工程流体力学课后习题答案
《工程流体力学》习题1~7章参考答案
解:本题利用流体静压强的计算公式 p = ρ gh 和等压面的性质(同种液体) 油 液 所 在 的 水 平 面 为 等 压 面 , 等 压 面 上 的 相 对 压 强 ρ 1000 ρ油 gh = ρ水 g ( 3 − 2 ) ⇒ h = 水 = ≈ 1.22m ; 加 入 木 块 后 相 当 于 左 侧 容 器 加 入 了 体 积 为 ρ油 820
参考答案 4
图 3-10 习题 3-2 附图
解:根据已知条件,船底长度 12m,舱体宽度(垂直于纸面)上下均为 6m,水面上船的长度为 12+2×2.4=16.8m,于是,船排开水的体积为 1 V = (16.8 + 12 ) × 2.4 × 6 = 207.36m3 2 根据阿基米德定律,船上货物的总质量等于船排开的水的质量 m = ρ 海水V = 1000 × 207.36 = 207360kg 习题 3-4 一个充满水的密闭容器以等角速度 ω 绕一水平轴旋转,同时需要考虑重力的影响。 试证明其等压面是圆柱面,且等压面的中心轴线比容器的转动轴线高 g ω 2 。 解:根据图示的坐标(z 轴水平)可知,单位质量流体的质量力分量为 g x = 0, g y = − g , g z = 0 流体绕 z 轴以匀角速度 ω 旋转时,半径 r 处流体团的加速度 a 位于 x-y 的平面内,大小为 rω , 方向指向转动中心。 于是按达朗贝尔原理, 单位质量流体受到的惯性力(离心力)则为 −a , 2 大小为 rω ,方向沿径向朝外,其 x, y, z 方向的分量为 − ax = rω 2 cos θ = xω 2
高
等
学
校
教
材
过程装备与控制工程专业核心课程教材
工程流体力学
习题参考答案
主讲:陈庆光
《工程流体力学》习题参考答案
闻建龙主编的《工程流体力学》习题参考答案第一章 绪论1-1 物质是按什么原则分为固体和液体两大类的?解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。
如空气、水等。
而在同等条件下,固体则产生有限的变形。
因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。
与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。
1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么?解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。
流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。
在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm )内的流动。
1-3 底面积为25.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层厚度为mm 4,当液体分别为C 020的水和C 020时密度为3856m kg 的原油时,移动平板所需的力各为多大?题1-3图解:20℃ 水:s Pa ⋅⨯=-3101μ20℃,3/856m kg =ρ, 原油:s Pa ⋅⨯='-3102.7μ水: 233/410416101m N u=⨯⨯=⋅=--δμτN A F 65.14=⨯=⋅=τ油: 233/8.2810416102.7m N u=⨯⨯=⋅'=--δμτ N A F 2.435.18.28=⨯=⋅=τ1-4 在相距mm 40=δ的两平行平板间充满动力粘度s Pa ⋅=7.0μ液体(图1-4),液体中有一边长为mm a 60=的正方形薄板以s m u 15=的速度水平移动,由于粘性带动液体运动,假设沿垂直方向速度大小的分布规律是直线。
工程流体力学课后答案杨树人主编
第一章 流体及其主要物理性质1-1.轻柴油在温度15ºC 时相对密度为0.83,求它的密度和重度。
解:4ºC 时所以,33/8134980083.083.0/830100083.083.0mN m kg =⨯===⨯==水水γγρρ1-2.甘油在温度0ºC 时密度为1.26g/cm3,求以国际单位表示的密度和重度。
333/123488.91260/1260/26.1m Ng m kg cm g =⨯==⇒==ργρ 1-3.水的体积弹性系数为1.96×109N/m 2,问压强改变多少时,它的体积相对压缩1%?MPa Pa E E VVVV p p6.191096.101.07=⨯==∆=∆=∆β 1-4.容积4m 3的水,温度不变,当压强增加105N/m 2时容积减少1000cm 3,求该水的体积压缩系数βp 和体积弹性系数E 。
解:1956105.2104101000---⨯=⨯--=∆∆-=Pa p V V p β Pa E p89104105.211⨯=⨯==-β 1-5. 用200L 汽油桶装相对密度为0.70的汽油,罐装时液面上压强为1个大气压,封闭后由于温度变化升高了20ºC ,此时汽油的蒸气压为0.18大气压。
若汽油的膨胀系数为0.0006ºC -1,弹性系数为14000kg/cm 2。
试计算由于压力及温度变化所增减的体积?问灌桶时每桶最多不超过多少公斤为宜?解:E =E ’·g =14000×9.8×104PaΔp =0.18atdp pV dT T V dV ∂∂+∂∂=00V TVT V V T T ββ=∂∂⇒∂∂=00V p V p V V p p ββ-=∂∂⇒∂∂-= 所以,dp V dT V dp pVdT T V dV p T 00ββ-=∂∂+∂∂=从初始状态积分到最终状态得:LL L V p p E V T T V V dpV dT V dV T p pp T TT VV 4.21057.24.2200108.914000108.918.020*******.0)(1)(34400000000≈⨯-=⨯⨯⨯⨯⨯-⨯⨯=---=--=-⎰⎰⎰βββ即()kg V V M 32.13810004.220010007.0=-⨯⨯=∆-=ρ另解:设灌桶时每桶最多不超过V 升,则200=++p t dV dV VV dt V dV t t 2000061.0⨯=⋅⋅=βV dp V dV p p 18.0140001⨯-=⋅⋅-=β(1大气压=1Kg/cm 2) V =197.6升 dV t =2.41升 dV p =2.52×10-3升G =0.1976×700=138Kg =1352.4N 1-6.石油相对密度0.9,粘度28cP ,求运动粘度为多少m 2/s?()c S t St s m 3131.0/101.310009.01028253==⨯=⨯⨯==--ρμν 1-7.相对密度0.89的石油,温度20ºC 时的运动粘度为40cSt ,求动力粘度为多少? 解:89.0==水ρρd ν=40cSt =0.4St =0.4×10-4m 2/s μ=νρ=0.4×10-4×890=3.56×10-2 Pa ·s 1-8.图示一平板在油面上作水平运动,已知运动速度u=1m/s ,板与固定边界的距离δ=1,油的动力粘度μ=1.147Pa ·s ,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:233/10147.11011147.1m N dy du ⨯=⨯⨯==-μτ 1-9.如图所示活塞油缸,其直径D =12cm ,活塞直径d =11.96cm ,活塞长度L =14cm ,油的μ=0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力F=?解:A =πdL , μ=0.65P =0.065 Pa ·s , Δu =0.5m/s , Δy=(D-d)/2()N dy du AF 55.821096.11125.010141096.1114.3065.0222=⨯-⨯⨯⨯⨯⨯⨯==---μ第二章 流体静力学2-1. 如图所示的U 形管中装有水银与水,试求:(1)A 、C 两点的绝对压力及表压各为多少? (2)A 、B 两点的高度差为多少?解:① p A 表=γh 水=0.3mH 2O =0.03at =0.3×9800Pa =2940Pap A 绝=p a + p A 表=(10+0.3)mH 2O =1.03at =10.3×9800Pa=100940Pap C 表=γhgh hg + p A 表=0.1×13.6m H 2O+0.3mH 2O =1.66mH 2O =0.166at=1.66×9800Pa =16268Pap C 绝=p a + p C 表=(10+1.66)mH 2O =11.66 mH 2O =1.166at =11.66×9800Pa =114268Pa ② 30c mH 2O =13.6h cmH 2O ⇒h =30/13.6cm=2.2cm题2-2 题2-32-2.水银压力计装置如图。
(完整版)工程流体力学课后习题(第二版)答案
第一章绪论31-1. 20C的水2.5m,当温度升至80C时,其体积增加多少?[解]温度变化前后质量守恒,即V 2V3又20C时,水的密度i 998.23kg /m380C 时,水的密度 2 971.83kg/m3V2— 2.5679m323则增加的体积为V V V i 0.0679m1-2.当空气温度从0C增加至20C时,运动粘度增加15%,重度减少10%,问此时动力粘度增加多少(百分数)?[解](1 0.15)原(1 0.1)原1.035原原1.035原原 1.035原原0.035原原此时动力粘度增加了 3.5%1-3•有一矩形断面的宽渠道,其水流速度分布为u 0.002 g(hy 0.5y2)/ ,式中、分别为水的密度和动力粘度,h为水深。
试求h 0.5m时渠底(y=0)处的切应力。
[解]——0.002 g(h y)/dy0.002 g(h y) dy当h =0.5m , y=0 时0.002 1000 9.807(0.5 0)9.807Pa1-4.一底面积为45 x 50cm2,高为1cm的木块,质量为5kg,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s,油层厚1cm,斜坡角22.620(见图示),求油的粘度。
[解]木块重量沿斜坡分力F与切力T平衡时,等速下滑mg sindu T Adymg sin A U 5 9.8 sin 22.621 0.4 0.45 -0.0010.1047 Pa s1-5.已知液体中流速沿y方向分布如图示三种情况,试根据牛顿内摩擦定律沿y方向的分布图。
3 3 5 2 [解] A dl 3.14 0.8 10 20 10 5.024 10 m 石,定性绘出切应力1-6 •为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
已知导线直径的粘度=0.02Pa. s。
若导线以速率50m/s拉过模具,试求所需牵拉力。
0.9mm,长度20mm,涂料(1.O1N)yU 50 5F R A 0.02 3 5.024 10 1.01Nh 0.05 10 31-7.两平行平板相距0.5mm,其间充满流体,下板固定,上板在2Pa的压强作用下以0.25m/s匀速移动,求该流体的动力粘度。
工程流体力学课后习题(第二版)答案
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τ Pa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
工程流体力学(闻建龙)课后答案(部分)
x
D
B
G
h3
yD
L
L T L cos F ( yD y0 ) G cos 2
(2)下游有水时的启门力
y
T L cos F ( yD y0 ) G
L cos F2 ( yD 2 y0 ) 2
L T L cos F ( yD y0 ) G cos 2 2 4 4 3 L h2 / sin 2 / sin 60 = = =2.3094 3 3/2 3 hc (h1 h2 / 2)=(1 2 / 2) 2
解:根据题意,雷诺数为
Re f (v , L, , )
选择 L、v、 作为基本单位,于是
π
Re ,π1 a1 1 1 La v L v
3 0 0, 0, 0 a 1 3 ( L(LT ) ML ) 1 0 1 1, 1 1, 1 1 0 1 1 3 1 1 1 La(LT1 1 ML3 1 ML1T 1 1 )( ) 1 Re f 1 Lv 1
解 该问题是一等直径长管输送问题,因此伯努利方程为
2 2 pA A v A pB B vB zA zB hf g 2g g 2g
由题意
z A zB,v A vB = v,取 A B
pA pB L v2 hf g d 2g
假设流动属于水力光滑区
2 v2 vm p 或 g m lm g p l p
2 2 1 vm v p 则 ,即kv kl2 lm l p
(完整版)工程流体力学课后习题(第二版)答案.doc
h 12 h 6 2 1 0.1 12h 6 得h4 m 3 2-11.有一盛水的开口容器以的加速度 3.6m/s 2沿与水平面成 30o 夹角的斜面向上运动, 试求容器中水面的倾角。 [ 解 ] 由液体平衡微分方程 dp ( f x dx f y dy f z dz) f x a cos300 , f y 0 , f z ( g asin 300 ) 在液面上为大气压, dp a cos300 dx ( g a sin 300 )dz 0 dz a cos300 0.269 tan g a sin 300 dx 150 2-12.如图所示盛水 U 形管,静止时,两支管水面距离管口均为 h ,当 U 形管绕 OZ 轴以等角速度ω旋转 时, 求保持液体不溢出管口的最大角速度ωmax 。 [ 解 ] 由液体质量守恒知, 管液体上升高度与 管液体下降高度应相等,且两者液面同在一等压面上, 满足等压面方程: 2r 2 C z z I II
=45 °,闸门挡水深 h=3m ,试求水对闸门的作用力及 方向 [ 解 ] 水平分力: F px gh c A x hhb 1000 3.0 g 9.81 3 44.145kN 2 2 压力体体积: V [ h( h h) 1 h 2 ] 8 ( h ) 2 sin 45 2 sin 45 [ 3(3 3) 1 32 ] ( 3 )2 sin 45 2 8 sin 45 1.1629m 3 铅垂分力: F pz gV 1000 9.81 1.1629 11.41kN 合力: Fp F px 2 F pz 2 44.1452 11.412 45.595kN 方向: arctan
2g h 液体不溢出,要求 z I z II 2h , 以 r 1 a, r 2 b 分别代入等压面方程得: a b a>b gh 2 a2 b2 max 2 gh b2 a2 2-13.如图, 600 ,上部油深 h 1= 1.0m ,下部水深 h 2 = 2.0m ,油的重度 =8.0kN/m 3,求:平板 ab 单位 宽度上的流体静压力及其作用点。 [ 解 ] 合力 Pb 1 h11h22油 h 1 sin 600 2 水 h 2 sin 600 = 46.2kN +油h1h20 sin 60 作用点: 1
工程流体力学课后习题参考答案(周云龙洪文鹏教材版)
工程流体力学课后习题参考答案《工程流体力学》(第二版)中国电力出版社周云龙洪文鹏合编一、绪论1-1 kg/m31-2 kg/m31-3m3/h1-41/Pa 1-5 Pa·s1-6 m2/s1-7 (1)m/s1/s(2)Pa·s (3) Pa1-8 (1)(Pa)(2)(Pa)1-9 (1) (N)(2) (Pa)(3)1-10Pa·s Pa·s1-11( N·m) 1-12 m/sm2NkW1-13 Pa·sm2NkW1-141-15 m2N1-16 m2m/sr/min1-17Pa·sN1-18 由1-14的结果得N·m1-191-20 mm 1-21mm 二、流体静力学2-1kPa2-2PaPa2-3 且m(a) PaPa(b) PaPa(c) PaPa2-4 设A点到下水银面的距离为h1,B点到上水银面的距离为h2即m 2-5kg/m3Pa2-6 Pa 2-7(1)kPa(2)PakPa2-8设cm m mkPa2-9 (1)Pa(2)cm2-10Pa m2-11整理得m2-12Pa2-13cm 2-142-15整理:kPa 2-16设差压计中的工作液体密度为Pam2-17Pa2-18kPa2-19 (1) N(2) N2-21 设油的密度为NNN对A点取矩m(距A点)2-22 设梯形坝矩形部分重量为,三角形部分重量为(1)(kN)(kN)m(2)kN·m<kN·m稳固2-23总压力F的作用点到A点的距离由2-24 m m2-25 Nm(距液面)2-26Nm (距液面)或m(距C点)2-27第一种计算方法:设水面高为m,油面高为m;水的密度为,油的密度为左侧闸门以下水的压力:N右侧油的压力:N左侧闸门上方折算液面相对压强:(Pa)则:N由力矩平衡方程(对A点取矩):解得:(N)第二种计算方法是将左侧液面上气体的计示压强折算成液柱高(水柱高),加到水的高度中去,然后用新的水位高来进行计算,步骤都按液面为大气压强时计算。
工程流体力学课后习题答案
1第1章 绪论【1—1】500cm 3的某种液体,在天平上称得其质量为0。
453kg,试求其密度和相对密度。
【解】液体的密度3340.4530.90610 kg/m 510m V ρ-===⨯⨯ 相对密度330.906100.9061.010w ρδρ⨯===⨯ 【1-2】体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到4。
9×105Pa 时,体积减少1L.求水的压缩系数和弹性系数。
【解】由压缩系数公式10-1510.001 5.110 Pa 5(4.91098000)p dV V dP β-=-==⨯⨯⨯- 910111.9610 Pa 5.110pE β-===⨯⨯ 【1—3】温度为20℃,流量为60m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0。
00055K —1,问加热到80℃后从加热器中流出时的体积流量变为多少? 【解】根据膨胀系数1t dV V dtβ=则2113600.00055(8020)6061.98 m /ht Q Q dt Q β=+=⨯⨯-+= 【1-4】用200升汽油桶装相对密度0。
70的汽油。
罐装时液面上压强为98000Pa.封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。
若汽油的膨胀系数为0。
0006K —1,弹性系数为13.72×106Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少? 【解】(1)由1β=-=P pdV Vdp E可得,由于压力改变而减少的体积为6200176400.257L 13.7210⨯∆=-===⨯P p VdP V dV E 由于温度变化而增加的体积,可由1β=tt dV V dT得0.000620020 2.40L β∆===⨯⨯=tt t VdV VdT(2)因为∆∆tp V V ,相比之下可以忽略由压力变化引起的体积改变,则由 200L β+=t V V dT得1198.8%200110.000620β===++⨯t V dT 【1—5】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa ·s ,求作用在平板单位面积上的阻力。
(完整版)工程流体力学习题及答案.doc
第 1 章绪论选择题( a )流体的分子; ( b )流体内的固体颗粒; 【1.1 】 按连续介质的概念,流体质点是指:( c )几何的点;( d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子, 且具有诸如速度、密度及压强等物理量的流体微团。
( d )【1.2 】 与牛顿内摩擦定律直接相关的因素是:( a )切应力和压强; ( b )切应力和剪切变 形速度;( c )切应力和剪切变形; ( )切应力和流速。
ddv dv解:牛顿内摩擦定律是dy,而且速度梯度dy是流体微团的剪切变形速度dddt ,故dt 。
( b )【1.3 】 流体运动黏度 υ 的国际单位是: ( a ) m 2/s ;( ) N/m 2 ;( ) kg/m ;( )N ·s/m 2。
bcd解:流体的运动黏度 υ 的国际单位是 m 2 /s 。
( a )p 【1.4 】 理想流体的特征是:( a)黏度是常数;( b )不可压缩;( c )无黏性;( d )符合RT。
解:不考虑黏性的流体称为理想流体。
( c )【1.5 】当 水的 压 强 增 加一 个 大 气 压 时, 水 的 密 度 增 大约 为 :( a ) 1/20 000 ;( b ) 1/1 000 ;( c ) 1/4 000 ;( d ) 1/2 000 。
解 : 当 水 的 压 强 增 加 一 个 大 气 压 时 , 其 密 度 增 大 约 dkdp0.5 10 9 1 105120 000 。
( a )【1.6 】 从力学的角度分析,一般流体和固体的区别在于流体:( a)能承受拉力,平衡时不能承受切应力; ( )不能承受拉力,平衡时能承受切应力; ( )不能承受拉力,bc平衡时不能承受切应力; (d )能承受拉力,平衡时也能承受切应力。
解:流体的特性是既不能承受拉力, 同时具有很大的流动性, 即平衡时不能承受切应力。
工程流体力学习题及答案(精编文档).doc
【最新整理,下载后即可编辑】第1章 绪论选择题【1.1】 按连续介质的概念,流体质点是指:(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子,且具有诸如速度、密度及压强等物理量的流体微团。
(d ) 【1.2】 与牛顿内摩擦定律直接相关的因素是:(a )切应力和压强;(b )切应力和剪切变形速度;(c )切应力和剪切变形;(d )切应力和流速。
解:牛顿内摩擦定律是d d v y τμ=,而且速度梯度d d vy 是流体微团的剪切变形速度d d tγ,故d d tγτμ=。
(b )【1.3】 流体运动黏度υ的国际单位是:(a )m 2/s ;(b )N/m 2;(c )kg/m ;(d )N·s/m 2。
解:流体的运动黏度υ的国际单位是/s m 2。
(a )【1.4】 理想流体的特征是:(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RTp=ρ。
解:不考虑黏性的流体称为理想流体。
(c )【1.5】当水的压强增加一个大气压时,水的密度增大约为:(a )1/20 000;(b )1/1 000;(c )1/4 000;(d )1/2 000。
解:当水的压强增加一个大气压时,其密度增大约95d 1d 0.51011020 000k p ρρ-==⨯⨯⨯=。
(a )【1.6】 从力学的角度分析,一般流体和固体的区别在于流体:(a )能承受拉力,平衡时不能承受切应力;(b )不能承受拉力,平衡时能承受切应力;(c )不能承受拉力,平衡时不能承受切应力;(d )能承受拉力,平衡时也能承受切应力。
解:流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切应力。
(c ) 【1.7】下列流体哪个属牛顿流体:(a )汽油;(b )纸浆;(c )血液;(d )沥青。
大学_《工程流体力学(水力学)》第二版(禹华谦)课后答案
《工程流体力学(水力学)》第二版(禹华谦)课后答案《工程流体力学(水力学)》第二版(禹华谦)内容介绍目录绪言1 流体及其主要物理性质1.1 流体的概念1.2 流体的密度和重度1.3 流体的压缩性和膨胀性1.4 流体的粘性1.5 液体的表面性质1.6 汽化压强1.7 思考题1.8 习题2 流体静力学2.1 作用在流体上的力2.2 流体静压强及其特性2.3 流体平衡微分方程2.4 流体静力学基本方程2.5 流体静压强的度量与测量2.6 流体静压强的传递和分布2.7 流体的相对平衡2.8 静止流体作用在平面上的总压力2.9 静止流体作用在曲面上的总压力2.10 思考题2.11 习题3 流体动力学基础3.1 描述流体流动的方法3.2 流体流动的基本概念3.3 连续性方程3.4 理想流体的运动微分方程(欧拉运动微分方程) 3.5 伯努利方程3.6 伯努利方程的应用3.7 动量方程3.8 动量矩方程3.9 思考题3.10 习题4 相似原理与量纲分析4.1 流动相似的基本概念4.2 相似准则4.3 近似相似4.4 量纲分析的基本概念4.5 量纲分析法4.6 思考题4.7 习题5 流动阻力与水头损失5.1 流动阻力产生的.原因及分类5.2 粘性流体的两种流动状态5.3 均匀流沿程水头损失与切应力的关系 5.4 粘性流体的层流流动5.5 粘性流体的紊流流动5.6 紊流沿程阻力系数的计算5.7 局部水头损失5.8 思考题5.9 习题6 管路水力计算6.1 概述6.2 简单管路6.3 管路水力计算的三类问题6.4 自流管路6.5 串联管路6.6 并联管路6.7 分支管路6.8 沿程均匀泄流及装卸油鹤管6.9 有压管路中的水击6.10 思考题6.11 习题附录附录I 常见流体的密度和粘度附录Ⅱ Dg80~Dg300的管路内水力坡度i值表附录Ⅲ国际单位与工程单位对照表附录Ⅳ压强单位的换算参考文献《工程流体力学(水力学)》第二版(禹华谦)作品目录内容提要本书在论述工程流体力学基本理论的基础上,针对油料管理工作的实际需要,详细介绍了管路水力计算的常用方法并编写了相应的计算机语言程序。
(完整版)工程流体力学习题及答案
(完整版)工程流体力学习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第1章 绪论选择题【1.1】 按连续介质的概念,流体质点是指:(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子,且具有诸如速度、密度及压强等物理量的流体微团。
(d )【1.2】 与牛顿内摩擦定律直接相关的因素是:(a )切应力和压强;(b )切应力和剪切变形速度;(c )切应力和剪切变形;(d )切应力和流速。
解:牛顿内摩擦定律是d d v y τμ=,而且速度梯度d d v y 是流体微团的剪切变形速度d d t γ,故d d t γτμ=。
(b )【1.3】流体运动黏度υ的国际单位是:(a )m 2/s ;(b )N/m 2;(c )kg/m ;(d )N·s/m 2。
解:流体的运动黏度υ的国际单位是/s m 2。
(a )【1.4】理想流体的特征是:(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RTp=ρ。
解:不考虑黏性的流体称为理想流体。
(c )【1.5】当水的压强增加一个大气压时,水的密度增大约为:(a )1/20 000;(b )1/1 000;(c )1/4 000;(d )1/2 000。
解:当水的压强增加一个大气压时,其密度增大约95d 1d 0.51011020 000k p ρρ-==⨯⨯⨯=。
(a )【1.6】 从力学的角度分析,一般流体和固体的区别在于流体:(a )能承受拉力,平衡时不能承受切应力;(b )不能承受拉力,平衡时能承受切应力;(c )不能承受拉力,平衡时不能承受切应力;(d )能承受拉力,平衡时也能承受切应力。
解:流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切应力。
工程流体力学课后习题答案(第二版).
第一章 绪论1-1.20℃的水2.5m 3,当温度升至80℃时,其体积增加多少? [解] 温度变化前后质量守恒,即2211V V ρρ= 又20℃时,水的密度31/23.998m kg =ρ 80℃时,水的密度32/83.971m kg =ρ 321125679.2m V V ==∴ρρ 则增加的体积为3120679.0m V V V =-=∆1-2.当空气温度从0℃增加至20℃时,运动粘度ν增加15%,重度γ减少10%,问此时动力粘度μ增加多少(百分数)? [解] 原原ρννρμ)1.01()15.01(-+==原原原μρν035.1035.1==035.0035.1=-=-原原原原原μμμμμμ此时动力粘度μ增加了3.5%1-3.有一矩形断面的宽渠道,其水流速度分布为μρ/)5.0(002.02y hy g u -=,式中ρ、μ分别为水的密度和动力粘度,h 为水深。
试求m h 5.0=时渠底(y =0)处的切应力。
[解] μρ/)(002.0y h g dydu-=)(002.0y h g dydu-==∴ρμτ 当h =0.5m ,y =0时)05.0(807.91000002.0-⨯⨯=τ Pa 807.9=1-4.一底面积为45×50cm 2,高为1cm 的木块,质量为5kg ,沿涂有润滑油的斜面向下作等速运动,木块运动速度u=1m/s ,油层厚1cm ,斜坡角22.620 (见图示),求油的粘度。
[解] 木块重量沿斜坡分力F 与切力T 平衡时,等速下滑yu AT mg d d sin μθ== 001.0145.04.062.22sin 8.95sin ⨯⨯⨯⨯==δθμu A mg s Pa 1047.0⋅=μ1-5.已知液体中流速沿y 方向分布如图示三种情况,试根据牛顿内摩擦定律yud d μτ=,定性绘出切应力沿y 方向的分布图。
[解]1-6.为导线表面红绝缘,将导线从充满绝缘涂料的模具中拉过。
工程流体力学 (袁恩熙 著) 石油工业出版社 课后答案
第一章 流体及其主要物理性质1-1.轻柴油在温度15ºC 时相对密度为0.83,求它的密度和重度。
解:4ºC 时所以,33/8134980083.083.0/830100083.083.0mN m kg =⨯===⨯==水水γγρρ1-2.甘油在温度0ºC 时密度为1.26g/cm3,求以国际单位表示的密度和重度。
333/123488.91260/1260/26.1m N g m kg cm g =⨯==⇒==ργρ 1-3.水的体积弹性系数为1.96×109N/m 2,问压强改变多少时,它的体积相对压缩1%?MPa Pa E E VVVV p p6.191096.101.07=⨯==∆=∆=∆β 1-4.容积4m 3的水,温度不变,当压强增加105N/m 2时容积减少1000cm 3,求该水的体积压缩系数βp 和体积弹性系数E 。
解:1956105.2104101000---⨯=⨯--=∆∆-=Pa p V V p β Pa E p89104105.211⨯=⨯==-β 1-5. 用200L 汽油桶装相对密度为0.70的汽油,罐装时液面上压强为1个大气压,封闭后由于温度变化升高了20ºC ,此时汽油的蒸气压为0.18大气压。
若汽油的膨胀系数为0.0006ºC -1,弹性系数为14000kg/cm 2。
试计算由于压力及温度变化所增减的体积?问灌桶时每桶最多不超过多少公斤为宜?解:E =E ’·g =14000×9.8×104PaΔp =0.18atdp pVdT T V dV ∂∂+∂∂=00V TVT V V T T ββ=∂∂⇒∂∂=00V p V p V V p p ββ-=∂∂⇒∂∂-= 所以,dp V dT V dp pVdT T V dV p T 00ββ-=∂∂+∂∂=从初始状态积分到最终状态得:LL L V p p E V T T V V dpV dT V dV T p pp T T T VV 4.21057.24.2200108.914000108.918.020*******.0)(1)(34400000000≈⨯-=⨯⨯⨯⨯⨯-⨯⨯=---=--=-⎰⎰⎰βββ即()kg V V M 32.13810004.220010007.0=-⨯⨯=∆-=ρ另解:设灌桶时每桶最多不超过V 升,则200=++p t dV dV VV dt V dV t t 2000061.0⨯=⋅⋅=βV dp V dV p p 18.0140001⨯-=⋅⋅-=β(1大气压=1Kg/cm 2) V =197.6升 dV t =2.41升 dV p =2.52×10-3升G =0.1976×700=138Kg =1352.4N 1-6.石油相对密度0.9,粘度28cP ,求运动粘度为多少m 2/s?解:s Pa P sPa s mPa P cP ⋅=⋅=⋅==--1.0110110132()cSt St s m 3131.0/101.310009.01028253==⨯=⨯⨯==--ρμν 1-7.相对密度0.89的石油,温度20ºC 时的运动粘度为40cSt ,求动力粘度为多少? 解:89.0==水ρρd ν=40cSt =0.4St =0.4×10-4m 2/s μ=νρ=0.4×10-4×890=3.56×10-2 Pa ·s 1-8.图示一平板在油面上作水平运动,已知运动速度u=1m/s ,板与固定边界的距离δ=1,油的动力粘度μ=1.147Pa ·s ,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:233/10147.11011147.1m N dy du ⨯=⨯⨯==-μτ 1-9.如图所示活塞油缸,其直径D =12cm ,活塞直径d =11.96cm ,活塞长度L =14cm ,油的μ=0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力F=?解:A =πdL , μ=0.65P =0.065 Pa ·s , Δu =0.5m/s , Δy=(D-d)/2()N dy du AF 55.821096.11125.010141096.1114.3065.0222=⨯-⨯⨯⨯⨯⨯⨯==---μ第二章 流体静力学2-1. 如图所示的U 形管中装有水银与水,试求:(1)A 、C 两点的绝对压力及表压各为多少? (2)A 、B 两点的高度差为多少?解:① p A 表=γh 水=0.3mH 2O =0.03at =0.3×9800Pa =2940Pap A 绝=p a + p A 表=(10+0.3)mH 2O =1.03at =10.3×9800Pa=100940Pap C 表=γhg h hg + p A 表=0.1×13.6m H 2O+0.3mH 2O =1.66mH 2O =0.166at=1.66×9800Pa =16268Pap C 绝=p a + p C 表=(10+1.66)mH 2O =11.66 mH 2O =1.166at =11.66×9800Pa =114268Pa ② 30c mH 2O =13.6h cmH 2O ⇒h =30/13.6cm=2.2cm题2-2 题2-32-2.水银压力计装置如图。
工程流体力学课后题答案
工程流体力学练习题第一章1-1解:设:柴油的密度为ρ,重度为γ;40C 水的密度为ρ0,重度为γ0。
则在同一地点的相对密度和比重为:ρρ=d ,0γγ=c ;30/830100083.0m kg d =⨯=⨯=ρρ30/81348.9100083.0m N c =⨯⨯=⨯=γγ1-2解:336/1260101026.1m kg =⨯⨯=-ρ;3/123488.91260m N g =⨯==ργ1-3解:269/106.191096.101.0m N E V V VVp p V Vp p p⨯=⨯⨯=∆-=∆-=∆⇒∆∆-=ββ1-4解:N m pVVp/105.21041010002956--⨯=⨯=∆∆-=β299/104.0105.211m N E pp ⨯=⨯==-β1-5解:1)求体积膨涨量和桶内压强受温度增加的影响,200升汽油的体积膨涨量为:()l T V V T T 4.2202000006.00=⨯⨯=∆=∆β由于容器封闭,体积不变,从而因体积膨涨量使容器内压强升高,体积压缩量等于体积膨涨量。
故:26400/1027.16108.9140004.22004.2mN E V V V V V V p p TT pTT⨯=⨯⨯⨯+=∆+∆-=∆+∆-=∆β2)在保证液面压强增量0.18个大气压下,求桶内最大能装的汽油质量。
设装的汽油体积为V ,那么:体积膨涨量为:T V V T T ∆=∆β;体积压缩量为:()()T V E p V VE p V T pT pp ∆+∆=∆+∆=∆β1因此,温度升高和压强升高联合作用的结果,应满足:()()⎪⎪⎭⎫ ⎝⎛∆-∆+=∆-∆+=p T pT E p T V V T V V 1110ββ()())(63.197108.9140001018.01200006.012001145l E p T V V p T =⎪⎪⎭⎫⎝⎛⨯⨯⨯-⨯⨯+=⎪⎪⎭⎫ ⎝⎛∆-∆+=β()kg V m 34.1381063.19710007.03=⨯⨯⨯==-ρ1-6解:石油的动力粘度:s pa .028.01.010028=⨯=μ石油的运动粘度:s m /1011.39.01000028.025-⨯=⨯==ρμν1-7解:石油的运动粘度:s m St /1044.01004025-⨯===ν石油的动力粘度:s pa .0356.0104100089.05=⨯⨯⨯==-ρνμ1-8解:2/1147001.01147.1m N u=⨯==δμτ1-9解:()()2/5.1621196.012.0215.0065.021m N d D u u=-⨯=-==μδμτN L d F 54.85.16214.01196.014.3=⨯⨯⨯=⨯⨯⨯=τπ第二章2-4解:设:测压管中空气的压强为p 2,水银的密度为1ρ,水的密度为2ρ。
工程流体力学 课后习题(简精版)答案
第一章 流体及其主要物理性质1-1.轻柴油在温度15ºC 时相对密度为0.83,求它的密度和重度。
解:4ºC 时所以,33/8134980083.083.0/830100083.083.0mN m kg =⨯===⨯==水水γγρρ1-2.甘油在温度0ºC 时密度为1.26g/cm3,求以国际单位表示的密度和重度。
333/123488.91260/1260/26.1m N g m kg cm g =⨯==⇒==ργρ 1-3.水的体积弹性系数为1.96×109N/m 2,问压强改变多少时,它的体积相对压缩1%?MPa Pa E E VVVV p p6.191096.101.07=⨯==∆=∆=∆β 1-4.容积4m 3的水,温度不变,当压强增加105N/m 2时容积减少1000cm 3,求该水的体积压缩系数βp 和体积弹性系数E 。
解:1956105.2104101000---⨯=⨯--=∆∆-=Pa p V V p β Pa E p89104105.211⨯=⨯==-β 1-5石油相对密度0.9,粘度28cP ,求运动粘度为多少m 2/s?()cSt St s m 3131.0/101.310009.01028253==⨯=⨯⨯==--ρμν 1-6 相对密度0.89的石油,温度20ºC 时的运动粘度为40cSt ,求动力粘度为多少? 解:89.0==水ρρd ν=40cSt =0.4St =0.4×10-4m 2/s μ=νρ=0.4×10-4×890=3.56×10-2 Pa ·s1-7 图示一平板在油面上作水平运动,已知运动速度u=1m/s ,板与固定边界的距离δ=1mm ,油的动力粘度μ=1.147Pa ·s ,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:233/10147.11011147.1m N dy du ⨯=⨯⨯==-μτ 1-8 如图所示活塞油缸,其直径D =12cm ,活塞直径d =11.96cm ,活塞长度L =14cm ,油的μ=0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力F=?解:A =πdL , μ=0.65P =0.065 Pa ·s , Δu =0.5m/s , Δy=(D-d)/2()N dy du AF 55.821096.11125.010141096.1114.3065.0222=⨯-⨯⨯⨯⨯⨯⨯==---μ第二章 流体静力学2-1. 如图所示的U 形管中装有水银与水,试求:(1)A 、C 两点的绝对压力及表压各为多少? (2)A 、B 两点的高度差为多少?解:① p A 表=γh 水=0.3mH 2O =0.03at =0.3×9800Pa =2940Pap A 绝=p a + p A 表=(10+0.3)mH 2O =1.03at =10.3×9800Pa=100940Pap C 表=γhg h hg + p A 表=0.1×13.6m H 2O+0.3mH 2O =1.66mH 2O =0.166at=1.66×9800Pa =16268Pap C 绝=p a + p C 表=(10+1.66)mH 2O =11.66 mH 2O =1.166at =11.66×9800Pa =114268Pa ② 30c mH 2O =13.6h cmH 2O ⇒h =30/13.6cm=2.2cm题2-22-2 今有U 形管,内装水和四氯化碳(CCl 4),如图所示。
工程流体力学(闻建龙)课后答案(部分)
为了简化湍流计算,研究者们提出了各种湍流模型,如零方程模型、一方程模型 和两方程模型等。这些模型通过建立数学方程来描述湍流的统计性质和流动特性 。
模拟方法
针对湍流模拟,常用的数值方法包括直接数值模拟(DNS)、大涡模拟(LES)和 雷诺平均模拟(RANS)。这些方法在精度和计算成本上各有优缺点,适用于不同 的流动条件和工程问题。
它描述了颗粒运动的速度与颗粒半径和流体粘性的关系。
流体动力学的基本方程
要点一
总结词
流体动力学的近似解法、数值解法。
要点二
详细描述
对于一些复杂的问题,我们可能无法得到精确的解析解, 这时就需要采用近似解法或者数值解法。近似解法包括摄 动法、迭代法等,数值解法则包括有限差分法、有限元法 等。这些方法可以帮助我们得到相对精确的结果,但是计 算量较大,需要借助计算机进行计算。
工程流体力学(闻建龙)课后答 案(部分)
目
CONTENCT
录
• 绪论 • 流体静力学 • 流体动力学基础 • 流体流动的能量转换与损失 • 流体流动的湍流与噪声 • 工程流体力学的应用实例
01
绪论
流体的定义与分类
总结词
流体的定义与分类
详细描述
流体是具有流动性的连续介质,可分为牛顿流体和非牛顿流体。牛顿流体遵循 牛顿第二定律,具有粘性和剪切应力;非牛顿流体不遵循牛顿第二定律,其流 动行为与剪切速率、温度和压力等条件有关。
THANK YOU
感谢聆听
流体流动的效率与节能措施
提高流速
减小流体的粘性和摩擦阻力,提高流速可以减小流体流动的能量 损失,提高流动效率。
优化流道设计
合理设计流道形状、尺寸和布局,减小流体的局部损失和摩擦阻力, 提高流动效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体及其主要物理性质7 相对密度0.89的石油,温度20ºC 时的运动粘度为40c St ,求动力粘度为多少?解:89.0==水ρρdν=40c St =0.4St=0.4×10-4m2/sμ=νρ=0.4×10-4×890=3.56×10-2Pa ·s8 图示一平板在油面上作水平运动,已知运动速度u=1m/s ,板与固定边界的距离δ=1,油的动力粘度μ=1.147P a·s,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:233/10147.11011147.1m N dy du ⨯=⨯⨯==-μτ9 如图所示活塞油缸,其直径D =12cm,活塞直径d=11.96cm,活塞长度L=14cm ,油的μ=0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力F=?解:A=πd L , μ=0.65P=0.065 Pa ·s , Δu=0.5m/s , Δy=(D-d)/2()N dy du AF 55.821096.11125.010141096.1114.3065.0222=⨯-⨯⨯⨯⨯⨯⨯==---μ流体静力学6油罐内装相对密度0.70的汽油,为测定油面高度,利用连通器原理,把U 形管内装上相对密度为1.26的甘油,一端接通油罐顶部空间,一端接压气管。
同时,压气管的另一支引入油罐底以上0.40m处,压气后,当液面有气逸出时,根据U形管内油面高差h=0.70m 来推算油罐内的油深H 为多少?解:p -γ甘油Δh=p -γ汽油(H -0.4)H=γ甘油Δh /γ汽油+0.4=1.26×0.7/0.70+0.4=1.66m7为测定油品重度,用如下装置,经过1管或2管输入气体,直至罐内油面出现气泡为止。
用U 形管水银压力计分别量出1管通气时的Δh 1,及2管通气时的Δh 2。
试根据1、2两管的沉没深度H 1和H 2以及Δh 1和Δh 2,推求油品重度的表达式。
解:⎩⎨⎧=∆=∆⇒⎩⎨⎧-=∆--=∆-2021012022210111H h H h H p h p H p h p Hg Hg Hg Hg γγγγγγγγ ()()()2121021021H H h h H H h h Hg Hg -∆-∆=⇒-=∆-∆γγγγ8 如图所示热水锅炉,h2=50mm,问锅炉内液面在何处?(要求作图表示不必计算)液面上蒸汽压力为多少?右侧两管的液面差h 1应为多少?解:① C —D② p 0=γh gh2=13.6×9800×50×10-3p a =6664Pa③ p 0=γhg h 2=γ水h 1mm m h h Hg 68068.010506.13321==⨯⨯==-水水水γγγγ题2-8图 题2-9图 题2-10图14 利用装有液体并与物体一起运动的U形管量测物体的加速度,如图所示。
U 形管直径很小,L=30cm ,h=5cm。
求物体加速度a为多少?解:自由液面方程:x ga z s-= ⎪⎪⎩⎪⎪⎨⎧-=-=2211x g az x ga z s s 其中,x1=-15cm,x 2=-15cm,z s1-z s2=h=5c mz s 1-z s2=-a (x 2-x 1)/g ⇒a =g h/L=9.8×0.05/0.3=1.63m/s215 盛水容器,试求其中深度H=1m 处的液体压力。
容器以6m /s 2的匀加速度垂直上升时; 容器以6m/s 2的匀加速度垂直下降时; 自由下落时;容器以15m/s 2的匀加速度下降时;解:如图建立直角坐标系,则在dp =ρ(Xdx +Yd y+Zd z)中有: X =0,Y =0,Z =-g -a 所以,dp= -(g+a) ρdz 积分上式:p = -(g+a ) ρz+C代入边界条件:z=0时,p=0(表压) 得C=0所以:p= -(g+a) ρz ,令-z =H 得:p =(g +a ) ρH容器以6m/s 2的匀加速度垂直上升时:a=6m/s 2p =(g +a )ρH=(9.8+6)×1000×1=15800Pa =0.16at容器以6m/s 2的匀加速度垂直下降时:a=-6m /s 2p =(g+a )ρH =(9.8-6)×1000×1=3800Pa =0.039at (3)自由下落时:a=-9.8 m/s 2p =(g +a )ρH=(9.8-9.8)×1000×1=0(4)容器以15m/s 2的匀加速度下降时:a=-15 m/s 2p =(g +a )ρH =(9.8-15)×1000×1=-5200Pa=0.053at16 在一直径D=300mm 、高H =500mm 的圆柱形容器中注入水至高度h1=300m m,然后使容器绕其垂直轴旋转。
试决定能使水的自由液面到达容器上部边缘时的转数n 1。
当转数超过n 1时,水开始溢出容器边缘,而抛物面的顶端将向底部接近。
试求能使抛物面顶端碰到容器底时的转数n2,在容器静止后水面高度h 2将为多少?解:自由液面方程:gr z s222ω=注:抛物体的体积是同底同高圆柱体体积的一半gR R g R V 422142222πωπω=⋅=抛① ()12122h H R V h R V H R-=⇒=-πππ抛抛()()11112421244n Rh H g h H R gR πωππω=-=⇒-=()()min /34.178/97.21015014.3103005008.93311r s r R h H g n =⨯⨯⨯-⨯=-=--π ② 2/2H R V π=抛()min/4.199/323.31015014.32105008.922423322422r s r RgH n H R gR n ==⨯⨯⨯⨯==⇒=--ππππ③mm H h 250250022===附证明:抛物体的体积是同底同高圆柱体体积的一半 gR R g R V 422142222πωπω=⋅=抛⎪⎪⎭⎫ ⎝⎛=======⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==⎰⎰⎰⎰g r g r r z r V V gr r gdr r gdr g r r gr d r dz r V r r r z z 2221442224022********020423022202220200πωωπππωπωπωωπωππ柱柱抛21 某处装置一安全闸门,门宽B 为0.6米,门高H 为1.0米。
距底0.4米处装有闸门横轴,闸门可绕轴旋转。
问门前水深h为若干时,闸门即可自行开放?(不计各处的摩擦力) 解:法一:h-h D > 0.4 m()BH h BH h Ah J h h c c c D 5.0125.03-+-=+=h > 1.33 m 法二:--()()7.035286.06.07.0980011111-=⨯⨯-⨯=⋅=⋅=h h BH y A p P c c γ()()7.023524.06.02.0980022222-=⨯⨯-⨯=⋅=⋅=h h BH y A p P c c γ()()7.003.06.06.07.0126.06.031111-=⨯⨯-⨯==h h A y J e c c ()()2.0304.04.06.02.0124.06.032222-=⨯⨯-⨯==h h A y J e c c 由题意:P 1·(0.3-e1)≥ P 2·(0.2 + e 2) 解得:h ≥ 1.33m流体运动学与动力学基础6 自水箱接出一个水龙头,龙头前有压力表。
当龙头关闭时,压力表读数为0.8大气压;当龙头开启时,压力表读数降为0.6大气压。
如果管子直径为12毫米,问此时的流量为多少? 解: p 0=0.8at=8mH 2O 对1-1、2-2列伯努利方程:()sm A V Q sm g V g V /1008.74012.014.326.6/26.668229800980006.000083422222-⨯=⨯⨯===-=+⨯+=++3-7 水从井A 利用虹吸管引到井B中,设已知体积流量Q =100米/时,H 1=3米,Z =6米,不计虹吸管中的水头损失,试求虹吸管的管径d 及上端管中的负压值p。
解:① 列1、2的伯努利方程:mmm V Q d d V Q s m gH V gV H 68068.067.714.33600/100444/67.738.9222000022212221==⨯⨯====⨯⨯==++=++ππ② 列1、3的伯努利方程:()()KPa Pa g V H z p gV pH z 8.58108.58698002200032121-=⨯-=⨯-=⎪⎪⎭⎫⎝⎛+--=++-=++γγ另解:列2、3的伯努利方程:atKPa Pa z p gV pz gV 6.08.58108.58698002200322=-=⨯-=⨯-=-=++=++γγ3-8 为测管路轴线处的流速,装置如图所示的测速管。
左管接于水管壁,量出不受流速影响的动压强;右管为90°弯管,量出受流速影响的总压强。
把两管连于U 形管水银压差计上。
若⊿h=200毫米,求管轴处的流速?1 1228mH 2O 123解:γ22p p guA -=()sm hg p p g u Hg A /03.798002.0980016.138.92220=⨯⨯-⨯⨯=∆-=-=γγγγ注:⎩⎨⎧∆=--=∆+-h z z z p h z p Hg 212211γγγ3-9 相对密度为0.85的柴油,由容器A 经管路压送到容器B 。
容器A中液面的表压力为3.6大气压,容器B 中液面的表压力为0.3大气压。
两容器液面差为20米。
试求从容器A 输送到容器B 的水头损失? 解:列A 、B两液面的伯努利方程:()mp p h h p p BA B wA BwA BA8.1820980085.0980003.06.320020000000=-⨯⨯-=--=+++=++--油油油γγγ3-10 为测量输油管内流量,安装了圆锥式流量计。
若油的相对密度为0.8,管线直径D=100毫米,喉道直径d=50毫米,水银压差计读数⊿h=40厘米。
流量系数0.9,问每小时流量为若干吨? 解:γαpgA Q ∆=2()ht h t skg hg d Q M Hg /57/100036008256.15/8256.154.098008.098008.06.138.92405.014.39.010008.02422=⨯==⨯⨯⨯-⨯⨯⨯⨯⨯⨯⨯=∆-==油油γγγπραρZ 1Z 22 21 13-18 输油管上水平90º转弯处,设固定支座。