2019年云南省高考数学试卷(文科)(全国新课标Ⅲ)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
证明:图 中的 , , , 四点共面,且平面 平面 ;
求图 中的四边形 的面积.
已知函数 .
讨论 的单调性;
当 时,记 在区间 的最大值为 ,最小值为 ,求 的取值范围.
已知曲线 , 为直线 上的动点,过 作 的两条切线,切点分别为 , .
证明:直线 过定点;
若以 为圆心的圆与直线 相切,且切点为线段 的中点,求该圆的方程.
作出维恩图,得到该学校阅读过《西游记》的学生人数为 人,由此能求出该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值.
【解答】
解:某中学为了了解本校学生阅读四大名著的情况,随机调查了 位学生,
其中阅读过《西游记》或《红楼梦》的学生共有 位,
阅读过《红楼梦》的学生共有 位,阅读过《西游记》且阅读过《红楼梦》的学生共有 位,
作出维恩图,得:
∴ 该学校阅读过《西游记》的学生人数为 人,
则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为: .
故选 .
5.
【答案】
B
【考点】
二倍角的正弦公式
A. ,且直线 , 是相交直线
B. ,且直线 , 是相交直线
C. ,且直线 , 是异面直线
D. ,且直线 , 是异面直线
9.执行如图的程序框图,如果输入ε的为 ,则输出 的值等于
A. B. C. D.
10.已知 是双曲线 的一个焦点,点 在 上, 为坐标原点.若 ,则 的面积为
A. B. C. D.
A. B. C. D.
5.函数 在 的零点个数为
A. B. C. D.
6.已知各项均为正数的等比数列 的前 项和为 ,且 ,则
A. B. C. D.
7.已知曲线 在点 处的切线方程为 ,则
A. , B. ,
C. , D. ,
8.如图,点 为正方形 的中心, 为正三角形,平面 平面 , 是线段 的中点,则
记 为事件:“乙离子残留在体内的百分比不低于 ”,根据直方图得到 的估计值为 .
求乙离子残留百分比直方图中 , 的值;
分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
的内角 , , 的对边分别为 , , .已知 .
求 ;
若 为锐角三角形,且 ,求 面积的取值范围.
图 是由矩形 , 和菱形 组成的一个平面图形,其中 , , .将其沿 , 折起使得 与 重合,连结 ,如图 .
2019年云南省高考数学试卷(文科)(全国新课标Ⅲ)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 , ,则
A. B. C. D.
2.若 ,则
A. B. C. D.
3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是
A. B. C. D.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)
如图,在极坐标系 中, , , , ,弧 , , 所在圆的圆心分别是 , , ,曲线 是弧 ,曲线 是弧 ,曲线 是弧 .
分别写出 , , 的极坐标方程;
曲线 由 , , 构成,若点 在 上,且 ,求 的极坐标.
4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了 位学生,其中阅读过《西游记》或《红楼梦》的学生共有 位,阅读过《红楼梦》的学生共有 位,阅读过《西游记》且阅读过《红楼梦》的学生共有 位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为
记 为等差数列 的前 项和.若 , ,则 ________.
设 , 为椭圆 的两个焦点, 为 上一点且在第一象限,若 为等腰三角形,则 的坐标为________.
学生到工厂劳动实践,利用 打印技术制作模型.如图,该模型为长方体 挖去四棱锥 后所得的几何体,其中 为长方体的中心, , , , 分别为所在棱的中点, , , 打印所用原料密度为 .不考虑打印损耗,制作该模型所需原料的质量为________ .
【解析】
解求出 中的不等式,找出 与 的交集即可.
【解答】
解:因为 , ,
所以 .
故选 .
2.
【答案】
D
【考点】
复数代数形式的乘除运算
【解析】
利用复数的运算法则求解即可.
【解Leabharlann Baidu】
解:由 ,得 .
故选 .
3.
【答案】
D
【考点】
列举法计算基本事件数及事件发生的概率
【解析】
利用古典概型求概率原理,首先用捆绑法将两女生捆绑在一起作为一个人排列找出分子,再
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。
为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将 只小鼠随机分成 , 两组,每组 只,其中 组小鼠给服甲离子溶液, 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:
11.记不等式组 表示的平面区域为 .命题 , ;命题 , .下面给出了四个命题:
① ;
② ;
③ ;
④ ;
这四个命题中,所有真命题的编号是
A.①③B.①②C.②③D.③④
12.设 是定义域为 的偶函数,且在 单调递减,则
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
已知向量 , ,则 , ________.
[选修4-5:不等式选讲](10分)
设 , , ,且 .
求 的最小值;
若 成立,证明: 或 .
参考答案与试题解析
2019年云南省高考数学试卷(文科)(全国新课标Ⅲ)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.
【答案】
A
【考点】
交集及其运算
全部排列找到分母,可得到答案.
【解答】
解:假设两位男同学为 , ,两位女同学为 , ,所有的排列情况有 种,如下:
,
其中两位女同学相邻的情况有 种,分别为 , , , , , , , , , , , ,
故两位女同学相邻的概率是: .
故选 .
4.
【答案】
C
【考点】
Venn图表达集合的关系及运算
【解析】
求图 中的四边形 的面积.
已知函数 .
讨论 的单调性;
当 时,记 在区间 的最大值为 ,最小值为 ,求 的取值范围.
已知曲线 , 为直线 上的动点,过 作 的两条切线,切点分别为 , .
证明:直线 过定点;
若以 为圆心的圆与直线 相切,且切点为线段 的中点,求该圆的方程.
作出维恩图,得到该学校阅读过《西游记》的学生人数为 人,由此能求出该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值.
【解答】
解:某中学为了了解本校学生阅读四大名著的情况,随机调查了 位学生,
其中阅读过《西游记》或《红楼梦》的学生共有 位,
阅读过《红楼梦》的学生共有 位,阅读过《西游记》且阅读过《红楼梦》的学生共有 位,
作出维恩图,得:
∴ 该学校阅读过《西游记》的学生人数为 人,
则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为: .
故选 .
5.
【答案】
B
【考点】
二倍角的正弦公式
A. ,且直线 , 是相交直线
B. ,且直线 , 是相交直线
C. ,且直线 , 是异面直线
D. ,且直线 , 是异面直线
9.执行如图的程序框图,如果输入ε的为 ,则输出 的值等于
A. B. C. D.
10.已知 是双曲线 的一个焦点,点 在 上, 为坐标原点.若 ,则 的面积为
A. B. C. D.
A. B. C. D.
5.函数 在 的零点个数为
A. B. C. D.
6.已知各项均为正数的等比数列 的前 项和为 ,且 ,则
A. B. C. D.
7.已知曲线 在点 处的切线方程为 ,则
A. , B. ,
C. , D. ,
8.如图,点 为正方形 的中心, 为正三角形,平面 平面 , 是线段 的中点,则
记 为事件:“乙离子残留在体内的百分比不低于 ”,根据直方图得到 的估计值为 .
求乙离子残留百分比直方图中 , 的值;
分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
的内角 , , 的对边分别为 , , .已知 .
求 ;
若 为锐角三角形,且 ,求 面积的取值范围.
图 是由矩形 , 和菱形 组成的一个平面图形,其中 , , .将其沿 , 折起使得 与 重合,连结 ,如图 .
2019年云南省高考数学试卷(文科)(全国新课标Ⅲ)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合 , ,则
A. B. C. D.
2.若 ,则
A. B. C. D.
3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是
A. B. C. D.
(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)
如图,在极坐标系 中, , , , ,弧 , , 所在圆的圆心分别是 , , ,曲线 是弧 ,曲线 是弧 ,曲线 是弧 .
分别写出 , , 的极坐标方程;
曲线 由 , , 构成,若点 在 上,且 ,求 的极坐标.
4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了 位学生,其中阅读过《西游记》或《红楼梦》的学生共有 位,阅读过《红楼梦》的学生共有 位,阅读过《西游记》且阅读过《红楼梦》的学生共有 位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为
记 为等差数列 的前 项和.若 , ,则 ________.
设 , 为椭圆 的两个焦点, 为 上一点且在第一象限,若 为等腰三角形,则 的坐标为________.
学生到工厂劳动实践,利用 打印技术制作模型.如图,该模型为长方体 挖去四棱锥 后所得的几何体,其中 为长方体的中心, , , , 分别为所在棱的中点, , , 打印所用原料密度为 .不考虑打印损耗,制作该模型所需原料的质量为________ .
【解析】
解求出 中的不等式,找出 与 的交集即可.
【解答】
解:因为 , ,
所以 .
故选 .
2.
【答案】
D
【考点】
复数代数形式的乘除运算
【解析】
利用复数的运算法则求解即可.
【解Leabharlann Baidu】
解:由 ,得 .
故选 .
3.
【答案】
D
【考点】
列举法计算基本事件数及事件发生的概率
【解析】
利用古典概型求概率原理,首先用捆绑法将两女生捆绑在一起作为一个人排列找出分子,再
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。
为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将 只小鼠随机分成 , 两组,每组 只,其中 组小鼠给服甲离子溶液, 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:
11.记不等式组 表示的平面区域为 .命题 , ;命题 , .下面给出了四个命题:
① ;
② ;
③ ;
④ ;
这四个命题中,所有真命题的编号是
A.①③B.①②C.②③D.③④
12.设 是定义域为 的偶函数,且在 单调递减,则
A. B.
C. D.
二、填空题:本题共4小题,每小题5分,共20分。
已知向量 , ,则 , ________.
[选修4-5:不等式选讲](10分)
设 , , ,且 .
求 的最小值;
若 成立,证明: 或 .
参考答案与试题解析
2019年云南省高考数学试卷(文科)(全国新课标Ⅲ)
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.
【答案】
A
【考点】
交集及其运算
全部排列找到分母,可得到答案.
【解答】
解:假设两位男同学为 , ,两位女同学为 , ,所有的排列情况有 种,如下:
,
其中两位女同学相邻的情况有 种,分别为 , , , , , , , , , , , ,
故两位女同学相邻的概率是: .
故选 .
4.
【答案】
C
【考点】
Venn图表达集合的关系及运算
【解析】