高一数学立体几何练习题及部分答案汇编

合集下载

高一数学立体几何练习题及部分答案汇编之欧阳数创编

高一数学立体几何练习题及部分答案汇编之欧阳数创编

立体几何试题一.选择题(每题4分,共40分)1.已知AB//PQ,BC//QR,则∠PQP等于()A 0150 D30 B 030 C 0以上结论都不对2.在空间,下列命题正确的个数为()(1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形(3)平行于同一条直线的两条直线平行 ;(4)有两边及其夹角对应相等的两个三角形全等A 1B 2C 3D 43.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是()A 平行B 相交C 在平面内D 平行或在平面内4.已知直线m//平面α,直线n在α内,则m与n的关系为()A 平行B 相交C 平行或异面D 相交或异面5.经过平面α外一点,作与α平行的平面,则这样的平面可作()A 1个或2个B 0个或1个C 1个D 0个6.如图,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是( )A 平行B 垂直相交C 异面D 相交但不垂直7.经过平面α外一点和平面α内一点与平面α垂直的平面有()A 0个B 1个C 无数个D 1个或无数个8.下列条件中,能判断两个平面平行的是( )A 一个平面内的一条直线平行于另一个平面;B 一个平面内的两条直线平行于另一个平面C 一个平面内有无数条直线平行于另一个平面D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( )A //,,m n n m βα⊥⊂B //,,m n n m βα⊥⊥C ,,m n m n αβα⊥=⊂D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个 二.填空题(每题4分,共16分)11.已知∆ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条13.一块西瓜切3刀最多能切_________块14.将边长是a 的正方形ABCD 沿对角线AC 折起,使得折起后BD 得长为a,则三棱锥D-ABC 的体积为___________ 三、解答题15(10分)如图,已知E,F 分别是正方形1111ABCD A B C D -的棱1AA 和棱1CC 上的点,且1AE C F=。

高中数学立体几何专项练习题及答案

高中数学立体几何专项练习题及答案

高中数学立体几何专项练习题及答案一、选择题1. 下面哪个选项不是描述柱体的特点?A. 体积恒定B. 底面形状不限C. 侧面是矩形D. 顶面和底面平行答案:A2. 如果一个四面体的一个顶点的对边垂直于底面,那么这个四面体是什么类型?A. 正方形四面体B. 倒立四面体C. 锥体D. 正方锥体答案:C3. 以下哪个选项正确描述了一个正方体的特点?A. 全部面都是正方形B. 12 条棱长度相同C. 8 个顶点D. 6 个面都是正方形答案:D4. 若长方体的高度是 6cm,底面积是 5cm²,底面对角线长为 a cm,那么 a 的值为多少?A. √11B. √29C. √31D. √41答案:C二、填空题1. 一个正方体的棱长为 4cm,它的体积是多少?答案:64cm³2. 一个球的表面积是100π cm²,那么它的半径是多少?答案:5cm3. 一个圆柱体的底面半径为 3cm,高度为 8cm,它的体积是多少?答案:72π cm³4. 一个圆锥的底面半径为 6cm,高度为 10cm,它的体积是多少?答案:120π cm³三、计算题1. 一个四棱锥的底面是边长为 5cm 的正方形,高度为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:5cm * 5cm = 25cm²再计算体积:25cm² * 8cm / 3 = 200cm³2. 一个圆柱体的底面直径为 12cm,高度为 15cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面半径:12cm / 2 = 6cm再计算底面积:π * 6cm * 6cm = 36π cm²最后计算体积:36π cm² * 15cm = 540π cm³3. 一个球的直径为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算半径:8cm / 2 = 4cm再计算体积:4/3 * π * 4cm * 4cm * 4cm = 268.08π cm³4. 一个圆锥的底面半径为 10cm,高度为 20cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:π * 10cm * 10cm = 100π cm²最后计算体积:100π cm² * 20cm / 3 = 2000π cm³四、解答题1. 若一个长方体的长度、宽度、高度分别为 a、b、c,它的表面积为多少?答案:单位为 cm²,计算过程如下:首先计算侧面积:2 * (a * b + a * c + b * c)再计算底面积:a * b最后计算表面积:2 * (a * b + a * c + b * c) + a * b2. 一个四棱锥的底面为边长为 a 的正三角形,高度为 h,求这个四棱锥的体积。

高一数学立体几何练习题及部分答案大全.docx

高一数学立体几何练习题及部分答案大全.docx

立体几何试题一.选择题(每题 4 分,共 40 分)1. 已知 AB3003001500空间,下列命题正确的个数为()(1)有两组对边相等的四边形是平行四边形, (2)四边相等的四边形是菱形(4)有两边及其夹角对应相等的两个三角(3)平行于同一条直线的两条直线平行 ;形全等A 1B 2C 3D 43.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是()A平行B相交C在平面内D平行或在平面内4. 已知直线 m过平面外一点,作与平行的平面,则这样的平面可作()A 1 个或 2 个B 0个或1个C1个 D 0个6.如图 , 如果 MC 菱形 ABCD 所在平面 , 那么 MA与 BD的位置关系是 ( )A平行B垂直相交C异面D相交但不垂直7. 经过平面外一点和平面内一点与平面垂直的平面有()A 0 个B 1个C无数个 D 1个或无数个8.下列条件中 , 能判断两个平面平行的是 ( )B一个平面内的两条直线平行于另一个平面C一个平面内有无数条直线平行于另一个平面D一个平面内任何一条直线都平行于另一个平面9. 对于直线m ,n 和平面,, 使成立的一个条件是 ( )A m // n, n, mB m // n, n,mC m n,I m, nD m n, m //, n //)10 . 已知四棱锥 , 则中 , 直角三角形最多可以有 (A 1个B2个 C 3个D4个二.填空题(每题 4 分,共16 分)11. 已知ABC的两边 AC,BC分别交平面于点M,N,设直线AB与平面交于点O,则点 O与直线 MN的位置关系为 _________12.过直线外一点与该直线平行的平面有 ___________个,过平面外一点与该平面平行的直线有_____________条13. 一块西瓜切 3 刀最多能切 _________块14.将边长是 a 的正方形 ABCD沿对角线 AC 折起 , 使得折起后 BD得长为 a, 则三棱锥D-ABC的体积为 ___________三、解答题15(10 分)如图,已知 E,F 分别是正方形ABCD A1B1C1 D1的棱 AA1和棱 CC1上的点,且 AE C1 F 。

【必刷题】2024高一数学下册立体几何初步专项专题训练(含答案)

【必刷题】2024高一数学下册立体几何初步专项专题训练(含答案)

【必刷题】2024高一数学下册立体几何初步专项专题训练(含答案)试题部分一、选择题:1. 在空间直角坐标系中,点A(1,2,3)关于x轴的对称点的坐标是()A. (1,2,3)B. (1,2,3)C. (1,2,3)D. (1,2,3)2. 下列关于直线l:x=1,y=2+t,z=32t的描述,正确的是()A. 直线l平行于x轴B. 直线l平行于y轴C. 直线l平行于z轴D. 直线l垂直于x轴3. 一个正方体的对角线长度为6根号3,则其表面积为()A. 216B. 54C. 108D. 1444. 若长方体的长、宽、高分别为2cm、3cm、4cm,则其对角线长度为()A. 5cmB. 6cmC. 7cmD. 9cm5. 下列关于平面α:2x3y+z=6的描述,正确的是()A. 平面α平行于x轴B. 平面α平行于y轴C. 平面α平行于z轴D. 平面α垂直于x轴6. 下列关于点P(2,3,4)到平面α:x+y+z=6的距离,正确的是()A. 1B. 2C. 3D. 47. 若三棱锥的底面是边长为1的正三角形,侧棱长为根号3,则其体积为()A. 1/3B. 1/6C. 1/9D. 1/128. 下列关于球体的描述,正确的是()A. 球体的表面积与半径成正比B. 球体的体积与半径成正比C. 球体的表面积与半径的平方成正比D. 球体的体积与半径的平方成正比9. 若四面体的四个面均为等边三角形,边长为a,则其体积为()A. a^3/6B. a^3/12C. a^3/18D. a^3/2710. 下列关于空间向量夹角的描述,正确的是()A. 向量a与向量b的夹角为90°,则a·b=0B. 向量a与向量b的夹角为0°,则a·b=0C. 向量a与向量b的夹角为180°,则a·b=0D. 向量a与向量b的夹角为60°,则a·b=0二、判断题:1. 在空间直角坐标系中,点A(0,0,0)到点B(1,1,1)的距离等于根号3。

高一数学立体几何练习题及部分答案汇编

高一数学立体几何练习题及部分答案汇编

立体几何试题一.选择题(每题4分,共40分)1.已知AB//PQ,BC//QR,则∠PQP等于()A 030B 030C 0150 D 以上结论都不对2.在空间,下列命题正确的个数为()(1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形(3)平行于同一条直线的两条直线平行;(4)有两边及其夹角对应相等的两个三角形全等A 1B 2C 3D 43.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是()A 平行B 相交C 在平面D 平行或在平面4.已知直线m//平面α,直线n在α,则m与n的关系为()A 平行B 相交C 平行或异面D 相交或异面5.经过平面α外一点,作与α平行的平面,则这样的平面可作()A 1个或2个B 0个或1个C 1个D 0个6.如图,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是( )A 平行B 垂直相交C 异面D 相交但不垂直7.经过平面α外一点和平面α一点与平面α垂直的平面有()A 0个B 1个C 无数个D 1个或无数个8.下列条件中,能判断两个平面平行的是( )A 一个平面的一条直线平行于另一个平面;B 一个平面的两条直线平行于另一个平面C 一个平面有无数条直线平行于另一个平面D 一个平面任何一条直线都平行于另一个平面9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( )A //,,m n n m βα⊥⊂B //,,m n n m βα⊥⊥C ,,m n m n αβα⊥=⊂D ,//,//m n m n αβ⊥10 .已知四棱锥,则中,直角三角形最多可以有( )A 1个B 2个C 3个D 4个二.填空题(每题4分,共16分)11.已知∆ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有_____________条13.一块西瓜切3刀最多能切_________块14.将边长是a 的正方形ABCD 沿对角线AC 折起,使得折起后BD 得长为a,则三棱锥D-ABC 的体积为___________三、 解答题15(10分)如图,已知E,F 分别是正方形1111ABCD A B C D -的棱1AA 和棱1CC 上的点,且1AE C F =。

高一数学立体几何试题答案及解析

高一数学立体几何试题答案及解析

高一数学立体几何试题答案及解析1.设三棱柱的体积为,分别是侧棱上的点,且,则四棱锥的体积为()A.B.C.D.【答案】C【解析】假设重合,重合,则【考点】棱柱棱锥的体积2.如图,四棱锥中,,四边形是边长为的正方形,若分别是线段的中点.(1)求证:∥底面;(2)若点为线段的中点,求三角形的面积。

【答案】(1)见解析;(2)【解析】要想证明线面平行,只需证明出该线段与面内的任意一条线段平行即可,在本题中,需要连接辅助线进行解答,在解此问题时主要运用了三角形内中位线平行于底边的性质;首先需要掌握知识,三角形的中位线的长度为底边的一半,先求出所需边的长度,再运用余弦定理,求出角的度数,在运用三角形面积公式即可得到结果。

试题解析:(1)解:连接,由题意知,为中点,为的中位线,平面平面平面(2)连接由(1)知:,同理可得:,,【考点】空间几何的运算3.如图,在四棱台中,底面,四边形为正方形,,,平面.(1)证明:为的中点;(2)求点到平面的距离.【答案】(1)详见解析;(2)【解析】(1)根据线面平行的性质定理,线面平行则,线线平行,所以可证,可证四边形是平行四边形,即证明是中点;(2)根据等体积转化,可证是直角三角形,写出体积公式,求解距离.试题解析:解(1)连接AD1,则D1C1∥DC∥AB,∴A、E、C1、D1四点共面,∵C1E∥平面ADD1A1,则C1E∥AD1,∴AEC1D1为平行四边形,∴AE=D1C1=1,∴E为AB的中点.(6分)(2),∵AD⊥DC,AD⊥DD1,∴AD⊥平面DCC1D1,AD⊥DC1.设点E到平面ADC1的距离为h,则,解得.【考点】1.线面平行的性质定理;2.等体积转化.4.设长方体的长、宽、高分别为2,1, 1,其顶点都在同一个球面上,则该球的体积为_______.【答案】【解析】球直径为长方体的体对角线,故半径为【考点】球内接长方体的性质,球体积的计算5.(本小题12分)如图所示,三棱柱ABC-A1B1C1中,.(1)证明:;(2)若,求三棱柱ABC-A1B1C1的体积.【答案】(1)见解析;(2)3【解析】(1)取AB的中点O,连接OC,OA1,A1B,证得,,则根据线面垂直的判定定理可得,进而得出;(2)先证明,进而证出,再求出,最后利用柱体的体积公式求出体积;试题解析:(1)取AB 的中点O ,连接.因为,所以.由于,故△AA 1B 为等边三角形,所以.因为,所以.又,故.(2)由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以. 又,则,故.因为所以,为三棱柱的高.又△ABC 的面积,故三棱柱的体积.【考点】1.线面垂直的判定定理;2.线线垂直的证明方法;3.柱体的体积公式;6. 如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误的是( ).A .BD ∥平面CB 1D 1 B .AC 1⊥BDC .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1角为60°【答案】D【解析】因为易证∥,由线面平行的判定定理可证得∥面,所以A 选项结论正确; 由正方体可得面,可证得,由为正方体得,因为,所以面,从而可证得.同理可证明,根据线面垂直的判定定理可证得面,所以B ,C 选项结论都正确; 因为∥,所以为异面直线与所成的角,由正方体可得,所以D 选项的内容不正确. 故选D 。

高一 立体几何知识点+例题+练习 含答案

高一 立体几何知识点+例题+练习 含答案

1.空间几何体的结构特征 (1)多面体①棱柱的侧棱都平行且相等,上、下底面是全等的多边形. ②棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. ③棱台可由平行于底面的平面截棱锥得到,其上、下底面是相似多边形. (2)旋转体①圆柱可以由矩形绕其一边所在直线旋转得到. ②圆锥可以由直角三角形绕其直角边所在直线旋转得到.③圆台可以由直角梯形绕直角腰所在直线或等腰梯形绕上、下底中点连线所在直线旋转得到,也可由平行于底面的平面截圆锥得到. ④球可以由半圆或圆绕直径所在直线旋转得到. 2.空间几何体的直观图画空间几何体的直观图常用斜二测画法,其规则是:(1)原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴、y ′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半. 3.柱、锥、台和球的表面积和体积名称几何体表面积体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底V =13Sh台体(棱台和圆台) S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 34.(1)与体积有关的几个结论①一个组合体的体积等于它的各部分体积的和或差. ②底面面积及高都相等的两个同类几何体的体积相等. (2)几个与球有关的切、接常用结论 a .正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .b .若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. c .正四面体的外接球与内切球的半径之比为3∶1. (3)斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x ,z 轴平行的线段的长度不改变,相对位置不改变.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)有两个面平行,其余各面都是平行四边形的几何体是棱柱.( × ) (2)有一个面是多边形,其余各面都是三角形的几何体是棱锥.( × )(3)用斜二测画法画水平放置的∠A 时,若∠A 的两边分别平行于x 轴和y 轴,且∠A =90°,则在直观图中,∠A =45°.( × ) (4)圆柱的侧面展开图是矩形.( √ )(5)台体的体积可转化为两个锥体的体积之差来计算.( √ ) (6)菱形的直观图仍是菱形.( × )1.(教材改编)下列说法正确的是________.①相等的角在直观图中仍然相等; ②相等的线段在直观图中仍然相等; ③正方形的直观图是正方形;④若两条线段平行,则在直观图中对应的两条线段仍然平行. 答案 ④解析 由直观图的画法规则知,角度、长度都有可能改变,而线段的平行性不变.故④正确. 2.(教材改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为________ cm. 答案 2解析 S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π, ∴r 2=4,∴r =2(cm).3.(2014·陕西改编)将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是________. 答案 2π解析 底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.4.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D -ABC 的体积为________. 答案212a 3解析 O 是AC 的中点,连结DO ,BO ,△ADC ,△ABC 都是等腰直角三角形.因为DO =BO =AC 2=22a ,BD =a ,所以△BDO 也是等腰直角三角形.又因为DO ⊥AC ,DO ⊥BO ,AC ∩BO =O ,所以DO ⊥平面ABC ,即DO 就是三棱锥D -ABC 的高.因为S △ABC =12a 2,所以三棱锥D -ABC 的体积为13×12a 2×22a =212a 3.5. 用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是__________________________________________.答案 ①解析平面图形的直观图为正方形,且其边长为1,对角线长为2,所以原平面图形为平行四边形,且位于x轴上的边长仍为1,位于y轴上的对角线长为2 2.题型一空间几何体的结构特征例1(1)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是________.(2)下列结论:①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆面;④一个平面截圆锥,得到一个圆锥和一个圆台;⑤用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是球.其中正确结论的序号是________.(3)设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体;②底面是矩形的平行六面体是长方体;③直四棱柱是直平行六面体;④棱台的相对侧棱延长后必交于一点.其中真命题的序号是________.答案(1)0(2)③⑤(3)①④解析(1)①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,因为“其余各面都是三角形”并不等价于“其余各面都是有一个公共顶点的三角形”,如图1所示;③不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图2所示,它是由两个同底圆锥组成的几何体;④错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.图1图2(2)这条边若是直角三角形的斜边,则得不到圆锥,①错;这条腰若不是垂直于两底的腰,则得到的不是圆台,②错;圆柱、圆锥、圆台的底面都是圆面是显然成立的,③正确;如果用不平行于圆锥底面的平面截圆锥,则得到的不是圆锥和圆台,④错;只有球满足任意截面都是圆面,⑤正确.(3)命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.思维升华(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确命题的序号是________.答案②③④解析①不正确,根据棱柱的定义,棱柱的各个侧面都是平行四边形,但不一定全等;②正确,若三棱锥的三条侧棱两两垂直,则三个侧面构成的三个平面的二面角都是直二面角;③正确,因为两个过相对侧棱的截面的交线平行于侧棱,又垂直于底面;④正确,如图,正方体AC1中的三棱锥C1-ABC,四个面都是直角三角形.题型二 空间几何体的直观图例2 已知△A ′B ′C ′是△ABC 的直观图,且△A ′B ′C ′是边长为a 的正三角形,求△ABC 的面积.解 建立如图所示的坐标系xOy ′,△A ′B ′C ′的顶点C ′在y ′轴上,边A ′B ′在x 轴上,把y ′轴绕原点逆时针旋转45°得y 轴,在y 轴上取点C 使OC =2OC ′,A ,B 点即为A ′,B ′点,长度不变.已知A ′B ′=A ′C ′=a ,在△OA ′C ′中,由正弦定理得OC ′sin ∠OA ′C ′=A ′C ′sin 45°,所以OC ′=sin 120°sin 45°a =62a ,所以原三角形ABC 的高OC =6a , 所以S △ABC =12×a ×6a =62a 2.引申探究1.若本例改为“已知△ABC 是边长为a 的正三角形,求其直观图△A ′B ′C ′的面积”,应如何求?解 由斜二测画法规则可知,直观图△A ′B ′C ′一底边上的高为32a ×12×22=68a , 故其面积S △A ′B ′C ′=12a ×68a =616a 2.2.本例中的直观图若改为如图所示的直角梯形,∠ABC =45°,AB =AD =1,DC ⊥BC ,则原图形的面积为________. 答案 2+22解析 如图①,在直观图中,过点A 作AE ⊥BC ,垂足为E ,则在Rt △ABE 中,AB =1,∠ABE =45°, ∴BE =22.而四边形AECD 为矩形,AD =1, ∴EC =AD =1.∴BC =BE +EC =22+1. 由此可还原原图形如图②,是一个直角梯形.在原图形中,A ′D ′=1,A ′B ′=2,B ′C ′=22+1,且A ′D ′∥B ′C ′,A ′B ′⊥B ′C ′,∴原图形的面积为S =12(A ′D ′+B ′C ′)·A ′B ′=12×⎝⎛⎭⎫1+1+22×2=2+22. 思维升华 用斜二测画法画直观图的技巧在原图形中与x 轴或y 轴平行的线段在直观图中与x ′轴或y ′轴平行,原图中不与坐标轴平行的直线段可以先画出线段的端点再连线,原图中的曲线段可以通过取一些关键点,作出在直观图中的相应点后,用平滑的曲线连结而画出.如图,矩形O ′A ′B ′C ′是水平放置的一个平面图形的直观图,其中O ′A ′=6 cm ,C ′D ′=2 cm ,则原图形是________. ①正方形; ②矩形;③菱形; ④一般的平行四边形. 答案 ③解析 如图,在原图形OABC 中,应有OD =2O ′D ′=2×22=42(cm),CD =C ′D ′=2 cm. ∴OC =OD 2+CD 2=(42)2+22=6(cm),∴OA =OC ,∴四边形OABC 是菱形.题型三 求空间几何体的表面积例3 (1)(2014·山东)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________. 答案 12解析 由题意知该六棱锥为正六棱锥,∴设正六棱锥的高为h ,侧面的斜高为h ′. 由题意,得13×6×12×2×3×h =23,∴h =1, ∴斜高h ′=12+(3)2=2,∴S 侧=6×12×2×2=12.(2)如图,斜三棱柱ABC —A ′B ′C ′中,底面是边长为a 的正三角形,侧棱长为b ,侧棱AA ′与底面相邻两边AB 与AC 都成45°角,求此斜三棱柱的表面积. 解 如图,过A ′作A ′D ⊥平面ABC 于D ,过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,连结A ′E ,A ′F ,AD . 则由∠A ′AE =∠A ′AF , AA ′=AA ′,又由题意知A ′E ⊥AB ,A ′F ⊥AC , 得Rt △A ′AE ≌Rt △A ′AF , ∴A ′E =A ′F ,∴DE =DF , ∴AD 平分∠BAC ,又∵AB =AC ,∴BC ⊥AD ,∴BC ⊥AA ′, 而AA ′∥BB ′,∴BC ⊥BB ′, ∴四边形BCC ′B ′是矩形,∴斜三棱柱的侧面积为2×a ×b sin 45°+ab =(2+1)ab . 又∵斜三棱柱的底面积为2×34a 2=32a 2, ∴斜三棱柱的表面积为(2+1)ab +32a 2.思维升华 (1)解决组合体问题关键是分清该几何体是由哪些简单的几何体组成的以及这些简单的几何体的组合情况;(2)在求多面体的侧面积时,应对每一侧面分别求解后再相加,对于组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.一个正三棱台的上、下底面边长分别是3 cm 和6 cm ,高是32cm.(1)求三棱台的斜高;(2)求三棱台的侧面积和表面积.解 (1)设O 1、O 分别为正三棱台ABC —A 1B 1C 1的上、下底面正三角形的中心,如图所示,则O 1O =32,过O 1作O 1D 1⊥B 1C 1,OD ⊥BC ,则D 1D 为三棱台的斜高;过D 1作D 1E ⊥AD 于E ,则D 1E =O 1O =32,因O 1D 1=36×3=32,OD =36×6=3, 则DE =OD -O 1D 1=3-32=32. 在Rt △D 1DE 中, D 1D =D 1E 2+ED 2=⎝⎛⎭⎫322+⎝⎛⎭⎫322=3(cm). 故三棱台斜高为 3 cm.(2)设c 、c ′分别为上、下底的周长,h ′为斜高, S 侧=12(c +c ′)h ′=12(3×3+3×6)×3=2732 (cm 2),S 表=S 侧+S 上+S 下=2732+34×32+34×62=9934(cm 2). 故三棱台的侧面积为2732 cm 2,表面积为9934cm 2.题型四 求空间几何体的体积例4 (2015·山东改编)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为________. 答案42π3解析 如图,设等腰直角三角形为△ABC ,∠C =90°,AC =CB =2,则AB =2 2.设D 为AB 中点,则BD =AD =CD = 2.∴所围成的几何体为两个圆锥的组合体,其体积V =2×13×π×(2)2×2=42π3.思维升华 空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.(2014·课标全国Ⅱ改编)正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为________. 答案 1解析 在正△ABC 中,D 为BC 的中点, 则有AD =32AB =3, S △DB 1C 1=12×2×3= 3.又∵平面BB 1C 1C ⊥平面ABC , AD ⊥BC ,AD ⊂平面ABC , ∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1底面上的高.∴V 三棱锥A -B 1DC 1=13S △DB 1C 1·AD =13×3×3=1.题型五 与球有关的切、接问题例5 已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为________. 答案132解析 如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52, OM =12AA 1=6, 所以球O 的半径R =OA =(52)2+62=132. 引申探究1.本例若将直三棱柱改为“棱长为4的正方体”,则此正方体外接球和内切球的体积各是多少?解 由题意可知,此正方体的体对角线长即为其外接球的直径,正方体的棱长即为其内切球的直径.设该正方体外接球的半径为R ,内切球的半径为r .又正方体的棱长为4,故其体对角线长为43,从而V 外接球=43πR 3=43π×(23)3=323π, V 内切球=43πr 3=43π×23=32π3. 2.本例若将直三棱柱改为“正四面体”,则此正四面体的表面积S 1与其内切球的表面积S 2的比值为多少?解 设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径r 为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2πa 26=63π. 3.本例中若将直三棱柱改为“侧棱和底面边长都是32的正四棱锥”,则其外接球的半径是多少?解 依题意得,该正四棱锥的底面对角线的长为32×2=6,高为 (32)2-(12×6)2=3, 因此底面中心到各顶点的距离均等于3,所以该正四棱锥的外接球的球心即为底面正方形的中心,其外接球的半径为3.思维升华 空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.如图,直三棱柱ABC -A 1B 1C 1的六个顶点都在半径为1的半球面上,AB =AC ,侧面BCC 1B 1是半球底面圆的内接正方形,则侧面ABB 1A 1的面积为________.答案 2 解析 由题意知,球心在侧面BCC 1B 1的中心O 上,BC 为△ABC 所在圆面的直径,∴∠BAC =90°,△ABC 的外接圆圆心N 是BC 的中点,同理△A 1B 1C 1的外心M 是B 1C 1的中点.设正方形BCC 1B 1的边长为x ,Rt △OMC 1中,OM =x 2,MC 1=x 2,OC 1=R =1(R 为球的半径), ∴(x 2)2+(x 2)2=1,即x =2,则AB =AC =1, ∴S 矩形ABB 1A 1=2×1= 2.15.巧用补形法解决立体几何问题典例 如图:△ABC 中,AB =8,BC =10,AC =6,DB ⊥平面ABC ,且AE ∥FC ∥BD ,BD =3,FC =4,AE =5.则此几何体的体积为________.思维点拨 将所求几何体补成一个直三棱柱,利用棱柱的体积公式即可求得该几何体的体积. 解析 用“补形法”把原几何体补成一个直三棱柱,使AA ′=BB ′=CC ′=8,所以V 几何体=12V 三棱柱=12×S △ABC ·AA ′=12×24×8=96.答案96温馨提醒(1)补形法的应用思路:“补形法”是立体几何中一种常见的重要方法,在解题时,把几何体通过“补形”补成一个完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积等问题,常见的补形法有对称补形、联系补形与还原补形,对于还原补形,主要涉及台体中“还台为锥”.(2)补形法的应用条件:当某些空间几何体是某一个几何体的一部分,且求解的问题直接求解较难入手时,常用该法.[方法与技巧]求空间几何体的侧面积、体积的思想与方法(1)转化与化归思想:计算旋转体的侧面积时,一般采用转化的方法来进行,即将侧面展开化为平面图形,“化曲为直”来解决,因此要熟悉常见旋转体的侧面展开图的形状及平面图形面积的求法.(2)求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.[失误与防范]求空间几何体的表面积应注意的问题(1)求组合体的表面积时,要注意各几何体重叠部分的处理.(2)底面是梯形的四棱柱侧放时,容易和四棱台混淆,在识别时要紧扣定义,以防出错.A 组 专项基础训练(时间:45分钟)1.给出下列命题:①在正方体上任意选择4个不共面的顶点,它们可能是正四面体的4个顶点;②底面是等边三角形,侧面都是等腰三角形的三棱锥是正三棱锥;③若有两个侧面垂直于底面,则该四棱柱为直四棱柱.其中正确命题的序号是________.答案 ①2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱对角线的条数为________.答案 10解析 如图,在五棱柱ABCDE -A 1B 1C 1D 1E 1中,从顶点A 出发的对角线有两条:AC 1,AD 1,同理从B ,C ,D ,E 点出发的对角线均有两条,共2×5=10(条).3.用平面α截球O 所得截面圆的半径为3,球心O 到平面α的距离为4,则此球的表面积为________________________________________________________________________. 答案 100π解析 依题意,设球半径为R ,满足R 2=32+42=25,∴S 球=4πR 2=100π.4.(2015·课标全国Ⅰ改编)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有________斛.答案 22解析 由题意知:米堆的底面半径为163(尺),体积V =13×14πR 2·h ≈3209(立方尺).所以堆放的米大约为3209×1.62≈22(斛). 5.如图,在三棱柱ABC —A 1B 1C 1中,侧棱AA 1⊥平面AB 1C 1,AA 1=1,底面△ABC 是边长为2的正三角形,则此三棱柱的体积为________.答案 2 解析 因为AA 1⊥平面AB 1C 1,AB 1⊂平面AB 1C 1,所以AA 1⊥AB 1,又知AA 1=1,A 1B 1=2,所以AB 1=22-12=3,同理可得AC 1=3,又知在△AB 1C 1中,B 1C 1=2,所以△AB 1C 1的B 1C 1上的高为h =3-1=2,其面积S △AB 1C 1=12×2×2=2,于是三棱锥A —A 1B 1C 1的体积V 三棱锥A —A 1B 1C 1=V 三棱锥A 1—AB 1C 1=13×S △AB 1C 1×AA 1=23,进而可得此三棱柱ABC —A 1B 1C 1的体积V =3V 三棱锥A —A 1B 1C 1=3×23= 2. 6.(2015·江苏)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.答案 7解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7. 7.(2015·课标全国Ⅱ改编)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O-ABC 体积的最大值为36,则球O 的表面积为________.答案 144π解析 如图,要使三棱锥O-ABC 即C-OAB 的体积最大,当且仅当点C 到平面OAB 的距离,即三棱锥COAB 底面OAB 上的高最大,其最大值为球O 的半径R ,则V O-ABC 最大=V C-OAB 最大=13×S △OAB ×R =13×12×R 2×R =16R 3=36,所以R =6,得S 球O =4πR 2=4π×62=144π.8.(2015·盐城一模)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的体积与球O 的体积的比值为________.答案 932解析 设等边三角形的边长为2a ,球O 的半径为R ,则V 圆锥=13·πa 2·3a =33πa 3. 又R 2=a 2+(3a -R )2,所以R =233a , 故V 球=4π3·(233a )3=323π27a 3,则其体积比为932. 9.(教材改编)已知一个上、下底面为正三角形且两底面中心连线垂直于底面的三棱台的两底面边长分别为20 cm 和 30 cm ,且其侧面积等于两底面面积之和,求棱台的高. 解 如图所示,三棱台ABC —A 1B 1C 1中,O 、O 1分别为两底面中心,D 、D 1分别为BC 和B 1C 1的中点,则DD 1为棱台的斜高.由题意知A 1B 1=20,AB =30,则OD =53,O 1D 1=1033, 由S 侧=S 上+S 下,得3×12×(20+30)×DD 1=34×(202+302), 解得DD 1=1333,在直角梯形O 1ODD 1中, O 1O =DD 21-(OD -O 1D 1)2=43, 所以棱台的高为4 3 cm.10.如图所示,已知E 、F 分别是棱长为a 的正方体ABCD —A 1B 1C 1D 1的棱A 1A 、CC 1的中点,求四棱锥C 1—B 1EDF 的体积.解 方法一 连结A 1C 1,B 1D 1交于点O 1,连结B 1D ,EF ,过O 1作O 1H ⊥B 1D 于H .∵EF ∥A 1C 1,且A 1C 1⊄平面B 1EDF ,∴A 1C 1∥平面B 1EDF .∴C 1到平面B 1EDF 的距离就是A 1C 1到平面B 1EDF 的距离.∵平面B 1D 1D ⊥平面B 1EDF ,平面B 1D 1D ∩平面B 1EDF =B 1D ,∴O 1H ⊥平面B 1EDF ,即O 1H 为棱锥的高.∵△B 1O 1H ∽△B 1DD 1,∴O 1H =B 1O 1·DD 1B 1D =66a . ∴VC 1—B 1EDF =13S 四边形B 1EDF ·O 1H =13·12·EF ·B 1D ·O 1H =13·12·2a ·3a ·66a =16a 3. 方法二 连结EF ,B 1D .设B 1到平面C 1EF 的距离为h 1,D 到平面C 1EF 的距离为h 2,则h 1+h 2=B 1D 1=2a . 由题意得,VC 1—B 1EDF =VB 1—C 1EF +VD —C 1EF=13·S △C 1EF ·(h 1+h 2)=16a 3. B 组 专项能力提升(时间:30分钟)11.已知某圆锥体的底面半径r =3,沿圆锥体的母线把侧面展开后得到一个圆心角为23π的扇形,则该圆锥体的表面积是________.答案 36π解析 由已知沿圆锥体的母线把侧面展开后得到的扇形的弧长为2πr =6π,从而其母线长为l =6π2π3=9,从而圆锥体的表面积为S 侧+S 底=12×9×6π+9π=36π. 12.三棱锥P —ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D —ABE 的体积为V 1,P —ABC的体积为V 2,则V 1V 2=________. 答案 14解析 V 1=V D —ABE =V E —ABD =12V E —ABP =12V A —BEP =12×12V A —BCP =12×12V P —ABC =14V 2. 13.已知圆台的母线长为4 cm ,母线与轴的夹角为30°,上底面半径是下底面半径的12,则这个圆台的侧面积是________cm 2.答案 24π解析 如图是将圆台还原为圆锥后的轴截面,由题意知AC =4 cm ,∠ASO =30°,O 1C =12OA ,设O 1C =r , 则OA =2r ,又O 1C SC =OA SA=sin 30°,∴SC =2r ,SA =4r , ∴AC =SA -SC =2r =4 cm ,∴r =2 cm.∴圆台的侧面积为S =π(r +2r )×4=24π cm 2.14.(2015·课标全国Ⅰ)如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1)证明:平面AEC⊥平面BED;(2)若∠ABC=120°,AE⊥EC,三棱锥EACD的体积为63,求该三棱锥的侧面积.(1)证明因为四边形ABCD为菱形,所以AC⊥BD. 因为BE⊥平面ABCD,所以AC⊥BE.故AC⊥平面BED.又AC⊂平面AEC,所以平面AEC⊥平面BED.(2)解设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt △AEC中,可得EG=32x. 由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=22x.由已知得,三棱锥EACD的体积V EACD=13×12AC·GD·BE=624x3=63.故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5.故三棱锥EACD的侧面积为3+2 5.15.如图,△ABC中,∠ACB=90°,∠ABC=30°,BC=3,在三角形内挖去一个半圆(圆心O在边BC上,半圆与AC、AB分别相切于点C、M,与BC交于点N),将△ABC绕直线BC旋转一周得到一个旋转体.(1)求该几何体中间一个空心球的表面积的大小;(2)求图中阴影部分绕直线BC旋转一周所得旋转体的体积.解 (1)如图,连结OM ,则OM ⊥AB ,设OM =r ,OB =3-r ,在△BMO 中,sin ∠ABC =r 3-r =12⇒r =33. ∴S =4πr 2=43π. (2)∵△ABC 中,∠ACB =90°,∠ABC =30°,BC =3, ∴AC =1.∴V =V 圆锥-V 球=13π×AC 2×BC -43πr 3 =13π×1×3-43π×39=5327π.。

高一数学立体几何练习题及部分答案汇编之欧阳术创编

高一数学立体几何练习题及部分答案汇编之欧阳术创编

立体几何试题一.选择题(每题4分,共40分)1.已知AB//PQ,BC//QR,则∠PQP等于()A 030B 030C 0150 D 以上结论都不对2.在空间,下列命题正确的个数为()(1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形(3)平行于同一条直线的两条直线平行;(4)有两边及其夹角对应相等的两个三角形全等A 1B 2C 3D 43.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是()A 平行B 相交C 在平面内D 平行或在平面内4.已知直线m//平面α,直线n在α内,则m与n的关系为()A 平行B 相交C 平行或异面D 相交或异面 5.经过平面α外一点,作与α平行的平面,则这样的平面可作()A 1个或2个B 0个或1个C 1个D 0个6.如图,如果MC ⊥菱形ABCD 所在平面,那么MA 与BD 的位置关系是( )A 平行B 垂直相交C 异面D 相交但不垂直 7.经过平面α外一点和平面α内一点与平面α垂直的平面有()A 0个B 1个C 无数个D 1个或无数个 8.下列条件中,能判断两个平面平行的是( ) A 一个平面内的一条直线平行于另一个平面; B 一个平面内的两条直线平行于另一个平面 C 一个平面内有无数条直线平行于另一个平面 D 一个平面内任何一条直线都平行于另一个平面 9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( ) A //,,m n n m βα⊥⊂ B //,,m n n m βα⊥⊥ C ,,m n m n αβα⊥=⊂ D ,//,//m n m n αβ⊥ 10 .已知四棱锥,则中,直角三角形最多可以有( ) A 1个 B 2个 C 3个 D 4个二.填空题(每题4分,共16分)11.已知∆ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有 _____________条13.一块西瓜切3刀最多能切_________块14.将边长是a 的正方形ABCD 沿对角线AC 折起,使得折起后BD 得长为a,则三棱锥D-ABC 的体积为___________ 三、解答题15(10分)如图,已知E,F 分别是正方形1111ABCD A B C D -的棱1AA 和棱1CC 上的点,且1AE C F =。

高中数学立体几何小题100题(含答案与解析)

高中数学立体几何小题100题(含答案与解析)

立体几何小题100例一、选择题1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( )A .5B .4C .42.5【答案】D 【解析】试题分析:因为点P 是上底面1111A B C D 内一动点,且点P 到点F 的距离等于点P 到平面11ABB A 的距离,所以,点P 在连接1111,A D B C 中点的连线上.为使当点P 运动时,PE 最小,须PE 所在平面平行于平面11AA D D ,2244()52PE =+=选D考点:1.平行关系;2.垂直关系;3.几何体的特征.2.如图在一个二面角的棱上有两个点A ,B ,线段,AC BD 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,217BD cm CD cm ==,则这个二面角的度数为( )A .30︒B .60︒C .90︒D .120︒ 【答案】B 【解析】试题分析:设所求二面角的大小为θ,则,BD AC θ<>=,因为CD DB BA AC =++,所以22222()222CD DB BA AC DB BA AC DB BA DB AC BA AC =++=+++⋅+⋅+⋅CA DB而依题意可知,BD AB AC AB ⊥⊥,所以20,20DB BA BA AC ⋅=⋅=所以2222||||||||2CD DB BA AC BD AC =++-⋅即222417468286cos θ⨯=++-⨯⨯所以1cos 2θ=,而[0,]θπ∈,所以60θ=︒,故选B. 考点:1.二面角的平面角;2.空间向量在解决空间角中的应用.3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm )可得这 个几何体的体积是( )112222侧视图俯视图主视图A .343cmB .383cmC .33cmD .34cm【答案】B . 【解析】试题分析:分析题意可知,该几何体为一四棱锥,∴体积382231312=⨯⨯==Sh V . 考点:空间几何体的体积计算.4.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点,设AP 的长度为x ,若PBD ∆的面积为(x)f ,则(x)f 的图象大致是( )【答案】A 【解析】试题分析:设AC 与BD 交于点O ,连接OP .易证得BD ⊥面11ACC A ,从而可得BD OP ⊥.设正方体边长为1,在1Rt ACC ∆中126cos 33C AC ∠==.在AOP ∆中 22OA =,设(),03AP x x =≤≤,由余弦定理可得2222226231222362OP x x x x ⎛⎫=+-⋅⨯=-+ ⎪ ⎪⎝⎭,所以223162OP x x =-+.所以()22231262f x x x =-+.故选A. 考点:1线面垂直,线线垂直;2函数图象.5.如图所示,正方体ABCD A B C D ''''-的棱长为1, ,E F 分别是棱AA ',CC '的中点,过直线,E F 的平面分别与棱BB '、DD '交于,M N ,设 BM x =,[0,1]x ∈,给出以下四个命题:(1)平面MENF ⊥平面BDD B '';(2)当且仅当x=12时,四边形MENF 的面积最小;(3)四边形MENF 周长()L f x =,[0,1]x ∈是单调函数; (4)四棱锥C MENF '-的体积()V h x =为常函数; 以上命题中假命题...的序号为( ) A .(1)(4) B .(2) C .(3) D .(3)(4) 【答案】C 【解析】试题分析:(1)由于AC EF //,B B AC BD AC '⊥⊥,,则D D B B ''⊥平面AC ,则D D B B EF ''⊥平面,又因为EMFN EF 平面⊂,则平面MENF ⊥平面BDD B '';(2)由于四边形MENF 为菱形,MN EF S MENF ⋅=21,2=EF ,要使四边形MENF 的面积最小,只需MN 最小,则当且仅当21=x 时,四边形MENF 的面积最小;(3)因为1)21(2+-=x MF ,1)21(4)(2+-=x x f ,)(x f 在]1,0[上不是单调函数;(4)NE C F EC M F MENF C V V V '-'--'+=,ME C S '∆=41121=⋅'E C ,F 到平面ME C '的距离为1,1214131=⋅='-ME C F V ,又41121=⋅'⋅='∆E C S NE C ,1214131=⋅='-NE C F V ,61)(=x h 为常函数.故选(3)考点:1.面面垂直的判定定理;2.建立函数模型.6.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )(A)4 (B )4 (C )4 (D )34【答案】D. 【解析】试题分析:连接B A 1;11//CC AA ,AB A 1∠∴是异面直线AB 与1CC 所成的角或其补角;在1ADA Rt ∆中,设11=AA ,则21,231==D A AD ;在1BDA Rt ∆中,2121=B A ;在1ABA ∆中,431122111cos 1=⨯⨯-+=∠AB A ;即面直线AB 与1CC 所成的角的余弦值为34. 考点:异面直线所成的角.7.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为A .π312B .π12C .π34D .π3 【答案】D 【解析】试题分析:由三视图可知,该几何体为四棱锥,侧棱垂直底面,底面是正方形,将此四棱锥还原为正方体,则正方体的体对角线即外接球的直径,32=r ,23=∴r ,因此ππ342==r S 表面积,故答案为D. 考点:由三视图求外接球的表面积.8.如图,棱长为1的正方体ABCD-A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论错误的是( )A .11DC D P ⊥B .平面11D A P ⊥平面1A APC .1APD ∠的最大值为90 D .1AP PD +22+ 【答案】C 【解析】试题分析:111DC D A ⊥ ,11DC B A ⊥,1111A B A D A = ,⊥∴1DC 平面11BCD A ,⊂P D 1平面11BCD A 因此P D DC 11⊥,A 正确;由于⊥11A D 平面11ABB A ,⊂11A D 平面P A D 11,故平面⊥P A D 11平面AP A 1 故B 正确,当2201<<P A 时,1APD ∠为钝角,C 错;将面B AA 1与面11BCD A 沿B A 1展成平面图形,正视图 侧视图俯视图线段1AD 即为1PD AP +的最小值,利用余弦定理解221+=AD ,故D 正确,故答案为C .考点:棱柱的结构特征. 9.下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两条直线不一定平行C .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行于平面α,则在平面α内不存在与l 平行的直线 【答案】B 【解析】试题分析: 由直线与平面的位置关系右知A 正确;平行于同一个平面的两条直线可以相交、平行或异面,故B 错,所以选B.考点:直线、平面平行与垂直的判定与性质.10.已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )【答案】A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B. C. D.【答案】C 【解析】试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC ,它是一个正四棱锥P-ABCD 的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4. 设其外接球的球心为O ,O 点必在高线PE 上,外接球半径为R , 则在直角三角形BOE 中,BO 2=OE 2+BE 2=(PE-EO )2+BE 2, 即R 2=(4-R )2+(32)2,解得:R=174,故选C.考点:三视图,球与多面体的切接问题,空间想象能力12.如右图,在长方体1111ABCD A B C D -中,AB =11,AD =7,1AA =12,一质点从顶点A 射向点()4312E ,,,遇长方体的面反射(反射服从光的反射原理),将1i -次到第i 次反射点之间的线段记为()2,3,4i L i =,1L AE =,将线段1234,,,L L L L 竖直放置在同一水平线上,则大致的图形是( )【答案】C 【解析】 试题分析:因为37411>,所以1A E 延长交11D C 于F ,过F 作FM 垂直DC 于.M 在矩形1AA FM 中分析反射情况:由于35105AM =>,第二次反射点为1E 在线段AM 上,此时153E M =,第三次反射点为2E 在线段FM 上,此时24E M =,第四次反射点为3E 在线段1AF 上,由图可知,选C.考点:空间想象能力13.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A.1B.2C.3D.4【答案】B【解析】试题分析:由图可得该几何体为三棱柱,因为正视图,侧视图,俯视图的内切圆半径最小的是正视图(直角三角形)所对应的内切圆,所以最大球的半径为正视图直角三角形内切圆的半径r , 则2286862r r r -+-+⇒=,故选B. 考点:三视图 内切圆 球 三棱柱14.已知二面角l αβ--为60︒,AB α⊂,AB l ⊥,A 为垂足,CD β⊂,C l ∈,135ACD ∠=︒,则异面直线AB 与CD 所成角的余弦值为 A .14 B .24 C .34 D .12【答案】B. 【解析】试题分析:如图作BE β⊥于E ,连结AE ,过A 作AG ∥CD ,作EG AG ⊥于G ,连结BG ,则.BG AG ⊥设2AB a =.在ABE ∆中,60,90,2,.BAE AEB AB a AE a ∠=︒∠=︒=∴=在Rt AEG ∆中,29045,90,cos 45.2GAE CAG AGE AG a a ∠=︒-∠=︒∠=︒∴=︒=在Rt ABG∆中,222cos 24AG BAG AB a ∠===∴异面直线AB 与CD 所成角的余弦值为24,故选B .βαElBDACG考点:1.三垂线定理及其逆定理;2. 空间角(异面直线所成角)的计算.15.在空间直角坐标系Oxyz 中,已知(2,0,0)(2,2,0),(0,2,0),(1,1,2)A B C D .若123,,S S S 分别是三棱锥D ABC -在,,xOy yOz zOx 坐标平面上的正投影图形的面积,则( )A .123S S S ==B .21S S =且23S S ≠C .31S S =且32S S ≠D .32S S =且31S S ≠ 【答案】D 【解析】试题分析:三棱锥ABC D -在平面xoy 上的投影为ABC ∆,所以21=S ,设D 在平面yoz 、zox 平面上的投影分别为2D 、1D ,则ABC D -在平面yoz 、zox 上的投影分别为2OCD ∆、1OAD ∆,因为)2,1,0(1D ,)2,0,1(2D ,所以212=-S S ,故选D.考点:三棱锥的性质,空间中的投影,难度中等.16.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,12BF =,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A .13B 523 D .23【答案】B【解析】试题分析:解:因为90,DPE DPF ∠=∠=所以,DP PE DP PF ⊥⊥又因为PE ⊂平面PEF ,PF ⊂平面PEF ,且PE PF P =,所以DP ⊥平面PEF在PEF ∆中,22223151,,1222PE PF EF EB BF ⎛⎫===+=+= ⎪⎝⎭所以222351222cos 33212EPF ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭∠==⨯⨯,225sin 133EPF ⎛⎫∠=-= ⎪⎝⎭ 所以11355sin 122234PEF S PE PF EPF ∆=⋅⋅∠=⨯⨯⨯= 115523346PEF P DEF D PEF V V DP S ∆--==⋅⋅=⨯⨯=三棱锥三棱锥 所以应选B.考点:1、直线与平面垂直的判定;2、正弦定理与余弦定理;3、棱锥的体积.17.高为的四棱锥S ﹣ABCD 的底面是边长为1的正方形,点S ,A ,B ,C ,D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( )A. B. C. D.【答案】A【解析】试题分析:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,推出高就是四棱锥的一条侧棱,最长的侧棱就是球的直径,然后利用勾股定理求出底面ABCD 的中心与顶点S 之间的距离.解:由题意可知ABCD 是小圆,对角线长为,四棱锥的高为,点S ,A ,B ,C ,D 均在半径为1的同一球面上,球的直径为2,所以四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径,所以底面ABCD 的中心与顶点S 之间的距离为:=故选A点评:本题是基础题,考查球的内接多面体的知识,能够正确推出四棱锥的一条侧棱垂直底面的一个顶点,最长的侧棱就是直径是本题的关键,考查逻辑推理能力,计算能力.18.二面角l αβ--为60°,A 、B 是棱l 上的两点,AC 、BD 分别在半平面,αβ内,AC l ⊥,BD l ⊥,且AB =AC =a ,BD =2a ,则CD 的长为( )A .2aB .5aC .aD .3a【答案】A【解析】试题分析:根据异面直线上两点间的距离公式2222cos EF d m n mn θ=++± ,对于本题中,d a =,m a =,2n =,60θ=,故()222222cos 602CD a a a a a a =++-⋅⋅⋅=.考点:异面直线上两点间距离,空间想象能力.19.长方体的表面积是24,所有棱长的和是24,则对角线的长是( ).A.14 B .4 C .32 D .23【答案】B【解析】试题分析:设出长方体的长、宽、高,表示出长方体的全面积,十二条棱长度之和,然后可得对角线的长度.考点:长方体的结构特征,面积和棱长的关系.20.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ , 由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF 与面MPQ 不垂直,所以选项C 是正确的;因为//EF l ,M 是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l 是唯一的,故选项D 不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.21.如图,等边三角形ABC 的中线AF 与中位线DE 相交于G ,已知ED A '∆是△ADE 绕DE 旋转过程中的一个图形,下列命题中,错误的是( )A .动点A '在平面ABC 上的射影在线段AF 上B .恒有平面GF A '⊥平面BCDEC .三棱锥EFD A -'的体积有最大值D .异面直线E A '与BD 不可能垂直【答案】D【解析】试题分析:由于',A G DE FG DE ⊥⊥.所以DE ⊥平面'A FG .经过点'A 作平面ABC 的垂线垂足在AF上.所以A 选项正确.由A 可知B 选项正确.当平面'A DE 垂直于平面BCDE 时,三棱锥EFD A -'的体积最大,所以C 正确.因为BD EF ,设2AC a =.所以'EF A E a ==,当'2A F a =时,32'(')2a A G GF A G GF a <+==.所以异面直线E A '与BD 可能垂直.所以D 选项不正确.考点:1.线面位置关系.2.面面的位置关系.3.体积公式.4.异面直线所成的角.5.空间想象力.22.已知棱长为l 的正方体1111ABCD A B C D -中,E ,F ,M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 11、A D 上,且11A P=A Q=x,0<x<1,设面MEF 面MPQ=l ,则下列结论中不成立的是( )A .//l 面ABCDB .l ⊥ACC .面MEF 与面MPQ 不垂直D .当x 变化时,l 不是定直线【答案】D【解析】试题分析:解:连结1111,,,AC BD AC B D ,,AC BD 交于点O 1111,AC B D 交于点1O由正方体的性质知,11111111////,,BD B D AC AC AC BD AC B D ⊥⊥,因为,E F 是,AD AB 的中点,所以//EF BD因为11A P A Q =,所以11//PQ B D所以//PQ EF ,所以//PQ 平面MEF ,//EF 平面MPQ ,由MEF 面MPQ=l ,EF ⊂ 平面MEF ,所以//EF l ,而EF ⊂平面ABCD ,l ⊂/平面ABCD , 所以,//l 面ABCD ,所以选项A 正确;由AC BD ⊥,//EF BD 得EF AC ⊥而//EF l ,所以l ⊥AC ,所以选项B 正确;连111,,MB MD O M ,则11//,O M AC 而1111,//,//AC A B AC BD BD EF A B MF ⊥⊥,所以,11,O M EF O M MF ⊥⊥,所以1O M ⊥平面MEF ,过直线l 与平面MEF 垂直的平面只能有一个,所以面MEF与面MPQ不垂直,所以选项C是正确的;EF l,M是定点,过直线外一点有且只有一条直线与已知直线平行,所以直线l是唯一的,故选因为//项D不正确.考点:1、直线平面的位置关系;2、直线与直线,直线与平面,平面与平面的平行与垂直的判定及性质.23.把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离()A.B.C.D.3【答案】A【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高.而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为,选A.24.如图所示,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.则棱锥Q-ABCD的体积与棱锥P-DCQ的体积的比值是()A. 2:1B. 1:1C. 1:2D. 1:3【答案】C【解析】设AB =a.由题设知AQ 为棱锥Q -ABCD 的高,所以棱锥Q -ABCD 的体积V 1=.易证PQ ⊥面DCQ ,而PQ =,△DCQ 的面积为,所以棱锥P -DCQ 的体积V 2=.故棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值为1:1,选C.25.正四面体ABCD ,线段AB //平面α,E ,F 分别是线段AD 和BC 的中点,当正四面体绕以AB 为轴旋转时,则线段AB 与EF 在平面α上的射影所成角余弦值的范围是( )A . [0,22]B .[22,1]C .[21,1] D .[21,22] 【答案】B【解析】试题分析:如图,取AC 中点为G ,结合已知得GF //AB ,则线段AB 、EF 在平面α上的射影所成角等于GF 与EF 在平面α上的射影所成角,在正四面体中,AB ⊥CD ,又GE //CD ,所以GE ⊥GF,所以222GF GE EF +=,当四面体绕AB 转动时,因为GF //平面α,GE 与GF 的垂直性保持不变,显然,当CD 与平面α垂直时,GE 在平面上的射影长最短为0,此时EF 在平面α上的射影11F E 的长取得最小值21,当CD 与平面α平行时,GE 在平面上的射影长最长为21,11F E 取得最大值22,所以射影11F E 长的取值范围是 [21,22],而GF 在平面α上的射影长为定值21,所以AB 与EF 在平面α上的射影所成角余弦值的范围是[22,1].故选B 考点:1线面平行;2线面垂直。

高一立体几何试题及答案

高一立体几何试题及答案

高一立体几何试题及答案一、选择题(每题4分,共40分)1. 若一个长方体的长、宽、高分别为a、b、c,则该长方体的体积为()A. abcB. ab+bc+acC. a^2b^2c^2D. a^2+b^2+c^2答案:A2. 一个正方体的棱长为a,则其表面积为()A. 6a^2B. 8a^2C. 10a^2D. 12a^23. 一个圆柱的底面半径为r,高为h,则其体积为()A. πr^2hB. 2πr^2hC. πr^3D. 2πr^3答案:A4. 一个圆锥的底面半径为r,高为h,则其体积为()A. 1/3πr^2hB. 1/2πr^2hC. πr^2hD. 2πr^2h答案:A5. 一个球的半径为r,则其体积为()B. 2/3πr^3C. 1/3πr^3D. 3/4πr^3答案:A6. 若一个三棱锥的四个顶点分别为A、B、C、D,且AB=AC=AD=BC=BD=CD=a,则该三棱锥为()A. 正四面体B. 正三棱锥C. 正六棱锥D. 正八棱锥答案:A7. 若一个三棱柱的底面为等边三角形,且侧棱与底面垂直,则该三棱柱为()B. 斜三棱柱C. 直三棱柱D. 正六棱柱答案:A8. 若一个四棱锥的底面为正方形,且侧棱与底面垂直,则该四棱锥为()A. 正四棱锥B. 斜四棱锥C. 直四棱锥D. 正八棱锥答案:A9. 若一个五棱锥的底面为正五边形,且侧棱与底面垂直,则该五棱锥为()B. 斜五棱锥C. 直五棱锥D. 正十棱锥答案:A10. 若一个六棱锥的底面为正六边形,且侧棱与底面垂直,则该六棱锥为()A. 正六棱锥B. 斜六棱锥C. 直六棱锥D. 正十二棱锥答案:A二、填空题(每题4分,共20分)11. 一个长方体的长、宽、高分别为a、b、c,则该长方体的表面积为______。

答案:2(ab+bc+ac)12. 一个正方体的棱长为a,则其体积为______。

答案:a^313. 一个圆柱的底面半径为r,高为h,则其侧面积为______。

高一数学立体几何练习题及答案

高一数学立体几何练习题及答案

高一数学立体几何练习题及答案一、选择题1. 下列哪个图形不是立体图形?A. 立方体B. 圆锥C. 圆柱D. 正方形答案:D2. 已知一个立方体的边长为5cm,求它的表面积和体积分别是多少?A. 表面积:150cm²,体积:125cm³B. 表面积:100cm²,体积:125cm³C. 表面积:150cm²,体积:100cm³D. 表面积:100cm²,体积:100cm³答案:A3. 以下哪个选项可以形成一个正方体?A. 六个相等的长方体B. 一个正方形和一个长方体C. 六个相等的正方形D. 一个正方形和一个正方体答案:C4. 以下哪个图形可以形成一个圆柱?A. 一个正方形和一个长方体B. 一个圆和一个长方体C. 一个长方形和一个长方体D. 一个正方形和一个正方体答案:C5. 以下哪个选项可以形成一个圆锥?A. 一个圆和一个长方体B. 一个圆和一个正方体C. 一个正方形和一个长方体D. 一个正方形和一个正方体答案:B二、填空题1. 已知一个正方体的表面积为96cm²,求它的边长是多少?答案:4cm2. 已知一个圆柱的半径为3cm,高为10cm,求它的表面积和体积分别是多少?答案:表面积:198cm²,体积:90π cm³3. 以下哪个选项可以形成一个长方体?A. 六个相等的正方形B. 一个圆和一个长方形C. 六个相等的长方形D. 一个正方形和一个正方体答案:C三、解答题1. 某长方体的长、宽、高分别为3cm、4cm、5cm,请回答以下问题:(1)它的表面积是多少?(2)它的体积是多少?答案:(1)表面积 = 2(长×宽 + 长×高 + 宽×高)= 2(3×4 + 3×5 + 4×5)= 2(12 + 15 + 20)= 2(47)= 94cm²(2)体积 = 长×宽×高= 3×4×5= 60cm³2. 某圆锥的半径是5cm,高是12cm,请回答以下问题:(1)它的表面积是多少?(2)它的体积是多少?答案:(1)斜面积= π×半径×斜高= π×5×13≈ 204.2cm²(2)体积= (1/3)π×半径²×高= (1/3)π×5²×12≈ 314.2cm³四、解析题某正方体的表面积是96cm²,它的边长是多少?解答:设正方体的边长为x,由表面积的计算公式可得:表面积 = 6x²96 = 6x²16 = x²x = 4所以,该正方体的边长为4cm。

高中数学立体几何大题练习与答案

高中数学立体几何大题练习与答案

一、解答题1.(2023高一下·重庆沙坪坝·百强名校期末)如图,有一个正四棱柱,E 、F 高中数学立体几何大题练习与答案分别为底面棱A D 11,D C 11的中点,=AB 4,=AA 61,点G 在AA 1上,且=AA AG 321.(1)判断直线BG 是否在平面BEF 内?说明理由; (2)求二面角A EF G −−1的余弦值.【答案】(1)直线BG 在平面BEF 内,理由见解析【分析】(1)建立空间直角坐标系,求平面BEF 的法向量,根据法向量与BG 的关系可判断;(2)运用几何法,得到二面角的平面角即可求解.【详解】(1)以D 为坐标原点,DA ,DC ,DD 1分别为x ,y ,z 轴建立空间直角坐标系 则E F B G (2,0,6),(0,2,6),(4,4,0),(4,0,4)所以(2,2,0)EF =−,(2,4,6)BE =−−,(0,4,4)BG =−设平面BEF 的法向量为(,,)n x y z =,则(1,1,1)n ⇒=⎩−−+=⎨⎧−++=x y z x y z 24602200所以其0BG n ⋅=且点B 在平面BEF 内,故直线BG 在平面BEF 内.(2)连接B D 11交EF 于O ,连接BO因为平面EFG 与平面BEF 是同一平面,平面A EF 1与平面B EF 1是同一平面, 则BOB 1为二面角−−B EF B 1的平面角,记为又==B O B D 43111,=BB 61所以==BO所以==θBO B O cos 12.(2023·江苏·百强名校期末)如图,在直三棱柱ABC-A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且⊥B D A F 11 ,⊥AC A B 1111.求证:(1)直线DE 平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F. 【答案】(1)详见解析(2)详见解析【详解】试题分析:(1)利用线面平行判定定理证明线面平行,而线线平行的寻找往往结合平面几何的知识,如中位线的性质等;(2)利用面面垂直判定定理证明,即从线面垂直出发给予证明,而线面垂直的证明,往往需要多次利用线面垂直性质定理与判定定理. 试题解析:证明:(1)在直三棱柱111ABC A B C 中,A C 11,AC 在三角形ABC 中,因为D ,E 分别为AB ,BC 的中点, 所以DE AC ,于是11DE AC ,又因为DE ⊄平面⊂AC F AC ,1111平面AC F 11, 所以直线DE//平面AC F 11.(2)在直三棱柱111ABC A B C 中,面平⊥AA A B C 1111 因为⊂AC 11平面A B C 111,所以⊥AA AC 111,又因为面平面平,⊥⊂⊂⋂=AC A B AA ABB A A B ABB A A B AA A ,,111111*********, 所以⊥AC 11平面ABB A 11.因为⊂B D 1平面ABB A 11,所以⊥AC B D 111.又因为面平面平,⊥⊂⊂⋂=B D A F AC AC F A F AC F AC A F A ,,1111111111111, 所以面平⊥B D AC F 111.因为直线面平⊂B D B DE 11,所以面平B DE 1面平⊥AC F .11 【考点】直线与直线、直线与平面、平面与平面的位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直;(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直.3.(2023高一下·吉林长春·百强名校期末)在四棱锥−P ABCD 中,底面ABCD 是边长为2的菱形,∠=︒BAD 60,若==PA PD ∠=PAB 10cos .(1)证明:平面⊥PAD 平面ABCD ; (2)求二面角−−B PD A 的正切值.【答案】(1)证明见解析;(2 【分析】(1)取AD 中点O ,连结PO ,BO ,BD ,推导出⊥PO AD ,及⊥PO BO ,从而⊥PO 平面ABCD 由此得到平面⊥PAD 平面ABCD .(2)由面面垂直的性质得到⊥BO 平面ABCD ,作⊥OE PD 于E ,由三垂线定理,得⊥BE PD ,从而∠BEO 就是二面角−−B PD A 的平面角,在POD Rt 中,计算各数据,得到所求角的正切值.【详解】(1)证明:取AD 中点O ,连结PO ,BO ,BD ,在PAD 中,=PA PD=AD 2,则⊥PO AD ,===PO 2.在菱形ABCD 中,∠=︒BAD 60,==AB AD 2,∴===AB AD BD 2,∴⊥BO AD ,且===BO PAB 中,∠=PAB cos ,∴=+−⋅⋅∠=+−=PB PA AB PA AB PAB 2cos 54227222. 在POB 中,+=+==OB PO PB 347222,∴⊥PO BO ,且ADBO O =∴⊥PO 平面ABCD .又⊂PO 平面PAD ∴平面⊥PAD 平面ABCD .(2)由(1)知平面⊥PAD 平面ABCD ,且平面⋂PAD 平面=ABCD AD ,且⊥BO AD , ∴⊥BO 平面ABCD ,作⊥OE PD 于E ,由三垂线定理,得⊥BE PD . ∴∠BEO 就是二面角−−B PD A 的平面角,在POD Rt 中,⊥OE PD ,有⋅=⋅PD OE PO OD =⨯OE 21,∴=OE在BOE Rt 中,∠===OE BEO OBtan∴二面角−−B PD A4.(2023高一下·吉林长春·百强名校期末)如图.已知正三棱柱111ABC A B C 的底面边长=AB 6,D ,E 分别是CC 1,BC 的中点,=AE DE .(1)三棱锥−A ECD 的体积; (2)正三棱柱111ABC A B C 的表面积.【答案】(2)【分析】(1)依题意可得⊥AE BC ,在由正三棱柱的性质得到⊥CC BC 1,利用勾股定理求出线段的长度,最后由A ECD D AEC AECV V SCD ==⋅−−31计算可得;(2)求出上下底面积及侧面积,即可求出棱柱的表面积.【详解】(1)因为E 是BC 的中点,ABC 为等边三角形,所以⊥AE BC , 在正三棱柱111ABC A B C 中⊥CC 1平面ABC ,⊂BC 平面ABC ,所以⊥CC BC 1,又=AB 6,所以=EC 3,AE ===AE DE ,所以==CD所以AECS=⨯⨯=231所以33A ECD D AEC AECV V SCD ==⋅=⨯=−−11.(2)由(1)可知==CC CD 211112ABC A B C S S ==⨯⨯=61ABCS CCC =⋅=⨯⨯=侧366210821,所以棱柱的表面积=⨯=S 25.(2023高一下·四川成都·百强名校期末)如图,在四棱锥−P ABCD 中,⊥PC 底面ABCD ,在直角梯形ABCD 中,⊥AB AD ,BC AD //,==AD AB BC 22,E 是PD 中点.求证:(1)CE //平面PAB ; (2)平面⊥PCD 平面ACE . 【答案】(1)证明见解析 (2)证明见解析【分析】(1)取线段AP 的中点F ,可证得四边形BCEF 为平行四边形,从而得到CE BF //,由线面平行的判定可证得结论;(2)由线面垂直性质和勾股定理可分别证得⊥PC AC ,⊥AC CD ,由线面垂直和面面垂直的判定可证得结论.【详解】(1)取线段AP 的中点F ,连接EF BF ,,,E F 分别为PD AP ,中点,∴EF AD //,=EF AD 21, 又BC AD //,=BC AD 21,∴EF BC //,=EF BC , ∴四边形BCEF 为平行四边形,∴CE BF //,BF ⊂平面PAB ,⊄CE 平面PAB ,∴CE //平面PAB . (2)PC ⊥平面ABCD ,⊂AC 平面ABCD ,∴⊥PC AC ; 设=AD 2,则==AB BC 1,//BC AD ,⊥AB AD ,∴⊥AB BC ,∴=AC ==CD∴+=AC CD AD 222,∴⊥AC CD ;PCCD C =,⊂PC CD ,平面PCD ,∴⊥AC 平面PCD ,AC ⊂平面ACE ,∴平面⊥PCD 平面ACE .6.(2023高一下·安徽六安·百强名校期末)在正三角形ABC 中,E ,F ,P 分别是AB 、AC 、BC 边上的点,满足===AE EB CF FA CP PB :::1:2(如图1).将△AEF 沿EF 折起到的1A EF 位置,使平面⊥A EF 1平面BEF ,连结A B 1,P A 1(如图2).(1)求证:FP //平面A EB 1;(2)求直线A E 1与平面A BP 1所成角的大小. 【答案】(1)证明见解析(2)︒60.【分析】(1)依题意可得FP BA //,即FP BE //,从而得证;(2)法一:设E 到面A BP 1距离为h ,根据=−−V V A BPE E A BP 11,即可求得h 的值,进而求解即可.法二:在图1中过点F 作FD BC //交AB 于点D ,即可得到△ADF 为等边三角形,则⊥FE A E 1,再由面面垂直的性质得到⊥A E 1平面BEP ,设A E 1在平面A BP 1内的射影为A Q 1,且A Q 1交BP 于点Q ,则可得⊥BP 平面A EQ 1,则∠E AQ 1就是A E 1与平面A BP 1所成的角,再由锐角三角函数计算可得.【详解】(1)∵=CP PB CF FA ::,∴FP BA //, ∴FP BE //,∵⊂BE 平面A EB 1,⊄FP 平面A EB 1,∴BP //平面A EB 1; (2)法一:在图1中过点F 作FD BC //交AB 于点D ,因为===AE EB CF FA CP PB :::1:2, 所以==BD AD CF AF ::1:2,即D 、E 为AB 的三等分点,所以E 为AD 的中点,又ABC 为等边三角形,所以△ADF 也为等边三角形, 所以⊥FE AD ,则⊥FE A E 1,又平面⊥A EF 1平面BEF ,平面A EF 1平面=BEF FE ,⊂A E 1平面A EF 1,所以在图2中,⊥A E 1平面BEP ,又⊂BP 平面BEP ,∴⊥A E BP 1,设A E 1在平面A BP 1内的射影为A Q 1,且A Q 1交BP 于点Q , 则可得⊥BP 平面A EQ 1,又⊂AQ 1平面A EQ 1,∴⊥BP AQ 1,则∠E AQ 1就是A E 1与平面A BP 1所成的角,设=AB 3,在△EBP 中,∵==BE BP 2,60=︒∠EBP , ∴△EBP 是等边三角形,∴=BE EP ,又⊥A E 1平面BEP ,∴=A B A P 11,∴Q 为BP 的中点,且=EQ又=A E 11,在1A EQ Rt ,∠==A EEA Q EQtan 11601∠=︒EA Q , 所以直线A E 1与平面A BP 1所成的角为︒60.法二:同法一可得⊥A E 1平面BEP ,设E 到面A BP 1距离为h ,设=AB 3,则==A B A P 11,则=−−V V A BPE E A BP 11,∴△△⋅=⋅S A E S h BPE A BP 331111,∴△△⨯===⋅⨯S h S A E A BP BPE 221221111,设A E 1与面A BP 1所成角为θ,则=θA E h sin 1︒≤≤︒θ090,∴=︒θ60. 所以直线A E 1与平面A BP 1所成的角为︒60.7.(2023高一下·重庆沙坪坝·百强名校期末)如图,四边形ABCD 是圆柱下底面的内接四边形,AC 是圆柱底面的直径,PC 是圆柱的一条母线,=AB AD ,∠=BAD 60,点F 在线段AP 上,=PA PF 4.(1)求证:平面⊥PCD 平面PAD ;(2)若==CP CA 4,求直线AC 与平面FCD 所成角的正弦值. 【答案】(1)证明见解析【分析】(1)先证⊥AD 平面PCD ,再根据面面垂直的判定定理可证平面⊥PCD 平面PAD ;(2)以C 为原点,CA 所在直线为x 轴,过C 且垂直于平面APC 的直线为y 轴,CP 所在直线为z 轴,建立空间直角坐标系,利用线面角的向量公式可求出结果. 【详解】(1)因为PC 是圆柱的一条母线,所以⊥PC 底面ABCD , 又⊂AD 底面ABCD ,所以⊥PC AD , 因为AC 是圆柱底面的直径,所以⊥AD CD , 因为⊂PC CD ,平面PCD ,⋂=PC CD C , 所以⊥AD 平面PCD ,又因为⊂AD 平面PAD ,所以平面⊥PCD 平面PAD .(2)以C 为原点,CA 所在直线为x 轴,过C 且垂直于平面APC 的直线为y 轴,CP 所在直线为z 轴,建立空间直角坐标系, 因为=AB AD ,=AC AC ,∠=∠=ADC ABC 2π, 所以R R t ADC t ABC ≅,又∠=BAD 60,所以π6DAC BAC ==, 因为==CP CA 4,=PA PF 4,所以==CD AC221,=AD所以C (0,0,0),A (4,0,0), D ,F (1,0,3), 所以(4,0,0)AC =−,(1,3,0)CD =,(1,0,3)CF =, 设平面FCD 的一个法向量为(,,)n x y z =,则n CD x y n CF x z ⋅=+=⋅=+=⎩⎪⎨⎪⎧3030,取=−x 3,得y =z 1,则(3,3,1)n =−,设直线AC 与平面FCD 所成角为θ,则sin cos ,||||AC n AC n AC n ⋅=<>=θ==.即直线AC 与平面FCD 所成角的正弦值为13.8.(2023高一下·重庆沙坪坝·百强名校期末)如图,在四棱锥−P ABCD 中,底面ABCD 是正方形,侧棱⊥PD 底面ABCD ,=PD DC ,E 、F 分别是PC 、AD 中点.(1)求证:DE //平面PFB ;(2)求PC 与面PFB 所成角的正弦值.【答案】(1)见解析;(2【分析】(1)取PB 的中点为G ,连接EG FG ,,可证四边形DEGF 为平行四边形,从而可证DE //平面PFB ;(2)利用等积法可求C 到平面PFB 的距离,从而可求PC 与面PFB 所成角的正弦值. 【详解】(1)取PB 的中点为G ,连接EG FG ,, 因为E G ,分别为所在棱的中点,故=EG BC EG BC 2//,1, 而=DF AD 21,=AD BC AD BC //,,故=EG DF EG DF //,, 故四边形DEGF 为平行四边形,所以FG DE //, 而⊂FG 平面PBF ,⊄DE 平面PBF ,故DE //平面PFB .(2)设=DC a ,连接CF ,设C 到平面PBF 的距离为h .因为⊥PD 底面ABCD ,⊂CD 平面ABCD ,故⊥PD CD ,同理⊥⊥PD AD PD BC ,, 而=PD DC,故PC .故=PF a 2,同理=BF a 2. 因为⊥BC CD ,而⋂=PD DC D ,故⊥BC 平面PCD , 而⊂PC 平面PCD ,故⊥BC PC,所以==PB ,故△==S a PFB 2412, 又△=⨯⨯=S a a a FCB2212, 因为=−−V V P FCB C PFB,故⨯⨯=⨯a a h 32311122,故=h ,设PC 与面PFB 所成角为θ,则=θsin9.(2023高一·全国·课后作业)如图,在三棱锥P ABC −中,∠=︒ACB 90,⊥PA 底面ABC(1)证明:平面⊥PBC 平面P AC(2)若==AC BC PA ,M 是PB 中点,求AM 与平面PBC 所成角的正切值 【答案】(1)证明见解析【分析】(1)由∠=︒ACB 90,得到⊥AC CB ,再根据⊥PA 底面ABC ,得到⊥PA CB ,然后利用线面垂直和面面垂直的判定定理证明;(2)作⊥AO PC ,连接OM ,由平面⊥PBC 平面P AC ,得到⊥AO 平面PBC , 则∠AMO 即为AM 与平面PBC 所成的角求解. 【详解】(1)证明:因为∠=︒ACB 90, 所以⊥AC CB ,又⊥PA 底面ABC , 所以⊥PA CB ,又⋂=AC PA A , 所以⊥BC 平面P AC , 因为⊂BC 平面PBC , 所以平面⊥PBC 平面P AC ; (2)如图所示:作⊥AO PC ,连接OM ,因为平面⊥PBC 平面P AC ,平面⋂PBC 平面P AC=PC , 所以⊥AO 平面PBC ,则∠AMO 即为AM 与平面PBC 所成的角,设===AC BC PA t ,则==AB PB ,,所以=AM 2,又=AO 2,所以==OM t 21,所以AM 与平面PBC 所成角的正切值为∠==OMAMO AOtan10.(2023高一下·重庆北碚·百强名校期末)如图,四棱锥S —ABCD 中,底面ABCD 为菱形,602ABC SA SD AB ====,∠,侧面SAB ⊥侧面SBC ,M 为AD 的中点.(1)求证:平面SMC ⊥平面SBC ;(2)若AB 与平面SBC 成30角时,求二面角−−A SC D 的大小, 【答案】(1)证明见解析 (2)︒90【分析】(1)由线面垂直与面面垂直的判定定理求解即可;(2)取BS 的中点N ,连接AN ,由题意可得=BS CS 的中点E ,连接AE DE ,,可证明∠AED 是二面角−=A SC D 的平面角,求出角∠AED 的大小即可求解 【详解】(1)因为=SD SA ,又M 为AD 的中点, 所以⊥SM AD , 又BC AD //, 所以⊥SM BC ,又M 为AD 的中点,底面ABCD 为菱形,∠=︒ABC 60, 所以⊥CM AD AD BC ,//, 所以⊥CM BC ,因为⊥CM BC ,⊥SM BC ,⊥=SM CM M ,⊂SM 平面SCM ,⊂CM 平面SCM ,所以⊥BC 平面SCM ,因为⊂BC 平面SBC , 所以平面⊥SBC 平面SCM ,(2)取BS 的中点N ,连接AN ,又=SA AB , 所以⊥AN BS ,又平面⊥SAB 平面SBC ,平面SAB 平面=SBC SB ,⊂AN 平面SAB ,所以⊥AN 平面SBC ,又AB 与平面SBC 所成的角为︒30, 所以∠=︒ABN 30, 又=⊥AB AN BN 2,,所以===AN BN BS 1,由(1)知⊥BC 平面SCM ,又⊂SC 平面SBC , 所以⊥BC SC ,又==BS BC 2,所以==CS 取CS 的中点E ,连接AE DE ,, 因为===SA AC CD SD , 所以⊥⊥AE CS DE CS ,,所以∠AED 是二面角−=A SC D 的平面角,又====AC CD CE CS 22,1所以==AE 又+=+==AE DE AD 224222, 所以⊥AE DE ,即∠=︒AED 90, 所以二面角−=A SC D 的大小为︒90,11.(2023高一下·重庆北碚·百强名校期末)如图,三棱柱ABC —A B C 111的底面是等腰直角三角形,侧面BB 1C 1C 是矩形,∠=CAB 90,==AB AC AA 1 ,点P 是棱A B 11的中点,且P 在平面ABC 内的射影O 在线段BC 上,=BO BC 41,点M ,N 分别是线段CP ,CA 的中点(1)求证: MN //平面AA B B 11 (2)求二面角−−M AC B 的正切值. 【答案】(1)见解析【分析】(1)连接AP ,则由三角形中位线定理可得MN ∥AP ,然后利用线面平行的判定定理可证得结论,(2)连接OB 1,取CO 的中点E ,连接ME ,过点E 作⊥EF AC 于F ,连接MF ,可证得∠MFE 为 二面角−−M AC B 的平面角,然后计算即可 【详解】(1)证明:连接AP ,因为M ,N 分别是线段CP ,CA 的中点, 所以MN ∥AP ,因为⊄MN 平面AA B B 11,⊂AP 平面AA B B 11, 所以MN ∥平面AA B B 11,(2)解:连接OB 1,取CO 的中点E ,连接ME ,过点E 作⊥EF AC 于F ,连接MF , 因为M ,是线段CP 的中点,所以ME ∥OP ,=ME OP 21,因为⊥OP 平面ABC ,所以⊥ME 平面ABC , 因为⊂AC 平面ABC ,所以⊥ME AC , 因为⋂=ME EF E , 所以⊥AC 平面MEF ,因为⊂MF 平面MEF ,所以⊥AC MF , 所以∠MFE 为 二面角−−M AC B 的平面角, 设===AB AC AA 21,因为∠=CAB 90,所以=BC所以==BO BC 41==CO BC 43,所以==CE CO 21,=︒==EF CE 4sin 453, 在1OBB Rt 中,=+=+=OB OB BB 2241911222, 因为⊥OP 平面ABC ,平面ABC ∥平面A B C 111, 所以⊥OP 平面A B C 111, 因为⊂A B 11平面A B C 111, 所以⊥OP A B 11,所以===OP 2,所以==ME OP 21,在MEF Rt 中,∠===EF MEF ME 43tan 4,所以二面角−−M AC B 的正切值为312.(2023高一下·重庆渝中·百强名校期末)如图;正四棱柱−ABCD A B C D 1111中;=AA AB 21;点P 为DD 1的中点.(1)求证:直线∥BD 1平面PAC ;(2)求直线BC 1与平面APC 所成线面角的正弦值. 【答案】(1)证明见解析(2)15【分析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,可得PO BD //1,可得直线BD //1平面PAC ;(2)设==AA AB 241,利用等体积法可求点D 到平面APC 的距离为d ,进而利用直线BC 1与平面APC 所成线面角与直线AD 1与平面APC 所成线面角相等,可求直线BC 1与平面APC 所成线面角的正弦值.【详解】(1)证明:设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,P 是DD 1的中点,∴PO BD //1,又PO ⊂平面PAC ,⊂BD 1平面PAC ,∴直线BD //1平面PAC ,(2)设==AA AB 241,则三角形APC为正三角形,===AP AC PC ,APCSAP ==42 设点D 到平面APC 的距离为d ,由等体积法:=−−V V P ADC D APC , 所以1133ADC APCPD Sd S ⋅=⋅,则ADC APC PD S S ===⋅d 233423,由点P 为中点,所以点D ,D 1到平面APC 距离相等,由AD BC //11,所以直线BC1与平面APC 所成线面角与直线AD 1与平面APC 所成线面角相等, 设直线AD1与平面APC 所成线面角为θ,所以==θAD d sin 1∴直线BC 1与平面APC 所成线面角的正弦值为15.13.(2023高一下·重庆沙坪坝·百强名校期末)如图,在直三棱柱111ABC A B C 中,∠=︒BAC 90,===AB AC AA 21,M 为AB 的中点,点G 为△A B C 111的重心.(1)证明:BG 平面ACM 1(2)求三棱锥−G A MC 1的体积. 【答案】(1)证明见解析; (2)32.【分析】(1)先证明平面BGN //平面ACM 1,再由面面平行的性质可得线面平行; (2)利用等体积法求解即可.【详解】(1)连接C G 1并延长交A B 11于点N ,连接BN CM BG ,,,如图,在直三棱柱111ABC A B C 中,点G 为△A B C 111的重心, 所以C N CM //1,又⊄C N 1平面ACM 1,⊂CM 平面ACM 1, 所以C N //1平面ACM 1,因为A N BM A N BM //,=11,所以四边形BMA N 1是平行四边形, 所以BN A M //1,又⊄BN 平面ACM 1,⊂A M 1平面ACM 1, 所以BN //平面ACM 1,又1=BN C N N ,所以平面BGN //平面ACM 1, 又⊂BG 平面BGN ,所以BG 平面ACM 1.(2)由(1)知BG平面ACM 1, 所以==−−−V V V G A MC B A MC A BMC 111, 三棱锥−A BMC 1的高=A A 21,△=⋅=⨯⨯=S BM AC BMC 2212111, 所以△==⋅=⨯⨯=−−V V AA S G A MC A BMC BMC 33321112111. 14.(2023高一下·重庆沙坪坝·百强名校期末)在直三棱柱111ABC A B C 中,=AB 3,=BC 4,=AA 21,︒∠=ABC 90,点D 为AC 的中点.(1)求证:AB 1//平面C BD 1; (2)求三棱锥−B BDC 11的体积. 【答案】(1)证明见详解 (2)2【分析】(1)根据线面平行的判定定理分析证明;(2)根据题意可证⊥AB 平面BCC B 11,再利用转换顶点法求体积. 【详解】(1)连接B C 1交BC 1于点O ,连接DO , 因为BCC B 11为平行四边形,则O 为B C 1的中点, 且点D 为AC 的中点,则AB 1//DO ,又因为⊄AB 1平面C BD 1,⊂DO 平面C BD 1, 所以AB 1//平面C BD 1.(2)因为⊥BB 1平面ABC ,⊂AB 平面ABC ,所以⊥BB AB 1, 又因为⊥AB BC , 且BB BC B =1,⊂BB BC ,1平面BCC B 11,所以⊥AB 平面BCC B 11,且点D 为AC 的中点,故三棱锥−D BB C 11的高为=AB 2213,所以三棱锥−B BDC 11的体积==⨯⨯⨯⨯=−−V V B BDC D BB C 3222421311111.15.(2023·江苏苏州·百强名校期末)如图,在三棱锥P ABC −中,ABC 是边长为等边三角形,且===PA PB PC 6,⊥PD 平面ABC ,垂足为⊥D DE ,平面PAB ,垂足为E ,连接PE 并延长交AB 于点G .(1)求二面角P AB C 的余弦值;(2)在平面PAC 内找一点F ,使得⊥EF 平面PAC ,说明作法及理由,并求四面体PDEF 的体积.【答案】(2)答案见解析,34.【分析】(1)根据条件确定∠PGD 就是二面角PAB C 的平面角,构造三角形求解;(2)根据给定的条件知⊥PB 平面PAC ,过点E 作PB 的平行线与P A 交于F ,则⊥EF 平面P AC ,再求出三棱锥−P EFD 的底面积和高即可.【详解】(1)PA PB PC ==,并且ABC 是等边三角形,∴三棱锥P ABC −是正三棱锥,D 是ABC 的中心,点G 是AB 边的中点;由⊥PD 平面ABC , ⊥DE 平面PAB ,⊂AB 平面PAB ,可知⊥⊥⋂=AB PD AB DE PD DE D ,,,⊂PD 平面PDG ,⊂DE 平面PDG ,所以⊥AB 平面PDG ,进而得⊥⊥AB PG AB DG ,, 所以∠PGD 就是二面角PAB C 的平面角,又ABC 是边长为===PA PB PC 6,+=PA PB AB 222,PAB ∴是等腰直角三角形,同理△△PAC PBC ,都是等腰直角三角形;∴==PG AB 21===GD CG 3311∠==PG PGD GD cos P AB C ;(2),,,PB PC PB PA PA PC P PA ⊥⊥=⊂平面PAC ,⊂PC 平面PAC , ∴⊥PB 平面PAC ,同理⊥PC 平面PAB ,又⊥DE 平面PAB ,∴ED PC //,∴E 与点P ,D ,C 共面,即E 点在线段PG 上,又,2EDGPGC ED PC ∴==31,===PG CG PE PE CD 3,2∠=APG 4π,过E 点在平面P AB 内作PB 的平行线,与P A 交于F ,则⊥EF 平面PAC , PEF 也是等腰直角三角形,==EF2, 又⊥DE 平面P AB ,⊂EF 平面P AB ,∴⊥DE EF ,将PEF 作为底面,则ED 是三棱锥−D PEF 的高,11143323P DEF D PEF PEFV V SDE ∴===⨯⨯⨯⨯=−−222,即四面体PDEF 的体积为34.16.(2023·上海嘉定·百强名校期末)在长方体−ABCD A B C D 1111中,==AD DD 11,=AB E 、F 、G 分别为AB 、BC 、C D 11的中点.(1)求三棱锥−A GEF 的体积;(2)点P 在矩形ABCD 内,若直线D P //1平面EFG ,求线段D P 1长度的最小值.【答案】【分析】(1)等体积由=−−V V A GEF G AEF 可得.(2)先证平面EFG //平面ACD 1,则由直线D P //1平面EFG 可得点P 在直线AC 上,进而可得线段D P 1长度的最小值【详解】(1)依题意有AEFSAE BF =⋅⋅=⋅=22228111,所以三棱锥−A GEF 的体积1133A GEF G AEF AEFV V SDD ==⋅⋅==−−11 (2)如图,连结D A D C AC ,,11,∵E F G ,,分别为AB BC C D ,,11的中点,∴⊄AC EF EF //,平面ACD 1,⊂AC 平面ACD 1, ∴EF //平面ACD ,1∵⊄EG AD EG //,1平面ACD 1,⊂AD 1平面ACD 1,∴EG //平面ACD 1, ∵EFEG E =,∴平面EFG //平面ACD 1,∵D P //1平面EFG ,∴点P 在直线AC 上,在△ACD 1中,AD AC CD ===2,211,1AD CS==21∴当⊥D P AC 1时,线段D P 1的长度最小,最小值为△⨯⨯AC S AD C 22211=21=2. 17.(2023高一下·安徽合肥·百强名校期末)在多面体ABCDE 中,=BC BA ,DE BC //,AE ⊥平面BCDE ,=BC DE 2,F 为AB 的中点.(1)求证:EF //平面ACD ;(2)若==EA EBCD ,求二面角−−B AD E 的平面角正弦值的大小. 【答案】(1)证明见解析【分析】(1)取AC 中点G ,连接DG FG ,,由已知得四边形DEFG 是平行四边形,由此能证明EF //平面ACD .(2)过点B 作BM 垂直DE 的延长线于点M ,过M 作⊥MH AD ,垂足为H ,连接BH ,则∠BHM 是二面角−−B AD E 的平面角,由此即可求出二面角−−B AD E 的正弦值的大小.【详解】(1)证明:取AC 中点G ,连接DG ,FG .因为F 是AB 的中点,所以FG 是ABC 的中位线, 则∥FG BC ,=FG BC 21,所以∥FG DE ,=FG DE , 则四边形DEFG 是平行四边形,所以∥EF DG ,又⊄EF 平面ACD ,⊂DG 平面ACD ,故∥EF 平面ACD . (2)过点B 作BM 垂直DE 的延长线于点M ,因为AE ⊥平面BCDE ,⊂BM 平面ADE ,所以⊥AE BM , 且⊥BM DE ,、DE AE平面ADE ,DEAE E =,则⊥BM 平面ADE ,⊂AD 平面ADE ,⊥BM AD , 过M 作⊥MH AD ,垂足为H ,连接BH ,、⊂BM MH 平面BMH ,BM MH M =,则⊥AD 平面BMH ,所以⊥AD BH ,则∠BHM 是二面角−−B AD E 的平面角.设=DE a ,则==BC AB a 2,在△BEM 中,=EM a2,=BE ,所以=BM .又因为△△∽ADE MDH ,所以=HM ,则∠=BHM 6tan∴∠=BHM 13sin . 18.(2023高一下·浙江绍兴·百强名校期末)如图,四棱锥−P ABCD 中,∠=∠=︒ABC BCD 90,∆PAD 是以AD 为底的等腰直角三角形,===AB BC CD 224,E为BC 中点,且=PE(Ⅰ)求证:平面⊥PAD 平面ABCD ; (Ⅱ)求直线PE 与平面PAB 所成角的正弦值.【答案】(Ⅰ)见解析(Ⅱ【分析】(Ⅰ) 过P 作AD 垂线,垂足为F ,由=+PE PF FE 222得,︒∠=PFE 90.又⊥PF AD ,可得⊥PF 平面ABCD ,即可证明.(Ⅱ)易得E 到平面PAB 距离等于F 到平面PAB 距离.过F 作AB 垂线,垂足为G ,在∆PFG 中,过F 作PG 垂线,垂足为Q ,可证得:⊥FQ 平面PAB .求得:FQ ,从而==θPE FQ sin ,即可求解. 【详解】(Ⅰ) 过P 作AD 垂线,垂足为F ,由=+PE PF FE 222得,︒∠=PFE 90. 又⊥PF AD ,∴⊥PF 平面ABCD , ∴平面⊥PAD 平面ABCD ;(Ⅱ)∵EF AB //,∴E 到平面PAB 距离等于F 到平面PAB 距离. 过F 作AB 垂线,垂足为G ,在∆PFG 中,过F 作PG 垂线,垂足为Q , 可证得:⊥FQ 平面PAB .求得:=FQ ,从而=θPE FQ sin即直线PE 与平面PAB【点睛】本题考查面面垂直的证明,考查线面角的求解、是中档题.19.(2023高一下·湖南长沙·百强名校期末)已知正三棱柱111ABC A B C 中,=AB 2,M是B C 11的中点.(1)求证:AC //1平面A MB 1;(2)点P 是直线AC 1上的一点,当AC 1与平面ABC 所成的角的正切值为2时,求三棱锥−P A MB 1的体积. 【答案】(1)证明见解析【分析】(1)连接AB 1交A B 1于点N ,连接MN ,利用中位线的性质可得出MN AC //1,再利用线面平行的判定定理可证得结论成立;(2)利用线面角的定义可求得CC 1的长,分析可知点P 到平面A MB 1的距离等于点C 1到平面A MB 1的距离,可得出==−−−V V V P A MB C A MB B A C M 11111,结合锥体的体积公式可求得结果. 【详解】(1)证明:连接AB 1交A B 1于点N ,连接MN ,因为四边形AA B B 11为平行四边形,⋂=AB A B N 11,则N 为AB 1的中点, 因为M 为B C 11的中点,则MN AC //1,1AC ⊄平面A MB 1,⊂MN 平面A MB 1,故AC //1平面A MB 1.(2)解:因为⊥CC 1平面ABC ,∴AC 1与平面ABC 所成的角为∠CAC 1, 因为ABC 是边长为2的等边三角形,则=AC 2,1CC ⊥平面ABC ,⊂AC 平面ABC ,∴⊥CC AC 1,则∠==ACCAC CC tan 211, 所以,==CC AC 241,1//AC 平面A MB 1,∈P AC 1,所以,点P 到平面A MB 1的距离等于点C 1到平面A MB 1的距离,因为M 为B C 11的中点,则△△===S S A MC A B C 22211211111则△===⋅=⨯−−−V V V BB S P A MB C A MB B A C M A C M 3341111111111. 20.(2023高一下·湖南长沙·百强名校期末)如图,在棱长为3的正方体ABCD −A'B'C'D'中,M 为AD 的中点.(1)求证:'DB //平面'BMA ;(2)在体对角线'DB 上是否存在动点Q ,使得AQ ⊥平面'BMA ?若存在,求出DQ 的长;若不存在,请说明理由. 【答案】(1)证明见解析 (2)【分析】(1)连接'AB 交'BA 于点E ,连接EM ,证得'EM DB //,结合线面平行的判定定理,即可证得'DB //面'BMA .(2)根据题意,证得BA ⊥'平面'ADB ,得到平面⊥'BMA 平面'ADB ,作⊥'AQ DB ,利用面面垂直的性质,证得⊥AQ 平面'BMA ,再由△△∽'ADB QDA Rt Rt ,即可求得DQ 的长. 【详解】(1)证明:连接'AB ,交'BA 于点E ,连接EM . 因为四边形''ABB A 是正方形,所以E 是'AB 的中点, 又M 是AD 的中点,所以'EM DB //,因为⊂EM 面'BMA ,/⊂'DB 面'BMA ,所以'DB //面'BMA .(2)在对角线'DB 上存在点Q ,且=DQ ⊥AQ 平面'BMA , 证明如下:因为四边形''ABB A 是正方形,所以⊥''AB BA , 因为⊥AD 平面''ABB A ,⊂'BA 面''ABB A ,所以⊥'AD BA , 因为AB AD A =',且⊂'AB AD ,平面'ADB ,所以BA ⊥'平面'ADB ,因为⊂'BA 平面'BMA ,所以平面⊥'BMA 平面'ADB , 作⊥'AQ DB 于Q ,因为'EM DB //,所以⊥AQ EM ,因为⊂AQ 平面'ADB ,平面'ADB 平面='BMA EM ,所以⊥AQ 平面'BMA ,由△△∽'ADB QDA Rt Rt ,可得'==DB DQ AD 2所以当=DQ ⊥AQ 平面'BMA .21.(2023高一下·湖南长沙·百强名校期末)如图,在四棱锥P −中,底面ABCD 为正方形,侧面ADP 是正三角形,侧面ADP ⊥底面ABCD ,M 是DP 的中点.(1)求证:AM ⊥平面CDP ;(2)求直线BP 与底面ABCD 所成角的正弦值. 【答案】(1)证明见解析【分析】(1)先证得⊥AM DP ,由⊥CD AD ,结合面面垂直的性质,证得⊥CD 平面ADP ,进而得到⊥CD AM ,利用线面垂直的判定定理,即可证得⊥AM 平面CDP ; (2)取AD 的中点E ,连BE ,EP ,证得⊥PE 平面ABCD ,得到∠EBP 是所求直线与平面所成角,在直角△BEP 中,即可求解.【详解】(1)证明:因为侧面ADP 为正三角形,且M 为DP 中点,所以⊥AM DP , 又因为底面ABCD 为正方形,所以⊥CD AD .因为平面⊥ADP 平面ABCD 且平面⋂ADP 平面=ABCD AD ,⊂CD 平面ABCD , 所以⊥CD 平面ADP ,又因为⊂AM 平面ADP ,所以⊥CD AM , 因为CDDP D =,且⊂CD DP ,平面CDP ,所以⊥AM 平面CDP .(2)解:取AD 的中点E ,连BE ,EP ,因为△ADP 为正三角形,且E 为AD 中点,所以⊥PE AD ,又因为平面⊥ADP 平面ABCD ,平面⋂ADP 平面=ABCD AD ,且⊂PE 平面PAD , 所以⊥PE 平面ABCD ,所以∠EBP 是所求直线与平面所成角,不妨设=AD a 2,则在等边△ADP 中,可得EP =,在直角ABE 中,==BE ;在直角中,=BP ,故∠==BP EBP EP sin所以直线与底面22.(2023高一下·浙江·百强名校期末)如图,正三棱柱的底面边长为2,高,过的截面与上底面交于PQ ,且点是棱A C 11的中点,点在棱上.(1)试在棱上找一点,使得QD //平面,并加以证明;(2)求四棱锥−C ABQP 的体积. 【答案】(1)点为棱的中点,证明见解析;(2)43.【分析】(1)证法1:取的中点,连接DM ,B M 1,可得A B //11平面ABQP ,再由线面平行的性质可得A B PQ //11,则可得是棱的中点,由三角形中位线定理结合已知可得四边形DMB Q 1是平行四边形,可得QD B M //1,然后由线面平行的判定定理可证得结论;证法2:由已知条件可证得PQ //平面,从而得PDAA 1是平行四边形,PD AA //1,由线面平行的判定可得PD //面,从而得面PDQ //面,再由面面平行的性质可得结论; (2)解法一:连接,四棱锥−C ABQP 可视为三棱锥−C BPQ 和−C ABP 组合而成,然后分别求出两个三棱锥的体积即可;解法二:分别取和的中点,,连接,CM ,连接C N 1交PQ 于点,连接MG ,CG ,可证得平面⊥ABQP 平面CMNC 1,则⊥CG 平面ABQP ,然后结合已知条件求出等腰梯形ABQP 的面积,从而可求得四棱锥的体积【详解】(1)证法1:点为棱的中点,证明如下:取的中点,连接DM ,B M 1.∵AB A B //11,平面ABQP ,⊄A B 11平面ABQP ,∴A B //11平面ABQP ,∵平面,平面ABQP 平面=A B C PQ 111,∴A B PQ //11.又是棱A C 11的中点,∴是棱的中点,∴QB 1∥,=QB BC 211 ∵,分别为棱,的中点,∴DM ∥,=DM BC 21∴QB 1∥DM ,=QB DM 1∴四边形DMB Q 1是平行四边形,∴QD B M //1, ∵⊂B M 1平面,⊄OD 平面,∴QD //平面.证法2:为的中点时,QD //平面.证明如下: ∵AB //平面,平面ABQP ,平面ABQP 平面=A B C PQ 111,∴PQ AB //,⊄PQ 平面,平面,所以PQ //平面,又∵为的中点,为A C 11的中点,∴PDAA 1是平行四边形,∴PD AA //1,又∵⊄PD 平面,⊂AA 1平面,∴PD //面,又∵与PQ 在平面PDQ 内相交,∴面PDQ //面,又∵⊂QD 面PDQ ,∴DQ //平面.(2)解法一:连接,四棱锥−C ABQP 可视为三棱锥−C BPQ 和−C ABP 组合而成,三棱锥−C ABP 可视为,底面积ABCS==22,设=−V V C BAP 1,体积为==V 32111.三棱锥−C BPQ 与−C ABP 等高,体积比为底面积之比,设=−V V C BPQ 2,则△△===V V S S PQ AB BPQ BAP :::1:221,故==V V 241121,因此,=+=−V V V C ABPQ 4312,即为所求. 解法二:分别取和的中点,,连接,CM ,连接C N 1交PQ 于点,连接MG ,CG . ∵和是正三角形,且,分别是和的中点, ∴⊥CM AB ,且CM ∥C N 1,=CM C N 1,则,,,四点共面.∵平面,平面,∴⊥CC AB 1,又平面CMNC 1,⊂CC 1平面CMNC 1,⋂=CM CC C 1,∴平面CMNC 1,∵平面ABQP ,∴平面⊥ABQP 平面CMNC 1.在矩形CMNC 1中,==MN CC 1===CN CM AB 1∴===C G NG CC MN 11,∴∠=∠=︒C GC NGM 451,且==CG 1,∴∠=︒CGM 90,即⊥CG MG .又平面⊥ABQP 平面CMNC 1,平面ABQP 平面=CMNC MG 1,⊂CG 平面CMNC 1,∴⊥CG 平面ABQP .在等腰梯形ABQP 中,==PQ A B 21111,,===BQ AP∴等腰梯形ABQP 的高=h , ∴四棱锥−C ABQP 的体积形梯=⋅=⨯+⨯V CG S CG PQ AB hABQP 332111)(=+=32412113)(.23.(2023高一下·广西玉林·百强名校期末)在如图所示的七面体AA B C D C 1111中,四边形A B C D 1111为边长为2的正方形, ⊥AA 1平面A B C D 1111,∥CC AA 11,且==CC AA 211,,,分别是C C 1,,的中点.(1)求点到平面MNP 的距离;(2)若直线A C 11交PN 于点,直线交平面MNP 于点,证明:,,三点共线.【答案】(1)(2)证明见解析【分析】(1)利用三棱锥体积转换思想,先求三棱锥−C MNP 1的体积,再确定底面积△MNP ,最后得点到平面MNP 的距离即可【详解】(1)解:==⨯⨯⨯⨯=−−V V C MNP M C NP 32611111111记到平面MNP 的距离为d ,在△MNP 中,===MN NP MP △==S MNP 2221,∴△==−S d V MNPC 31MNP 1,(2)证明:∵∥AA CC 11, ∴与确定平面AA C C 11,∵,∈E 平面AA C C 11,且,∈E 平面MNP ,∴平面AAC C11平面=PMN ME ,∵⋂AC 1平面=MPN F ,∴∈F 平面PMN ,∈F 平面AA C C 11, ∴点在直线上,则,,三点共线.24.(2023高一下·福建泉州·百强名校期末)如图所示,在四棱锥中,已知P A ⊥底面ABCD ,且底面ABCD 为梯形,,,====PA AD BC AB 33,点E 在线段PD 上,=PD PE 3.(1)求证:CE //平面P AB ; (2)求证:平面P AC ⊥平面PCD . 【答案】(1)证明见解析 (2)证明见解析【分析】(1)由线面平行的判定定理证明即可; (2)由线面垂直与面面垂直的判定定理证明即可【详解】(1)(1)过E 作EF AD //交P A 于点F ,连接BF , 因为,所以EF BC //.又=PD PE 3,所以=AD EF 3. 又=AD BC 3,所以所以四边形BCEF 为平行四边形, 所以CE BF //,又CE ⊄平面P AB ,BF ⊂平面P AB , 所以CE //平面P AB .。

(完整word版)高中立体几何大量习题及答案

(完整word版)高中立体几何大量习题及答案

立体几何一、选择题1. 给出下列四个命题①垂直于同一直线的两条直线互相平行;②垂直于同一平面的两个 平面互相平行;③若直线4与同一平面所成的角相等,则4互相平行;④若直线 /|仏是异面直线,则与都相交的两条直线是异面直线。

其中假命题的个数是()A. 1B. 2 C ・ 3 D. 42. 将正方形ABCD 沿对角线〃£)折成一个120。

的二面角,点C 到达点G ,这时异面直 线AD 与BCi 所成角的余弦值是()A. —B. -C.逅D.- 2 2 4 43. —个长方体一顶点的三个面的面积分别是血、巧、后,这个长方体对角线的长为()6. 正方体A ,B ,C ,D ,—ABCD 的棱长为a, EF 在AB 上滑动,且|EF|=b (b<a=9 Q 点在DC 上滑动,则四面体N —EFQ 的体积()A ・与E 、尸位置有关 B.与Q 位置有关C.与E 、F 、0位置都有关D.与E 、F 、0位買均无关,是定值 7. 三个两两垂直的平面,它们的三条交线交于一点O,点P 到三个平面的距离比为1 :2 : 3, PO=2V14 ,则P 到这三个平面的距离分别是()4. A. 2^3 B. 3^2 C. 6 如图,在正三角形ABC 中,D 、E 、尸分别为各边的中点,G 、H 、I 、丿分别为AF 、AD. BE 、DE 的中点.将△ ABC 沿QE 、EF 、Q 尸折成三棱锥以后,与〃所成角的度数为(A. 90° B ・ 60° C. 45。

5.两相同的正四棱锥组成如图所示的几何体,可放棱 长为1的正方体内,使正四棱锥的底面ABCD 与正 方体的某一个平面平行,且各顶点均在正方体的面 上,则这样的几何体体积的可能值有()A ・I 个B. 2个C. 3个 D0°D.A. 1, 2, 3 B・ 2, 4, 6 C・ 1, 4, 6 D・ 3, 6, 98. 如图,在四而体ABCD 中,截rfij AEF 经过四面 体的内切球(与四个面都相切的球)球心O,且 与BC, DC 分别截于E 、F,如果截面将四面体 分成体积相等的两部分,设四棱锥A —BEFD 与 三棱锥A-EFC 的表面积分别是Si ,52,则必有 ()A. S\<S2B. Si>S2C. S I =52D. 5I ,S2的大小关系不能确定 9. 条件甲:四棱锥的所有侧面都是全等三角形,条件乙:这个四棱锥是正四棱锥,则条 件甲是条件乙的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10. 已知棱锥的顶点为P, P 在底面上的射影为O, PO=a,现用平行于底面的平面去截 这个棱锥,截面交PO 于点M,并使截得的两部分侧面积相等,设OM=b ,则a 与b 的关系是() B ・ h= ( V2 +1) aD.后土色 2 —♦ f11. 已知向量d=(2, 4, x ), 〃=(2, y, 2),若f |=6, “ 丄〃,则 x+y 的值是()12. 一个长方体共一顶点的三个面的面积分别是迈,JI 亦,这个长方体它的八个顶点都在同一个球面上,这个球的表面积是()A.1271B. 1871C.3671D. 6兀 13. 己知某个几何体的三视图如下,图中标出的尺寸(单位:cm ),则这个几何体的体积是()已知圆锥的全面积是底面积的3倍,那么该圆锥的侧tfri 展开图扇形的圆心角为( A.12O 0 B.15O 0 C.180° D.24O 0A ・ b= ( 5/2 —l)a A. 4000 14. A8000 正视图 俯视图20. 15.在一个倒置的正三棱锥容器内,放入一个钢球,钢球恰好与棱锥的四个而都接触,经 过棱锥的一条侧棱和高作截面,正确的截面图形是()“(-1,0,2),且几+》与必―》互相垂直,贝IJR 值是() 厂3 “7 C. — D.— 5516. 正四棱柱 ABCD-AiBiCiDi 中,AB=3, BBi=4.长为 1 的线段PQ 在棱AAi 上移动,长为3的线段MN 在棱 CCi±移动,点R 在棱BBi 上移动,则四棱锥R- PQMN 的体积是()A. 6B. 10 C ・12 D ・不确定17. 已知三棱锥0—ABC 中,OA 、OB 、OC 两两互相垂直,若x+y=4,则已知三棱锥O —ABC 体积的最大值是()1 2 >/3 B. — C. — D. 3 3 3 A.l18. 如图,在正四面体A-BCD 中,E 、F 、G 分别是三角形ADC 、ABD 、BCD 的中心, 则AEFG 在该正四面体各个面上的射影所有可能的序号是()A.①③B.②®® c.③④D.②④ A/ \ /◎、L ________ \ ① MB — — —②19. 如來底而直径和高相等的圆柱的侧面积是s •那么圆柱的体积等于A.-VSB.-J-C.-VSD.- 2 2V K 44 vn 已知直线AB. CD 是异面直线,AC 丄AB, AC 丄CD, BD 丄CD, 则异面直线AB 与CD 所成角的大小为()A. 30°B. 45° 且 AB=2, CD=1,C. 60°D. 75°已知向量”m°),B.- 5 A. 1 OC=1, OA=x, OB=y,22. 在四棱锥的四个侧面中,直角三角形最参可有()A.4个B.2个C.3个D.1个23. 三棱锥A-BCD 中,AC 丄BD, E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,则四边形EFGH 是()A.菱形B.矩形C.梯形D.正方形24. 在正四面体P —ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不 成立的是()25. 一棱锥被平行于底面的平面所截,若截面1何积与底面面积的比为1: 3,则此截面把一条侧棱分成的两线段之比为()A.1: 3B.1: 2C.1:羽D.1:羽一 1 26. 正四面体P —ABC 中,M 为棱AB 的中点,则PA 与CM 所成角的余弦值为()A 並B 並C 返D 迴 A. 2 B. § C. 4 D. 327. —个三棱锥S —ABC 的三条侧棱SA 、SB 、SC 两两互相垂直,且长度分别为1, & ,3 已知该三棱锥的四个顶点都在一个球而上,则这个球的表面积为()A.16nB.32 兀C.36 兀D.64 兀28. 在棱长为。

(完整版)高一数学常考立体几何证明的题目及答案

(完整版)高一数学常考立体几何证明的题目及答案

1、如图,已知空间四边形ABCD 中,,BCAC ADBD ,E 是AB 的中点。

求证:(1)AB平面CDE; (2)平面CDE 平面ABC 。

2、如图,在正方体1111ABCDA B C D 中,E 是1AA 的中点,求证:1//AC 平面BDE 。

3、已知ABC 中90ACB o,SA面ABC ,AD SC ,求证:AD面SBC .4、已知正方体1111ABCDA B C D ,O 是底ABCD 对角线的交点.求证:(1) C 1O ∥面11AB D ;(2)1AC 面11AB D .5、正方体''''ABCD A B C D 中,求证:(1)''AC B D DB 平面;(2)''BD ACB 平面.6、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ;(2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD .AED BCAED 1CB 1DCBASDCBAD 1ODBAC 1B 1A 1CA 1B 1C 1C D 1DGEF7、四面体ABCD 中,,,ACBD E F 分别为,AD BC 的中点,且22EFAC ,90BDCo,求证:BD平面ACD8、如图,在正方体1111ABCDA B C D 中,E 、F 、G 分别是AB 、AD 、11C D 的中点.求证:平面1D EF ∥平面BDG .9、如图,在正方体1111ABCDA B C D 中,E 是1AA 的中点.(1)求证:1//A C 平面BDE ;(2)求证:平面1A AC 平面BDE .10、已知ABCD 是矩形,PA 平面ABCD ,2AB,4PA AD ,E 为BC 的中点.(1)求证:DE 平面PAE ;(2)求直线DP 与平面PAE 所成的角.11、如图,在四棱锥P ABCD 中,底面ABCD 是60DAB且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .(1)若G 为AD 的中点,求证:BG 平面PAD ;(2)求证:AD PB .12、如图1,在正方体1111ABCDA B C D 中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO 平面MBD .13、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD .14.(12分)求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形.已知:如图,三棱锥S—ABC,SC∥截面EFGH,AB∥截面EFGH.求证:截面EFGH是平行四边形.15.(12分)已知正方体ABCD—A1B1C1D1的棱长为a,M、N分别为A1B和AC上的点,A1M=AN=23a,如图.(1)求证:MN∥面BB1C1C;(2)求MN的长.16.(12分)(2009·浙江高考)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.17.(12分)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥面ACD.(2)平面EFC ⊥平面BCD.1、如图,已知空间四边形ABCD 中,,BC AC AD BD ,E 是AB 的中点。

立体几何练习题(含答案)精选全文完整版

立体几何练习题(含答案)精选全文完整版

可编辑修改精选全文完整版《立体几何 》练习题一、 选择题1、一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是( )A 、垂直B 、平行C 、相交不垂直D 、不确定2. 在正方体1111ABCD A B C D -中, 与1A C 垂直的是( )A. BDB. CDC. BCD. 1CC3、线n m ,和平面βα、,能得出βα⊥的一个条件是( )A.βα//n ,//m ,n m ⊥B.m ⊥n ,α∩β=m ,n ⊂αC.αβ⊆⊥m n n m ,,//D.βα⊥⊥n m n m ,,//4、平面α与平面β平行的条件可以是( )A.α内有无穷多条直线与β平行;B.直线a//α,a//βC.直线a α⊂,直线b β⊂,且a//β,b//αD.α内的任何直线都与β平行5、设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题:①若m ⊥α,n //α,则m n ⊥ ②若αβ//,βγ//,m ⊥α,则m ⊥γ③若m //α,n //α,则m n // ④若αγ⊥,βγ⊥,则//αβ其中正确命题的序号是( )A.①和②B.②和③C.③和④D.①和④6.点P 为ΔABC 所在平面外一点,PO ⊥平面ABC ,垂足为O,若PA=PB=PC ,则点O 是ΔABC 的( )A.内心B.外心C.重心D.垂心7. 若l 、m 、n 是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是( )A .若//,,l n αβαβ⊂⊂,则//l nB .若,l αβα⊥⊂,则l β⊥C. 若,//l l αβ⊥,则αβ⊥ D .若,l n m n ⊥⊥,则//l m8. 已知两个平面垂直,下列命题中正确的个数是( )①一个平面内的已知直线必垂直于另一个平面的任意一条直线;②一个平面内的已知直线必垂直于另一个平面的无数条直线;③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则垂线必垂直于另一个平面.A.3B.2C.1D.09. 设m.n 是两条不同的直线,α.β是两个不同的平面,( ) A .若m ∥α,n ∥α,则m ∥n B .若m ∥α,m ∥β,则α∥βC .若m ∥n,m ⊥α,则n ⊥αD .若m ∥α,α⊥β,则m ⊥β10. 设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥ 二、填空题11、在棱长为2的正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是棱AB ,BC 中点,则三棱锥B —B 1EF 的体积为 .12.对于空间四边形ABCD ,给出下列四个命题:①若AB=AC ,BD=CD 则BC ⊥AD ;②若AB=CD ,AC=BD 则BC ⊥AD ;③若AB ⊥AC ,BD ⊥CD 则BC ⊥AD ;④若AB ⊥CD , BD ⊥AC 则BC ⊥AD ;其中真命题序号是 .13. 已知直线b//平面α,平面α//平面β,则直线b 与β的位置关系为 .14. 如图,△ABC 是直角三角形,∠ACB=︒90,PA ⊥平面ABC ,此图形中有 个直角三角形参考答案 选择题:AACDA,BCCCB填空题:11、1312、①④ 13、//b b ββ⊂或 14、4A B C P欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。

高一立体几何初步测试题及答案

高一立体几何初步测试题及答案

高一立体几何初步测试题及答案1.在空间四点中,无三点共线是四点共面的(充分不必要条件)。

2.若a∥b,b∩c=A,则a,c的位置关系是(相交直线或异面直线)。

3.圆锥的侧面展开图是直径为a的半圆面,那么此圆锥的轴截面是(等腰直角三角形)。

4.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,左视图是一个底边长为6、高为4的等腰三角形,则该几何体的体积为(64)。

5.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是(50π)。

6.已知正方体外接球的体积是π,那么正方体的棱长等于(3)。

7.若l、m、n是互不相同的空间直线,α、β是不重合的平面,则下列命题中为真命题的是(若α⊥β,l∈α,n∈β,则l⊥n)。

8.如图,在正方体ABCD-A' B' C' D'中,E,F,G,H分别为AA',AB,BB',B'C'的中点,则异面直线EF与GH所成的角等于(90°)。

9.已知两个平面垂直,其中正确的命题数量是(2)。

10.平面α与平面β平行的条件可以是(直线a//α,a//β)。

三、简答题(本大题共4小题,每小题10分,共40分)1.如何确定一个圆锥的侧面展开图?答:将圆锥展开,使其侧面展开为一段扇形,然后将扇形展开成一个直角三角形,即可得到圆锥的侧面展开图。

2.如何确定一个几何体的三视图?答:俯视图是从正上方看几何体,可以看到几何体的顶面和底面;正视图是从正前方看几何体,可以看到几何体的前面和后面;左视图是从正左方看几何体,可以看到几何体的左面和右面。

通过这三个视图,可以确定一个几何体的形状和尺寸。

3.如何判断两个平面是否平行?答:如果两个平面的法向量平行,则这两个平面平行。

也可以通过判断它们的交线是否平行来确定两个平面是否平行。

4.如何判断两条直线是否相交?答:如果两条直线的方向向量不平行,则它们相交;如果两条直线的方向向量平行但不重合,则它们异面直线;如果两条直线的方向向量重合,则它们可能重合也可能平行。

高一数学立体几何试题答案及解析

高一数学立体几何试题答案及解析

高一数学立体几何试题答案及解析1.如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为()A.B.C.D.【答案】A【解析】略2.在正方体ABCD–A1B1C1D1中,已知E是棱C1D1的中点,则异面直线B1D1与CE所成角的余弦值的大小是()A.B.C.D.【答案】D【解析】略3.如图1,正方体中,、是的三等分点,、是的三等分点,、分别是、的中点,则四棱锥的侧视图为()【答案】C【解析】侧视图从左向右投影,对应,对应,对应,对应,因此侧视图为C项【考点】三视图4.已知直线,平面,下列命题正确的是()A.B.C.D.【答案】D【解析】根据两个平面平行的判定定理:一个平面内的两条相交直线和另一个平面平行,则这两个平面平行,符号表示为:;【考点】空间中两个平面平行的判定定理;5.(本小题满分13分)如图,在棱长均为的直三棱柱中,是的中点.(1)求证:平面;(2)求直线与面所成角的正弦值.【答案】(1)见解析;(2).【解析】(1)直三棱柱的侧棱和底面垂直,从而可得到AD⊥BB1,并且AD⊥BC,从而由线面垂直的判定定理可得到AD⊥平面BCC1B1;(2)连接C1D,从而可得到∠AC1D为直线AC1和平面BCC1B1所成角,在Rt△AC1D中,容易求出AD,AC1,从而sin∠AC1D=.试题解析:(1)直三棱柱中,,又,D是BC的中点,,平面;(2)连接,由(1)平面,则即为直线与面所成角,在直角中,,,,.即直线与面所成角的正弦值为.【考点】直线与平面所成的角;直线与平面垂直的判定.6.正方体的表面积为24,则该正方体的内切球的体积为____________.【答案】【解析】正方形边长设为,内切球的直径为2,所以体积为【考点】正方体与球的基本知识7.在正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于()A.30°B.45°C.60°D.90°【答案】B【解析】根据二面角的定义,是所求二面角的平面角,易得:.【考点】二面角8.已知是直线,是平面,下列命题中:①若垂直于内两条直线,则;②若平行于,则内可有无数条直线与平行;③若m⊥n,n⊥l则m∥l;④若,则;正确的命题个数为()A.1B.2C.3D.4【答案】A【解析】①改为垂直于平面内的两条相交直线;②正确;③改为或相交或异面;④改为或异面.故选A.【考点】线与线,面与面,线与面位置关系9.如图所示的等腰直角三角形表示一个水平放置的平面图形的直观图,则这个平面图形的面积是________【答案】【解析】直观图中等腰直角三角形斜边长为2,所以两条直角边为,面积为1,因为直观图和平面图面积比为,所以平面图形的面积为【考点】平面直观图10.如图,是一个平面图形的水平放置的斜二测直观图,则这个平面图形的面积等于.【答案】【解析】水平放置的斜二测直观图还原成平面图形如上图,由斜二测画法的定义:平行于轴的线段仍平行于轴,长度不变,平行于轴的线段仍平行于轴,但长度减半,所以,,,所以.【考点】斜二测画法.11.如图,是正方体的棱的中点,给出下列命题①过点有且只有一条直线与直线,都相交;②过点有且只有一条直线与直线,都垂直;③过点有且只有一个平面与直线,都相交;④过点有且只有一个平面与直线,都平行.其中真命题是:A.①②③B.①②④C.①③④D.②③④【答案】B【解析】直线与是两条互相垂直的异面直线,点不在这两异面直线中的任何一条上,如图所示:取的中点,则,且,设与交于,则点共面,直线必与直线相交于某点.所以,过点有且只有一条直线与直线都相交;故①正确;过点有且只有一条直线与直线都垂直,此垂线就是棱,故②正确;过点有无数个平面与直线都相交,故③不正确;过点有且只有一个平面与直线都平行,此平面就是过点与正方体的上下底都平行的平面,故④正确.综上,①②④正确,③不正确,故选B.【考点】1.直线与平面平行的性质;2.平面与平面垂直的性质.【思路点睛】本题考查立体几何图形中直线和平面的相交、平行、垂直的性质,体现了数形结合的数学思想,①需要构造一个过点M且与直线AB、B1C1都相交的平面,就可判断;②利用过空间一点有且只有一条直线与已知平面平行判断;③可举反例,即找到两个或两个以上过点m且与直线AB、B1C1都相交的平面,即可判断.④利用线面平行的性质来判断即可.12.若圆锥的表面积是15π,侧面展开图的圆心角是60°,求圆锥的体积________________.【答案】【解析】因为设圆锥的底面半径为,母线为,利用圆锥的底面周长就是圆锥的侧面展开图的弧长,推出底面半径与母线的关系,通过圆锥的表面积求出底面半径,,得,圆锥的高,即圆锥的高为,即圆锥的体积.【考点】锥体的侧面积公式.【思路点睛】设圆锥的底面半径为,母线为,利用圆锥的底面周长就是圆锥的侧面展开图的弧长,推出底面半径与母线的关系,通过圆锥的表面积求出底面半径,求出圆锥的高,然后再根据圆锥的体积公式,即可求出圆锥的体积.13.正六棱柱的底面边长为,侧棱长为1,则动点从沿表面移到点时的最短的路程是.【答案】【解析】如下图所示,作出正六棱柱的展开图,如果动点从经侧面通过移到点时,则路程为;如果动点从经经沿上底面移到点时,根据题目条件,,则路程为;而,所以最短的路程是.【考点】1、棱锥的展开图;2、最值问题.14.若底面为正三角形的几何体的三视图如图所示,则几何体的侧面积为()A.B.C.D.【答案】D【解析】由三视图可知该几何体为底面为正三角形的直三棱柱,底面三角形的高为,棱柱高为4,设底面边长为x,则解得,故几何体的侧面积为故选:D.【考点】三视图,几何体的侧面积15.如下图所示,观察四个几何体,其中判断正确的是()A.①是棱台B.②是圆台C.③不是棱锥D.④是棱柱【答案】D【解析】图①不是由棱锥截来的,所以①不是棱台;图②上、下两个面不平行,所以②不是圆台;图④前、后两个面平行,其他面是平行四边形,且每相邻两个四边形的公共边平行,所以④是棱柱;很明显③是棱锥,选D.【考点】空间几何体的结构特征.16.在空间直角坐标系中,给定点,若点与点关于平面对称,点与点关于轴对称,则()A.2B.4C.D.【答案】A【解析】由题意知:,,则,故选A.【考点】空间两点间的距离公式.17.某几何体的三视图如图所示(单位:),则该几何体的体积是()A.B.C.D.【答案】C【解析】由三视图可知该几何体的形状是棱长为的正方体上有一个高为的正四棱锥,其体积为.【考点】1、三视图;2、空间几何体的体积.18.(2015秋•大连校级期末)如图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4,点F在线段AB上,且EF∥面PBC.(1)证明:EF∥BC.(2)证明:AB⊥平面PFE.(3)若四棱锥P﹣DFBC的体积为7,求线段BC的长.【答案】(1)、(2)见解析;(3)BC=3或BC=.【解析】(1)由EF∥面PBC可得出EF∥BC;(2)由PC=PD=CD=4可知△PDC是等边三角形,故PE⊥AC,由平面PAC⊥平面ABC可得PE⊥平面ABC,故PE⊥AB,由EF∥BC,BC⊥AB可得AB⊥EF,从而AB⊥平面PEF;(3)设BC=x,用x表示出四边形DFBC的面积,根据体积列出方程解出x.解:(1)证明:∵EF∥面PBC.EF⊂面ABC,面PBC∩面ABC=BC,∴EF∥BC.(2)∵由CD=DE+EC=4,PD=PC=4,∴△PDC是等边三角形,∴PE⊥AC,又∵平面PAC⊥平面ABC,平面PAC∩面ABC=AC,PE⊂平面PAC,∴PE⊥平面ABC,∵AB⊂平面ABC,∴PE⊥AB,∵∠ABC=,EF∥BC.∴AB⊥EF,又∵PE⊂平面PEF,EF⊂平面PEF,PE∩EF=E,∴AB⊥平面PEF.(3)设BC=x,则AB=,∴=,∵EF∥BC,∴△AFE∽△ABC,∴.∵AD=AE,,∴S=,四边形DFBC由(2)可知PE⊥平面ABC,且PE=,∴V=,解得x=3或者,∴BC=3或BC=.【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的体积.19.(2015秋•鞍山校级期末)如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,AB=2,AC=.(Ⅰ)求证:AO⊥平面BCD;(Ⅱ)求O点到平面ACD的距离.【答案】(Ⅰ)见解析;(Ⅱ).【解析】(1)连结OC,推导出AO⊥BD,AO⊥OC,由此能证明AO⊥平面BCD.(Ⅱ)设点O到平面ACD的距离为h,由V﹣ACD=V A﹣OCD,能求出点O到平面ACD的距离.O证明:(1)连结OC,∵△ABD为等边三角形,O为BD的中点,∴AO⊥BD.∵△ABD和△CBD为等边三角形,O为BD的中点,,∴.在△AOC中,∵AO2+CO2=AC2,∴∠AOC=90°,即AO⊥OC.∵BD∩OC=0,∴AO⊥平面BCD.解:(Ⅱ)设点O到平面ACD的距离为h.∵V﹣ACD=V A﹣OCD,∴.O在△ACD中,AD=CD=2,.而,,∴.∴点O到平面ACD的距离为.【考点】点、线、面间的距离计算;直线与平面垂直的判定.20.平面截球的球面所得圆的半径为1,球心到平面的距离为,则此球的体积为()A.B.C.D.【答案】B【解析】利用截面圆的性质先求得球的半径长.如图,设截面圆的圆心为,为∴,即球的半径为,∴,故选B.【考点】1、球体的体积;2、球体的性质.【思路点晴】本题考察的是球体的性质,属于中档题目;用平面截球面,得到一个圆,球心到圆心的连线垂直于圆所在的平面,从而得到直角三角形,利用勾股定理即可求出球的半径,再将球的半径代入球的体积公式中,即可求出球的体积.21.某几何体的三视图如图所示,则该几何体的体积为________.【答案】24【解析】由俯视图可以判断该几何体的底面为直角三角形,由正视图和左视图可以判断该几何体是由直三棱柱(侧棱与底面垂直的棱柱)截取得到的.在长方体中分析还原,如图(1)所示,故该几何体的直观图如图(2)所示.在图(1)中,,.故几何体的体积为.【考点】1、三视图;2、组合体的体积.【技巧点晴】本题考查的是空间几何体的体积的求法、三视图问题,属于中档题目;要先从三视图的俯视图入手,如果俯视图是圆,几何体为圆锥或三圆柱,如果俯视图是三角形,几何体为三棱柱或三棱锥;根据三视图得出该几何体为三棱柱截去三棱锥后的几何体,用两个体积相减即可.22.如图所示,在四边形ABCD中,AB=AD=CD=1,BD=,BD CD,将四边形ABCD沿对角线BD折成四面体,使平面平面BCD,则下列结论正确的是 .(1);(2);(3)与平面所成的角为;(4)四面体的体积为.【答案】(2)(4)【解析】由BD CD,使平面平面BCD,知平面,所以,又由,得,即,所以平面,即.因此是错误的,是正确的,由上面证明知是与平面所成的角,由知,.故选(2)(4)正确.【考点】命题的真假判断.【名师】折叠问题是考查学生空间想象能力的较好载体.如本题,不仅要求学生象解常规立几综合题一样懂得线线,线面和面面位置关系的判定方法及相互转化,角的作法,还要正确识别出平面图象折叠后的空间图形,更要识得折前折后有关线线、线面位置的变化情况以及有关量(边长与角)的变化情况,否则无法正确解题.这正是折叠问题的价值所在.23.如图,矩形ABCD中,BC=2,AB=1,PA⊥平面ABCD,BE∥PA,BE=PA,F为PA的中点.(1)求证:PC∥平面BDF.(2)记四棱锥C-PABE的体积为V1,三棱锥P-ACD的体积为V2,求的值.【答案】(1)证明见解析;(2).【解析】(1)要证线面平行,就是要证线线平行,这条平行线就是过的平面与平面的交线,从图中看,设与的交点为,就是要找的平行线,由中位线定理可证得平行;(2)题中四棱锥与三棱锥的体积没有直接的关系,我们可以通过体积公式进行转化,首先,而三棱锥与四棱锥的高相等(同),因此只要求得其底面积之比即可.试题解析:(1)证:连接EF,连接BD交AC与点O,连OF,依题得O为AC中点,又F为PA的中点,所以OF为中位线,所以OF//PC因为所以PC∥平面BDF。

高一数学立体几何练习题及部分答案汇编之欧阳德创编

高一数学立体几何练习题及部分答案汇编之欧阳德创编

立体几何试题一.选择题(每题4分,共40分)1.已知AB//PQ,BC//QR,则∠PQP等于()A 030B 030C 0150 D 以上结论都不对2.在空间,下列命题正确的个数为()(1)有两组对边相等的四边形是平行四边形,(2)四边相等的四边形是菱形(3)平行于同一条直线的两条直线平行;(4)有两边及其夹角对应相等的两个三角形全等A 1B 2C 3D 43.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是()A 平行 B 相交 C 在平面内 D 平行或在平面内4.已知直线m//平面α,直线n在α内,则m与n的关系为()A 平行B 相交C 平行或异面D 相交或异面5.经过平面α外一点,作与α平行的平面,则这样的平面可作()A 1个或2个B 0个或1个C 1个D 0个6.如图,如果MC⊥菱形ABCD所在平面,那么MA与BD的位置关系是( )A 平行B 垂直相交C 异面D 相交但不垂直7.经过平面α外一点和平面α内一点与平面α垂直的平面有()A 0个B 1个C 无数个D 1个或无数个8.下列条件中,能判断两个平面平行的是( )A 一个平面内的一条直线平行于另一个平面;B 一个平面内的两条直线平行于另一个平面C 一个平面内有无数条直线平行于另一个平面D 一个平面内任何一条直线都平行于另一个平面9.对于直线m ,n 和平面,αβ,使αβ⊥成立的一个条件是( )A //,,m n n m βα⊥⊂B //,,m n n m βα⊥⊥C ,,m n m n αβα⊥=⊂D ,//,//m n m n αβ⊥10 .已知四棱锥,则中,直角三角形最多可以有( )A 1个B 2个C 3个D 4个二.填空题(每题4分,共16分)11.已知∆ABC 的两边AC,BC 分别交平面α于点M,N ,设直线AB 与平面α交于点O ,则点O 与直线MN 的位置关系为_________12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有_____________条13.一块西瓜切3刀最多能切_________块14.将边长是a 的正方形ABCD 沿对角线AC 折起,使得折起后BD 得长为a,则三棱锥D-ABC 的体积为___________三、解答题15(10分)如图,已知E,F 分别是正方形1111ABCD A B C D -的棱1AA 和棱1CC 上的点,且1AE C F =。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A 1个或2个B 0个或1个C 1个D 0个
6.如图,如果 菱形 所在平面,那么MA与BD的位置关系是( )
A平行B垂直相交C异面D相交但不垂直
7.经过平面 外一点和平面 内一点与平面 垂直的平面有()
A 0个B 1个C无数个D 1个或无数个
8.下列条件中,能判断两个平面平行的是( )
A一个平面内的一条直线平行于另一个平面;
1三点共线2无数无数3. 7 4
1证明:
过 作
又由 ∥ 且 =
可知
∴四边形 是平行四边形
2∵
为 的中点


为 的中点

∴ 平面

3提示:沿 线剪开,则 为周长最小值.易求得 的值为 ,则周长最小值为 .
4解:
15(10分)如图,已知E,F分别是正方形 的棱 和棱 上的点,且 。求证:四边形 是平行四边形
6(10分)如图,P为 所在平面外一点,AP=AC,BP=BC,D为PC的中点,
证明:直线PC与平面ABD垂直
17(12分)如图,正三棱锥A-BCD,底面边长为a,则侧棱长为2a,E,F分别为AC,AD上的动点,求截面 周长的最小值和这时E,F的位置.
18(12分)如图,长方形的三个面的对角线长分别是a,b,c,求长方体对角线 的长
A. 0 B.1C. 2 D. 3
2.如图,一几何体的三视图如下:则这个几何体是()
A.圆柱B.空心圆柱C.圆D.圆锥
3.一梯形的直观图是一个如上图所示的等腰梯形,且梯形OA/B/C/的面积为 ,则原梯形的面积为( )
A. B. C. D.
4.圆锥的轴截面是等腰直角三角形,侧面积是 ,则圆锥的体积是()
B一个平面内的两条直线平行于另一个平面
C一个平面内有无数条直线平行于另一个平面
D一个平面内任何一条直线都平行于另一个平面
9.对于直线 , 和平面 ,使 成立的一个条件是( )
A B
C D
10 .已知四棱锥,则中,直角三角形最多可以有( )
A 1个B 2个C 3个D 4个
二.填空题(每题4分,共16分)
证明:直线PC与平面ABD垂直
17(12分)如图,正三棱锥A-BCD,底面边长为a,则侧棱长为2a,E,F分别为AC,AD上的动点,求截面 周长的最小值和这时E,F的位置.
18(12分)如图,长方形的三个面的对角线长分别是a,b,c,求长方体对角线 的长
答案
1.D 2.B 3.D 4.C 5.C 6.C 7.D 8.D 9.A 10.D
二、填空题(每小题4分,共16分)
11、等体积的球和正方体,它们的表面积的大小关系是 _____
(填”大于、小于或等于”).
12、正方体 中,平面 和平面 的位置关系为
13、已知 垂直平行四边形 所在平面,若 ,平行则四边形 一定是.
14、如图,在直四棱柱A1B1C1D1-ABCD中,当底面四边形ABCD满足条件_________时,有A1B⊥B1D1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)
求证:(1)C1O∥面 ;(2) 面 .(10分)
20、已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,
∠ADB=60°,E、F分别是AC、AD上的动点,且
(Ⅰ)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(Ⅱ)当λ为何值时,平面BEF⊥平面ACD?(12分)
高一立体几何试题
7.下列命题中正确的个数是()
①若直线 上有无数个点不在平面 内,则
②若直线 与平面 平行,则 与平面 内的任意一条直线都平行
③如果两条平行直线中的一条与一个平面平行,那么另一条也与这个平面平行
④若直线 与平面 平行,则 与平面 内的任意一条直线都没有公共点
A. 0 B.1C. 2 D. 3
8.已知直线 ,有以下几个判断:①若 ,则 ;②若 ,则 ;③若 ,则 ;④若 ,则 .上述判断中正确的是()
一、选择题:(每题5分)
1.下列说法中正确的个数为()
①以直角梯形的一腰为轴旋转所得的几何体是圆台②用一个平面去截圆锥,得到一个圆锥和一个圆台③各个面都是三角形的几何体是三棱锥④以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥⑤棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是六棱锥⑥圆锥的顶点与底面圆周上的任意一点的连线都是母线。
A 1 B2 C3 D 4
3.如果一条直线与两个平行平面中的一个平行,那么这条直线与另一个平面的位置关系是()
A平行B相交C在平面内D平行或在平面内
4.已知直线m//平面 ,直线n在 内,则m与n的关系为()
A平行B相交C平行或异面D相交或异面
5.经过平面 外一点,作与 平行的平面,则这样的平面可作()
三.解答题。(17题10分,其余每题12分)
17.已知:四边形ABCD是空间四边形,E, H分别是边AB,AD的中点,F, G分别是边CB,CD上的点,且 ,求证FE和GH的交点在直线AC上.
18.已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和.
(Ⅰ)求该圆台的母线长;(Ⅱ)求该圆台的体积。
A、1 B、2 C、3 D、4
7、在空间四边形 各边 上分别取 四点,如果与 能相交于点 ,那么
A、点 不在直线 上B、点 必在直线BD上
C、点 必在平面 内D、点 必在平面 外
8、a,b,c表示直线,M表示平面,给出下列四个命题:①若a∥M,b∥M,则a∥b;②若b M,a∥b,则a∥M;③若a⊥c,b⊥c,则a∥b;④若a⊥M,b⊥M,则a∥b.其中正确命题的个数有
11.已知 ABC的两边AC,BC分别交平面 于点M,N,设直线AB与平面 交于点O,则点O与直线MN的位置关系为_________
12.过直线外一点与该直线平行的平面有___________个,过平面外一点与该平面平行的直线有
_____________条
13.一块西瓜切3刀最多能切_________块
A. B C D
5.一个圆台的上、下底面面积分别是1 和49 ,一个平行底面的截面面积为25 ,则这个截面与上、下底面的距离之比是( )
A : 1 B. 3:1C. : 1 D. : 1
6.长方体的一个顶点上三条棱的边长分别为3、4、5,且它的八个顶点都在同一个球面上,这个球的表面积是()
A. B. C. D.
又圆台的侧面积 5分
于是 6分
即 为所求. 7分
16、证明: 面 , 面
∴EH∥面 4分
又 面 ,面 面 ,
∴EH∥BD8分
17、证明: 1分
又 面 3分
面 4分
6分

面 8分
18、解:如图,设所截等腰三角形的底边边长为 .
在Rt△EOF中,
, 2分
所以 , 5分
于是 7分
依题意函数的定义域为 9分
答案
1证明:
过 作
又由 ∥ 且 =
可知
∴四边形 是平行四边形
4∵
为 的中点


为 的中点

∴ 平面

5提示:沿 线剪开,则 为周长最小值.易求得 的值为 ,则周长最小值为 .
4解:
高一数学必修2立体几何测试题
试卷满分:100分考试时间:120分钟
班级___________姓名__________学号_________分数___________
19.如图,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2a,DC=a,
F是BE的中点,求证:
(1) FD∥平面ABC;(2)AF⊥平面EDB
20.如图,在四边形 中, , , , , ,求四边形 绕 旋转一周所成几何体的表面积及体积.
21.三棱柱中ABC-A1B1C1中,侧棱A1A垂直于底面ABC,B1C1=A1C1,,AC1⊥A1B,
A.①②③B.②③④C.①②④D.①③④
9.如图是正方体的展开图,则在这个正方体中,以下四个命题中正确的序号是()
① 与 平行.② 与 是异面直线.
③ 与 成 角.④ 与 垂直.
A.①②③B.③④
C.②④D.②③④
10.在四面体 中, 分别是 的中点,
若 ,则 与 所成的角的度数为()
A. B. C. D.
M,N分别为A1B1,AB中点,求证:
(1)平面AMC1∥平面NB1C
(2)A1B⊥AM.
22如图,在三棱锥 中, 底面 ,
点 , 分别在棱 上,且
(Ⅰ)求证: 平面 ;
(Ⅱ)当 为 的中点时,求 与平面 所成的角的大小;
(Ⅲ)是否存在点 使得二面角 为直二面角?并说明理由.
.
高一数学必修2立体几何测试题参考答案
二、填空题(每题5分)
13.半径为R的半圆卷成一个圆锥,则它的体积为________________.
14.已知 是一对异面直线,且 成 角, 为空间一定点,则在过 点的直线中与 所成的角为 的直线有条。
15.三个平面可将空间分成部分(填出所有可能结果)。
16.如果直线 和平面 满足 ∥ , ∥ 那么直线 的位置关系是
求证:EH∥BD. (8分)
17、已知 中 , 面 , ,求证: 面 .(8分)
18、一块边长为10 的正方形铁片按如图所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,试建立容器的容积 与 的函数关系式,并求出函数的定义域. (9分)
19、已知正方体 , 是底 对角线的交点.
11.在长方体ABCD-A1B1C1D1中,AB= ,B1B=BC=1,则面BD1C与面AD1D所成二面角的大小为()
A. B. C. D.
12.蚂蚁搬家都选择最短路线行走,有一只蚂蚁沿棱长分别为
相关文档
最新文档