大学物理第8章稳恒磁场课件讲义

合集下载

稳恒磁场教学授课课件

稳恒磁场教学授课课件
B 0nI
补充例题, 有一个边长为b的正方形线框,共绕2匝,
通有电流I,求线框中心O点处的磁感应强度B
I
1
O
b
B 8B1
B1
0I 4a
cos1
cos2
0I 4 b
2 2
2 2
20I 2b
2
B 8B1
20I 8 4 20I
2b
b
补充例题2, 载流线圈DABCD,其中CD段是以OC, 半径的圆弧,圆心角为60º,OC=CB=R,
P
Idl
r
I dQ n sdl q nsqv
dB
dt
0
4
dt (nsqv )dl
r2
r0
电流元内总电荷数目: dN nsdl
S
Idl
q + 注意:B的
dB
0
dN
4
一个电荷产生的磁场
qv r0
r2
B
dB
dN
0
4
qv eˆr
r2
方向与q的 正负有关;
B
r
q
毕奥-萨伐尔定律: dB
S
N
特别强~磁极
•具有两极且同性磁极相斥, •异性磁极相吸。
N
S
•指向性:
将磁针悬挂或支撑使其能在水平面内自由转动,磁针 自动地转向南北方向。 指向北方的磁极~北极N;指向南方的磁极~南极S。
地球本身就是一个巨大的磁体,其N极位于地理南 极附近,其S极位于地理北极附近。
•目前还无法获得磁单极~磁极不能单独存在。
z 稳恒磁场教 学授课课件
稳恒磁场
静止的电荷周围存在电场,而运动的电荷周围不但有 电场而且还存在磁场~电磁场。 稳恒电流(或相对参考系以恒定速度运动的电荷)激发 稳恒磁场~不随时间变化的磁场的规律和性质。

稳恒磁场专选课件

稳恒磁场专选课件

Idl
R
o
r
x
d
B
*P
dB dB
d B //
x
0

0

Idl
Idl r2
sin( Id l , r2
r)
B dB 0
Bd B //d B sin4 π 0Ird 2 lR r 4 π 0I r R 3 0 2 π R d l4 π 02r R 32 I2 0(R 2R 2 x I2 )3 /2
B 0I
4R
R
•O I
B0I 0I 4R 2R

I
R
O•
B 0I •
8R
2 3 I
•R
O
B60RI 20R I (1
3) 2
3.载流直螺线管内部的磁场
如图所示,螺线管的半径为R,总长度为L,单 位长度内的匝数为n. 计算此螺线管轴线上任一场点P 的磁感应强度B.
解 在距P点l处取一小段dl,则该小段上有ndl匝线 圈,对点P而言,这一小段上的线圈等效于电流强 度为Indl的一个圆形电流. 该圆形电流在P点所产生 的磁感应强度dB的大小为
三 磁通量
I
1.磁力线
规定:曲线上每一点的切线 方向就是该点的磁感应强度 B 的 方向,曲线的疏密程度表示该点
的磁感应强度 B 的大小.
I S
N
I
I
S
N
磁力线特性
① 磁力线的环绕方向与电流方向之间遵守右螺旋法则。 ② 磁力线是环绕电流的闭合曲线。 ③ 任何两条磁力线在空间不相交。
2.磁通量
磁通量:穿过磁场中某一曲面的磁力线总数,称为穿
运动电荷
磁场
运动电荷
二、磁感应强度 1.磁场 1)磁力的传递者是磁场

稳恒磁场ppt

稳恒磁场ppt
电流元Idl在磁场中的受力情况
一个自由电子受力 电流元中的电子数
电流元上的力:
f = e v B sin
因为
磁场对电流元Idl作用的力,在数值上等于 电流元的大小、电流元所在处的磁感强度大 小以及电流元Idl和磁感强度B之间的夹角的 正弦之乘积,方向满足右手螺旋法则。
——安培定律 对有限长的载流导线
之间的夹角的不同而变化。
两种特殊情况的受力图:
F V
F=0
电荷运动方与 磁场方向一致
V
F=Fmax
电荷运动方向与 磁场方向垂直
2、磁感强度的定义: (1)方向:小磁针在某点N极的指向规定
为该点的磁感强度B的方向。
(2)大小:运动电荷在某点受的最大磁力 与电荷的电量和速率的乘积之比。即
单位:特斯拉T 1特斯拉=10 4高斯
(3)磁感线的方向与电流的流向遵守右手 螺旋法则。
二、磁通量
1、定义
通过磁场中某一曲面的磁感线数叫做 通过此曲面的磁通量。
2、计算式
对闭合曲面,规定外法线方向为正
3、单位
韦伯 Wb 1Wb
三、磁场高斯定律
定律叙述:
通过磁场中任意闭合曲面的磁通量等于 零。
定律说明:
(1) 是总的磁感强度,虽然 在S面上的通量为 零,但在S面上 不一定为零。
9-3 毕奥—萨伐尔定律
一、定律内容
电流元 在真空某点产生的磁场
大小:与 r 2成反比,与
成正比
方向:与
的方向一致
数学表达式:
P
二、定律说明:
1、 称为真空中的磁导率,大小为
2、由该定律可得任意载流导线在点P 处的磁感强度计算式:
3、该定律是在实验的基础上经过科学 抽象提出来的,不能由实验直接加以 证明,但由该定律得出的结果都很好 地和实验相符合。

稳恒磁场优秀课件 (2)

稳恒磁场优秀课件 (2)

r
I
dB
P * r Idl
真空的磁导率 04π107Tm/A
2.对一段载流导线 磁感强度叠加原理:任意形状的载流导线在给定点 P产生的磁场,等于各段电流元在该点产生的磁场 的矢量和.
B dB0
L 4π
Idlr r3
毕奥—萨伐尔定律
dB0Idl4siπnr(2Idl,r) 或
dB0

Idl r
大小: B Fmax
q0
方向: 小磁针在该点的N极指向
Fm
B
单位: T(特斯拉) 1T=104G (高斯)
磁矩Pm是矢量,其方向与 线圈的法线方向一致,n表
示沿法线方向的单位矢量.
法线与电流流向成右螺旋系
I
pm
Pm I0Sn
磁场方向:线圈受到磁力矩使试验线圈转到一定的位 置而稳定平衡.在平衡位置时,线圈所受的磁力矩为 零,此时线圈正法线所指的方向,定义为线圈所在处 的磁场方向.
q n sdt qns
dt
dB 4 0qn rs2dlr04 0 qnrs2dlr0
电流元Idl中载流子(运动电荷)有 dN个
dNnsdlnsdt
B
dB dN
4 0 q(ndsN )d r2lr0
B 40 qr2 r0
毕奥-萨伐尔定律 的微观形式
q
r
p
B
r
p
B
三、载流线圈的磁矩
•磁矩:
稳恒磁场
§10.1 电流 电流密度
引言
一、电流强度
单位时间内通过某截面的电量。
大小: I dq
dt
单位:安培(A)
方向:规定为正电荷运动方向。
二、电流密度

中南大学大学物理电磁学稳恒磁场PPT课件

中南大学大学物理电磁学稳恒磁场PPT课件

表现为: 使小磁针偏转
4、通电导线能使小磁针偏转; 5、磁体的磁场能给通电导线以力的作用; 6、通电导线之间有力的作用; 7、磁体的磁场能给通电线圈以力矩作用; 8、通电线圈之间有力的作用; 9、天然磁体能使电子束偏转。
表现为:
相互吸引 排斥 偏转等

18
安培指出: 天然磁性的产生也是由于磁体内部有电流流动。
dIJdS 或J E
JE欧姆定律的微分形式
12
四 电动势
一、电源、电动势
静电力欲使正电荷从高电位到低电位。
在回路中有稳恒电流就不能单靠静电场
+–
必须有非静电力把正电荷从负极板搬到正
极板才能在导体两端维持有稳恒的电势差。
提供非静电力的装置就是电源。 非静电力欲使正电荷从低电位到高电位。
电动势 描述非静电力作功能力大小的量
(3 i2j)•S i
3S
43
例2、两平行载流直导线
求两导线A中 的点 磁感应B强 A和 度 过图中矩形的.磁通量
解:I1、I2分别在A点产生的
磁感应强度B1
B2
0I1 2 d 2
2105T.
B AB 1B 24.01 0 5T
方向:垂直纸面向外
I1
Idl r0
分析对称性、写出分量式
B
dB 0
BxdB x4 0Idrs2lin
25
统一积分变量
Y
sinRr
BxdB x4 0Idrs2lin
I Idl
O
0IR 4r3
dl
40Ir3R 2R
r0
R x
dB dB
p•
dBx
X
2(
0IR2

物理课件6.1-6.3稳恒磁场

物理课件6.1-6.3稳恒磁场

添加标题
添加标题
添加标题
添加标题
安培分子电流假说:解释电流磁 效应的微观机制
洛伦兹力:描述带电粒子在稳恒 磁场中所受力的规律
磁单极子
定义:磁单极子是仅具有N极或S极单一磁极的磁性物质
性质:磁单极子产生的磁场比普通磁体更强大,且相互吸引时会产生巨大的能量
存在证据:目前尚未直接观测到磁单极子,但通过一些物理现象可以间接证明其存在
稳恒磁场与物质的相互作用
磁化现象
定义:磁化是 指物质在磁场 中获得磁性的
过程
磁化现象的分 类:自发磁化、 诱发磁化、铁 磁性物质磁化
磁化现象的原 理:磁场与物 质的相互作用, 导致物质内部 微观结构发生 变化,从而产
生磁性
磁化现象的应 用:磁性材料 的应用,如磁 铁、电磁铁等
Hale Waihona Puke 畴结构磁畴定义:磁畴是 物质内部自发形成 的磁性区域,具有 相同磁矩的区域
磁场的未来应用与挑战
磁场的未来应用: 随着科技的发展, 磁场在医疗、能 源、交通等领域 的应用越来越广 泛,如磁疗、磁
悬浮列车等。
磁场的挑战:虽 然磁场的应用前 景广阔,但也面 临着一些挑战, 如磁场对人体健 康的影响、磁场 与物质的相互作
用等。
磁场的研究方向: 为了更好地应用 磁场,需要进一 步研究磁场与物 质的相互作用、 磁场的产生与控
稳恒磁场中的物理现象
磁屏蔽与磁悬浮
磁屏蔽原理:利 用高导磁材料将 磁场导向特定区 域,实现磁场屏 蔽或减弱
磁屏蔽应用:保 护精密仪器、电 子设备等免受外 界磁场干扰
磁悬浮原理:利 用磁场力使物体 悬浮于空中,实 现无接触运输或 支撑
磁悬浮应用:磁 悬浮列车、磁悬 浮轴承、磁悬浮 电梯等

稳恒电流磁场PPT课件

稳恒电流磁场PPT课件
1.环路要经过所研究的场点; 2.环路的长度便于计算;
L B dl 0 I
3.环路上所有各点的磁感应强度大小相等,方向与环路 方向一致;
或环路上某一部分各点的磁感应强度方向与环路方向 垂直,该部分的积分为零。而另一部分各点的磁感应 强度大小相等,方向与环路方向一致。
第24页/共69页
例:密绕载流长直螺线管(可视为无限长)通有电流为
0I 4a
cos1
cos2
第9页/共69页
B
0I 4a
cos1
cos2
讨论:
1.无限长载流直导线的磁场:
1 0,
2
;
B
0I 2a
l 2
Idl
lr
o
I 1 a
dB
Px
任意点的磁场:B 0I 2r
2.半无限长载流直导线的磁场:
1 ,2 ;
B 0I (cos 1) 4R sin
T T 2r
B 0I
2r
0 ev 2r 2r
0ev 4r 2
方向如图所示。
第16页/共69页
例:一塑料圆盘,半径为R,电荷q均匀分布于表面, 圆盘绕通过圆心垂直盘面的轴转动,角速度,求盘心 的磁感应强度。
解:将圆盘分划成许多圆环,
dq
q
R2
2rdr
2qrdr R2
,
qrdr
dI dq
a
c
B dl
b a c
B dl
d
B dl
B
dl
,
b
B dl
d d
B dl
0,
螺线 管外:Bb 外
B dl B
a
0,
dB

大学物理教程课件讲义 稳恒电流的磁场

大学物理教程课件讲义 稳恒电流的磁场

8.2 磁场 磁感应强度
图8.6 两平行载流导线间的相互作用 图8.7 通电线圈的磁极
8.2 磁场 磁感应强度
1822年,安培提出了关于磁现象起源的假设。他认为, 一切磁现象都来源于电流。物体内部任何一个分子都相当于一 个小的回路电流,称为分子电流。每一个分子电流都和一个小
N、S两极对应于分子电流的两侧,如图 8.8(a)所示。如图8.8(b)所示。如图8.8(c) 所示。
先定义载流线圈的磁矩。 若一个线度小试验线圈的面积 为ΔS,线圈中的电流为I,则 试验线圈的磁矩Pm=IΔSen,en 为线圈法线方向的单位矢量, Pm与电流方向满足右手螺旋关 系,如图8.9所示。
图8.9 载流线圈的磁矩
8.2 磁场 磁感应强度
8.3
8.3.1 电流元
在静电场中为了求任意带电 体周围某点的电场强度E,曾将带 电体先分成无限多个电荷元dq,计 算出每个电荷元在该点的电场强度 dE,再根据场的叠加原理将所有电 荷元在该点的dE叠加,即得到带电 体在该点的电场强度E.图8.10是电 流强度为I的线电流。
8.1 稳恒电流 电动势
8.1.2 电源电动势
如前所述,产生稳恒电流的条件是导体两端维持恒定不 变的电势差。然而,在静电力的作用下,正电荷将从电势高 的一端经导体流向电势低的一端,而负电荷将从电势低的一 端经导体流向电势高的一端.这一过程将会使导体两端的正、 负电荷逐渐中和,两端的电荷分布随时间逐渐减少,电势差 逐渐减小,最后均趋于零,这就破坏了稳恒电流的条件。如 图8.2(a)所示。如图8.2(b)所示。
8.5 磁场对运动电荷及载流导线的作用
利用这一特点,可以实现磁聚焦,如图8.30所示。在非 匀强磁场中,磁场越强回旋半径越小,这意味着带电粒子被 约束在一个很小的范围内做螺旋运动。当带电粒子向磁场较 强的方向做螺旋运动时,在各点所受到的磁力总可以分解出 一个与前进方向相反的分量,如图8.31所示。

《稳恒磁场》PPT课件

《稳恒磁场》PPT课件

d B 0nd lSv q r
4 π r3
B
q+
r
v
又 dNndls
故运动电荷的磁场
B d dN B 4 π 0q v r 3r
B
q
r
v
7-4 安培环路定律
预习要点 1. 安培环路定律的内容及数学表达式是怎样的?注意
其中电流正、负号的规定. 2. 注意安培环路定律所描述的稳恒磁场的性质. 3. 领会用安培环路定律计算磁感应强度的方法.
23一磁场叠加原理一磁场叠加原理几个电流共同激发磁场任意电流是无数小电流首尾相接组成其上任一电流元在某场点产生的磁感应强度为任意载流导线在点p处的磁感强度电流元在空间一点p产生的磁感应强度
《稳恒磁场》PPT课件
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
一、安培环路定律
合路在径真的空积的分稳的恒值磁(场即中B ,的磁环感流应)强,度等于B沿0任乘一以闭该
闭合路径所包围的各电流的代数和.
n
安培环路定理 Bdl 0 Ii
i1
电流I正负的规定: I与L成右螺旋时, I为正;反
之为负.
在场的理论中,把环流不等于零的场称为涡旋 场,所以,稳恒磁场是涡旋场.
大小与 q,v无关
磁感应强度大小定义为:B Fmax qv
二、洛由伦实兹验电力荷量为q的电荷以速度v
在磁场中运动时受到的磁场力:
Fm
F m q v B
运动电荷在磁场中所受的力
q+
B

第8章稳恒磁场概要

第8章稳恒磁场概要

一、电流、电流密度
带电粒子的定向运动形成电流。 方向规定:正电荷运动方向
1.电流强度:
I dq dt
2.电流密度:
描述导体内各点的电流分布情况
电阻法探矿


2021/3/15 3
定义: 电流密度
j
dI
n
dS
方向: j // E
I
E
I
dS
单位: A·m-2
若dS的法线n与j成角 ,则
通过dS的电流
受力方向
Idl
dF
力大小 df BIdl sin
积分
0
2021/3/15
f
BIdl
L
sin
BI
sin
dl
L
f BLI sin
B
f 0
I
B
37
2 3
2
fmax BLI
B
I
2021/3/15 38
二、无限长两平行载流直导线间的相互作用力
C、D两导线的距离为a。电流方向相同
特首先发现电流的磁效应
2021/3/15 9
I
S N
磁现象与运动电荷之间有着密切的联系。 1822年安培提出了 用分子电流来解释磁性起源
In
N
电荷的运动是一切磁现象的根源。
2021/3/15
S
10
3. 磁力 磁力是发生于运动电荷间的相互作用力,它决定
于运动电荷的速度
2021/3/15 11
二、磁感应强度
S
• 定量地描述磁场强弱,B大小定义为: B d m dS
2021/3/15
B
14
I I
直线电流磁力线 圆电流磁力线

大学物理第8章稳恒磁场课件讲义

大学物理第8章稳恒磁场课件讲义

三、磁场中的高斯定理(磁通连续定理)
m
B

ds
s

sB ds 0
穿过任意闭合曲面的磁通量为零。
-------------------------------------------------------------------------------
三、磁通量
1.磁感线:(磁力线或 线) 磁感线的切线方向为该点磁场方向


B
S
B大小规定为:通过磁场中某点 处垂直于磁场方向的单位面积的
B N
磁感线条数。(磁场较强处的磁
S
感线较密)
-------------------------------------------------------------------------------
1965年的测量:地磁的S极在地理北极附近(北 纬75.5o,东经259.5o),地磁的N极在地理南
极附近(南纬66.6o,东经139.9o)。地理轴与 地磁轴的夹角约为11o。
-------------------------------------------------------------------------------
§8.2 磁场 磁感应强度
一、 基本磁现象
1.自然磁现象 天然磁石
磁性、磁体、磁极
S N
SN
同极相斥,异极相吸
2.电流的磁效应 1819-1820年丹麦物 理学家奥斯特首先发
现电流的磁效应。
-------------------------------------------------------------------------------

大学物理稳恒磁场课件讲义全

大学物理稳恒磁场课件讲义全


0
I
(1
3)
2 R 2
向里
cd段: B3

4
0I
R sin
30 0
(cos150
0

cos180 0 )

I 0
2 R
(1
3) 2
圆弧bc段:
B2

0I
2R

1 3

0I
6R
向里
B

B1
B2
B3

I 0
R
(1
3 I
) 0 2 6R
电流密度
•(体)电流 (面)密度
o
p * dB x
dx
x
l
+++++++++++++ +
dB 0 2
R 2 Indx R2 x2 3/2
方向沿轴线
R
1

x1 o p B 2 dx
x2 x
x + + + + + + + + + + + + + + +
dB 0 2
R 2 Indx R2 x2 3/2
R1
O R2
磁场方向都为.
B上

0I 4R1
,
B下

0I 4R2
竖直电流产生磁场方向为⊙,
B竖

0I 4R2
B 0I 0I 0I 4R1 4R2 4R2
习题1 两个相同及共轴的圆线圈,半径为0.1m,每一线 圈有20匝,它们之间的距离为0.1m,通过两线圈的电流 为0.5A,求每一线圈中心处的磁感应强度: (1) 两线圈 中的电流方向相同, (2) 两线圈中的电流方向相反。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档