自适应滤波器翻译作业

合集下载

文献翻译(中文)

文献翻译(中文)

对多脉冲噪声的自适应阈值中值滤波通信与信息工程学院,电子科技大学成都中国中国61005与技术学院抽象衰减噪声在图像处理中起重要作用。

几乎所有的传统中值滤波器涉及去除具有单个层,其噪声灰度值是恒定的脉冲噪音。

在本文中,一种新的自适应中值滤波,提出了处理这些不仅是单层噪声的图像。

自适应阈值滤波器(ATMF)已开发通过组合自适应中值过滤器(AMF)和两个动态阈值。

动态门限的,因为正在使用,ATMF是能够平衡在除去多脉冲噪声和图像的质量。

提供该方法与传统的中值滤波的比较。

一些视觉实施例用来表明所提出的滤波器的性能。

关键词:中值滤波;自适应中值过滤器(AMF);自适应阈值中值滤波器(ATMF);多脉冲噪声;影像处理图像往往是由脉冲噪声是由于来自传感器或交际渠道产生的错误损坏。

它的边缘检测,图像分割和目标识别过程之前,以消除图像中的噪点是非常重要的。

众所周知的中值滤波器(MF)和它的衍生物已被确认为去除脉冲噪声的有效手段。

中值滤波器的成功是基于两个主要性能:边缘保持高效的噪声衰减,随着对冲动型噪声的鲁棒性。

边缘保持在图像处理必不可少由于视觉感知[7]的性质。

尽管它在平滑噪声效能,MF倾向于当应用于图像均匀地除去细的细节。

为了消除这个缺点,一个著名的改性的中值滤波,自适应中值过滤器(AMF),已经提出了。

它具有可变的窗口大小去除脉冲同时保留锐度同时。

以这种方式,边缘信息和详细信息的完整性变得更好。

上面提到的过滤器不善于去除多脉冲噪声。

然而,实际情况是,图像是由多脉冲噪声,包括单层噪声经常被破坏。

在本文中,一个基于决策的和信号自适应中值滤波算法。

它不仅实现脉冲噪声均强检测和视觉质量恢复的结果,但也确实很好地抗多的噪音。

对于噪声的识别,新的标准已在AMF加入,以使效果处理多个噪声。

此后,新的过滤器,命名为自适应阈值中值滤波器(ATMF),增加了当地的内核区域的两个动态阈值来帮助检测噪音。

仿真结果表明,该过滤器是一样好AMF的一层脉冲噪声,但比其他许多中值滤波器更好的为多脉冲噪声。

外文翻译-转炉炼钢过程中喷溅预警的基本模型

外文翻译-转炉炼钢过程中喷溅预警的基本模型

转炉炼钢过程中喷溅预警的基本模型信息技术部门,乌普萨拉大学,337信箱,751 05 乌普萨拉,瑞典摘要:碱性氧气炼钢工艺(BOS)是最流行的炼钢工艺。

当熔融金属表面产生的那层泡沫渣的高度超过炉膛并且溢出时,就出引起一系列问题,如造成金属损失,工艺过程中断和环境污染。

这种现象通常称为喷溅。

本文中描述了一种自动检测喷溅的方法,即在转炉中用位于烟罩里的一个传声器发出的声音信号去估计炉渣的水平面高度,以用于描述气体流速,压力和炉渣水平面估值之间关系的模型,从而可以及时不断更新数据。

在这个系统中,输出错误传递给一个带有三级警报的预警系统的可变检测器,持续显示喷溅情况。

用来测试该系统的数据的来自在SSAB Oxelösund 钢铁厂转炉正常生产状态下100炉次的试验,本系统能够正确检测出吹炼过程中80%的喷溅。

关键词:模型;自适应过滤器;软传感器;金属工业;钢1.前言碱性氧气炼钢工艺(BOS)是最常见的炼钢方法,其产量占钢铁生产总量的60%以上[ 1 ]。

一个碱性的氧气炉,也被称为林茨-多纳维茨(LD)的转炉,通常是由操作者在控制室里监控其吹炼过程。

操作者通常将大多数现有的控制变量(氧流量,氧枪高度,底部气体流量等)列表,根据预先确定的程序,以便处理突发性过程的偏差和干扰。

由于基本物理化学反应的复杂性,自动控制转炉过程是困难的。

此外,质量的关键参数,如碳含量和钢水温度不能在线测量,完全使反馈控制设计非常困难。

文献[ 2,3 ]给出了在线熔融金属初步分析评估问题。

在文献[ 4 ]中提出一项研究,目的是模拟转炉过程闭环控制的。

制定自动控制系统是为了保证成本效益的高质量产品,又尽量减少对环境的影响。

熔融金属表面产生的泡沫渣在整个吹炼过程中是非常有必要的,而且还构成的风险失控溢出,所谓喷溅。

预防,预测和减少喷溅是一个炼钢技术中长期存在的问题,经过长期处理都尚未在实践中解决[ 5 ] 。

一方面,普遍认同喷溅是一个复杂的、甚至不可预测的过程。

本科自适应滤波器期末考试复习补充习题

本科自适应滤波器期末考试复习补充习题

问题: (2.14)An array processor consists of a primary sensor and a reference sensor interconnected with each other. The output of the reference sensor is weighted by ω and then subtracted from the output of the primary sensor. Show that the mean-square value of the output of the array]|)([|)]()([22*210n u E n u n u E =ω where )(1n u and )(2n u are respectively, the primary and reference-sensor outputs at time n.问题 (3.17)(a) Construct the two-stage lattice predictor for the second-order autoregressive process)(n u considered in Problem 11.(b) Given white noise )(n v ,construct the two-stage lattice synthesizer for generating theautoregressive process )(n u .Check your answer against the second-order difference equation for the process )(n uthat was considered in Problem 11.Figure 3.11 is as follows:问题:(4.5)In this problem,we explore another way of deriving the steepest-descent algorithm of Eq.(4.9) used to adjust the tap-weight vector in a transversal filter. The inverse of a positive-definite matrix may beexpanded in a series as∑∞=--=01)(k R I Rμμwhere I is the identity matrix and μ is a positive constant. To ensure that the series converges, the constant μmust lie inside the range. Solution:问题: (4.9)Consider an autoregressive (AR) process of order one, described by the difference equation)()1()(n v n au n u +--=where a is the AR parameter of the process and )(n v is a zero-mean white noise of variance 2v σ. (a) Set up a linear predictor of order one to compute the parameter a ,Specifically, use the method ofsteepest descent for the recursive computation of the Wiener solution for the parameter a .(b) Plot the error-performance curve for this problem, identifying the minimum point of the curve interms of known parameters. (c) What is the condition on the step-size parameter μ to ensure stability? Justify your answer. Solution:问题:(5.8)The leaky LMS algorithm. Consider the time-varying cost function 22||)(|||)(|)(n w n e n J α+=, Where )(n w is the tap-weight vector of a transversal filter, )(n e is the estimation error, and α is a constant. As usual, )()()()(n u n w n d n e H -=,Where )(n d is the desired response and )(n J is minimized with respect to the weight vector )(n w . (a) Show that the time update for the tap-weight vector )(n w ∧is defined by)()()()1()1(*n e n u n w n w μμα+-=+∧∧(b) Using the small-step-size theory, show that ,)(])([lim 1p I R n w E n -∧∞→+=αWhere R is the correlation matrix of the inputs and p is the cross-correlation vector between the tap inputs and the desired response, What is the condition for the algorithm to converge in the mean value?(c) How would you modify the tap-input vector in the conventional LMS algorithm to get the equivalent result described in part (a)问题: (6.1)In section 6.1, we presented a derivation of the normalized LMS algorithm in its own right. In this problem, we explore another derivation of that algorithm by modifying the method of steepest decent that led to the development of the conventional LMS algorithm. The modification involves writing the tap-weight vector update in the method of the steepest descent as1(1)()()()2w n w n n n μ+=-∇,where ()n μis a time-varying step-size parameter and ()n ∇is the gradient vector defined by()2[()]n Rw n p ∇=-,in which R is the correlation matrix of the tap-input vector u(n) and p is the cross=correlation vector between the tap-input vector u(n) and the desired response d(n).(a) At times n+1, the mean-square error is defined by 2(1)[(1)]J n E e n +=+, where (1)(1)(1)(1)H e n d n w n u n +=+-++. Determine the value of the step-size parameter0()n μthat minimizes J(n+1) as a function of R and ()n ∇(b) Using instantaneous estimates for R and ()n ∇ in the expression for0()n μ derived in part (a), determine thecorresponding instantaneous estimate for 0()n μ. Hence, formulate the update equation for the tap-weight vector()w nand compare your result with that obtained for the normalized LMS algorithm.。

自适应滤波器应用题

自适应滤波器应用题

自适应滤波器应用题自适应滤波器是一种能够自动调整其内部参数的滤波器,以适应输入信号的变化。

它在许多领域都有广泛的应用,例如通信、图像处理、音频处理、控制系统等。

以下是一个关于自适应滤波器的应用题:问题描述:假设我们有一个通信系统,其中信号在传输过程中会受到噪声的干扰。

为了提高信号的传输质量,我们需要在接收端使用自适应滤波器来消除噪声。

任务要求:1. 设计一个自适应滤波器,用于消除通信系统中的噪声。

2. 给出自适应滤波器的实现原理和步骤。

3. 分析自适应滤波器的性能指标,并给出优化方法。

应用场景:通信系统中的信号传输,特别是对于那些需要高质量传输的信号,例如音频、视频、数据等。

解题思路:1. 首先,我们需要了解自适应滤波器的种类和特点,选择适合于消除噪声的自适应滤波器。

常见的自适应滤波器有最小均方误差(LMS)滤波器、递归最小二乘法(RLS)滤波器等。

2. 其次,我们需要确定自适应滤波器的参数,包括滤波器的阶数、学习因子、收敛速度等。

这些参数的选择将直接影响自适应滤波器的性能。

3. 然后,我们可以使用编程语言(如Python)来实现自适应滤波器。

在实现过程中,我们需要根据所选的自适应滤波器类型和确定的参数来编写相应的算法代码。

4. 最后,我们需要对自适应滤波器的性能进行测试和评估。

可以通过比较滤波前后的信号功率谱或均方误差等指标来衡量滤波器的性能。

如果性能不理想,可以尝试调整参数或优化算法来提高性能。

解题关键点:1. 选择合适的自适应滤波器类型和参数。

2. 实现自适应滤波器的算法代码。

3. 测试和评估自适应滤波器的性能指标。

4. 根据测试结果调整参数或优化算法以提高性能。

外文文献翻译译稿和原文【范本模板】

外文文献翻译译稿和原文【范本模板】

外文文献翻译译稿1卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,通过对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。

在很多工程应用(如雷达、计算机视觉)中都可以找到它的身影。

同时,卡尔曼滤波也是控制理论以及控制系统工程中的一个重要课题。

例如,对于雷达来说,人们感兴趣的是其能够跟踪目标.但目标的位置、速度、加速度的测量值往往在任何时候都有噪声。

卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的好的估计.这个估计可以是对当前目标位置的估计(滤波),也可以是对于将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑).命名[编辑]这种滤波方法以它的发明者鲁道夫。

E。

卡尔曼(Rudolph E. Kalman)命名,但是根据文献可知实际上Peter Swerling在更早之前就提出了一种类似的算法。

斯坦利。

施密特(Stanley Schmidt)首次实现了卡尔曼滤波器。

卡尔曼在NASA埃姆斯研究中心访问时,发现他的方法对于解决阿波罗计划的轨道预测很有用,后来阿波罗飞船的导航电脑便使用了这种滤波器。

关于这种滤波器的论文由Swerling(1958)、Kalman (1960)与Kalman and Bucy(1961)发表。

目前,卡尔曼滤波已经有很多不同的实现.卡尔曼最初提出的形式现在一般称为简单卡尔曼滤波器。

除此以外,还有施密特扩展滤波器、信息滤波器以及很多Bierman, Thornton开发的平方根滤波器的变种.也许最常见的卡尔曼滤波器是锁相环,它在收音机、计算机和几乎任何视频或通讯设备中广泛存在。

以下的讨论需要线性代数以及概率论的一般知识。

卡尔曼滤波建立在线性代数和隐马尔可夫模型(hidden Markov model)上.其基本动态系统可以用一个马尔可夫链表示,该马尔可夫链建立在一个被高斯噪声(即正态分布的噪声)干扰的线性算子上的。

系统的状态可以用一个元素为实数的向量表示.随着离散时间的每一个增加,这个线性算子就会作用在当前状态上,产生一个新的状态,并也会带入一些噪声,同时系统的一些已知的控制器的控制信息也会被加入。

(最新整理)RLS算法的自适应滤波器MATLAB仿真作业

(最新整理)RLS算法的自适应滤波器MATLAB仿真作业

(完整)RLS算法的自适应滤波器MATLAB仿真作业编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)RLS算法的自适应滤波器MATLAB仿真作业)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)RLS算法的自适应滤波器MATLAB仿真作业的全部内容。

RLS 自适应滤波器仿真作业工程1班220150820 王子豪1。

步骤1)令h M(-1)=0,计算滤波器的输出d(n)=X M T=h M(n—1);2)计算误差值e M(n)=d(n)-d(n,n—1);3)计算Kalman增益向量K M(n);4)更新矩阵的逆R M—1(N)=P M(N);5)计算h M(n)=h M(n—1)+K M(n)e M(n);2.仿真RLS 中取T (—1)=10,λ=1及λ= 0。

98;信号源x(n)与之前LMS算法仿真不变,对自适应滤波器采用RLS算法。

通过对比不同遗忘因子λ的情况下RLS的误差收敛情况。

取λ=0。

98和λ=1两种情况下的性能曲线如图1所示。

其系数收敛情况如图2所示.图1 不同λ值下的RLS算法性能曲线(100次实验平均)图2 不同λ值下的RLS算法系数收敛情况(100次实验平均)3.结果分析RLS算法在算法的稳态阶段、即算法的后期收敛阶段其性能和LMS算法相差不明显。

但在算法的前期收敛段,RLS算法的收敛速度要明显高于LMS算法。

但是RLS算法复杂度高,计算量比较大。

遗忘因子λ越小,系统的跟踪能力越强,同时对噪声越敏感;其值越大,系统跟踪能力减弱,但对噪声不敏感,收敛时估计误差也越小.4. Matlab程序clear;clc;N=2048; %信号的取样点数M=2;%滤波器抽头的个数iter=500;%迭代次数%初始化X_A=zeros(M,1);%X数据向量y=zeros(1,N);%预测输出err=zeros(1,iter); %误差向量errp=zeros(1,iter);%平均误差wR=zeros(M,iter); %每一行代表一次迭代滤波器的M个抽头参数T=eye(M,M)*10;%RLS算法下T参数的初始化,T初始值为10X=zeros(1,M);lamuta=0.98 ; %遗忘因子for j=1:100ex=randn(1,N); %噪声信号e(n)x=filter(1,[1,—1。

基于RLS算法自适应滤波器

基于RLS算法自适应滤波器

基于RLS算法自适应滤波器作者: 日期:基于RLS算法自适应滤波器的设计摘要自适应滤波器是统计信号处理的一个重要组成部分。

在实际应用中,由于没有充足的信息来设计固定系数的数字滤波器,或者设计规则会在滤波器正常运行时改变,因此需要研究自适应滤波器。

凡是需要处理未知统计环境下运算结果所产生的信号或需要处理非平稳信号时,自适应滤波器可以提供非自适应方法所不可能提供的新的信号处理能力。

而且其性能通常远优于用常方法设计的固定滤波器。

本文从自适应滤波器研究的意义入手,介绍了自适应滤波器的基本理论思想,具体阐述了自适应滤波器的基本原理、算法及设计方法。

自适应滤波器的算法是整个系统的核心。

对RLS算法自适应滤波器做了详细的介绍,采用改进的RLS算法设计自适应滤波器,并采用MATLAB进行仿真,通过实验结果来体现该滤波器可以根据信号随时修改滤波参数,达到动态跟踪的效果,使滤波信号更接近于原始信号。

关键词:自适应滤波器,RLS算法,噪声消除,FIR第1章绪论1.1课题研究意义和目的滤波技术是信号处理中的一种基本方法和技术,尤其数字滤波技术使用广泛,数字滤波理论的研究及其产品的开发一直受到很多国家的重视。

对自适应滤波算法的研究是当今自适应信号处理中最为活跃的研究课题之一。

Windrow等于1967年提出的自适应滤波系统的参数能自动的调整而达到最优状况,而且在设计时,只需要很少的或根本不需要任何关于信号与噪声的先验统汁知识。

这种滤波器的实现差不多像维纳滤波器那样简单,而滤波器性能几乎如卡尔曼滤波器一样好。

自适应滤波器与普通滤波器不同,它的冲激响应或滤波参数是随外部环境的变化而变化的,经过一段自动调节的收敛时间达到最佳滤波的要求。

自适应滤波器本身有一个重要的自适应算法,这个算法可以根据输入、输出及原参量信号按照一定准则修改滤波参量,以使它本身能有效的跟踪外部环境的变化。

因此,自适应数字系统具有很强的自学习、自跟踪能力和算法的简单易实现性。

基于LMS算法的自适应组合滤波器中英文翻译

基于LMS算法的自适应组合滤波器中英文翻译

Combined Adaptive Filter with LMS-Based Algorithms ´Abstract: A combined adaptive filter is proposed. It consists of parallel LMS-based adaptive FIR filters and an algorithm for choosing the better among them. As a criterion for comparison of the considered algorithms in the proposed filter, we take the ratio between bias and variance of the weighting coefficients. Simulations results confirm the advantages of the proposed adaptive filter.Keywords: Adaptive filter, LMS algorithm, Combined algorithm,Bias and vari ance trade-off1.IntroductionAdaptive filters have been applied in signal processing and control, as well as in many practical problems, [1, 2]. Performance of an adaptive filter depends mainly on the algorithm used for updating the filter weighting coefficie nts. The most commonly used adaptive systems are those based on the Least Mean Square (LMS) adaptive algorithm and its modifications (LMS-based algorithms).The LMS is simple for implementation and robust in a number of applications [1–3]. However, since it does not always converge in an acceptable manner, there have been many attempts to improve its performance by the appropriate modifications: sign algorithm (SA) [8], geometric mean LMS (GLMS) [5], variable step-size LMS(VS LMS) [6, 7].Each of the LMS-base d algorithms has at least one parameter that should be defined prior to the adaptation procedure (step for LMS and SA; step and smoothing coefficients for GLMS; various parameters affecting the step for VS LMS). These parameters crucially influence the filter output during two adaptation phases:transient and steady state. Choice of these parameters is mostly based on some kind of trade-off between the quality of algorithm performance in the mentioned adaptation phases. We propose a possible approach for the LMS-based adaptive filter performance improvement. Namely, we make a combination of several LMS-based FIR filters with different parameters, and provide the criterion for choosing the most suitable algorithm for different adaptation phases. This method may be applied to all the LMS-based algorithms, although we here consider only several of them.The paper is organized as follows. An overview of the considered LMS-based algorithms is given in Section 2.Section 3 proposes the criterion for evaluation and combination of adaptive algorithms. Simulation results are presented in Section 4.2. LMS based algorithms Let us define the input signal vector T k N k x k x k x X )]1()1()([+--= and vector of weighting coefficients as T N k k W k W k W W )]()()([110-= .The weighting coefficients vector should be calculated according to:}{21k k k k X e E W W μ+=+ (1) where µ is the algorithm step, E{·} is the estimate of the expected value and k T k k k X W d e -=is the error at the in-stant k,and dk is a reference signal. Depending on the estimation of expected value in (1), one defines various forms of adaptive algorithms: the LMS {}()k k k k X e X e E =,the GLMS {}()()∑=--≤<-=k i i k i k i k k a X e a a X e E 010,1, and the SA {}()()k k k k e sign X X e E =,[1,2,5,8] .The VS LMS has the same form as the LMS, but in the adaptation the step µ(k) is changed [6, 7].The considered adaptive filtering p roblem consists in trying to adjust a set of weighting coefficients so that the system output,k T k k X W y =, tracks a reference signal, assumed as k k Tk k n X W d +=*,where k n is a zero mean Gaussian noise with thevariance 2n σ,and *k W is the optimal weight vector (Wiener vector). Two cases will be considered:W W k =* is a constant (stationary case) and *k W is time-varying (nonstationary case). In nonstationary case the unknown system parameters( i.e. the optimal vector *k W )are time variant. It is often assumed that variation of *k W may be modeled as K k k Z W W +=+**1 is the zero-mean random perturbation, independent onk X and k n with the autocorrelation matrix []I Z Z E G Z T k k 2σ==.Note that analysis for the stationary case directly follows for 02=Zσ.The weighting coefficient vector converges to the Wiene r one, if the condition from [1, 2] is satisfied.Define the weighting coefficientsmisalignment, [1–3],*k k k W W V -=. It is due to both the effects of gradient noise (weighting coefficients variations around the average value) and the weighting vector lag (difference between the average and the optimal value), [3]. It can be expressed as:()()()()*k k k k k W W E W E W V -+-=, (2)According to (2), the ith element of k V is:(3)where ()()k W bias i is the weighting coefficient bias and ()k i ρ is a zero-mean random variable with the variance 2σ.The variance depends on the type ofLMS-based algorithm, as well as on the external noise variance 2n σ.Thus, if the noisevariance is constant or slowly-varying,2σ is time invariant for a particular LMS-based algorithm. In that sense, in the analysis that follows we will assume that 2σ depends only on the algorithm type, i.e. on its parameters.An important performance measure for an adaptive filter is its mean square deviation (MSD) of weighting coefficients. For the adaptive filters, it is given by, [3]:[]k T k k V V E MSD ∞→=lim .3. Combined adaptive filterThe basic idea of the combined adaptive filter lies in parallel implementation of two or more adaptive LMS-based algorithms, with the choice of the best among them in each iteration [9]. Choice of the most appropriate algorithm, in each iteration, reduces to the choice of the best value for the weighting coefficients. The best weighting coefficient is the one that is, at a given instant, the closest to the corresponding value of the Wiener vector.Let ()q k W i , be the i −th weighting coefficient for LMS -based algorithm with the chosen parameter q at an instant k. Note that one may now treat all the algorithms in a unified way (LMS: q ≡ µ,GLMS: q ≡ a,SA:q ≡ µ). LMS -based algorithm behavior is crucially dependent on q. In each iteration there is an optimal value qopt , producing the best performance of the adaptive al-gorithm. Analyze no w a combined adaptive filter, with several LMS -based algorithms of the same type, but with different parameter q.The weighting coefficients are random variables distributed around the ()k W i *,with()()q k W bias i ,and the variance 2q σ, related by [4, 9]: ()()()()q i i i q k W bias k W q k W κσ≤--,,*, (4)where (4) holds with the probability P(κ), dependent on κ. For example, for κ = 2 and ()()()()()()()()()()()()k k W bias k W E k W k W k W E k V i i i i i i i ρ+=-+-=*a Gaussian distribution,P(κ) = 0.95 (two sigma rule).Define the confidence intervals for ()]9,4[,,q k W i :()()()[]q i q i i q k W k q k W k D κσσ2,,2,+-= (5) Then, from (4) and (5) we conclude that, as long as ()()q i q k W bias κσ<,,()()k D k W i i ∈*, independently on q. This means that, for small b ias, the confidence intervals, for different s q ' of the same LMS-based algorithm, of the same LMS-based algorithm, intersect. When, on the other hand, the bias becomes large, then the central positions of the intervals for different s q ' are far apart, and they do not intersect.Since we do not have apriori information about the ()()q k W bias i ,,we will use a specific statistical approach to get the criterion for the choice of adaptive algorithm, i.e. for the values of q. The criterion follows from the trade-off condition that bias and variance are of the same order of magnitude, i.e.()()[]4,,q i q k W bias κσ≅.The proposed combined algorithm (CA) can now be summarized in the following steps:Step 1. Calculate ()q k W i ,for the algorithms with different s q 'from the predefined set {} ,,2q q Q i =.Step 2. Estimate the variance 2q σ for each considered algorithm.Step 3. Check if ()k D i intersect for the considered algorithms. Start from an algorithm with largest value of variance, and go toward the ones with smaller values of variances. According to (4), (5) and the trade-off criterion, this check reduces to the check if()()()ql qm l i m i q k W q k W σσκ+<-2,, (6)is satisfied, where Q q q l m ∈,,and the following relation holds:Q q q h ql qh qm h ∉⇒>>∀,:222σσσ.If no ()k D i intersect (large bias) choose the algorithm with largest value of variance. If the ()k D i intersect, the bias is already small. So, check a new pair of weighting coefficients or, if that is the last pair, just choose the algorithm with the smallest variance. First two intervals that do not intersect mean that the proposed trade-off criterion is achieved, and choose the algorithm with large variance.Step 4. Go to the next instant of time.The smallest number of elements of the set Q is L =2. In that case, one of the s q 'should provide good tracking of rapid variations (the largest variance), while the other should provide small variance in the steady state. Observe that by adding few more s q ' between these two extremes, one may slightly improve the transient behavior of the algorithm.Note that the only unknown values in (6) are the variances. In our simulations weestimate 2q σ as in [4]:()()()2675.0/1--=k W k W median i i q σ, (7)for k = 1, 2,... , L and 22qZ σσ<<. The alternative way is to estimate 2n σ as:∑=≈T i i n e T 1221σ,for x(i) = 0. (8) Expressions relating 2n σ and 2q σ in steady state, for different types of LMS-basedalgorithms, are known from literature. For the standard LMS algorithm in steady state, 2n σ and 2q σ are related 22nq q σσ=,[3]. Note that any other estimation of 2q σis valid for the proposed filter.Complexity of the CA depends on the constituent algorithms (Step 1), and on the decision algorithm (Step 3).Calculation of weighting coefficients for parallel algorithms does not increase the calculation time, since it is performed by a parallel hardware realization, thus increasing the hardware requirements. The variance estimations (Step 2), negligibly contribute to the increase of algorithm complexity, because they are performed at the very beginning of adaptation and they are using separate hardware realizations. Simple analysis shows that the CA increases the number of operations for, at most, N(L −1) additions and N(L −1) IF decisions, and needs some additional hardware with respect to the constituent algorithms.4.Illustration of combined adaptive filterConsider a system identification by the combination of two LMS algorithms with different steps. Here, the parameter q is μ,i.e. {}{}10/,,21μμ==q q Q .The unknown system has four time-invariant coefficients,and the FIR filters are with N = 4. We give the average mean square deviation (AMSD ) for both individual algorithms, as well as for their combination,Fig. 1(a). Results are obtained by averaging over 100 independent runs (the Monte Carlo method), with μ = 0.1. Thereference dk is corrupted by a zero-mean uncorrelated Gaussian noise with 2n σ= 0.01and SNR = 15 dB, and κ is 1.75. In the first 30 iterations the variance was estimated according to (7), and the CA picked the weighting coefficients calculated by the LMS with μ.As presented in Fig. 1(a), the CA first uses the LMS with μ and then, in the steady state, the LMS with μ/10. Note the region, between the 200th and 400th iteration,where the algorithm can take the LMS with either stepsize,in different realizations. Here, performance of the CA would be improved by increasing the number of parallel LMS algorithms with steps between these two extrems.Observe also that, in steady state, the CA does not ideally pick up the LMS with smaller step. The reason is in the statistical nature of the approach.Combined adaptive filter achieves even better performance if the individual algorithms, instead of starting an iteration with the coefficient values taken from their previous iteration, take the ones chosen by the CA. Namely, if the CA chooses, in the k -th iteration, the weighting coefficient vector P W ,then each individual algorithm calculates its weighting coefficients in the (k +1)-th iteration according to:{}k k p k X e E W W μ21+=+(9)Fig. 1. Average MSD for considered algorithms.Fig. 2. Average MSD for considered algorithms.Fig. 1(b) shows this improvement, applied on the previous example. In order to clearly compare the obtained results,for each simulation we calculated the AMSD . For the first LMS (μ) it was AMSD = 0.02865, for the second LMS (μ/10) it was AMSD = 0.20723, for the CA (CoLMS) it was AMSD = 0.02720 and for the CA with modification (9) it was AMSD = 0.02371.5. Simulation resultsThe proposed combined adaptive filter with various types of LMS-based algorithms is implemented for stationary and nonstationary cases in a system identificationsetup.Performance of the combined filter is compared with the individual ones, that compose the particular combination.In all simulations presented here, the reference dk is corrupted by a zero-meanuncorrelated Gaussian noise with 1.02=nσand SNR = 15 dB. Results are obtained by averaging over 100 independent runs, with N = 4, as in the previous section.(a) Time varying optimal weighting vector: The proposed idea may be applied to the SA algorithms in a nonstationary case. In the simulation, the combined filter is composed out of three SA adaptive filters with different steps, i.e. Q = {μ, μ/2, μ/8}; μ = 0.2. The optimal vectors is generated according to the presented model with 001.02=Z σ,and with κ = 2. In the first 30 iterations the variance was estimated according to (7), and CA takes the coefficients of SA with μ (SA1).Figure 2(a) shows the AMSD characteristics for each algorithm. In steady statethe CA does not ideally follow the SA3 with μ/8, because of the nonstationary problem nature and a relatively small difference between the coefficient variances of the SA2 and SA3. However,this does not affect the overall performance of the proposed algorithm. AMSD for each considered algorithm was: AMSD = 0.4129 (SA1,μ), AMSD = 0.4257 (SA2,μ/2), AMSD = 1.6011 (SA3, μ/8) and AMSD = 0.2696 (Comb).(b) Comparison with VS LMS algorithm [6]: In this simulation we take the improved CA (9) from 3.1, and compare its performance with the VS LMS algorithm [6], in the case of abrupt changes of optimal vector. Since the considered VS LMS algorithm[6] updates its step size for each weighting coefficient individually, the comparison of these two algorithms is meaningful.All the parameters for the improved CA are the same as in 3.1. For the VS LMS algorithm [6], the relevant parameter values are the counter of sign change m0 = 11,and the counter of sign continuity m1 = 7. Figure 2(b)shows the AMSD for the compared algorithms, where one can observe the favorable properties of the CA, especially after the abrupt changes. Note that abrupt changes are generated by multiplying all the system coefficients by −1 at the 2000-th iteration (Fig. 2(b)). The AMSD for the VS LMS was AMSD = 0.0425, while its value for the CA (CoLMS) was AMSD = 0.0323.For a complete comparison of these algorithms we consider now their calculation complexity, expressed by the respective increase in number of operations with respect to the LMS algorithm. The CA increases the number of requres operations for N additions and N IF decisions.For the VS LMS algorithm, the respective increase is: 3N multiplications, N additions, and at least 2N IF decisions.These values show the advantage of the CA with respect to the calculation complexity.6. ConclusionCombination of the LMS based algorithms, which results in an adaptive system that takes the favorable properties of these algorithms in tracking parameter variations, is proposed.In the course of adaptation procedure it chooses better algorithms, all the way to the steady state when it takes the algorithm with the smallest variance of theweighting coefficient deviations from the optimal value.Acknowledgement. This work is supported by the Volkswagen Stiftung, Federal Republic of Germany.基于LMS算法的自适应组合滤波器()()k W bias i 是加权系数的偏差,()k i ρ与方差2σ是零均值的随机变量差,它取决于LMS 的算法类型,以及外部噪声方差2n σ。

自适应滤波器(终)

自适应滤波器(终)


Company Logo
仿真结论
µ的增大加快 的增大加快 收敛速度, 稳态误差。 收敛速度,增大稳态误差。
收敛速度与稳 态误差相互矛 盾,为使算法 最优,要寻找 平衡点
阶数的增大加快收敛速度,增大稳态误差 阶数的增大加快收敛速度,增大稳态误差

四、自适应滤波器的应用
1、自适应噪声抵消器 、
原 输 S(n) +V0 (n) 始 入
信号源
+ ˆ V0 (n)
e(n)
ˆ s(n)
噪声源
V1 (n)
自适应滤波

Company Logo
2、电网谐波电流预测 、 目前, 目前,提高电网电能质量的趋势是采用有源电 力滤波器(APF),但数字计算过程不可避免地 力滤波器( ),但数字计算过程不可避免地 ), 引入延时,造成APF补偿信号的相位滞后,影响 补偿信号的相位滞后, 引入延时,造成 补偿信号的相位滞后 其优良性能的发挥。 其优良性能的发挥。 自适应滤波器通过改进的LMS算法可以根据 自适应滤波器通过改进的 算法可以根据 输入数据的大小, 输入数据的大小,自动地取较大或较小的收敛因 这种方法改善了因延迟造成的APF补偿信号 子。这种方法改善了因延迟造成的 补偿信号 的相位滞后问题,而且该方法算法简单, 的相位滞后问题,而且该方法算法简单,便于数 字化实现。 字化实现。
基于LMS算法的自适应滤波器的 研究与应用
主讲人:贺鹏
14小组成员:范莹 郭静 高春杰
主要内容
一、自适应滤波器 二、LMS算法 LMS算法 三、改进的LMS算法 改进的LMS算法 四、自适应滤波器的应用

Company Logo
一、自适应滤波器
自 适 应 滤 波 器

第八部分自适应滤波器Adaptivefilter

第八部分自适应滤波器Adaptivefilter
习惯上称为Widrow and Hoff LMS算法。
方法原理是: “下一时刻”权系数向量应该等于“现时刻”
权系 数向量加上一个负均方误差梯度的比例项,即
16
上式中, 是一个控制收敛速度与稳定性
的常数,称之为收敛因子。
LMS算法的两个关键: 梯度的计算 收敛因子的选择
17
(一) 的近似计算
• 直接取 即
引言
AR参数模型和维纳滤波器
(1)适合用于处理平稳随机信号 (2)需要知道信号和噪声的先验统计特性 (3)处理系统参数是固定的。
1
引言
卡尔曼滤波器 (第六章)
(1)适用于非平稳随机信号; (2)需要知道信号和噪声的先验统计特性; (3)滤波器参数是时变的。
2
引言
实际应用情况 (1)生物体的复杂性,非平稳性突出; (2)无法得到信号和噪声的先验知识
作为均方误差
的估计值,
• 式中的

• 代入上式中,得到梯度估值
18
(一) 的近似计算
• 于是,Widrow – Hoff LMS算法最终为 上式的实现方框图如下图所示
19
梯度估值 的无偏性分析
• 的数学期望为
• 上式表明,梯度估值
是无偏估计。
20
(二)
• 权系数向量更新公式
的选择
• 对其两边取数学期望,得
基本LMS算法原理:
线性组合器的输出与期望响应之间的误差的均 方值为极小。
8
第一节 LMS自适应维纳滤波器
线性组合器输入: 定义权向量: 则线性组合器输出: 误差平方为:
10
上式两边取数学期望后,得均方误差: 定义互相关函数行向量和自相关函数矩阵:
则均方误差可表述为:

自适应滤波实验报告

自适应滤波实验报告

LMS 自适应滤波实验报告姓名: 学号: 日期:2015.12.2实验内容:利用自适应滤波法研究从宽带信号中提取单频信号的方法。

设()()()()t f B t f A t s t x 212cos 2cos πϕπ+++=,()t s 是宽带信号,A ,B ,1f ,2f ,ϕ任选(1)要求提取两个单频信号;(2)设f f f ∆+=12,要求提取单频信号()t f 22cos π,研究f ∆的大小对提取单频信号的影响。

1. 自适应滤波器原理自适应滤波器理论是现代信号处理技术的重要组成部分,它对复杂信号的处理具有独特的功能。

自适应滤波器在信号处理中属于随机信号处理的范畴。

在一些信号和噪声特性无法预知或他们是随时间变化的情况下,自适应滤波器通过自适应滤波算法调整滤波器系数,使得滤波器的特性随信号和噪声的变化,以达到最优滤波的效果,解决了固定全系数的维纳滤器和卡尔曼滤波器的不足。

(1) 自适应横向滤波器所谓自适应滤波,就是利用前一时刻已获得的滤波器参数等结果,自动调节现时刻的滤波器参数,以适应信号和噪声未知或随时间变化的统计特性,从而实现最优滤波。

自适应滤波器由两个部分组成:滤波器结构和调节滤波器系数的自适应算法。

自适应滤波器的特点是自动调节自身的冲激响应,达到最优滤波,此算法适用于平稳和非平稳随机信号,并且不要求知道信号和噪声的统计特性。

一个单输入的横向自适应滤波器的原理框图如图所示:实际上这种单输入系统就是一个FIR 网络结构,其输出()n y 用滤波器单位脉冲响应表示成下式:()()()∑-=-=1N m m n x m w n y这里()n w 称为滤波器单位脉冲响应,令:()()n i n x x i w w m i i i ,1,1,1+-=-=+=用j 表示,上式可以写成∑==Ni ij i j x w y 1这里i w 也称为滤波器加权系数。

用上面公式表示其输出,适用于自适应线性组合器,也适用于FIR 滤波器。

自适应滤波器翻译作业概要

自适应滤波器翻译作业概要

第八章快速横向LMS滤波算法8.1 简介在大量的算法解决最小二乘问题递归形式的方法中快速横向递归最小二乘(FTRLS算法是非常具有吸引力,因为其能减少计算复杂度。

FTRLS算法可以通过求解同时向前和向后的线性预测问题,连同其他两个横向过滤器:过程估计量和一个辅助滤波器的期望信号向量有一个作为其第一和唯一的非零元素(例如,d(0= 1。

与格型算法相比,FTRLS算法只需要时间递归方程。

然而,需要得到一些FTRLS算法的关系,可参考前面一章LRLS算法。

FTRLS算法考虑快速的横向滤波器RLS的算法更新的解决方法。

因为顺序固定,更新横向自适应滤波器系数向量在每个计算中都迭代。

格型算法的向后和向前的派生关系可以用于预测所派生的FTRLS算法。

由此产生的算法计算复杂度在实际中实现N使它们特别具有吸引力。

相比格型算法,FTRLS算法的计算复杂度较低,由于没有权向量更新方程。

特别是,FTRLS算法通常需要7 n到11 n每输出样本,乘法和除法则需要LRLS 14n到29 n计算。

因此,FTRLS算法被认为是最快的解决方案的实现RLS的问题[1]-[7]。

在工程实践领域相继提出几种不同的FTRLS算法,所谓的快速卡尔曼算法[1],这的确是一个早期的快速横向RLS算法,计算11n次乘法和除法的复杂运算在每次输出示例。

在后面的研究阶段开发领域的快速横向算法,快速后验误差序列的技术(fa[2],快速横向滤波器(FTF[3]算法提出了要求,同样需要7n乘法和每次除法的输出样本。

FTF算法是具有最低的复杂性的RLS算法,不幸的是,这些算法对量子化效应非常敏感,如果有一些步骤没被采取将会变得不稳定。

在这一章,FTRLS算法的一种特殊形式将被提到,基于那些被提的网格算法所派生出来的。

众所周知,量子化错误在FTRLS算法中是指数发散 [1]-[7]。

自从FTRLS算法不稳定的行为用有限精度算法实现的时候,我们讨论实现FTRLS数值稳定的算法,并提供一个特定算法的描述[8],[10]。

基于SystemGenerator的自适应滤波器仿真与实现

基于SystemGenerator的自适应滤波器仿真与实现

开 发 应 用基于System Generator的 自适应滤波器仿真与实现周志平(洛阳理工学院,河南 洛阳 471000) 摘 要:自适应滤波器是一种能够自动调整本身参数的滤波器,在设计时不需要预先知道关于输入信号和噪声的统计特 性。

通过改变系统的单位冲击响应,达到最优滤波效果。

本文采用Matlab和System Generator对LMS算法的自适应滤波 器进行设计和仿真,结果表明其可以对信号噪声的自适应滤除。

关键词:自适应滤波器;LMS System Generator DOI:10.3969/j.issn.1671-6396.2011.20.015 The Simulation and Implementation of Adaptive Filter Based on System Generator ZHOU Zhi-ping (Luoyang Institute of Technology,Luoyang,Henan 471000) Abstract:Adaptive filter is featured by its automatic parameter adjustment.The input signal and noise statistics characteristic is not needed when designing the filter.Optimum filter is achieved by changing the pulse response of the filter.This article designed and simulated a LMS adaptive filter using Matlab and System Generator.The results showed its adaptive noise filtering out from input signal. Key words:Adaptive filter;LMS System Generator引言 自适应滤波器是一种能够根据输入信号进行数字信号 处理并自动调整响应的数字滤波器。

外文翻译---基于LMS自适应滤波器在直达波消除中的运用

外文翻译---基于LMS自适应滤波器在直达波消除中的运用

外文翻译学生姓名学号院系电子与信息工程专业电子信息工程指导教师二O一一年六月二日基于LMS 自适应滤波器在直达波消除中的运用徐元军,陶源,王越,单涛电子工程系,信息科学与技术学院,北京理工大学,北京100081,中国摘要:本文介绍了使用最小均方(LMS)算法消除无源雷达收到的直达波。

并由此推导出直达波的模型。

通过使用基于LMS 算法的FIR 自适应滤波器,从而开发出来调频无源雷达的软件解决方案,从而代替了利用硬件对无源雷达的调试。

由此我们获得的一些无源雷达的仿真结果。

这些仿真结果预示着利用LMS 算法消除直达波是十分有效的。

关键字:LMS 算法;自适应滤波器;直达波消除;在以往的雷达系统的研究中,大多数的雷达专家都曾经专注于无源雷达系统,但是只是把它当做只用作为商业电台的广播电台发射器,比如电视和GSM 发射机等。

而这种无源雷达系统的其他的一些潜在运用仅仅只是在一些实验[1]中被介绍.无源雷达系统通常包括一个参考接收器和一个回波接收器。

在实际中,无源雷达的回波接收器通常不仅收到目标的回波,而且也接收到由于多径传播效应而产生的回波。

由于在实际中的雷达的横截面(RCS)的目标通常是非常小的,与多径传播效应而产生的回波相比,目标的回波是非常微弱的,这使得检测信号变得十分困难。

这就是为什么在这种情况下,实现目标的检测成为一项极其艰巨的任务。

在实际中,无源雷达设备使用了各种各样的不同方案来解决这个问题[2][3]。

但是这些方法都需要添加特殊的硬件才能够实现直达波的消除。

为了解决这个问题,现在我们可以采用软件的方法来实现直达波的消除。

在过去几十年的滤波器理论研究中,自适应信号处理经过不断的发展已经成为了现在研究的热门领域之一。

越来越多的自适应理论被广泛地运用于实际生活和生产中。

实际中的一些重要的运用主要包括自适应线性预测,回波消除,自适应通道均衡等。

自适应理论的这些运用使我们意识到也可以采用自适应滤波器来实现直达波消除。

文献翻译-基于自适应滤波器的组合导航信息融合

文献翻译-基于自适应滤波器的组合导航信息融合

英文翻译系别专业名称班级学生姓名学号指导教师Information Fusion of Integrated Navigation Based onSelf-adaptive FilterAbstract- In order to realize high accuracy and excellent reliability of navigation system, information fusion technology of integrated navigation based on self-adaptive filter is researched in this paper. Inertial navigation system (INS), global navigation satellite system (GNSS),synthetic aperture radar (SAR) and barometric altimeter (BA) are taken to construct INS/GNSS/SARIBA integrated system.INS is regarded as the primary navigation equipment, and other systems are aided navigation equipments. Firstly, errors of INS, GNSS, SAR and BA are modeled and chosen as system states of integrated navigation. Based on self-adaptive filter algorithm, output information of INS and GNSS are fused in INS/GNSS integrated navigation filter, and output information of INS, SAR and BA are fused in INS/SARIBA integrated navigation filter. Then the federated filter frame is designed, and estimations of system states from INS/GNSS and INS/SARIBA local filters are fused once more in the master filter independently.Consequently global optimal estimations of system states are given by the master filter, which are used to correct errors of INS. Simulation results show that,position accuracy of INS/GNSS/SARIBA integrated navigation reaches±1l.6m,attitude accuracy reaches ±0.52,velocity accuracy reaches ±0.14m/s, and its reliability is very excellent when noise statistics characteristics of some navigation equipment are variational in the navigation process.Keywords-information fusion; integrated navigation; self­adaptive filter; inertial navigation system; global navigation satellite system; synthetic aperture radar; barometric altimeterI.INTRODUCTIONThe accuracy and reliability of navigation system are more and more important for the modern flight task.Integrated navigation technology based on information fusion is an available approach to improve the accuracy and reliability of the navigation system . By fusing navigation information from all sorts of navigation equipments, integrated navigation can take full advantage of each non­similar navigation sub-systems. Based on Wiener filtering, Kalman filtering,self-adaptive filtering and other information fusion technologies, the optimal estimates of navigation parameters can be obtained.At present, inertial navigation system (INS) is widely used in spaceflight, aviation and other fields. It has strong anti-interference capability, and can provide position,attitude, velocity and other parameters. But its errors accumulate with navigation time. Global navigation satellite system (GNSS) is the most precise navigation system in the world, but satellite signals of GNSS are subject to be interfered or shielded [2]. Similarly, other modern navigation systems also have several disadvantages. However, accuracy, reliability and anti-interference capability of navigation system become more and more important for the modern aircraft. In order to realize higher accuracy and more excellent performance, it is necessary to take full advantage of each navigation system by information fusion technology.INS, GNSS, synthetic aperture radar (SAR) and barometrical time ter(BA)are taken to construct INS/GNSS/SARIBA integrated navigation system by information fusion technology in this paper. INS is regarded as the primary navigation equipment, and other systems are aided navigation equipments. Noise statistics characteristics of these aided navigation equipments are probably uncertain or variational during the navigation process, which will lower the accuracy of Kalman filter [3], so self-adaptive filter is adopted to design local filters of integrated navigation. In order to obtain global optimal estimations of system states, the federated filter frame andglobal optimal information fusion algorithm are designed. Thus high accuracy, strong reliability and good anti-interference capability are realized in INS/GNSS/SARIBA integrated navigation system.In this integrated navigation system, East-North-Up geography coordinate is chosen as navigation coordinate. INS, GNSS, SAR and BA are all mounted on the aircraft. INS outputs the position, velocity and attitude of the aircraft, GNSS output the position and velocity, SAR outputs the latitude and longitude of the position, and BA outputs the altitude. Errors of INS, GNSS, SAR and BA are chosen as system states of integrated navigation. The difference between position outputs of INS and GNSS, and the difference between velocity outputs of INS and GNSS are taken as the measurement of INS/GNSS integrated navigation. At the same time, the difference between position outputs of INS and SAR, and the difference between altitude outputs of INS and BA are taken as the measurement of INS/SARIBA integrated navigation. Then two measurements are sent to corresponding local filters, and two local estimations of system states are obtained by information fusion algorithm. Two local estimations are sent to the master filer, and then global optimal estimations of system states are given in the master filter by the global Optimal Fusion Algorithm. Finally, global optimal estimations are used to correct errors of INS, and outputs of corrected INS are regarded as outputs of INS/GNSS/SARIBA integrated navigation system. So the above information fusion scheme in integrated navigation is described as follows:In the design of integrated navigation, errors of navigation equipments are taken as system states, so errors of INS, GNSS, SAR and BA must be analyzed and modeled firstly. Errors of inertial instrument are the main error sources of INS. After calibration and compensation, random drifts are reserved in inertial instrument errors, which including constant drifts of gyro white noises of gyros constant biases of accelerometers and white noises ofaccelerometers where i = x, y, Z denote the X, Y and Z axes of the aircraft. And thus inertial instrument errors generate other errors of INS, including analytic platform attitude error, velocity error and position error. Model equations of above errors are provided in many references, so unnecessary details are not given in this paper. GNSS is the most precise navigation system in the world, and its positioning accuracy reaches several dozens meters. So errors of GNSS are usually considered as white noise processes, and not chosen as system states of integrated navigation So system states of INS/GNSS integrated navigation include inertial instrument errors, analytic platform attitude errors of INS,velocity errors.According to error model of INS, state equation of INS/GNSS integrated navigation can be written as Based on (2) and (5), the information fusion of INS/GNSS integrated navigation can be accomplished by Kalman filter usually. However, satellite signals of GNSS are subject to be influenced during the navigation process, and noise statistics characteristics of GNSS are probably uncertain or variational, which will lower the accuracy of Kalman filter obviously [5]. So the following simplified Sage-Husa self-adaptive filtering algorithm is taken as the information fusion algorithm in INS/GNSS integrated navigation.SAR is a sort of imaging radar with high resolution.Among its wide-range applications, SAR mounted on the aircraft can realize navigation function by image processing and matching technology. At present, SAR can output the latitude and longitude of the position of the aircraft, and its accuracy reaches several dozens meters.In matching navigation of SAR, antenna attitude errors of SAR are the main error sources. Thus antenna attitude errors of SAR must be considered and modeled. Once SAR is mounted on the aircraft, its antenna attitude errors usually can beconsidered as random constant. So antenna attitude errors If/i can be modeled as follows.Barometric altimeter (BA) is a sort of precise equipment for measuring the altitude. It can calculate the altitude of the carrier by measuring the barometric value. By analyzing work principle and actual output data of BA, it is found that altitude error of BA is subject to be influenced by environment temperature and wind power [6], and it can be described as the combination of random walk and white noise. So altitude error of BA can be modeled as follow.As the traditional navigation system can’t satisfy the requirements of the navigating position of the Autonomous Underwater Vehicles(AUV),especially in the long time and long range travel. Based on the practical thing and the developments of navigation technique,we design the Integrated Navigation System of the AUV in this paper. Using timing introducing GPS navigation information,we solve the question of the positional error accumulated with the time due to strapdown inertial navigation system(SINS) and doppler Navigation System.And by means of simulation study,the result indicates that the design method in this paper is proper,which can increase the positioning accuracy of UA V in the long time and long range travel.The main research work is done as follows:Design the strapdown inertial navigation system of AUV. The basic navigation algorithm of SINS is inferenced detailedly.We make the formula derivation of the basic position, speed and attitude of the strapdown inertial navigation,and analysis the error characteristics of SINS systematically.And at the same time we establish its error model equation. Research the composition of GPS,the basic principle of navigation position一setting,and the analysis of data error.Aimed at the different error source,this paper establish the variant basic error model.This paper detailedly Introduce the Doppler velometer, electric gyrocompass and strapdown flux一gate azimuth finder,and so on,which compose the Doppler navigation system.Research the operating principle and error source of the subsystem. Deduce the error formula,and establish its error model.Design of the Integrated Navigation system of AUV. Based on the variousnavigation system error,aimed at the navigation characteristic in the long time and long range travel,by means of the vehicle receiving the GPS Navigation information by timing rise,we design the Integrated Navigation System.The simulation result shows that after timing introducing GPS Navigation information this navigation system can increase the positioning accuracy evidently,and overcome the question of the positional error accumulated with the of time in SINS/DVL Integrated Navigation.Simulation result figures show that, INS/GNSS/SARIBA integrated navigation method based on self-adaptive filter realizes high accuracy and excellent reliability. Figure 2 shows that, position accuracy of INS/GNSS/SARIBA integrated navigation reaches ±11.6m. Figure 3 shows that, the heading, pitch and roll accuracy of integrated navigation all reach ±0.52'. Figures 4 shows that, velocity accuracy of integrated navigation reaches ±0.14m/s. According to the above simulation result figures, it can also be found that, although noise statistics characteristics of navigation equipments are variational obviously in the navigation process, INS/GNSS/SARIBA integrated navigation based on self-adaptive filter still achieves high and stable accuracy. So it can be concluded that, INS/GNSS/SARIB integrated navigation based on self-adaptive filter not only has high accuracy, but also has excellent reliability and anti-interference capability.基于自适应滤波器的组合导航信息融合摘要——本文讲述的是为了实现精度高和优秀的导航系统的可靠性,信息融合技术基于自适应滤波器的组合导航研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第八章快速横向LMS滤波算法8.1 简介在大量的算法解决最小二乘问题递归形式的方法中快速横向递归最小二乘(FTRLS)算法是非常具有吸引力,因为其能减少计算复杂度。

FTRLS算法可以通过求解同时向前和向后的线性预测问题,连同其他两个横向过滤器:过程估计量和一个辅助滤波器的期望信号向量有一个作为其第一和唯一的非零元素(例如,d(0)= 1)。

与格型算法相比,FTRLS算法只需要时间递归方程。

然而,需要得到一些FTRLS算法的关系,可参考前面一章LRLS算法。

FTRLS算法考虑快速的横向滤波器RLS的算法更新的解决方法。

因为顺序固定,更新横向自适应滤波器系数向量在每个计算中都迭代。

格型算法的向后和向前的派生关系可以用于预测所派生的FTRLS算法。

由此产生的算法计算复杂度在实际中实现N使它们特别具有吸引力。

相比格型算法,FTRLS算法的计算复杂度较低,由于没有权向量更新方程。

特别是,FTRLS算法通常需要7 n到11 n 每输出样本,乘法和除法则需要LRLS 14n到29 n计算。

因此,FTRLS 算法被认为是最快的解决方案的实现RLS的问题[1]-[7]。

在工程实践领域相继提出几种不同的FTRLS算法,所谓的快速卡尔曼算法[1],这的确是一个早期的快速横向RLS算法,计算11n次乘法和除法的复杂运算在每次输出示例。

在后面的研究阶段开发领域的快速横向算法,快速后验误差序列的技术(fa)[2],快速横向滤波器(FTF)[3]算法提出了要求,同样需要7n乘法和每次除法的输出样本。

FTF算法是具有最低的复杂性的RLS算法,不幸的是,这些算法对量子化效应非常敏感,如果有一些步骤没被采取将会变得不稳定。

在这一章,FTRLS算法的一种特殊形式将被提到,基于那些被提的网格算法所派生出来的。

众所周知,量子化错误在FTRLS算法中是指数发散[1]-[7]。

自从FTRLS算法不稳定的行为用有限精度算法实现的时候,我们讨论实现FTRLS数值稳定的算法,并提供一个特定算法的描述[8],[10]。

8.2 递归最小二乘预测快速算法探索一些结构性的信息数据以达到低计算的复杂性。

在特定情况下的快速RLS算法本文中讨论达到减少计算复杂度的情况下,由输入信号连续推迟样本中相同的信号。

在本例中,模式的快速算法是相似的,向前和向后预测这些过滤器是必不可少的部分算法。

建模的预测执行任务的输入信号,因此允许替换矩阵方程的矢量和标量关系。

派生的FTRLS算法,解决方案的RLS向前和向后的预测问题需要权向量递归方程。

在本节中,这些解决方案进行了综述强调FTRLS算法相关的结果。

如前所述,我们将借一些派生的前一章对点阵算法。

是值得的提及,FTRLS可以被介绍通过一个独立的推导,基于格型的推导在这点可能更加深刻的当然更直截了当的。

8.2.1向前预测关系瞬时向前后验Nth-order预测作为预测误差后验和先验的向前预测误差之间的关系,首次提出了方程(7-49)和为了方便在这里重复一个简单的处理方程(7.73),导致以下的最小加权最小二乘误差时间的更新,这种方法将用于FTRLS算法:同样的从等式(7.73),我们可以获得,需要的等式在FTRLS算法中可以通过执行前一章的方程(7.40)提出更新方程预测抽头系数矢量在这里将会看到,向量的更新φ(k−1,N)φ(k, N + 1)是需要更新落后的预测系数向量。

同时,最后一个元素的φ(k, N + 1)是用于更新反向预测先验误差和获得γ(k, N)。

向量φ(k, N + 1)可以通过自右乘方程(7.56),双方在即时k 和系数N 通过x(k, N + 1)=[x(k)T X (k−1,N)]。

结果可以表示为然而,不方便使用FTRLS 算法因为上面的方程产生反向预测部分,它将导致额外的计算。

解决方案是使用另一种递归涉及()()1,)1,(1,++Φ=+∧N k N k N k γφ代替()1,+N k φ(具体参照问题7)后产生的递归可以派生一些代数运算方程(8.6)和(8.3)(8.5),得到正向预测抽头系数向量应该被更新使用 ,这样8.2 反向预测关系在本节中,关系涉及用于FTRLS 反向预测问题算法。

后验概率预测与先验概率预测误差之间的关系可以表示为我们也知道对于不同转换因素的比率表示为见前一章的方程(7.79)我们为了方便重写了最后的平等方程(7.70),得到这个等式也可以这样写现在我们回想一下,反向预测滤波器的更新的时间可以写成以下类似的方法,得到方程(8.7),首先两边的方程(7.59),在即后乘时k 和N,通过x(k,N+1)=((k,N)T X x(k−N)),并使用关系(8.10),(8.11),(8.13),我们有注意,在这个等式的最后一个元素()1,+∧N k φ已经在方程(8.7)计算。

在任何情况下,值得一提的是,最后一个元素的()1,+∧N k φ或者可以表达通过方程(8.9),(8.15),在方程(8.12)和(8.10),我们可以得到将方程(8.9)代入上面的方程,我们可以归纳出更新方程,并用于FTRLS算法有关后验与先验的预测问题和转换因子γ(k,N)的更新方程现在可用。

我们可以通过期望信号d(k)进行派生解决估计的更一般的问题相关的过程,称为过程评估。

8.3 过程评估对于所有先前提出了自适应滤波器算法,得到FTRLS算法是很有用的,可以匹配一个期望信号d(k)的最小化加权方差。

从先验误差我们可以计算后验误差在传统的RLS算法,更新的时间输出联合过程的抽头系数估计量可以执行现在所有的更新方程可用来描述快速横向RLS算法。

的FRLS算法由方程(8.1)-(8.3),(8.7)-(8.8)和(8.4)提出相关预测;方程(8.15),(8.17),(8.9),(8.11),(8.14)和(8.13)相关的预测和落后的东西转换因子;(8.18)-(8.20)与过程估计量有关。

FTRLS 算法在逐步形成算法8.1。

FTRLS 算法的计算复杂度7(N)+ 14乘法/输出示例。

FTRLS 算法的关键特性是它不需要矩阵乘法。

正因为如此,FTRLS 算法的实现 每输出样本顺序相乘N 的复杂性。

初始化过程包括设置反向预测的抽头系数,前进预测和过程评估过滤器为零,即向量()N ,1-∧φ设置0假设的输入和期望信号零k < 0,即prewindowed 数据。

转换因子应该初始化算法8.1快速横向RLS算法因为在初始化期间先验和后验误差之间没有区别。

加权最小二乘误差应该初始化与一个正的常数。

为了避免除零在第一次迭代。

引入这个初始化参数的原因表明,它应该是一个小的价值。

原因,然而,对于稳定的价值不应小(见本章末尾的例子)。

应该提到,有确切的初始化程序的快速横向RLS过滤器,目的是最小化目标函数的瞬间在初始化期间[3]。

这些程序在初始化期间探索事实数据样本的数量在d(k)和x(k)小于N + 1。

因此,目标函数可以是零,因为比需要更多的参数。

[3]的确切的初始化过程取代了计算密集型回来时相当简单替换算法和自适应滤波器系数和零初始化。

这个过程也可以广义的情况下一些非零抽头系数的初始值是可用的。

正如前面提到的,一些快速RLS算法基于横向实现存在,这里介绍的一个对应于所谓的在[3]提出了FFT。

大量的替代算法引入的问题。

8.4稳定快速横向RLS算法尽管速度横向算法提出了文学提供一个不错的解决方案固有的计算复杂度负担传统的RLS算法,这些算法用有限精度算法实现时不稳定。

增加字并不能解决不稳定的问题。

唯一的采用更长的字的效果是,该算法将不再有分歧。

解决这个问题早些时候由重新启动算法选择的累积误差变量时达到规定的阈值[3]。

虽然过去再启动过程将使用信息,由此产生的表现不佳是由于不连续的信息在相应的确定性的相关矩阵。

不稳定行为的原因快速横向算法固有的正反馈机制。

这个解释了这个想法,如果一些特定的测量数值错误,他们可以方便地反馈为了使负面反馈误差传播动力学中占主导地位。

幸运的是,一些测量的数值错误可以通过引入快速算法计算冗余。

这种计算冗余可能涉及使用两个不同的公式计算一个给定的数量。

在有限精度实现中,结果的数量通过这些公式计算值不相等和他们的区别是一个很好的测量数量的累积误差。

这个错误可以反馈为了稳定算法。

关键问题是确定的数量应该引入计算冗余的误差传播动力学可以稳定。

早期提出的解决方案[6][7],只有一个数量选择引入冗余。

之后,这是表明,至少有两个量要求为了保证稳定的FTRLS算法[9]。

另一个相关的问题是,这个错误应该内反馈算法。

注意,任何时候可以选择在不影响算法的行为实现无限精度时,自反馈误差为零。

自然选择是错误反馈回相关的物理量的表达式。

这意味着对于每个数量,介绍了冗余,其最终价值是计算的两种形式的组合。

FTRLS算法可以看作是一个离散时间非线性动态系统[9]:有限精度实现中使用时,量化误差将会上升。

在这种情况下,内部的数量将摄动与无限精确数量相比。

非线性系统建模误差传播时,可以被描述,如果适当的线性化,允许误差传播机制的研究。

使用一个平均分析,这是有意义的固定的输入信号,可以得到一组系统的特点是它的特征值的动态行为类似于k时的误差传播行为→∞和(1−λ)→0。

通过这些特征值,可以确定反馈参数以及数量选择引入冗余。

这里的目标是修改不稳定模式通过错误的反馈以让他们稳定[9]。

幸运的是,它被发现在[9],可以修改和稳定不稳定模式引入错误的反馈。

不稳定模式可以修改通过引入冗余γ(k,N)和eb(k,N)。

这些数量可以计算使用不同的关系,以便区分它们包含在一个额外的索引他们的描述。

先验向后误差可以被描述的替代形式第一种形式是受雇于FTRLS 算法和第二种形式对应的内积实现先验向后误差。

第三形式对应于一个线性组合的两种形式,这些形式反馈确定数值差别的最终值,w(k,N,3),它将使用在不同的地方稳定算法。

对于每个i K ,i=1,2,3中,我们选择一个不同的值,以保证相关特征值小于1。

转换因子γ(k,N)可能是第一个参数显示算法变得不稳定的迹象。

这个参数也可以通过不同的计算关系。

必须保证所有这些替代关系模式的误差传播系统变得稳定。

第一个方程给出在()1,+∧N k φ里的第一个元素是()1,0+∧N k φ。

上述等式源于(8.4),(8.3),(8.2)和(8.7)等式以及迭代。

第二个表达式的转换因子来源于方程(8.14)和给出的第三个表达式是在方程(8.27),转换因子是用不同的方式表达,这是第一个提出FTRLS 算法[9]。

第二种形式已经使用一个先验落后的错误和冗余。

第三种形式可由方程(7.48)晶格RLS 算法(参见问题10)。

另一种关系稳定快速横向算法利用涉及到最低最小二乘误差。

相关文档
最新文档