回到各自出发点需用几分钟?〔出发时,甲乙在同一端点处,反向而行,丙在另一端点处,与乙相向而行〕24、甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去.相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地.求甲原来的速度为米每秒〔结果保存2位小数〕.25、环形跑道周长是500米,甲、乙两人从起点按顺时针方向同时出发.甲每分跑120米,乙每分跑100米,两人都是每跑200米停下休息1分.甲第一次追上乙需多少分钟?26、甲、乙二人在同一条椭圆形跑道上作特殊练习:他们同时从同一地点出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲速度的2/3.甲跑第二圈时速度比第一圈提升了 1/3;乙跑第二圈时速度提升了 1/5.沿跑道看从甲、乙两人第二次相遇点到第一次相遇点的最短路程是190 米,那么这条椭圆形跑道长多少米?27、甲乙两人在环形跑道的直径两端,反向而行,第一次相遇品外点60米,相遇后两人继续跑,当甲第二次跑回A点时,甲乙两人恰好在A 点,第七次相遇〔途中共相遇6次〕,那么跑道的周长是多少米?〔直径的两端是A、B,出发时甲在A,乙在B〕28、甲和乙两人分别从圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇, 在甲走完一周前60米处又第二次相遇.求此圆形场地的周长多少米?29、有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米, 丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是300 米的圆形跑道行走,那么几分钟之后,3人又可以相聚在跑道上同一处?30、如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长是多少米.31、甲、乙两人从周长为1600米的正方形水池ABCD相对的两个顶点A, C同时出发绕池边沿ATBTCTDTA的方向行走.甲每分行50米, 乙每分行46米,甲、乙第一次在同一边上行走,是发生在出发后的几分钟?32、在一个周长90厘米的圆上,有三个点将圆周三等分.A, B, C 三个爬虫分别在这三点上,它们每秒依次爬行10厘米、5厘米、3厘米.如果它们同时出发按顺时针方向沿圆周爬行,那么它们第一次到达同一位置需多少秒?33、如图2, 一个边长为50米的正方形围墙,甲、乙两人分别从A、C两点同时出发,沿墙按顺时针方向运动,甲每秒走5米,乙每秒走3米,那么至少经过多少秒,甲、乙走到正方形的同一条边上.34、某人在360米的环形跑道上跑了一圈,他前一半时间每秒跑5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒?35、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑3 米,小雅每秒跑4米,反向而行,45秒后两人相遇.如果同向而行, 几秒后两人再次相遇?36、上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,小亚第二次追上小胖时,小胖跑了多少圈?37、幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时冬冬跑了多少米?38、两人在环形跑道上跑步,两人从同一地点出发,小明每秒跑4米, 小雅每秒跑5米,反向而行,30秒后两人相遇.如果同向而行,几秒后两人再次相遇?39、在环形跑道上,两人都按顺时针方向跑时,每12分钟相遇一次, 如果两人速度不变,其中一人改成按逆时针方向跑,每隔4分钟相遇一次,问慢的那个人跑一圈需要几分钟?40、在一圆形跑道上,甲从A点、乙从B点同时出发反向而行,6分后两人相遇,再过4分甲到达B点,又过8分两人再次相遇.乙环行一周各需要多少分?41、甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时甲在乙后面,出发后6分甲第一次超过乙,22分时甲第二次超过乙.假设两人的速度保持不变,问:出发时甲在乙后面多少米? 42、有一条长400米的环形跑道,甲、乙二人同时同地出发,反向而行.1分钟后第一次相遇,假设二人同时同地出发,同向而行,那么10 分钟后第一次相遇.假设甲比乙快,那么乙的速度是米/分?43、一环形跑道周长为240米,甲与乙同向,丙与他们背向,三人都从同一地点出发,每秒钟甲跑8米,乙跑5米,丙跑7米,出发后三人第一次相遇时,丙跑了几圈?〔结果写成假分数〕44、林玲在450米长的环形跑道上跑一圈,他前一半时间每秒跑 5米,后一半时间每秒跑4米,那么他后一半路程跑了多少秒? 45、一条环形跑道长400米,小青每分钟跑260米,小兰每分钟跑 210米,两人同时出发,经过多少分钟两人相遇〔不用解方程〕? 46、一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇? 47、小张和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.小张和小王同时从同一地点出发,反向跑步, 1分钟后两人第一次相遇,小张的速度是多少米/分?48、两名运发动在湖的周围环形道上练习长跑.甲每分钟跑250米, 乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?49、小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第三次超过正南需要多少分钟?50、甲、乙两人从400米的环形跑道上一点A背向同时出发,8分钟后两人第五次相遇,每秒钟甲比乙多走米,那么两人第五次相遇的地点与点A沿跑道上的最短路程是多少米?51、在环形跑道上,两人在一处背靠背站好,然后开始跑,每隔4分钟相遇一次;如果两人从同处同向同时跑,每隔20分钟相遇一次, 环形跑道的长度是1600米,那么两人中速度较快的一人的速度是多少米每分?52、甲、乙二人按顺时针方向沿圆形跑道练习散步.甲跑一圈用 12分钟,乙跑一分钟用15分钟.如果他们分别从圆形跑道直径两端同时出发,那么出发多少分钟甲追上乙?53、某市有一条环形公路,按逆时针方向行驶的公共汽车每隔10分钟从车站发出一辆,王师傅驾驶的货车用公共汽车的速度按顺时针方向行驶在同一公路上,在半小时中,王师傅最多能遇到几辆公共汽车?。

五年级奥数行程问题——环形路(教师版)

五年级奥数行程问题——环形路(教师版)

行程问题——环形路(教师版)一、【本讲知识点】在环行道路上的行程问题本质上讲是追及问题或相遇问题。

当二人(或物)同向运动就是追及问题,追及距离是二人初始距离及环形道路之长的倍数之和;当二人(或物)反向运动时就是相遇问题,相遇距离是二人从出发到相遇所行路程和。

二、【本讲经典例题】【铺垫】如下图,两名运动员在沿湖周长为2250米的环形跑道上练习长跑。

甲每分钟跑250米,乙每分钟跑200米。

两人同时同地同向出发,多少分钟后甲第1次追上乙?若两人同时同地反向出发,多少分钟后甲、乙第1次相遇?分析与解答:2250÷(250-200)=2250÷50=45(分钟),即45分钟后甲第1次追上乙;2250÷(250+200)=2250÷450=5(分钟),即5分钟后甲、乙第1次相遇.【例1】如下图,两名运动员在沿湖的环形跑道上练习长跑。

甲每分钟跑250米,乙每分钟跑200米。

两人同时同地同向出发,45分钟后甲追上了乙。

如果两人同时同地反向而跑,经过多少分钟后两人相遇?(1)(2)分析与解答:根据图(1)用追及问题公式求出环形跑道的长,因从同一点出发,距离差=跑道长。

(250-200)×45=2250(米)。

同理,在环形跑道上,若反向而行,从同一点出发两人相遇所经过的路程和=跑道长。

如图(2),2250÷(250+200)=5(分钟)即经过5分钟两人相遇。

【随堂练习1】如下图,两名运动员在沿湖的环形跑道上练习长跑。

甲每分钟跑250米,乙每分钟跑200米。

两人同时同地同向出发,54分钟后甲追上乙。

如果两人同时同地反向而跑,经过多少分钟后两人相遇?分析与解答:具体分析见例题。

环形跑道周长:(250-200)×54=2700(米),两人相遇时间:2700÷(250+200)=2700÷450=6(分钟),即经过6分钟后两人相遇。

【拓展】甲、乙两运动员在周长为400米环形跑道上同向竞走,已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处。

行程问题——环形路(教师版)

行程问题——环形路(教师版)

行程问题——环形路(教师版)一、【本讲知识点】在环行道路上的行程问题本质上讲是追及问题或相遇问题。

当二人(或物)同向运动就是追及问题,追及距离是二人初始距离及环形道路之长的倍数之和;当二人(或物)反向运动时就是相遇问题,相遇距离是二人从出发到相遇所行路程和。

二、【本讲经典例题】【铺垫】如下图,两名运动员在沿湖周长为2250米的环形跑道上练习长跑。

甲每分钟跑250米,乙每分钟跑200米。

两人同时同地同向出发,多少分钟后甲第1次追上乙?若两人同时同地反向出发,多少分钟后甲、乙第1次相遇?分析与解答:2250÷(250-200)=2250÷50=45(分钟),即45分钟后甲第1次追上乙;2250÷(250+200)=2250÷450=5(分钟),即5分钟后甲、乙第1次相遇. 【例1】如下图,两名运动员在沿湖的环形跑道上练习长跑。

甲每分钟跑250米,乙每分钟跑200米。

两人同时同地同向出发,45分钟后甲追上了乙。

如果两人同时同地反向而跑,经过多少分钟后两人相遇?(1)(2)分析与解答:根据图(1)用追及问题公式求出环形跑道的长,因从同一点出发,距离差=跑道长。

(250-200)×45=2250(米)。

同理,在环形跑道上,若反向而行,从同一点出发两人相遇所经过的路程和=跑道长。

如图(2),2250÷(250+200)=5(分钟)即经过5分钟两人相遇。

【随堂练习1】如下图,两名运动员在沿湖的环形跑道上练习长跑。

甲每分钟跑250米,乙每分钟跑200米。

两人同时同地同向出发,54分钟后甲追上乙。

如果两人同时同地反向而跑,经过多少分钟后两人相遇?一问分析与解答:具体分析见例题。

环形跑道周长:(250-200)×54=2700(米),两人相遇时间:2700÷(250+200)=2700÷450=6(分钟),即经过6分钟后两人相遇。

五年级奥数.行程.环形跑道.教师版

五年级奥数.行程.环形跑道.教师版

本讲中的行程问题是特殊场地行程问题之一。

是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。

一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和 路程差=追及时间×速度差 二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

【例 1】一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】 黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即500(6659)5001254÷+=÷=(分钟). 例题精讲知识框架环形跑道【答案】4分钟【巩固】周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。

已知林荫道周长是480米,他们从同一地点同时背向而行。

在他们第10次相遇后,王老师再走米就回到出发点。

【考点】行程问题之环形跑道【难度】☆☆【题型】填空【解析】几分钟相遇一次:480÷(55+65)=4(分钟)10次相遇共用:4×10=40(分钟)王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。

【答案】200米【例 2】上海小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】第一次追上时,小亚多跑了一圈,所以需要300(64)150÷-=秒,小亚跑了6150900⨯=(米)。

小学奥数-行程追及问题(教师版)

小学奥数-行程追及问题(教师版)

行程追及问题有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他.这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度×追及时间-乙的速度×追及时间=(甲的速度-乙的速度)×追及时间=速度差×追及时间.一般地,追击问题有这样的数量关系:追及路程=速度差×追及时间【例1】★甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?【解析】甲乙两人分别从相距18千米的西城和东城向东而行,甲骑自行车每小时行14千米,乙步行每小时行5千米,几小时后甲可以追上乙?18÷(14-5)=2(小时)【例2】★哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?【解析】哥哥和弟弟去人民公园参观菊花展,弟弟每分钟走50米,走了10分钟后,哥哥以每分钟70米的速度去追弟弟,问:经过多少分钟以后哥哥可以追上弟弟?(50×10)÷(70-50)=25(分钟)【小试牛刀】小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?【解析】小红和小明分别从西村和东村同时向西而行,小明骑自行车每小时行16千米,小红步行每小时行5千米,2小时后小明追上小红,求东西村相距多少千米?(16-5)×2=22(千米)【例3】★★一辆汽车从甲地开往乙地,每小时行40千米,开出5小时后,一列火车以每小时90千米的速度也从甲地开往乙地。

上海五年级数学讲义1数学2-老师-行程问题之环形跑道问题

上海五年级数学讲义1数学2-老师-行程问题之环形跑道问题

数学辅导讲义学员学校:水丰路小学年级:小五课时数:2 学员姓名:辅导科目:数学学科教师:学科组长签名组长备注课题行程问题之环形跑道问题授课时间:备课时间:教学目标理解环形跑道问题即是一个封闭线路上的追及问题,通过对环形跑道问题分析,培养学生的逻辑思维能力重点、难点1、环形跑道问题中的数量关系及解题思路的分析2、理解环形跑道问题,第一次相遇时,速度快的比速度慢的多跑一圈,正确将环形跑道问题转化成追及问题。

考点及考试要求应用题教学内容知识精要本次课中的行程问题是特殊场地行程问题之一。

是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。

一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和路程差=追及时间×速度差二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

环线型同一出发点直径两端同向:路程差nS nS+0.5S 相对(反向):路程和nS nS-0.5S行程问题之环形跑道问题解题关键是:环形跑道问题就是封闭路线上的追及问题,关键是要掌握从并行到下次追及的路程差恰好是一圈的长度。

1、掌握如下两个关系:(1)环形跑道问题同一地点出发,如果是相向而行,则每合走一圈相遇一次(2)环形跑道问题同一地点出发,如果是同向而行,则每追上一圈相遇一次2、遇见多人多次相遇、追及能够借助线段图进行分析3、用比例解、数论等知识解环形跑道问题热身练习1、环形跑道的周长是800米,甲、乙两名运动员同时顺时针自起点出发,甲的速度是每分钟400米,乙的速度是每分钟375米,多少分钟后两人第一次相遇?甲、乙两名运动员各跑了多少米?甲、乙两名运动员各跑了多少圈?思路点拨: 在环形跑道上,这是一道封闭路线上的追及问题,第一次相遇时,快的应比慢的多跑一圈,环形跑道的周长就是追及路程,已知了两人的速度,追及时间即是两人相遇的时间。

五年级奥数.行程.多人相遇和追及问题.教师版

五年级奥数.行程.多人相遇和追及问题.教师版

二是多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式: =⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】 甲、丙6分钟相遇的路程:()1007561050+⨯=(米);甲、乙相遇的时间为:()10508075210÷-=(分钟);东、西两村之间的距离为:()1008021037800+⨯=(米).【答案】37800米【巩固】 一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?【考点】行程问题【难度】☆☆ 【题型】解答 例题精讲知识框架多人相遇和追及问题【解析】4004502502()(分钟).÷-=【答案】2分钟【例 2】在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少千米?【考点】行程问题【难度】☆☆☆【题型】解答【解析】汽车A在与汽车B相遇时,汽车A与汽车C的距离为:(8050)2260+⨯=千米,此时汽车B与汽车C的距离也是260千米,说明这三辆车已经出发了260(7050)13÷-=小时,那么甲、乙两站的距离为:(8070)131950+⨯=千米.【答案】1950千米【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【考点】行程问题【难度】☆☆☆【题型】解答【解析】甲遇到乙后15分钟,甲遇到了丙,所以遇到乙的时候,甲和丙之间的距离为:(60+40)×15=1500(米),而乙丙之间拉开这么大的距离一共要1500÷(50-40)=150(分),即从出发到甲与乙相遇一共经过了150分钟,所以A、B之间的距离为:(60+50)×150=16500(米).【答案】16500米【例 3】小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【考点】行程问题【难度】☆☆☆【题型】解答【解析】画一张示意图:图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离:()54.810.8 1.360+⨯=(千米),这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是:1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A 到甲地需要:130÷2=65(分钟).从乙地到甲地需要的时间是:130+65=195(分钟)=3小时15分.小李从乙地到甲地需要3小时15分.【答案】3小时15分【巩固】 甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走65米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过1分钟与甲相遇,求东西两镇间的路程有多少米?【考点】行程问题 【难度】☆☆☆ 【题型】解答【解析】 那2分钟是甲和丙相遇,所以距离是(60+70)×1=130米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=130÷(65-60)=26分钟,所以路程=26×(65+70)=3510米。

【奥赛】小学数学竞赛:行程综合问题.教师版解题技巧 培优 易错 难

【奥赛】小学数学竞赛:行程综合问题.教师版解题技巧 培优 易错 难

1. 运用各种方法解决行程内综合问题。

2. 发现一些综合问题中,行程与其它模块的联系,并解决奥数综合问题。

行程问题是奥数中的一个难点,内容多而杂。

而在行程问题中,还有一些尤其复杂的综合问题。

它们大致可以分为两类:一、 行程内综合,把行程问题中的一些零散的知识点综合在一道题目中,这就是一道行程内综合题目。

例如把环形跑道和猎狗追兔结合在一起,把流水行船和发车间隔结合起来等等。

二、 学科内综合,这种问题就不只是行程问题了,把行程问题和其它知识模块里的思想方法结合在一起,这种综合性题目的难度也很大,比如行程与策略综合等等。

本讲内容主要就是针对这种综合性题目。

虽然题目难度偏大,但是这种题目在杯赛和小升初试题中是很受“偏爱”的。

所以很重要。

模块一、行程内综合【例 1】 邮递员早晨7时出发送一份邮件到对面山里,从邮局开始要走12千米上坡路,8千米下坡路。

他上坡时每小时走4千米,下坡时每小时走5千米,到达目的地停留1小时以后,又从原路返回,邮递员什么时候可以回到邮局?【考点】变速问题与走停问题 【难度】2星 【题型】解答【解析】 法一:先求出去的时间,再求出返回的时间,最后转化为时刻。

①邮递员到达对面山里需时间:12÷4+8÷5=4.6(小时);②邮递员返回到邮局共用时间:8÷4+12÷5+1+4.6 =2+2.4+1+4.6 = l 0(小时)③邮递员回到邮局时的时刻是:7+10-12=5(时).邮递员是下午5时回到邮局的。

法二:从整体上考虑,邮递员走了(12+8)千米的上坡路,走了(12+8)千米的下坡路,所以共用时间为:(12+8)÷4+(12+8)÷5+1=10(小时),邮递员是下午7+10-12=5(时) 回到邮局的。

【答案】5时【例 2】 小红上山时每走30分钟休息10分钟,下山时每走30分钟休息5分钟.已知小红下山的速度是上山速度的1.5倍,如果上山用了3小时50分,那么下山用了多少时间?【考点】变速问题与走停问题 【难度】2星 【题型】解答【解析】 上山用了3小时50分,即60350230⨯+=(分),由2303010530÷+=L (),得到上山休息了5次,走了230105180-⨯=(分).因为下山的速度是上山的1.5倍,所以下山走了180 1.5120÷= (分).由120304÷=知,下山途中休息了3次,所以下山共用12053135+⨯=(分)2=小时15分.【答案】2小时15分【例 3】 已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同.而猫跑3步的时间与狗跑5步的时间相同;猫跑5步的时间与兔跑7步的时间相同,猫、狗、兔沿着周长为300米的圆形跑道,同时同向同地出发.问当它们出发后第一次相遇时各跑了多少路程?行程综合问题知识精讲 教学目标【考点】环形跑道与猎狗追兔 【难度】5星 【题型】解答【解析】 方法一:由题意,猫与狗的速度之比为9:25,猫与兔的速度之比为25:49.设单位时间内猫跑1米,则狗跑259米,兔跑4925米. 狗追上猫一圈需25675300194⎛⎫÷-= ⎪⎝⎭单位时间, 兔追上猫一圈需496253001252⎛⎫÷-= ⎪⎝⎭单位时间. 猫、狗、兔再次相遇的时间,应既是6754的整数倍,又是6252的整数倍. 6754与6252的最小公倍数等于两个分数中,分子的最小公倍数除以分母的最大公约数,即]()675,62567562516875,8437.5424,22⎡⎡⎤⎣===⎢⎥⎣⎦. 上式表明,经过8437.5个单位时间,猫、狗、兔第一次相遇.此时,猫跑了8437.5米,狗跑了258437.523437.59⨯=米,兔跑了498437.516537.525⨯=米. 方法二:根据题意,猫跑35步的路程与狗跑21步的路程、兔跑25步的路程相等;而猫跑15步的时间与狗跑25步、兔跑21步的时间相同. 所以猫、狗、兔的速度比为152521::352125,它们的最大公约数为 ()[]15,25,211525211,,35212535,21,253557⎛⎫== ⎪⨯⨯⨯⎝⎭, 即设猫的速度为151225353557÷=⨯⨯⨯,那么狗的速度为251625213557÷=⨯⨯⨯,则兔的速度为211441253557÷=⨯⨯⨯. 于是狗每跑3300(625225)4÷-=单位时追上猫; 兔每跑25300(441225)18÷-=单位时追上猫. 而[]()3,2532575,4184,182⎡⎤==⎢⎥⎣⎦,所以猫、狗、兔跑了752单位时,三者相遇. 猫跑了752258437.52⨯=米,狗跑了7562523437.52⨯=米,兔跑了7544116537.52⨯=米. 【答案】16537.5米【例 4】 甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。

五年级奥数——环形路上的的行程问题

五年级奥数——环形路上的的行程问题

年 级五年级 授课日期 授课主题 第7讲——环形路上的行程问题教学内容i.检测定位在环形道路上的行程问题本质上就是追及问题或相遇问题.当两人(或物)同向运动时就是追及问题,追及距离是两人初始距离及环形道路之长的倍数之和;当两人(或物)反向运动时就是相遇问题,相遇问题是两人从出发到相遇所行路程和.【例1】如图7-1,两名运动员在沿湖的环形跑道上练习长跑.甲每分钟跑250米,乙每分钟跑200米.两人同时同地同向出发,45分钟后甲追上了乙.如果两人同时同地反向跑,经过多少分钟后两人相遇?分析与解 根据图7-1①用追及问题公式求出环形跑道的长,因从同一点出发,距离差=跑道长..225045200-250(米))(=⨯ 同理在环形跑道上,若反向而行,从同一点出发两人相遇所经过的路程和=跑道长.(图7-1②).52002502250(分钟))(=+÷即经过5分钟两人相遇.随堂练习1甲乙两运动员在周长为400米的环形跑道上同向竞走,已知乙的平均速度是每分钟80米,甲的平均速度是乙的1.25倍,甲在乙前面100米处.问几分钟后,甲第1次追上乙?【例2】如图7-2是一个圆形中央花园,A 、B 是直径的两个端点.小军在A 点,小勇在B 点,同时出发相向而行.他俩第一次在C 点相遇,C 点离A 点有50米;第2次在D 点相遇,D 点离B 点有30米.问这个花园一周长多少米?分析与解 第1次相遇,两人合起来走了半周长,从C 点开始第2次在D 点相遇两人走了一周长,两次共走了一周长半.小军从A →C →D 走了50米的3倍,即走了.150350(米)=⨯去掉BD 之间30米的距离,就是半个圆周的长,所以一周的长度为.240230-150米)(=⨯ 随堂练习2如图7-3,A 、B 是圆直径的两个端点,亮亮在A 点,明明在B 点,相向而行.他们在C 点第一次相遇,C 点离A 点有100米;在D 点第2次相遇,D 点离B 点有80米.求圆的周长.【例3】如图7-4,一个边长为100米的正方形跑道.甲从A 点出发,乙从C 点出发都逆时针同时起跑,甲的速度每秒7米,乙的速度每秒5米.他们拐弯处都要停留5秒,当甲第一次追上乙时,乙跑了多少米?分析与解 如图7-4,由题意知甲(在后)、乙(在前)相距200米(即追及距离200米)且甲第一次追及乙要多拐两个弯,即要多休息.1025秒=⨯设甲纯跑步时间为y 秒,则乙纯跑步时间为秒10+y .则有,200)10(57+⨯-y y解得 ).(125秒=y甲应跑路程为.8757125米=⨯当甲跑了800米又到达A 点时,用时为秒,28.149757800≈⨯+÷他将在A 点逗留5秒,到秒28.154528.149=+又离开A 点.而乙跑完600(=800-200)米到达A 点时,用时.145555600秒=⨯+÷而在第秒1505145=+时离开A 点.因此,从起跑到149.28秒至150秒的间隔内甲、乙都在A 点,即甲第1次追上乙,此时乙跑了600米.随堂练习3如图7-5,有一条长方形跑道,甲从A 点出发,乙从C 点出发,同时按逆时针方向奔跑.甲速每秒6025米,乙速每秒5米.跑道长100米,宽为60米.当甲、乙每次跑到拐点A 、B 、C 、D 时都要停留5秒.问当甲第1次追上乙时,甲、乙各跑了多少米?【例4】图7-6所示是一个玩具火车轨道,A 点有个变轨开关,可以连结B 或者C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本讲中的行程问题是特殊场地行程问题之一。

是多人(一般至少两人)多次相遇或追及的过程解决多人多次相遇与追击问题的关键是看我们是否能够准确的对题目中所描述的每一个行程状态作出正确合理的线段图进行分析。

一、在做出线段图后,反复的在每一段路程上利用:路程和=相遇时间×速度和 路程差=追及时间×速度差 二、解环形跑道问题的一般方法:环形跑道问题,从同一地点出发,如果是相向而行,则每合走一圈相遇一次;如果是同向而行,则每追上一圈相遇一次.这个等量关系往往成为我们解决问题的关键。

环线型同一出发点直径两端同向:路程差 nS nS +0.5S 相对(反向):路程和 nSnS-0.5S【例 1】一个圆形操场跑道的周长是500米,两个学生同时同地背向而行.黄莺每分钟走66米,麻雀每分钟走59米.经过几分钟才能相遇?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】 黄莺和麻雀每分钟共行6659125+=(千米),那么周长跑道里有几个125米,就需要几分钟,即例题精讲知识框架环形跑道500(6659)5001254÷+=÷=(分钟).【答案】4分钟【巩固】周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。

已知林荫道周长是480米,他们从同一地点同时背向而行。

在他们第10次相遇后,王老师再走米就回到出发点。

【考点】行程问题之环形跑道【难度】☆☆【题型】填空【解析】几分钟相遇一次:480÷(55+65)=4(分钟)10次相遇共用:4×10=40(分钟)王老师40分钟行了:55×40=2200(米)2200÷480=4(圈)……280(米)所以正好走了4圈还多280米,480-280=200(米)答:再走200米回到出发点。

【答案】200米【例 2】小学有一长300米长的环形跑道,小亚和小胖同时从起跑线起跑,小亚每秒钟跑6米,小胖每秒钟跑4米,(1)小亚第一次追上小胖时两人各跑了多少米?(2)小亚第二次追上小胖两人各跑了多少圈?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】第一次追上时,小亚多跑了一圈,所以需要300(64)150÷-=秒,小亚跑了6150900⨯=(米)。

小胖跑了4150600⨯=(米);第一次追上时,小胖跑了2圈,小亚跑了3圈,所以第二次追上时,小胖跑4圈,小亚跑6圈。

【答案】小胖跑4圈,小亚跑6圈【巩固】小和小王各以一定速度,在周长为500米的环形跑道上跑步.小王的速度是200米/分.⑴小和小王同时从同一地点出发,反向跑步,1分钟后两人第一次相遇,小的速度是多少米/分?⑵小和小王同时从同一点出发,同一方向跑步,小跑多少圈后才能第一次追上小王?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】⑴两人相遇,也就是合起来跑了一个周长的行程.小的速度是5001200300÷-=(米/分).⑵在环形的跑道上,小要追上小王,就是小比小王多跑一圈(一个周长),因此需要的时间是:÷-=(分).30055003500(300200)5⨯÷=(圈).【答案】⑴300米/分⑵3圈【例 3】小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第三次超过正南需要多少分钟?【考点】行程问题之环形跑道【难度】☆☆【题型】解答,可知小新第一次超过正南需要:【解析】小新第一次超过正南是比正南多跑了一圈,根据S v t=差差÷-=()(分钟),第三次超过正南是比正南多跑了三圈,需要80025021020()(分钟).⨯÷-=800325021060【答案】60分钟【巩固】幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】这是一道封闭路线上的追及问题,冬冬与晶晶两人同时同地起跑,方向一致.因此,当冬冬第一次追上晶晶时,他比晶晶多跑的路程恰是环形跑道的一个周长(200米),又知道了冬冬和晶晶的速度,于是,根据追及问题的基本关系就可求出追及时间以及他们各自所走的路程.①冬冬第一次追上晶晶所需要的时间:20064100()(秒)÷-=②冬冬第一次追上晶晶时他所跑的路程应为:6100600⨯=(米)③晶晶第一次被追上时所跑的路程:4100400⨯=(米)④冬冬第二次追上晶晶时所跑的圈数:60022006()(圈)⨯÷=⑤晶晶第2次被追上时所跑的圈数:40022004⨯÷=()(圈)【答案】4圈【例 4】两名运动员在湖的周围环形道上练习长跑.甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙;如果两人同时同地反向出发,经过多少分钟两人相遇?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】在封闭的环形道上同向运动属追及问题,反向运动属相遇问题.同地出发,其实追及路程或相隔距离就是环形道一周的长.这道题的解题关键就是先求出环形道一周的长度.环形道一周的长度可根据两人同向出发,45分钟后甲追上乙,由追及问题,两人速度差为:25020050-=(米/分),所以路程差为:50452250⨯=(米),即环形道一圈的长度为2250米.所以反向出发的相遇时间为:22502502005÷+=()(分钟).【答案】5分钟【巩固】 两人在环形跑道上跑步 ,两人从同一地点出发,小明每秒跑3米,小雅每秒跑4米,反向而行,45秒后两人相遇。

如果同向而行,几秒后两人再次相遇【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】 (4+3)×45=315米——环形跑道的长(相遇问题求解)315÷(4-3)=315秒——(追及问题求解)【答案】315秒【例 5】在300米的环形跑道上,田奇和王强同学同时同地起跑,如果同向而跑2分30秒相遇,如果背向而跑则半分钟相遇,求两人的速度各是多少?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】 同向而跑,这实质是快追慢.起跑后,由于两人速度的差异,造成两人路程上的差异,随着时间的增长,两人间的距离不断拉大,到两人相距环形跑道的半圈时,相距最大.接着,两人的距离又逐渐缩小,直到快的追上慢的,此时快的比慢的多跑了一圈.背向而跑即所谓的相遇问题,数量关系为:路程和÷速度和=相遇时间.同向而行2分30秒相遇,2分30秒=150秒,两个人的速度和为:300150=2÷(米/秒),背向而跑则半分钟即30秒相遇,所以两个人的速度差为:30030=10÷(米/秒).两人的速度分别为: 10224-÷=()(米/秒), 1046-=(米/秒)【答案】6米/秒【巩固】 在400米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度各是多少?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】 甲乙的速度和为:4004010÷=(米/秒),甲乙的速度差为:4002002÷=(米/秒),甲的速度为:10226+÷=()(米/秒),乙的速度为:10224-÷=()(米/秒).【答案】4米/秒【例 6】周老师和王老师沿着学校的环形林荫道散步,王老师每分钟走55米,周老师每分钟走65米。

已知林荫道周长是480米,他们从同一地点同时背向而行。

在他们第10次相遇后,王老师再走 米就回到出发点。

【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】两人每共走1圈相遇1次,用时480÷(55+60)=4(分),到第10次相遇共用40分钟,王老师共走了。

55×40=2200(米),要走到出发点还需走,480×5-2200=200(米)【答案】200米【巩固】在周长为200米的圆形跑道—条直径的两端,甲、乙两人分别以6米/秒,5米/秒的骑车速度同时同向出发,沿跑道行驶。

问:16分钟,甲追上乙多少次?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】甲、乙二人第一次相遇时,一共走过的路程是2002=100(米).所需要的时间是10011(秒)以后,两人每隔2002(秒)相遇一次因为100601611120011⨯-+=53.3,16分钟二人相遇53次.【答案】53次【例 7】甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时甲在乙后面,出发后6分甲第一次超过乙,22分时甲第二次超过乙。

假设两人的速度保持不变,问:出发时甲在乙后面多少米?【考点】行程问题之环形跑道【难度】☆☆【题型】解答【解析】150米。

提示:甲超过乙一圈(400米)需22-6=16(分)。

【答案】16分【巩固】在400 米的环行跑道上,A,B 两点相距100 米。

甲、乙两人分别从A,B 两点同时出发,按逆时针方向跑步。

甲甲每秒跑5 米,乙每秒跑4 米,每人每跑100 米,都要停10 秒钟。

那么甲追上乙需要时间是多少秒?【考点】行程问题之环形跑道【难度】☆☆☆【题型】解答【解析】甲实际跑100/(5-4)=100(秒)时追上乙,甲跑100/5=20(秒),休息10 秒;乙跑100/4=25(秒),休息10 秒,甲实际跑100 秒时,已经休息4 次,刚跑完第5 次,共用140 秒;这时乙实际跑了100 秒,第4 次休息结束。

正好追上。

【答案】140 秒【例 8】有甲、乙、丙3人,甲每分钟行走120米,乙每分钟行走100米,丙每分钟行走70米.如果3个人同时同向,从同地出发,沿周长是300米的圆形跑道行走,那么多少分钟之后,3人又可以相聚在跑道上同一处?【考点】行程问题之环形跑道【难度】☆☆☆【题型】解答【解析】 由题意知道:甲走完一周需要时间为300÷120=52(分);乙走完一周需要时间为300÷100=3(分)丙走完一周需要时间为300÷700=307,那么三个人想再次相聚在跑道同一处需要时间为:[]()5,30,353030,,330272,7,11⎡⎤===⎢⎥⎣⎦分 【答案】30分【巩固】 如下图所示的三条圆形跑道,每条跑道的长都是0.5千米,A 、B 、C 三位运动员同时从交点O出发,分别沿三条跑道跑步,他们的速度分别是每小时4千米,每小时8千米,每小时6千米。

相关文档
最新文档