初中数学人教版 三视图的画法 人教版

合集下载

人教版初中数学《三视图》优秀课件1

人教版初中数学《三视图》优秀课件1

解:下图是组合体的三视图.
主视图
左视图
俯视图
巩固新知
3.画出图中简单组合体的三视图:
(2)加权平均数: =(xf+xf+…….+xf) (2)根据“油箱内剩余油量=汽车油箱容量﹣汽车耗油量”解答即可;
解:三视图如下: (2)点M为“等轴距点”,B,M两点的“轴距长方形”为周长等于8的正方形,求M点的坐标;
_____S_1>__S_3_>__S_2_____.(用“>”号连接)
6.(易错题)三棱柱的三视图如图所示,在△EFG中,FG=18cm, EG=14cm,∠EGF=30°,则AB的长为____7cm.
7.如图是一个直四棱柱及其主视图和俯视图(等腰梯形). (1)根据图中所给数据,可求出俯视图(等腰梯形)的高为___4__; (2)在虚线框内画出左视图,并标出各边的长. 解:如图所示
8.(数学建模思想)如图是一个粮仓,其顶部是一个圆锥,底部是一个圆 柱.
(1)画出粮仓的三视图; (2)若这个圆锥的底面周长为32 m,母线长为7 m,为防雨水需要在粮仓 顶部铺上油毡,则需要油毡的面积是多少?(油毡接缝重合部分不计) (3)若这个圆柱的底面半径为4 m,高为5 m,粮食最多只能装至与圆柱同 样高,则最多可以存放多少体积的粮食?
俯视图 宽
正三棱柱 (2)
球 (3)
归纳:
主视图 左视图
三视图的具体画法为:

1. 确定主视图的位置,画出主视图; 长

2. 在主视图正下方画出俯视图,注

意与主视图“长对正”;
俯视图
3. 在主视图正右方画出左视图,注意与主视图“高平齐”,
与俯视图“宽相等”;
4. 为表示圆柱、圆锥等的对称轴,规定在视图中加画点划线

三视图画法三视图得画法步骤ppt课件

三视图画法三视图得画法步骤ppt课件
细点画线
约d/2
轴线、中心线
双点画线
约d/2
极限位置轮廓线
波浪线
约d/2
断裂处的边界线
粗点画线
d
有特殊要求的线等
双折线
约d/2
断裂处的边界线
表中列出的八种图线中最常用的有四种,即粗实线、细实线、虚线和细点画线。
图线
1.各种图线作图要求
粗实线:其宽度称为d,一般取0.7mm。 要 求: ⑴ 图线粗细均匀光滑 ⑵ 图线要黑,作图时用较软的B或2B的铅笔。
一、草图的基本概念 1、定义:不借助任何绘图仪器,仅依靠目测的大致比例,徒手绘制的图样。 2、应用场合:主要用于现场测绘、设计方案讨论或技术交流。
二、图线的徒手画法---徒手草图并不是潦草的图 绘制草图时使用软一些的铅笔(如HB、B或者2B),铅笔削长一些,铅芯呈圆形,粗细各一支,分别用于绘制粗、细线。画草图时,可以用有方格的专用草图纸,或者在白纸下面垫一张格子纸,以便控制图线的平直和图形的大小。 在绘制草图的各种图线时,手腕要悬空,小指接触纸面,草 图纸不固定。为了方便,还可以随时将图纸转动适当角度。 各种图线的画法如下:
⑵ 圆的尺寸标注形式 应在尺寸数字前加注直径符号φ,各种标注形式如图所示。
⑶圆弧的尺寸标注形式
应在尺寸数字前加注半径符号R,标注形式如图示。
标注球面的尺寸时应在φ或R前加注字母S。 注意:对于整圆或大半圆都应标注直径尺寸
六、尺寸注法(GB4458.4—84)
图样中的图形只能反映物体的形状,而物体的大小和物体各部分的相对位置则要由图中的尺寸来确定。国家标准规定了尺寸标注的基本规则和方法。
1.基本规则 ⑴ 机件的真实大小应以图样上所标注的尺寸数值为依据,与图形的大小及绘图的准确度无关。 ⑵ 图样中(包括技术要求和其他说明)的尺寸,以毫米为单位时,不需标注计量单位的代号或名称。如果要采用其他单位则必须注明相应的计量单位的代号或名称。 ⑶ 图样中所标注的尺寸为该图样所示机件的最后完工尺寸,否则应另加说明。 ⑷ 机件的每一尺寸一般只标注一次,并应标注在反映该结构最清晰的图形上。

新人教版初中数学九年级下册精品课件29.2 第1课时 三视图

新人教版初中数学九年级下册精品课件29.2 第1课时 三视图
第二十九章
九年级数学下(RJ) 教学课件
投影与视图
29.2 三视图
第1课时 三视图
导入新课
讲授新课
当堂练习
课堂小结
学习目标
1. 会从投影的角度理解视图的概念,明确视图与投影 的关系.
2. 能识别物体的三视图,会画简单几何体的三视图. (重点、难点)
导入新课
情境引入
么缘各“
原身不横
因在同看
吗此.成
A
B
C
D
2.一个几何体的三视图形状都相同,大小均等,那
么这个几何体不可以是
(D)
A.球 B.三棱锥 C.正方体 D.圆柱
3.将矩形硬纸板绕它的一条边旋转180°所形成的
几何体的主视图和俯视图不可能是
(C)
A.矩形,矩形
B.半圆、矩形
C.圆、矩形
D.矩形、半圆
4.如图摆放的几何体的俯视图是
( B)
A
1. 三个投影面 我们用三个互相垂直的平面(例如:墙角处的三面
墙面)作为投影面,其中正对着我们的叫正面,正面 下方的叫水平面,右边的叫做侧面.
正面
2. 三视图
主视图
主视图 左视图

正面





俯视图
宽 俯视图
将三个投影面展开在一个平面内,得到这个物体 的一张三视图.
主视图
主视
左视图
正面
左 视
B
C
D
5.下图中①表示的是组合在一起的模块,那么这个
模块的俯视图的是
(A)





A.② B.③ C.④ D.⑤
6. 画出下列几何体的三视图.

人教版九年级数学下册《三视图的画法》PPT

人教版九年级数学下册《三视图的画法》PPT

间有怎样的联系?





高高

高平齐


长 宽
长对正
宽相等
俯视图
3.三视图的画法
例1 画出图中基本几何体的三视图.
圆柱 正三棱柱 球 画三视图的具体方法: (1)确定主视图的位置,画出主视图; (2)在主视图正下方画出俯视图,注意与主视图 “长对正” ; (3)在主视图正右方画出左视图,注意与主视图 “高平齐”,与俯视图“宽相等” ; (4)为表示圆柱、圆锥等的对称轴,规定在视图中 加画点划线表示对称轴.
九年级 下册
29.2 三视图的画法
1.回顾三视图相关知识
在生产实践中,为了全面地反映物体的形状,往往 采用多个视图来反映同一物体不同方面的形状.
例如下图中右侧的三个视图,可以多方面反映飞机 的形状.
1.回顾三视图相关知识
视图
当我们从某一方向观察一个物体时,所看到的平面 图形叫做物体的一个视图.
视图可以看作物体在某一方向光线下的正投影.
规定
看得见的轮廓线画成实线,因被其他部分遮挡而看 不见的轮廓线画成虚线。
2.动画演示,了解关系
正对着物体看:
物体左右之间的水平距离是
物体的宽;
上下之间的竖直距离是 物体的高.
正面


水平面
高 侧面
2.动画演示,了解关系
两两关系
在反映物体大小方面,三视图中,三个视图两两之
4.反思与小结
通过这节课的学习,请同学们从以下几个方面谈谈 你的理解.
(1)请从投影的角度说说三视图中三个视图的产生 过程.
(2)在三视图中,各视图之间有怎样的位置关系和 大小关系?

人教版初三数学下册三视图及其画法----第一课时

人教版初三数学下册三视图及其画法----第一课时

(2)画出图中的几何体的三视图【教学目标】1.会从投影角度理解视图的概念。

2.会画简单几何体及组合体的三视图。

【教学重点】1.从投影的角度加深对三视图概念的理解。

2.会画简单几何体及组合体的三视图。

【教学难点】1.对三视图概念理解的升华。

2.正确画出实际生活中组合体的三视图。

【教学过程】导入明标:二人组回顾主视图,左视图,俯视图的画法自学质疑:阅读课本第94页一97页的内容并回答下列问题:(1)三视图分别指什么?它们都是平行投影中的什么?(2)三视图的位置怎样分布?(3)三视图中各视图的大小也有关系。

主视图与俯视图表示同一物体的______ ,主视图与左视图表示同一物体的__________ ,左视图与俯视图表示同一物体的_______ 。

因此三视图的大小是互相联系的。

画三视图时,三个视图要放在正确的位置,并且使主视图与俯视图的____________ ,主视图与左视图的____________ ,左视图与俯视图的____________ 。

(4)画三视图的口诀是什么?(5)画组合体的三视图时,构成组合体的各个部分的视图也要注意(学生自学完成)拓展训练:(1)画出下图所示的一些基本几何体的三视图□ P A®⑴ ⑵ ⑶ ⑷三视图及其画法第一课时⑶•主视图、左视图、俯视图都是圆的几何体是()(A)圆锥(B)圆柱 (C)球 (D)空心圆柱(4)下图是一根钢管的直观图,画出它的三视图(5)画出下列几何体的三视图(6)画出下列几何体的三视图(7)如图,粗线表示嵌在玻璃正方体内的一根铁丝,请画出该正方体的三视图h n从正血看从正面看。

29.2 三视图 初中数学人教版九年级下册精品讲义

29.2 三视图 初中数学人教版九年级下册精品讲义

第二十九章投影与视图29.2 三视图课程标准课标解读1.会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,能判断简单物体的视图,并会根据视图描述简单的几何体。

2.了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作模型。

3.通过实例,了解上述视图与展开图在现实生活中的应用。

理解和掌握三视图的基本概念,能够画出棱柱、圆柱、圆锥、球的主视图,能够正确判断简单物体的三视图。

知识点01 三视图1.三视图有关的概念(1)视图:从某一方向观察一个物体时,所看到的平面图形叫作物体的一个视图。

(2)三视图:从3个互相垂直的方向观察物体,在正面内得到的由前向后观察物体的视图,叫作主视图;在水平面内得到的由上向下观察物体的视图,叫作俯视图;在侧面内得到的由左向右观察物体的视图,叫作左视图。

【微点拨】(1)视图的本质就是正投影;物体的主视图,等同于一束平行光线自物体的前方向后方照射,在正面投影面上得到的正投影;俯视图、左视图类似。

(2)三视图中的各视图,分别从不同方向表示物体的形状,三者结合能够较全面地反映物体的形状.2. 三视图之间的关系三视图的摆放一般是,主视图在左上方,它下方应是俯视图,左视图在右边.在物体的三视图中,主视图可反映出物体的长和高,俯视图可反映出物体的长和宽,左视图可反映出物体的高和宽.【微点拨】三视图中,主视图与俯视图表示同一物体的长;主视图与左视图表示同一物体的高;左视图与俯视图表示同一物体的宽.【即学即练1】如图所示的几何体,其主视图是()A .B .C .D .【答案】A 【分析】从正面看所得到的图形即为主视图,据此求解即可.【详解】解:从正面看看到的是一个长方形,中间有两条竖着的虚线,即,故选A 知识点02 画三视图1.画几何体的三视图画一个几何体的三视图时,先观察几何体,判断出从3个方向看几何体得到的平面图形,即三视图;然后把三视图按照一定位置画出来。

画三视图时,一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,被其他部分遮挡而看不见的画成虚线,不能漏掉。

三视图画法-三视图得画法步骤.ppt

三视图画法-三视图得画法步骤.ppt

3、角度线
对30º、45º、60º等常见角度,可根据两直角边的比例关系, 定出两端点,然后连接两点即为所画的角度线。如画10º、15º等 角度线,可先画出30º角后,再等分求得,如图所示。
4、圆的画法
目测半径法:画圆时,先徒手作两条互相垂直的中心线,定出圆心, 再根据直径大小,用目测估计半径大小,在中心线上截得四点,然 后徒手将各点连接成圆。当所画的圆较大时,可过圆心多作几条不 同方向的直径线,在中心线和这些直径线上按目测定出若干点后, 再徒手连成圆,如图所示。
1.基本规则
⑴ 机件的真实大小应以图样上所标注的尺寸数值为依据,与图形的 大小及绘图的准确度无关。
⑵ 图样中(包括技术要求和其他说明)的尺寸,以毫米为单位时, 不需标注计量单位的代号或名称。如果要采用其他单位则必须注 明相应的计量单位的代号或名称。
⑶ 图样中所标注的尺寸为该图样所示机件的最后完工尺寸,否则应 另加说明。
5、椭圆的画法
根据椭圆的长短轴,目测定出其端点位置,过四个端点画一 矩形,徒手作椭圆与此矩形相切,如图所示。
6、圆弧与圆角
利用与正方形、长方形、菱形相切的特点,先画出正方形、 长方形、菱形,再通过切点作内切圆角及椭圆,如图所示。
机械制图的基本规范
比例的定义: 指图形与实物相应要素的线性尺寸之比。
三视图的形成
从物体的上面往下 面看得到的视图 从物体的左面往右 面看得到到的视图
主视图 左视图
从物体的前面往后 面图方向
高平齐,
主视图

俯视图
长对正,

左视图
宽 宽相等.
主视图方向
画 一 个 物 体 的 三视图时,主视图 ,左视图,俯视图 所画的位置如图 所示。

初中数学三视图的画法ppt课件

初中数学三视图的画法ppt课件

圆台
练习一: 画出下列基本几何体的三视图
六棱锥
圆台
正视图
侧视图
俯视图
六棱锥
小结:若相邻的两平面的相交,表面的交线是它们的分界线,在三视图中,分界线和可见轮廓线都用实线画出。
六棱锥的三视图
例3:画出下面几何体的三视图。
简单组合体的三视图
正视图
侧视图
俯视图
简单组合体的三视图
注意:不可见的轮廓线,用虚线画出。
2
3
5
2
4
A
B
C
D
小 结
三视图 正视图——从正面看到的图 侧视图——从左面看到的图 俯视图——从上面看到的图 画物体的三视图时,要符合如下原则: 位置:正视图 侧视图 俯视图 大小:长对正,高平齐,宽相等. 挑战“自我”,提高画三视图的能力.
简单组合体的三视图

正视图
侧视图
俯视图
简单组合体的三视图
四棱锥
圆台



体验三视图的作法
六棱柱



体验三视图的作法
练一练:画出左图的三视图
先布局定作图基准,从俯视图开始画起,后画主、左视图。
请同学自己做
请同学自己做
先布局定作图基准,从俯视图开始画起,后画主、左视图。
Φ
Φ
如果要做一个水管的三叉接头,工人事先看到的不是图1,而是图2,然后根据这三个图形制造出水管接头.
图2
图1
三通水管
练习: 根据三视图想像物体的形状。
圆柱
圆台
手电筒
从左向右看
圆柱
正六棱柱
螺丝杆
从左向右看
圆柱
四棱柱

人教版数学九下课件29.2三视图(第1课时)

人教版数学九下课件29.2三视图(第1课时)
解:图是支架的三视图.






俯 视 图
四、课堂小结
本节课你学习了什么知识?
五、巩固提升
1、画出如图所示的三棱柱的三视图(这个三柱上下底 面是正三角形).



三图
视 图


俯 视 图
五、巩固提升
2、 画出半球和圆锥的三视图.
主 视
半图 球
俯 视 图






圆图
视 图


视 图
·
五、巩固提升
3、 图是一根钢管的直观图,画出它的三视图.






俯 视 图
六、课堂作业 课本101页:1、2题
初中数学课件
金戈铁骑整理制作
人教版数学九年级下
讲课内容:课本94-97页
29.1 三视图 (第1课时)
草庵学校 陈永和
一、问题情境
1、填空
不同
位置 物体平行于投 物体倾斜于投 物体垂直于
物体
影面
影面
投影面
线段
形状、大小不 变(全等)
大小变化

面 形状、大小不 形状、大小 线
变(全等)
均变化
2、 画出如图摆放的正方体在投影面上的正投影。


宽 俯视图
二、探究新知
三视图位置有规定, 主视图要在左上边,它 的下方应是俯视图,左 视图坐落在右边
主视图
左视图 高


宽 俯视图
三、应用新知 例1画出图中基本几何体的三视图。
Hale Waihona Puke 三、应用新知主视图 左视图

2024版初中数学三视图PPT课件

2024版初中数学三视图PPT课件

•三视图基本概念与性质•常见几何体三视图识别与绘制•组合体三视图分析与绘制技巧•复杂结构三视图解读与绘制方法目录•尺寸标注与规范在三视图中的应用•初中数学三视图解题策略与技巧01三视图基本概念与性质三视图定义及作用01020304主视图俯视图左视图作用正投影原理与特性正投影定义01正投影特性02正投影与中心投影的区别03视图间关系与转换长对正高平齐宽相等转换方法02常见几何体三视图识别与绘制长方体三视图正方体三视图识别方法030201长方体、正方体三视图圆锥三视图圆柱三视图主视图和左视图为三角形,俯视图为圆及圆心。

识别方法球体三视图主视图、左视图和俯视图均为圆形。

圆环三视图主视图和左视图为环形,俯视图为环形及圆心。

识别方法观察几何体的整体形状和轮廓线,确定各个视图的形状和尺寸。

同时,注意圆环内外圆的半径大小和位置关系。

03组合体三视图分析与绘制技巧视图选择根据组合体的形状和叠加方式,选择合适的视图表达,一般主视图选择最能反映组合体形状特征的方向。

叠加方式分析组合体是由哪些基本形体叠加而成,以及叠加的方式和位置关系。

尺寸标注注意各基本形体之间的定位尺寸和定形尺寸的标注,确保三视图的尺寸完整、清晰。

切割方式视图表达尺寸标注分析方法综合运用叠加和切割的分析方法,分析组合体的形状和位置关系。

视图选择根据组合体的形状和分析结果,选择合适的视图表达组合体的整体形状和细节特征。

尺寸标注注意各基本形体和切割面的尺寸标注,以及整体尺寸和细节尺寸的标注,确保三视图的尺寸全面、准确。

04复杂结构三视图解读与绘制方法相贯线的概念相贯线的性质相贯线的求法相贯线的应用实例截交线的概念截交线的性质截交线的求法截交线的应用实例组合体的三视图。

通过具体模型或图形展示组合体的结构特点及其三视图的绘制方法。

实例一切割体的三视图。

通过具体模型或图形展示切割体的结构特点及其三视图的绘制方法。

实例二相贯体和截交体的三视图。

通过具体模型或图形展示相贯体和截交体的结构特点及其三视图的绘制方法。

新人教版初中数学——视图与投影-知识点归纳及中考典型题解析

新人教版初中数学——视图与投影-知识点归纳及中考典型题解析

新人教版初中数学——视图与投影知识归纳及中考典型题解析一、投影1.投影在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.二、视图1.视图由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图(1)主视图:从正面看得到的视图叫做主视图.(2)左视图:从左面看得到的视图叫做左视图.(3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法(1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.(2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.三、几何体的展开与折叠1.常见几何体的展开图2.正方体的展开图正方体有11种展开图,分为四类:第一类,中间四连方,两侧各有一个,共6种,如下图:第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;第四类,两排各有三个,也只有1种,如图11.考向一三视图在判断几何体的三视图时,注意以下两个方面:(1)分清主视图、左视图与俯视图的区别;(2)看得见的线画实线,看不见的线画虚线.典例1【广西壮族自治区南宁市2019–2020学年七年级上学期期末数学试题】如图是从不同方向看某一几何体得到的平面图形,则这个几何体是A.圆锥B.长方体C.球D.圆柱【答案】D【解析】∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选D.【名师点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.1.如图所示的几何体的俯视图是A.B.C.D.考向二几何体的还原与计算解答此类问题时,首先要根据三视图还原几何体,再根据图中给出的数据确定还原后的几何体中的数据,最后根据体积或面积公式进行计算.典例2如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是A.B.C.D.【答案】D【解析】如图,左视图如下:,故选D.2.某一几何体的三视图均如图所示,则搭成该几何体的小正方体的个数为A.9 B.5C.4 D.33.如图是一零件的三视图,则该零件的表面积为A.15πcm2B.24πcm2C.51πcm2D.66πcm2考向三投影1.根据两种物体的影子判断其是在灯光下还是在阳光下的投影,关键是看这两种物体的顶端和其影子的顶端的连线是平行还是相交,若平行则是在阳光下的投影,若相交则是在灯光下的投影.2.光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终在物体的两侧.3.物体的投影分为中心投影和平行投影.典例3如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是A.①②③④B.④③②①C.④③①②D.②③④①【答案】C【解析】根据平行投影的规律以及电线杆从早到晚影子的指向规律,可知:俯视图的顺序为:④③①②,故选C.【名师点睛】本题主要考查平行投影的规律,掌握“就北半球而言,从早到晚物体影子的指向是:西–西北–北–东北–东”,是解题的关键.4.小明在太阳光下观察矩形木板的影子,不可能是A.平行四边形B.矩形C.线段D.梯形考向四立体图形的展开与折叠正方体展开图口诀:正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐;一条线上不过四,田七和凹要放弃;相间之端是对面,间二拐角面相邻.典例4如图是一个正方体的表面展开图,把展开图折叠成正方体后,与标号为1的顶点重合的是A.标号为2的顶点B.标号为3的顶点C.标号为4的顶点D.标号为5的顶点【答案】D【解析】根据正方体展开图的特点得出与标号为1的顶点重合的是标号为5的顶点.故选D.5.如图所示正方体的平面展开图是A.B.C.D.1.如图所示几何体的主视图是A.B.C.D.2.如图的几何体是由五个相同的小正方体组合面成的,从左面看,这个几何体的形状图是A.B.C.D.3.如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是A.③—④—①—②B.②—①—④—③C.④—①—②—③D.④—①—③—②4.如图,某一时刻太阳光下,小明测得一棵树落在地面上的影子长为2.8米,落在墙上的影子高为1.2米,同一时刻同一地点,身高1.6米他在阳光下的影子长0.4米,则这棵树的高为A.6.2米B.10米C.11.2米D.12.4米5.如图,(1)是几何体(2)的___________视图.6.如图,某长方体的底面是长为4cm,宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,那么这个长方体的体积等于__________.7.如图是一个正方体的展开图,折叠成正方体后与“创”字相对的一面上的字是__________.8.一个几何体由12个大小相同的小正方体搭成,从上面看到的这个几何体的形状图如图所示,若小正方形中的数字表示在该位置小正方体的个数,则从正面看,一共能看到________个小正方体(被遮挡的不计).9.画出如图所示物体的主视图、左视图、俯视图.10.【山东省威海市乳山市2019–2020学年九年级上学期期末数学试题】数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.1.如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为A.B.C.D.2.某几何体的俯视图如图所示,图中数字表示该位置上的小正方体的个数,则这个几何体的主视图是A.B.C.D.3.如图是一个几何体的三视图,则这个几何体是A.三棱锥B.圆锥C.三棱柱D.圆柱4.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为A.B.C.D.5.如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是A.B.C.D.6.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同7.图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x8.如图是由一个长方体和一个球组成的几何体,它的主视图是A.B.C.D.9.下列四个几何体中,主视图为圆的是A.B.C.D.10.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是A.B.C.D.11.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变12.某个几何体的三视图如图所示,该几何体是A.B.C.D.13.下列哪个图形是正方体的展开图A.B.C.D.14.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是A.B.C.D.15.在如图所示的几何体中,其三视图中有矩形的是_________.(写出所有正确答案的序号)16.如图是一个多面体的表面展开图,如果面F 在前面,从左面看是面B ,那么从上面看是面__________.(填字母)17.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为__________.1.【答案】D【解析】根据题意得:几何体的俯视图为,故选C .【名师点睛】此题考查了简单组合体的三视图,熟练掌握几何体三视图的画法是解本题的关键.2.【答案】C【解析】从主视图看第一列有两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列有一个,说明俯视图中的右边一列有一个正方体,所以此几何体共有4个正方体.故选C.3.【答案】B【解析】由三视图知,该几何体是底面半径为3cm、高为4cm的圆锥体,则该圆锥的母线长为(cm),∴该零件的表面积为π•32+12•(2π•3)•5=9π+15π=24π(cm2),故选B.4.【答案】D【解析】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选D.【名师点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.5.【答案】B1.【答案】C【解析】从正面看,共有两列,第一列有两个小正方形,第二列有一个小正方形,在下方,只有选项C符合,故答案选择C.【名师点睛】本题考查的是三视图,比较简单,需要熟练掌握三视图的画法.2.【答案】D【解析】从左边看第一层是两个小正方形,第二层左边一个小正方形,故选D【名师点睛】本题考查了简单几何体的三视图,从左边看得到的图是左视图.3.【答案】B【解析】众所周知,影子方向的变化是上午时朝向西边,中午时朝向北边,下午时朝向东边;影子长短的变化是由长变短再变长,结合方向和长短的变化即可得出答案,故选B【名师点睛】本题主要考查影子的方向和长短变化,掌握影子的方向和长短的变化规律是解题的关键.4.【答案】D【解析】设从墙上的影子的顶端到树的顶端的垂直高度是x米,则1.60.4 2.8x,解得:x=11.2,所以树高=11.2+1.2=12.4(米),故选D.【名师点睛】本题考查的是投影的知识,解本题的关键是正确理解题意、根据同一时刻物体的高度与其影长成比例求出从墙上的影子的顶端到树的顶端的垂直高度.5.【答案】俯【解析】在图中(1)是几何体(2)的俯视图.6.【答案】24cm3【解析】根据题意,得:6×4=24(cm3),因此,长方体的体积是24cm3.故答案为:24cm3.7.【答案】园【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“创”与“园”是相对面.8.【答案】8【解析】一共看到的图形是3列,左边一列看到3个,中间一列看到2个,右边一列看到3个.则一共能看到的小正方体的个数是:3+2+3=8.故答案为:8.9.【解析】主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,据此画出看到的图形如图所示.10.【答案】3.45米【解析】延长DH交BC于点M,延长AD交BC于N.可求 3.4BM =,0.9DM =. 由1.50.92MN =,可得 1.2MN =. ∴ 3.4 1.2 4.6BN =+=. 由1.52 4.6AB =,可得 3.45AB =. 所以,大树的高度为3.45米.【名师点睛】考核知识点:平行投影.弄清平行投影的特点是关键.1.【答案】A【解析】它的俯视图为,故选A .【名师点睛】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键. 2.【答案】B【解析】从正面看去,一共两列,左边有2竖列,右边是1竖列.故选B .【名师点睛】本题考查了由三视图判断几何体,解题的关键是具有几何体的三视图及空间想象能力. 3.【答案】B【解析】由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选B .【名师点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 4.【答案】D【解析】从上面看可得四个并排的正方形,如图所示:,故选D .【名师点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图. 5.【答案】B【解析】该几何体的左视图只有一列,含有两个正方形.故选B .【名师点睛】此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.6.【答案】C【解析】图①的三视图为:图②的三视图为:,故选C.【名师点睛】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.7.【答案】A【解析】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选A.【名师点睛】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.8.【答案】C【解析】几何体的主视图为:,故选C.【名师点睛】此题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.9.【答案】D【解析】A.主视图为正方形,不合题意;B.主视图为长方形,不合题意;C.主视图为三角形,不合题意;D.主视图为圆,符合题意,故选D.【名师点睛】此题考查了简单几何体的三视图,解决此类图的关键是由三视图得到立体图形.10.【答案】C【解析】几何体的俯视图是:,故选C.【名师点睛】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.11.【答案】A【解析】将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变,故选A.【名师点睛】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键.12.【答案】D【解析】由三视图可知:该几何体为圆锥.故选D.【名师点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.13.【答案】B【解析】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【名师点睛】此题主要考查了正方体的展开图,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.14.【答案】B【解析】选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.故选B.【名师点睛】本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.15.【答案】①②【解析】长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【名师点睛】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.16.【答案】E【解析】由题意知,底面是C,左侧面是B,前面是F,后面是A,右侧面是D,上面是E,故答案为:E.【名师点睛】考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.17.【答案】cm2【解析】该几何体是一个三棱柱,底面等边三角形的边长为2 cm,三棱柱的高为3,所以其左视图的面积为cm2),故答案为cm2.【名师点睛】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
世界上有一种爱很伟大,那就是母爱!世上有一个人最值得我们去回报,那就是母亲。 母亲像什么,母亲像天使一样把一点一滴汗水与祝福慢慢地撒在我们的心里。
母亲是什么,母亲为我们打开成长的大门,母亲是上帝派下来哺育我们的天使。 在人生崎岖坎坷的旅途上,是谁给予你最真诚、最亲切的关爱,是谁对你嘘寒问暖,时刻给予你无私的奉献;是谁不知疲倦地教导着你为人处世的道理;是谁为了你的琐事而烦恼?
奥迪在中国已经成功地打造了豪华车 品牌形象。从奥迪进入中国汽车市场的过 程来看,有着特定的历史原因。中国的轿 车市场起源于公务车市场,奥迪因历史原 因在公务车市场具有很大的优势。不仅如 此,奥迪携此优势也在进一步扩大市场, 瞄准商务用户和私人用户。随着奥迪A4 的正式上市,奥迪加强了其在私人用户领 域的地位。
第二重境界是“衣带渐宽终不悔,为伊消得人憔悴”。事情是需要去做才能成的,成越大的事业,需要越大的努力和付出,甚至要经受越大的磨难和困苦。这个世间,从来都是“艰难困苦,玉汝于成”;所以无论如何,都要“天行健,君子”。这说的是历经磨难而逐渐成熟、成长,最终豁然贯通、水到渠成。这其中蕴含一个重要道理,就是苏东坡所说的“厚积而薄发”。只有厚积才能薄发,人要做的,就是不断厚积,等待薄发。这就是拿得起的完整路径,也是事业成功的完整过程。 跟佛家学放得下 。佛家是追求出世、讲究清净的,要求能看到《金刚经》所言的“一切有为法,如梦幻泡影”,做到《心经》所言的“照见五蕴皆空”。概括为三个字,就是“放得下”。 什么是“放得下”?且看这个“佛”字——左边一个“人”,右边一个“弗”,弗的意思是“不”,合起来就是“不人”和“人不”。不人就是无人,也就是放下自我,摆脱私心的困缚;人不就是懂得拒绝,也就是放下欲望,超脱对外物的追逐。这两点能做到,就是放得下。
眼光和思维所涉及的面,尽量往大了走、往高了去,则是人人可以努力靠近的。 综上:儒家拿得起、佛家放得下、道家想得开,合起来其实就是一句话:带着佛家的出世心态,凭着道家的超世眼界,去做儒家入世的事业。这也正是南怀瑾所说的人生最高境界:佛为心,道为骨,儒为表,大度看世界。车水马龙的闹市里,双眸里闪烁着都市的霓虹,衣服上沾满着汽车 曾经有一个人,她永远占据在你心最柔软的地方,你愿用自己的一生去爱她,这个人,叫“母亲”;有一种爱,它可以让你随意的索取、享用,却不要你任何的回报,不会向你抱怨,总是自己一个人默默地承受着这一切。这种爱,叫“母爱”!
由立体图形到视图
工人在建造房子之前,首先要看房子的图纸.但在平面上画 空间的物体不是一件简单的事,因为必须把它画得从各个方面 看都很清楚.为了解决这个问题,创造了三视图法.
什么是三视图法呢?
就是从三个不同的方向看一个 物体,一般是从正面、上面和 侧面,然后描绘三张所看到的 图,即视图.
俯视图
正视图
左视图

俯视图
正视图
左视图
俯视图
正视图 左视图 俯视图
遵循从下层向上层、从左边到右边的原 则一层一层的画。
从 左 侧 看 从正面看
从上面看
示 例:
正视图
左视图 俯视图
正视图
左视图 俯视图
正视图
左视图 俯视图
正视图 左视图
俯视图
正视图
左视图
俯视图
正视图
左视图
俯视图
三视图表达的意义
从正面看到的图形,称为正视图; 从上面看到的图形,称为俯视图; 从侧面看到的图形,称为侧视图.
例1 画出如图1和图2所示的正方体和圆柱的三视图.
1
2
正 视 图
左 视 图
正 视 图
左 视 图
俯 视 图
俯 视 图
同类变式训练:
如图(1):如果圆柱的侧面正对着我们,它 的三视图是什么? 如图(2):如果圆柱的底面正对着我们,它 的三视图是什么?
如何才能放得下?唐代禅宗高僧青原行思曾提出参禅的三境界,那正是路径所在。 第一重境界是“看山是山,看水是水”。人之最初,比如年少之时,心思是简单的,看到什么就是什么,别人说什么就相信什么。这样看待世界当然是简单而粗糙的,所看到的往往只是表面。但同时,正是因为简单而不放在心上,于是不受其困扰,这就是放下的心境。只是还太脆弱,容易被现实击碎。 第二重境界是“看山不是山,看水不是水”。人随着年龄渐长,经历的世事渐多,就发现这个世界的问题越来越多、越来越复杂,经常是黑白颠倒、是非混淆,无理走遍天下、有理寸步难行,好人无好报、恶人活千年。这时人是激愤的,不平的,忧虑的,怀疑的,警惕的,复杂的。于是人不愿意再轻易地相信什么,容易变得争强好胜、与人比较、绞尽脑汁、机关算尽,永无满足的一天。大多数人都困在这一阶段,虽然纠结、挣扎、痛苦,这却恰恰是顿悟的契机。因为看到了,才能出来;经历了,才能明白。 第三重境界是“看山还是山,看水还是水”。那些保持住本心、做得到忍耐的人,等他看得够了,经得多了,悟得深了,终于有一天豁然顿悟,明白了万般只是自然,存在就有存在的合理性,生会走向灭,繁华会变成寂寞,那些以前认为好的坏的对的错的,都会在规律里走向其应有的结局,人间只是无常,没有一定。这个时候他就不会再与人计较,只是做自己,活在当下之中。任你红尘滚滚,我自清风朗月;面对世俗芜杂,我只一笑了之。这个时候,就是放下了。
对了!是伟大的母亲。母爱是无私的,是永不停息的。没有一位母亲是不爱自己的子女的。不管怎样,母爱终究都是生命中最真挚,最无私的爱。 当我们遇到困难,能倾注所有一切来帮助我们的人,是母亲。 当我们犯错误时,能毫不犹豫地原谅我们的人,是母亲。
H
BM
O
Q
S
U
W
A1
C1
N
P
R
T
V
X
B1
D1
演示
试画出从正面、侧面、上面看下列各几何体得到的几何图形
从正面看 从上面看
从左面看
从正面看 从上面看
从左面看
从正面看 从上面看
从左面看
从正面看 从上面看
从左面看
从正面看 从上面看
从左面看
家庭作业
1.P118 4、7、10、13
2.用硬纸片制作正方体的展开图, 探究共有多少种展开图?
三视图的对应规律
主视图和俯视图长对正 主视图和左视图高平齐 俯视图和左视图宽相等
课堂练习:
1、三视图都一样的几何体有__球__体_、___正__方__体__(两种)
2、 如图是某几何体的三视图,则这个几何体是圆__锥__
正视图
左视图
俯视图
3、如图所示的三视图所对应的几何体是(D )
(A)圆柱
主视图 左视图 俯视图
(B)圆锥
(C)长方体
(D)三棱柱
考考你
正视图( A ) 左视图 ( A ) 俯视图 ( B )
A
B
C
正视图( B ) 左视图( B ) 俯视图( C )AB NhomakorabeaC
1 上图的⑴、⑵、⑶分别是从三个不同的方向对强6型歼击机
B 所看到的结果,下列说法正确的是( )
(A)从正面、左面、上面看 (B) 从上面、正面、左面看 (C)从上面、左面、正面看 (D) 从左面、上面、正面看
怎样才能拿得起?王国维《人间词话》中曾提出,古今之成大事业者,须经过三重境界。这三重境界体现的正是儒家精神,所以正是路径所在。 第一重境界是“昨夜西风凋碧树,独上高楼,望尽天涯路”。登上高楼,远眺天际,正是踌(chóu)躇(chú)满志,志存高远,高瞻远瞩,一腔抱负。人生,志向决定方向,格局决定高度;小溪只能入湖,大河则能入海。所以做事,要先立心中志向;成事,要先拓胸中格局。
第一重境界,是出得来,而进不去;第二重境界,是进得去,而出不来;第三重境界,才是进退自如、来去随意。放得下,是因为看透了、超脱了,所以随缘。 跟道家学想得开 。道家是追求超世、讲究自然的,要求心明大道、眼观天地、冷眼看破。概括为三个字,就是“想得开”。什么是“想得开”?且看这个“道”字——一个“走”字旁加一个“首”字,也就是脑袋走或者走脑袋。脑袋走就是动脑子,尽量透彻;走脑袋就是依胸中透彻而行,尽量顺应规律。合起来,就是要明道,并依道而行。这种智慧,就是想得开。
儒家的最高境界是“拿得起”,佛家的最高境界是“放得下”,道家的最高境界是“想得开”;所以说,儒释道的最高境界,就是这三句话、九个字。中国历史上还曾有过其他一些“人生境界”说,其中三个最著名的,正好可以与儒释道这三大最高境界对照参悟。 跟儒家学拿得起。儒家是追求入世、讲究做事的,要求奋发进取、勇于担当、意志坚定。概括为三个字,就是“拿得起”。什么是“拿得起”?且看这个“儒”字——左边一个“人”,右边一个“需”,合起来就是“人之所需”。人活世上,有各种精神或生存的需要,满足这些需要就需要去获取。去拿,并且拿到了、拿对了,就是拿得起。
如何才能想得开?哲学大师冯友兰曾提出“人生四重境界”说,其中最高那层境界正是道家境界,所以正是路径所在。 一是自然境界。有些人做事,可能只是顺着他的本能或者社会的风俗习惯,而对所做的事并不明白或者不太明白。这种“自然”并非道家那个自然,而是指混沌、盲目、原始,那些人云亦云、随波逐流的人就是这种人。
二是功利境界。有些人,会为了利己而主动去思考和做事,虽然未必不道德,却必定是功利的,而且很容易走向自私自利、损人利己。 三是道德境界。有的人,已经超越了自身,而开始考虑利人,譬如为了道义、公益、众生福祉而去做事。他们的眼界已经超越自身而投向了世间,胸中气象和站立高度已经抵达精神层次。 四是天地境界。当一个人的视野放到了整个天地宇宙,目光投向了万物根本,他就抵达了天人合一。这时他就已经不需要动脑子了,因为天地宇宙就是他的脑子,已经事事洞明,就像电脑连接到了互联网。这种境界,正是道家境界。这四重境界,境界越高就越想得开。想开到什么程度,则决定于人的视野放到多大,眼界拔到多高。人处平地,到处都会遮眼阻路;人登顶峰,世间便能一览通途。这就是想得开的秘密——眼界大了,心就宽了;站得高了,事就小了。想不开,往往都是画地为牢、作茧自缚。
相关文档
最新文档