离子色谱产品工作原理介绍

离子色谱产品工作原理介绍
离子色谱产品工作原理介绍

离子色谱是高效液相色谱的一种,故又称高效离子色谱(HPIC)或现代离子色谱,其有别于传统离子交换色谱柱色谱的主要是树脂具有很高的交联度和较低的交换容量,进样体积很小,用柱塞泵输送淋洗液通常对淋出液进行在线自动连续电导检测。

工作原理

分离的原理是基于离子交换树脂上可离解的离子与流动相中具有相同电荷的溶质离子之间进行的可逆交换和分析物溶质对交换剂亲和力的差别而被分离。适用于亲水性阴、阳离子的分离。

例如几个阴离子的分离,样品溶液进样之后,首先与分析柱的离子交换位置之间直接进行离子交换(即被保留在柱上),如用NaOH作淋洗液分析样品中的F-、Cl-和SO42-,保留在柱上的阴离子即被淋洗液中的OH-基置换并从柱上被洗脱。对树脂亲和力弱的分析物离子先于对树脂亲和力强的分析物离子依次被洗脱,这就是离子色谱分离过程,淋出液经过化学抑制器,将来自淋洗液的背景电导抑制到最小,这样当被分析物离开进入电导池时就有较大的可准确测量的电导信号。

基本构造

和一般的HP LC 仪器一样, 离子色谱仪一般也是先做成一个个单元组件, 然后根据分析要求将各所需单元组件组合起来。最基本的组件是流动相容器、高压输液泵、进样器、色谱柱、检测器和数据处理系统。此外,可根据需要配置流动相在线脱气装置、自动进样系统、流动相抑制系统、柱后反应系统和全自动控制系统等。

离子色谱仪的工作过程是: 输液泵将流动相以稳定的流速( 或压力) 输送至分析体系, 在色谱柱之前通过进样器将样品导入, 流动相将样品带入色谱柱, 在色谱柱中各组分被分离, 并依次随流动相流至检测器, 抑制型离子色谱则在电导检测器之前增加一个抑制系统, 即用另一个高压输液泵将再生液输送到抑制器, 在抑制器中, 流动相的背景电导

被降低, 然后将流出物导入电导检测池, 检测到的信号送至数据系统记录、处理或保存。非抑制型离子色谱仪不用抑制器和输送再生液的高压泵, 因此仪器的结构相对要简单得多, 价格也要便宜很多。

工作流程

大概流程:高压输液泵将流动相以稳定的流速(或压力)输送至分析体系,在色谱柱之前通过进样器将样品导入,流动相将样品带入色谱柱,在色谱柱中各组分被分离,并依次随流动相流至检测器。抑制型离子色谱则在电导检测器之前增加一个抑制系统,即用另一个高压输液泵将再生液输送到抑制器。在抑制器中,流动相背景电导被降低,然后将流动出物导入电导池,检测到的信号送至数据处理系统记录、处理或保存。非抑制型离子色谱仪不用抑制器和输送再生液的高压泵,因此仪器结构相对比较简单,价格也相对比较便宜。

用途领域

离子色谱主要用于环境样品的分析,包括地面水、饮用水、雨水、生活污水和工业废水、酸沉降物和大气颗粒物等样品中的阴、阳离子,与微电子工业有关的水和试剂中痕量杂质的分析。

另外在食品、卫生、石油化工、水及地质等领域也有广泛的应用。

分类:

1、离子色谱分离

离子色谱分离主要是应用离子交换的原理,采用低交换容量的离子交换树脂来分离离子,它在离子色谱中应用最广泛,其主要填料类型为有机离子交换树脂。

2、离子对色谱

离子对色谱的固定相为疏水型的中性填料,用于阴离子分离的对离子是烷基胺类,如氢氧化四丁基铵、氢氧化十六烷基三甲烷等。用于阳离子分离的对离子是烷基磺酸类,如己烷磺酸钠、庚烷磺酸钠等。

3、离子排斥色谱

离子排斥色谱,主要根据Donnon膜排斥效应:电离组分受排斥不被保存,而弱酸则有一定保存的原理制成。离子排斥色谱主要用于分离有机酸以及无机含氧酸根,如硼酸根、碳酸根和硫酸根、有机酸等。

4、离子色谱的应用

无机阴离子的检测;无机阳离子的检测和有机阴离子和阳离子分析,主要包括生物胺,有机酸和糖类分析。

青岛聚创环保集团有限公司(以下简称聚创环保)是一家集设计、研发、生产、销售、服务于一体的高新技术企业,坐落于美丽的滨海城市-青岛,目前已成功挂牌登陆新四板(股权简称:聚创环保股权代码:801400),旗下拥有青岛聚创宏业环保科技有限公司、青岛中福环保工程有限公司、青岛聚创美家环保技术有限公司、青岛聚创时代环保技术有限公司、青岛智汇谷信息技术有限公司、青岛聚创世纪环保科技有限公司、青岛聚创华业分析仪器有限公司等子公司,拥有“聚创”“聚创环保”“美益家”等多个独立品牌。聚创环保专注于环境检测类仪器仪表,公司业务涉及到水环境、大气环境、土壤固废、工业环境、食品安全、生物仪器、实验室等几大领域,服务的客户群体包含环保系统、安监系统、科研院校、第三方检测、石油化工、金属冶炼等生产制造行业。

常用电工仪表的分类、基本组成及工作原理

1.常用电工仪表的分类 电气测量指示仪表种类繁多,分类方法也很多,了解电气渊量指示式仪表的分类,有助于认识它们所具有的特性,对学习电气测金指示式仪表的概况有一定的帮助。 下面介绍几种常见的电气测量指示仪表的分类方法。 (1)按工作原理分有磁电系、电磁系、感应系、静电系等。 (2)按被侧电量的名称分有电流表(安培表、毫安表和微安表)、电压表(伏特表、毫伏表)、功率表、电能表、功率因数表、频率表、兆欧表以及其他多种用途的仪表,如万用表等。 (3)按被测电流的种类分有直流表、交流表、交直流两用表。 (4)按使用方式分有开关式与便携式仪表。开关板式仪表通常固定安装在开关板或某一装置.七,一般误差较大,价格也较低,适用于一般工业测量。便携式仪表误差较小(准确度较高),价格较贵,适于实验室适用。 (5)按仪表的准确度分有0.1,0.2,0.5,1.0,1.5,2.5,5.0共七个等级。 此外.按仪表对电磁场的防御能力可分为Ⅰ,Ⅱ,Ⅲ,Ⅳ四级;按仪表使用条件分为A,B,C三组。 2.电工仪表的基本组成和工作原理 电工指示仪表的基本工作原理都是将被测电量或非电量变换成指示仪表活动部分的偏转角位移量。被测量往往不能直接加到测量机构上,一般需要将被测量转换成测量机构可以测量的过渡量.这个把被测量装换为过渡量的组成部分叫测量线路。把过渡量按某一关系转换成偏转角的机构叫测量机构。测量机构有活动部分和固定部分组成,它是仪表的核心。如图A1所示,电工指示仪表一般有测量线路和测量机构这两个部分组成。 测量机构的主要作用是产生使仪表的指示器偏转的转动力矩,以及使指示器保持平衡和迅速稳定的反作用力矩及阻尼力矩。 测量线路把被测电量或非电量转换为测量机构能直接测量的电量时,测量机构活动部分在偏转力矩的作用下偏转。同时测量机构产生反作用力矩的部件所产生的反作用力矩也作用在活动部件上,当转动力矩与反作用力矩相等时,可动部分便停止下来。由于可动部分具有惯性,以至于其达到平衡时不能迅速停止下来,而是在平衡位置附近来回摆动。测量机构中的阻尼装笠产生的阻尼力矩使指针迅速停止在平衡位置上,指出被测量的大小,这也就是电工指示仪表的基本工作原理。

常用压力仪表工作原理

压力类仪表的工作原理 压力是工业生产过程中的重要参数之一。在许多生产过程中,要求系统只有在一定的压力条件下工作,才能达到预期效果,同时,压力也是监控安全生产的保证。因此,压力检测与控制是保证工业生产过程经济性和安全性的重要环节。 在物理学中,垂直作用在单位面积上的力称为压强,在工程上称为压力。如下式: S F p 表示受力面积。表示垂直作用力;表示压力;式中,S F p 由于参照点不同,在工程技术中压力分为以下几种: 1.大气压:地球表面上的空气质量所产生的压力。它和所处的海拔高度、纬度及气象状况有关。 2.差压(压差):两个压力之间的相对差值。 3.绝对压力:绝对压力是相对零压力(绝对真空)而言的压力。 4.表压力(相对压力):如果绝对压力和大气压的差值是一个正值,那么这个正值就是表压力,即表压力=绝对压力-大气压>0。 5.负压(真空表压力):和“表压力“相对应,如果绝对压力和大气压的差值是一个负值,那么这个负值就是负压力,即负压力=绝对压力-大气压<0。 在工程上,按压力随时间的变化关系分为以下两类: 1、静态压力:一般理解为“不随时间变化的压力,或者是随时间变化较缓慢的压力,即在流体中不受流速影响而测得的表压力值”。

2、.动态压力:和“静态压力”相对应,“随时间快速变化的压力,即动压是指单位体积的流体所具有的动能大小。”通常用1/2ρν2计算。式中ρ为流体密度;v 为流体运动速度。” 压力单位换算关系见下表: 牛顿/米2 (帕斯卡) (N/m 2)(Pa) 公斤力/米2 (kgf/m 2) 公斤力/厘米2 (kgf/cm 2) 巴 (bar) 标准大气压 (atm) 毫米水柱 4o C (mmH 2O) 毫米水银柱 0o C (mmHg) 磅/英寸2 (lb/in 2,psi) 牛顿/米2 (帕斯卡) (N/m 2)(Pa) 1 0.10197 2 10.1972×10-6 1×10-5 0.986923×10-5 0.101972 7.50062×10- 3 145.038×10-6 公斤力/米2 (kgf/m 2) 9.80665 1 1×10-4 9.80665×10-5 9.67841×10-5 1×10-8 0.0735559 0.00142233 公斤力/厘米2 (kgf/cm 2) 98.0665×103 1×104 1 0.980665 0.967841 10×103 735.559 14.2233 巴 (bar) 1×105 10197.2 1.01972 1 0.986923 10.1972×103 750.061 14.5038 标准大气压 (atm) 1.01325×105 1033 2.3 1.03323 1.01325 1 10.3323×103 760 14.6959 毫米水柱 4o C (mmH 2O) 0.101972 1×10-8 1×10-4 9.80665×10-5 9.67841×10-5 1 73.5559×10-3 1.42233×10-3 毫米水银柱 0o C (mmHg) 133.322 13.5951 0.00135951 0.00133322 0.00131579 13.5951 1 0.0193368 磅/英寸2 (lb/in 2,psi) 6.89476×103 703.072 0.0703072 0.0689476 0.0680462 703.072 51.7151 1 压力测量系统根据测量的原理,分为如下几类: 一、净重式。净重式压力计包括液柱式压力计和活塞式压力计;

压力测量仪表按工作原理分为液柱式

压力测量仪表按工作原理分为液柱式、弹性式、负荷式和电测式等类型。液压式压力测量仪表常称为液柱式压力计,它是以一定高度的液柱所产生的压力,与被测压力相平衡的原理测量压力的。大多是一根直的或弯成U形的玻璃管,其中充以工作液体。常用的工作液体为蒸馏水、水银和酒精。因玻璃管强度不高,并受读数限制,因此所测压力一般不超过兆帕。 它的特点是。液柱式压力计灵敏度高,因此主要用作实验室中的低压基准仪表,以校验工作用压力测量仪表。由于工作液体的重度在环境温度、重力加速度改变时会发生变化,对测量的结果常需要进行温度和重力加速度等方面的修正。 弹性性式压力测量仪表是利用各种不同形状的弹性元件,在压力下产生变形的原理制成的压力测量仪表。弹性式压力测量仪表按采用的弹性元件不同,可分为弹簧管压力表、膜片压力表、膜盒压力表和波纹管压力表等;按功能不同分为指示式压力表、电接点压力表和远传压力表等。这类仪表的特点是结构简单,结实耐用,测量范围宽,是压力测量仪表中应用最多的一种。 负荷式压力测量仪表常称为负荷式压力计,它是直接按压力的定义制作的,常见的有活塞式压力计、浮球式压力计和钟罩式压力计。由于活塞和砝码均可精确加工和测量,因此这类压力计的误差很小,主要作为压力基准仪表使用,测量范围从数十帕至2500兆帕。 电测式压力测量仪表是利用金属或半导体的物理特性,直接将压力转换为电压、电流信号或频率信号输出,或是通过电阻应变片等,将弹性体的形变转换为电压、电流信号输出。代表性产品有压电式、压阻式、振频式、电容式和应变式等压力传感器所构成的电测式压力测量仪表。精确度可达级,测量范围从数十帕至700兆帕不等。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。

常见九大压力仪表工作原理、选型、安装注意事项

常见九大压力仪表工作原理、选型、安装注意事项 一、常见九大压力仪表工作原理 1、液柱式压力计 2、活塞式压力计 活塞式压力计是基于静压平衡的原理工作的,一般有单活塞和双活塞两种。活塞压力计根据其精度分为一等、二等、三等,精度等级误差分别为0.02级,0.05级,0.2级。活塞的有效面积一般取1cm2、0.5cm2或0.1cm2。传压介质常用的有变压器油和蓖麻油。 3、弹性式压力计 弹性式压力计有弹簧管式、膜片式、膜盒式和波纹管式等;工业上常用的弹性测压元件有弹簧管、波纹管及膜片三类。弹性式压力计是根据弹性元件的变形和所受压力成比例的原理来工作的。当作用于弹性元件上的被测压力越大时,弹性元件的变形也越大。常用的弹性式压力表有弹簧管式压力表、膜片式压力表、波纹管式压力表,其中弹簧管式压力运用最广。 弹性元件的钢度就是指弹性元件变形的难易程度。钢度大的弹簧管受压变形后形变小。用不锈钢、合金钢制作的钢度大,一般用来测量大于20MPa以上压力;磷铜、黄铜制作的钢度小,一般测量小于20MPa以下的压力。 弹簧压力表一般由弹簧管、连接杆、扇形齿轮、游丝、指针和刻度盘等几部分组成。 弹簧管压力表中弹簧管都是由一根弯成270°圆弧状、截面呈椭圆形的金属管制成。因为椭圆形截面在介质压力的作用下将趋向圆形,使弯成圆弧形的弹簧管随之产生向外挺直扩张的变形,使弹簧管的自由端产生位移,并通过连接带动扇形齿轮进行放大,带动指针转动,指针转动的角度和压力程线性关系,这样就通过刻度盘读出被测压力的大小。游丝的作用是产生一个反作用力。膜片式压力表一般由测量膜片、传动系统、指示系统和表壳接头几部分组成。 4、电远传式压力表

现场仪表分类及各类仪表工作原理

现场仪表分类及各类仪表工作原理 按照检测测量功能的不同,可以分为温度检测仪表、流量检测仪表、液位检测仪表和压力检测仪表。 1、温度检测仪表:按工作原理分膨胀式、热电阻、热电偶及辐射式;按测量方式分接触(双金属温度计、压力式温度计、热电阻、热电偶)和非接触(光学高温计、辐射高温计、红外测温(硫磺制硫炉)两类。 2、压力检测仪表:主要有应变式、霍尔式、电感式、压电式、压阻式、电容式。常见有压力表、压力变送器等。 3、流量检测仪表:分节流式流量计(孔板、喷嘴、文丘里)、容积式流量计(转子式、刮板式、活塞式)、流体振动式流量计、电磁流量计、超声波流量计、转子流量计、质量流量计。 4、液位计检测仪表:分恒浮力式(浮球式、磁翻板、浮子钢带)和变浮力式液位计(浮筒液位计)。差压式液位计(双法兰液位计)、电容式液位计(射频导纳)、超声波液位计(雷达)、放射性液位计(中子料位计)。 一、差压仪表的工作原理:节流式测量流量的方法是以能量守恒定律和流体流动连续性定律为基础的,充满管道的流体,当它们流过节流装置时,流体在节流装置处形成局部收缩,从而流速增加,静压力降低。在节流装置前后产生了压差,流量越大压差也就越大,在一定的条件下,流量的平方与差压成正比。 二、质量流量计工作原理:科里奥利质量流量计,是利用流体在直线运动的同时处于一旋转系中,产生与质量流量成正比的科里奥利力原理制成的一种直接式质量流量仪表。振荡驱动器放在直管部分的中间位置,当管中流体以一定速度流动时,由于驱动器作用,使管子分开或靠近, 当驱动器使管子分开时,在振点前的流体中产生的科里奥利力与振动力方向相反,减慢管子的运动速度;而在振点之后管中流体产生的科氏力与振动方向相同,加快管子的运动速度。当驱动器使管子靠近时,则产生相反的结果。传感器1、传感器2可测得两处管子运动的相位差,由此得到测量管中流体的质量流量,传感器将模拟信号传给转换单元处理,经质量、密度计算和温度修正后,得出正确值。

仪表放大器工作原理与分析

在这些应用中,信号源得输出阻抗常常达几kΩ或更大,因此,仪表放大器得输入阻抗非常大——通常达数GΩ,它工作在DC到约 1 MHz之间。在更高频率处,输入容抗得问题比输入阻抗更大。高速应用通常采用差分放大器,差分放大器速度更快,但输入阻抗要低。 仪表放大器(又称测量放大器)测量噪声环境下得小信号。噪声通常就是共模噪声,所以,当信号就是差分时,仪表放大器利用其共模抑制(CMR)将需要得信号从噪声中分离出来。 运放得关键参数 设计工程师确定放大器时,主要关心得就是电源电流、–3dB带宽、共模抑制比(CMRR)、输入电压补偿与补偿电压温漂、噪声(指输入)以及输入偏置电流。 三运放仪表放大器得内部结构 大多数仪表放大器采用3个运算放大器排成两级:一个由两运放组成得前置放大器,后面跟一个差分放大器(图1a)。前置放大器提供高输入阻抗、低噪声与增益。差分放大器抑制共模噪声,还能在需要时提供一定得附加增益。

图1 二运放仪表放大器结构 可以采用具有两个运放得较少元器件得结构替代(图1b),但有两个缺点。首先,不对称得结构使CMRR较低,特别就是高频时。其次,由于第一级得增益量有限。输出误差反馈回输入端,导致相对输入得噪声与补偿误差更大。 什么就是RFI整流?如何预防? 传感器与仪表放大器之间得长引线会引起RF。仪表放大器随之将此RF整流为DC偏移。图2给出了一个方案,可在RF到达仪表放大器前就将其滤掉。元件R1a与C1a在同相端构成一低通滤波器,R1b与C1b在反相端同样构成低通滤波器。 图2 这两个低通滤波器截止频率得很好匹配很重要。否则,共模信号将会被转换为差分信号。C2在高频段将输入“短路”,能在一定程度上降

仪表阀门工作原理及维护

仪表阀门工作原理及维护 仪表针型阀是仪表测量管路系统中重要组成部分,主要有截止阀和球阀,其功用是作开启或切断管道通路用。 卡套式仪表阀门具有安装拆卸方便、连接紧固、有利于防火、防爆和耐压能力高、密封性能良好等优点,是电站、炼油、化工装置和仪表测量管路中的一种先进 由于阀门的广泛用途,使它在工业生产中起的作用越来越大,在石油、化工生产中,阀门起着控制全部生产设备和工艺流程的正常运转。但阀门同其它产品比较往往被人们忽视,在安装机器设备时,人们往往把重点放在主要机器设备方面,如:压缩机、高压容器、锅炉等,忽略对阀门的选用安装。阀门选用安装不当,会使整个生产效率降低或停产、或造成种种其它事故发生。因此,对阀门的选用、安装、使用等都必须进行认真负责的工作,尤其是现代化工业生产和建设更应如此。 一、仪表阀门的分类与用途 1、阀门的分类。阀门产品的种类繁多,说法也不完全统一,有的按用途分(如化工、石油、电站等)、有的按介质分(如水蒸汽、空气阀等)、有的按材质分(如铸铁阀、铸钢阀、锻钢阀等)、有的按连接形式分(如内螺纹、法兰阀等)、有的按温度分(如低温阀、高温阀等)。我国目前大多数习惯是按压力和结构种类来区分。即:按公称压力分:≤1.6MPa 为低压阀、压力2.5、4.0、6.4MPa为中压阀、≥10MPa为高压阀、超过100MPa为超高压阀。 仪表阀是采用模拟信号的调节器,又称模拟仪表阀。它确定受控对象参数的模拟形式测量值与给定值的偏差,并根据一定的调节规律产生模拟输出信号推动执行器消除偏差,使受控参数保持在给定值附近或按预定规律变化。 仪表阀按照所用的能源分为气动仪表阀、液动仪表阀和电动仪表阀三类;按照原理和结构又可分为自力式仪表阀、基地式调节仪表阀、简易调节仪表阀、单元组合仪表阀和组装式综合控制装置等。 自力式仪表阀以被调介质本身的能量或经过简单的转换后带动调节阀,实现自动调节。浮球式液位调节器就是利用浮球在液面上受到的浮力使调节阀动作,这种调节器不需要外来能源,是一种就地调节的装置,它结构简单,易于维修,适用于控制精度要求不高的单参数调节系统,在原理和结构上与气动执行器十分类似,常被归入执行器类。 基地式仪表阀是一种带附加调节机构的指示记录仪表。它接受检测元件发来的信号,靠指示、记录机构的动作带动调节机构发出控制信号,送到执行器实现自动调节。动圈式指示调节仪表、带电动调节器或气动调节器的电动和气动记录仪表都属于这种类型,它们广泛用于控制单台生产设备。 简易仪表阀是一种可直接接受检测元件的信号,不带指示机构的,专用性较强且结构简单的调节仪表。它也可以接受变送器的信号。无指示调节器和温度报警器都属于简易调节仪表,在中小型企业中得到广泛应用。 单元组合仪表是由若干种具有独立功能的标准单元组成的一套调节仪表。它完全适应大型机组和过程控制方面的要求,可以实现多回路的复杂控制。 组装式综合控制装置,简称组装式仪表,是按照一个大型机组或过程控制的要求,选用各种独立的功能组件组合成的专用控制装置。它可按用户的需要组装,因而具有很大的灵活性。 2、阀门的用途

常用电工仪表的分类、基本组成及工作原理

常用电工仪表的分类、基本组成及工作原理 1.常用电工仪表的分类 电气测量指示仪表种类繁多,分类方法也很多,了解电气渊量指示式仪表的分类,有助于认识它们所具有的特性,对学习电气测金指示式仪表的概况有一定的帮助。 下面介绍几种常见的电气测量指示仪表的分类方法。 (1)按工作原理分有磁电系、电磁系、感应系、静电系等。 (2)按被侧电量的名称分有电流表(安培表、毫安表和微安表)、电压表(伏特表、毫伏表)、功率表、电能表、功率因数表、频率表、兆欧表以及其他多种用途的仪表,如万用表等。 (3)按被测电流的种类分有直流表、交流表、交直流两用表。 (4)按使用方式分有开关式与便携式仪表。开关板式仪表通常固定安装在开关板或某一装置.七,一般误差较大,价格也较低,适用于一般工业测量。便携式仪表误差较小(准确度较高),价格较贵,适于实验室适用。 (5)按仪表的准确度分有0.1,0.2,0.5,1.0,1.5,2.5,5.0共七个等级。 此外.按仪表对电磁场的防御能力可分为Ⅰ,Ⅱ,Ⅲ,Ⅳ四级;按仪表使用条件分为A,B,C三组。 2.电工仪表的基本组成和工作原理 电工指示仪表的基本工作原理都是将被测电量或非电量变换成指示仪表活动部分的偏转角位移量。被测量往往不能直接加到测量机构上,一般需要将被测量转换成测量机构可以测量的过渡量.这个把被测量装换为过渡量的组成部分叫测量线路。把过渡量按某一关系转换成偏转角的机构叫测量机构。测量机构有活动部分和固定部分组成,它是仪表的核心。如图A1所示,电工指示仪表一般有测量线路和测量机构这两个部分组成。 测量机构的主要作用是产生使仪表的指示器偏转的转动力矩,以及使指示器保持平衡和迅速稳定的反作用力矩及阻尼力矩。 测量线路把被测电量或非电量转换为测量机构能直接测量的电量时,测量机构活动部分在偏转力矩的作用下偏转。同时测量机构产生反作用力矩的部件所产生的反作用力矩也作用在活动部件上,当转动力矩与反作用力矩相等时,可动部分便停止下来。由于可动部分具有惯性,以至于其达到平衡时不能迅速停止下来,而是在平衡位置附近来回摆动。测量机构中的阻尼装笠产生的阻尼力矩使指针迅速停止在平衡位置上,指出被测量的大小,这也就是电工指示仪表的基本工作原理。

常用自动化仪表的工作原理和应用20090219

培训讲义之一: 常用自动化仪表的工作原理和应用 主讲人:李绍仪 按被测参量可分为:温度测量仪表、压力测量仪表、流量测量仪表、物位测量仪表和分析仪表。 一、 温度测量仪表 温度是表示被测物体冷热程度的物理量。 测量单位:我国法定温度单位为摄氏度(℃),国外也常用华氏度(℉),转换关系为 32 1.8F C t t =+ 绝对温度T 单位是开尔文(K ) 273.16C T t =+ 1、 双金属温度计 是利用两种膨胀系数不同的金属片,牢固的结合在一起制作成平螺旋型或直螺旋形,将其一端固定,另一端连接指针轴,当温度变化时,由于两种金属膨胀系数不同,使螺旋曲率发生变化,带动指针偏转,直接指示温度值。 用于现场指示 有轴向型、径向型、万向型 表盘大小有Φ60、Φ100、Φ150 连接方式有固定外螺纹、可动外螺纹、可动内螺纹、固定法兰式、可动法兰式。 有点接式、上下限、HL 、上限、上上限、下限、下下限。

用于―80~500℃.(50°) 精度为1.5级 2、压力式温度计 利用密封压容器内的气体或液体受热,其体积膨胀使压力变化作为检测信号。 工作介质:液体有甘油、二甲苯、甲醇等;气体有氮气。 基本结构:由温包、毛细管和指示表头三部分组成。 主要用于现场指示盘面Φ100、Φ150 毛细管长度1~20m Φ15、Φ22 测量范围―80~200℃. 精度为1.5级 也可带电接点,作报警用。 3、热电阻 热电阻是利用电阻与温度呈一定函数关系的金属导体和半导体制成的感温元件。 主要有:铂热电阻、铜热电阻和镍热电阻,还有半导体锗、碳由电阻丝、骨架和引线组成感温元件。 工业用热电阻由感温元件、套管、接线盒和固定装置组成。 套管有材质直径Φ、长度l要选择;固定装置有螺纹连接、法兰连接、活动固定。 接线盒有防溅式、防水式、防爆式。 铂热电阻分度号为Pt100、Pt10、Pt1000 测量范围―200~500℃分度号:Pt100 0℃ 20℃ 80℃ 100℃ 150℃ 200℃ 300℃

磁电系仪器仪表测量机构与工作原理

磁电系仪器仪表测量机构与工作原理 磁电系仪表是电子仪器仪表的一种, 磁电系仪表主要用于直流电流和电压的测量, 与整 流器配合之后,也可用于交流电流和电压的测量。其优点是:准确度和灵敏度高、功耗小、 刻度均匀等。缺点是:过载能力差。该仪表主要由磁电系测量机构和测量线路组成。 1.测量机构和工作原理 磁电系仪表测量机构主要由固定部分和可动部分组成,如图 3-1-1。固定部分由马蹄形 位置,此时偏转角与输入电流的关系为a% I 。 如果在仪表盘上直接按电流值刻度, 则仪表标尺上的刻度是均匀等份的, 而且指针偏转 方向与 电流方向有关。当电流反向时,可动线圈的偏转也随之反向。 如果可动线圈通入交流电,在电流方向变化时转矩 M 的方向也随之变化。若电流变化 的频率小于可动部分的固有振动频率, 指针将会随电流方向的变化而左右摆动; 若电流变化 的频率高于可动部分的固有振动频率, 指针偏转角将与一个周期内转矩的平均值有关。 由于 一个周期内的平均驱动转矩为零, 所以指针将停留在零位不动。 可见,磁电系仪表只能直接 测量直流电,而不能测量交流电。若要测量交流电,则必须配上整流装置构成整流系仪表。 2.电流的测量 磁电系仪表可直接作为电流表使用。 但由于被测电流要流过截面积极细、 允许流过很小 电流(v 1mA 的游丝和可动线圈,所以最大量程只能是微安或毫安级。为了扩大量程,可 在测量机构上并联低值电阻即分流器, 如图3-1-2所示。 此时流过表头的电流I °只是被测电流I X 的一部分,两 不同阻值的分流器构成,并通过量程转换开关分别与表 头并联。需要扩大的量程越大,分流器的电阻越小。图 永久磁铁、极掌和圆柱形铁心等组成表头的磁路系统。 固定于表壳上的圆柱形铁心处于两极 掌之间,并与两极掌形成辐射均匀的环形磁场。可动部 分由绕在矩形铝框架上的可动线圈、与铝框相连的两个 半轴以及固定在半轴上的指针、游丝等组成。整个可动 部分经两半轴支承在轴承上,线圈则位于环形磁场中。 当电流I 经游丝流入可动线圈后,通电线圈在永久 磁铁的磁场中受到电磁力,产生电磁转矩 M ,使可动 线圈发生偏转,转矩M % |。同时与可动线圈固定在一 起的游丝因动圈的偏转而发生变形,从而产生反作用力 矩M F , M F 与指针的偏转角成正比,即 M F % 。 马蹄形永久磁铁 圆柱形铁心 当M = M F 时,可动部分将不再转动而停留在平衡 10 1 50 80 者的关系是I ° I X 极掌 指针 游丝 铝框及 可动线圈 图3-1-1 磁电系仪表测量机构 R A 4 R O 图3-1-2 多量程电流表接线图

化工仪表工作原理

雷达液位计的工作原理 雷达液位计的工作原理 发射—反射—接收是雷达液位计的基本工作原理。 雷达传感器的天线以波束的形式发射电磁波信号,发射波在被测物料表面产生反射,反射回来的回波信号仍由天线接收。发射及反射波束中的每一点都采用超声采样的方法进行采集。信号经智能处理器处理后得出介质与探头之间的距离,送终端显示器进行显示、报警、操作等。微波测距示意图如图1所示。 图中,E-空槽(罐)的高度;F—满槽(罐)的高度; D—探头至介质表面的距离;L—实际物位 雷达脉冲信号从发射到接收的运行时间与探头到介质表面的距离D成正比,即: D=v×t/2 式中,t—脉冲从发射到接收的时间间隔 v—波形传播速度 因空槽距离E已知,故实际物位的距离L为: L=E-D 式中,E的基准点是过程连接的底部 在发射的时间间隔里,天线系统作为接收装置使用。仪表分析、处理运行时间小于十亿分之一秒的回波信号,并在极短的一瞬间分析处理回波。 雷达传感器利用特殊的时间间隔调整技术将每秒的回波信号进行放大、定位,然后进行分析处理。因此雷达传感器可以在0.1s内精确细致地分析处理这些被放大的回波信号,无须花费很多时间来分析频率。 雷达液位计的特点

雷达液位计最大的特点是在恶劣条件下功效显著。无论是有毒介质,还是腐蚀性介质,也无论是固体、液体还是粉尘性、浆状介质,它都可以进行测量。在测量方面,具有以下特点: 1、连续准确地测量 FMR245 - 可用于温度高达200 °C (392 °F)的测量场合,由于电磁波的特点,不受环境的影响。故其测量的应用场合比较广。雷达液位计的探头与介质表面无接触,属非接触测量,能够准确、快速地测量不同的介质。探头几乎不受温度、压力、气体等的影响(500℃时影响仅为0.018%,50bar时为0.8%)。 2、对干扰回波具有抑制功能 比如,波束范围内接头引起的干扰回波和进料或出料的噪声引起的干扰回波等可由内部的模糊逻辑控制自动进行抑制。 3、准确安全节省能源雷达液位计在真空、受压状态下都可进行测量,而且准确安全,可* 性强。可以不受任何限制,适用于各种场合。雷达液位计采用材料的化学性、机械性都相当稳定,且材料可以循环利用,极具环保功效。 4、无须维修且可*性强 微波几乎不受干扰,与测量介质不直接接触,几乎可以被应用于各种场合,如真空测量、液位测量或料位测量等。由于高级材料的使用,对情况极其复杂的化学、物理条件都很耐用,它可以提供准确可*、长期稳定的模拟量或数字量的物位信号。 5、维护方便,操作简单 雷达液位计具有故障报警及自诊断功能。根据操作显示模块提示的错误代码分析故障,及时确定故障予以排除,使维护校正更加方便、准确,保障仪表的正常运行。 6、适用范围广,几乎可以测量所有介质 从槽罐体的形状来说,雷达液位计可以对球罐、卧罐、柱形罐、圆柱椎体罐等的液位进行测量;从罐体功能来说,可以对储罐、缓冲罐、微波管、旁通管中的液位进行测量;从被测介质来说,可以对液体、颗粒、料浆等进行测量。 雷达液位计的应用 1、安装注意事项(1)天线平行于测量槽壁,利于微波的传播。 (2)安装位置距槽壁距离应大于30cm,以免将槽壁上的虚假信号误做回波信号。 (3)尽量避开下料区、搅拌器等干扰源,使波束范围内无固定物,提高信号的可信度。 (4)接管直径应小于或等于屏蔽管长度(100mm或250mm)。 超声波液位计原理 最大测量范围 FMU40:液体: 5 m 固体: 2m

湿度仪表工作原理

湿度仪表工作原理 常用的湿度控制器形式有:毛发湿度计、干湿球湿度计,还有电阻式和电容式湿度传感器与变送器,下面介绍几种常用的湿度仪表。 (1)、毛发式湿度控制器的工作原理:人的头发、尼龙丝(或薄膜)在空气相对湿度变化时会产生伸缩。例如,精选脱脂后的毛发在湿度变化10%时,长度改变 2%。利用此道理,将一束脱脂处理后的毛发一端固定,当它感应湿度变化时,另一端以位移信号传递,带动指针,可以显示湿度;将湿度控制器位移转换成电开关动作,与加湿电磁阀或者除湿冷却盘管电磁阀配合使用,则可以作为湿度控制器来调节空气的湿度。图1所示为毛发式湿度计的外观图。 图1 毛发式湿度计 (2)、干湿球湿度计的工作原理:它利用水蒸发要吸热降温,而蒸发的快慢(即降温的多少)是和当时空气的相对湿度有关这一原理制成的。根据干球温度与湿球温度的差值,使电开关动作。用两个电阻式温度传感器,一个测量干球温度,一个外面包着湿纱布测量湿球温度。用电子线路将信号放大,去控制电触点动作。此时,湿球与干球之间的温度差与环境的相对湿度有一个相应的关系,但该关系是非线性的。干湿球温度测量中要用小风扇强制吹风,湿包测点处的风速保持为3~4m/s。由于湿球温度测量中要用水,所以这种湿度计只能在0℃以上的环境测湿。图2所示为干湿球湿度计的测量原理图。

图2 干湿球湿度计测量原理 (3)、电子湿度计的工作原理:有多种金属盐(例如,氯化锂、氯化钙) 在空气中有很强的吸湿性。吸湿使盐中的水分增加;直到盐中的水分与空气中的水分达到平衡为止。盐的平衡含水量与空气相对湿度一一对应。相对湿度越大,盐中的平衡含水量越大,盐的电阻越小;反之,空气相对湿度越小,盐的电阻越大。利用这个道理用氯化锂作为电阻式湿度发信器,在湿度测量和控制中使用。图3所示为电子湿度计的简易结构图。 图3 电子湿度计结构图

仪表分类及工作原理

仪表分类及工作原理 一、仪表分类及工作原理 (一)电工仪表的作用及其分类 1.电工仪表的作用 电工仪表是监视与保证各类电气设备及电力线路实现安全经济运行的重要显示装置。在电力的产生、输送与使用的全过程中,它已成为必不可少的计量器具,许多电气参数都需由仪表来测量与反映。 电工仪表既可用来测量电压、电流、电阻、电功率和电能量等各种电气量值,经过转换还可用来间接地测量诸如温度、压力或湿度等非电气量值。 2.电工仪表分类 (1)按工作原理不同分类 可分为磁电式、电磁式、电动式、感应式、整流式、静电式、电子式等。 (2)按被测量电学量性质不同分类 可分为电流表、电压表、功率表、功率因数表、电能表、频率表、欧姆表、绝缘电阻表和多种用途的万用表。常用电工仪表的名称和符号见表3-1。 (3)按仪表读数装置结构方式不同分类 可分为指针式、光指示式、振簧式、数字转盘式等。 (4)按使用条件分类 根据温度、湿度、尘砂、霉菌等使用环境条件的不同,国家 专业标准把仪表分为P、S、A、B四组。 表3-1 常用电工仪表的名称和符号 被测量仪表名称符号 电流电流表A,mA,μA 电压电压表V,kV 有功电功率有功功率表W,kW,MW 无功电功率无功功率表kvar,Mvar 电量电能表kW·h 功率因数功率因数表cosφ 频率频率表Hz (5)按防御外界磁场或电场影响能力分类 可分为:I、II、III、IV四个等级。 (6)按准确度等级分类 可分为七级:0.1级、0.2级、0.5级、1.0级、1.5级、2.5级、5.0级。 其中1.5级及以下的大都为安装式配电盘表;0.1和0.2级仪表常用作为校验标准表; 0.5和1.0级仪表供实验室和工厂作较精确的测量用;1.5~5.0级仪表多用于一般工程上。此外有功电能表还有2.0级;无功电能表还有2.0、3.0级。 3.仪表的标志及其含义 (1)仪表型号及其含义 电工仪表的产品型号是按规定的标准编制的。对于固定式和便携式指示仪表的型号各有不同编制规则。

相关文档
最新文档