典型环节和系统频率特性的测量
实验三 典型环节的频率特性测量
姓名,班级学号 ; 姓名,班级学号姓名,班级学号 ; 姓名,班级学号姓名,班级学号 ; 姓名,班级学号实验三典型环节(系统)的频率特性测量一.实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。
2.学习根据所测得频率特性,作出伯德图。
二.实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。
2.用实验方法完成比例环节、积分环节、惯性环节及二阶系统的频率特性曲线测试。
三.实验步骤1.熟悉实验设备上的信号源,掌握改变正弦波信号幅值和频率的方法。
2.利用实验设备完成比例环节、积分环节、惯性环节和二阶系统开环频率特性曲线的测试。
3.根据测得的频率特性曲线(或数据)求取各自的传递函数。
4.分析实验结果,完成实验报告。
四.实验线路及原理(一)实验原理对于稳定的线性定常系统或环节,当输入端加入一正弦信号时,它的稳态输出时一与输入信号同频率的正弦信号,但其幅值和相位将随输入信号频率的改变而改变,即:即相频特性即幅频特性,)()()(,)()()(sin )(])(sin[)()(ωωωωωφωωωωωωωj G t j G t j G Aj G A A tA t r j G t j G A t c ∠=-∠+====∠+=只要改变输入信号的频率,就可以测出输出信号与输入信号的幅值比)(ωj G 和它的相位差)(ωφ,不断改变输入信号的频率,就可测得被测环节的幅频特性和相频特性。
(二)实验线路1.比例(P)环节的模拟电路 比例环节的传递函数为:K s U s U i O =)()(,取ωj s =代入,得G(jw)=k, A(w)=k, Φ(w)=0°其模拟电路和阶跃响应,分别如图1.1.2,实验参数取R 0=100k ,R 1=200k ,R=10k 。
2.积分(I)环节的模拟电路 积分环节的传递函数为:Tss U s U i O 1)()(=其模拟电路,如图1.2.2所示,实验参数取R 0=100k ,C =1uF ,R=10k 。
武大电气自动控制原理实验报告(90分精品)
2016~2017学年第一学期《自动控制原理》实验报告年级:201X 班号1X0X姓名:XXX 学号201X******XXX 成绩:教师:实验设备及编号:实验同组人名单:XXX 实验地点:电气工程学院自动控制原理实验室实验时间:2016年10月目录实验一典型环节的电路模拟 (1)一、实验目的 (1)二、实验设备 (1)三、实验内容 (1)四、实验思考题 (12)实验二二阶系统的瞬态响应 (13)一、实验目的 (13)二、实验设备 (13)三、实验内容 (13)四、实验分析 (17)五、实验思考题 (17)实验五典型环节和系统频率特性的测量 (19)一、实验目的 (19)二、实验设备 (19)三、实验内容 (19)四、实验分析 (23)五、实验思考题 (24)实验六线性定常系统的串联校正 (25)一、实验目的 (25)二、实验设备 (25)三、实验内容 (25)四、实验分析 (29)五、实验思考题 (29)实验七单闭环直流调速系统 (31)一、实验目的 (31)二、实验设备 (31)三、实验内容 (31)四、实验分析 (37)实验一 典型环节的电路模拟一、 实验目的1.熟悉 T HKKL-B 型模块化自控原理实验系统及“自控原理软件”的使用。
2.熟悉各典型环节的阶跃响应特性及其电路模拟。
3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。
二、 实验设备1.THKKL-B 型模块化自控原理实验系统实验平台,实验模块 C T01。
2.PC 机一台(含上位机软件)。
3.USB 接口线。
三、 实验内容1. 比例(P )环节根据比例环节的方框图,如图1-1所示,用 C T01 实验模块组建相应的模拟电路,如图1-2所示。
图1-1 比例环节方框图图1-2 比例环节的模拟电路图1-2中后一个单元为反相器,其中0R =200k 。
传递函数为o i U (s)G(s)==K U (s)。
比例系数 K=1 时,电路中的参数取:1R =100k ,2R =100k 。
典型环节和系统频率特性的测量
实验报告课程名称:_________控制理论(甲)实验_______指导老师:_____ ____成绩:__________________ 实验名称:___典型环节和系统频率特性的测量___实验类型:________________同组学生姓名:__________ 一、实验目的 二、实验原理 三、实验接线图 四、实验设备 五、实验步骤 六、实验数据记录 七、实验数据分析 八、实验结果或结论一、实验目的1.了解典型环节和系统的频率特性曲线的测试方法; 2.根据实验求得的频率特性曲线求取传递函数。
二、实验原理1.系统(环节)的频率特性设G(S)为一最小相位系统(环节)的传递函数。
如在它的输入端施加一幅值为X m 、频率为ω的正弦信号,则系统的稳态输出为)sin()()sin(ϕωωϕω+=+=t j G Xm t Y y m由式①得出系统输出,输入信号的幅值比相位差)()(ωωj G Xmj G Xm Xm Ym == (幅频特性) )()(ωωφj G ∠= (相频特性) 式中)(ωj G 和)(ωφ都是输入信号ω的函数。
2.频率特性的测试方法 2.1 李沙育图形法测试 2.1.1幅频特性的测试 由于 mmm m X Y X Y j G 22)(==ω 改变输入信号的频率,即可测出相应的幅值比,并计算mm X YA L 22log 20)(log 20)(==ωω (dB )其测试框图如下所示:图5-1 幅频特性的测试图(李沙育图形法)注:示波器同一时刻只输入一个通道,即系统(环节)的输入或输出。
2.1.2相频特性的测试图5-2 相频特性的测试图(李沙育图形法)令系统(环节)的输入信号为:t X t X m ωsin )(= (5-1) 则其输出为 )sin()(φω+=t Y t Y m (5-2)对应的李沙育图形如图5-2所示。
若以t 为参变量,则)(t X 与)(t Y 所确定点的轨迹将在示波器的屏幕上形成一条封闭的曲线(通常为椭圆),当t=0时,0)0(=X 由式(5-2)得 )sin()0(φm Y Y = 于是有 mm Y Y Y Y 2)0(2sin )0(sin )(11--==ωφ (5-3) 同理可得mX X 2)0(2sin )(1-=ωφ (5-4) 其中:)0(2Y 为椭圆与Y 轴相交点间的长度; )0(2X 为椭圆与X 轴相交点间的长度。
控制工程基础实验指导书(答案) 2讲解
实验二二阶系统的瞬态响应分析一、实验目的1、熟悉二阶模拟系统的组成。
2、研究二阶系统分别工作在ξ=1,0<ξ<1,和ξ> 1三种状态下的单位阶跃响应。
3、分析增益K对二阶系统单位阶跃响应的超调量σP、峰值时间tp和调整时间ts。
4、研究系统在不同K值时对斜坡输入的稳态跟踪误差。
5、学会使用Matlab软件来仿真二阶系统,并观察结果。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯性环节、积分环节和反号器组成,图中K=R2/R1,T1=R2C1,T2=R3C2。
图2-1 二阶系统原理框图图2-1 二阶系统的模拟电路由图2-2求得二阶系统的闭环传递函1222122112/() (1)()/O i K TT U S K U S TT S T S K S T S K TT ==++++ :而二阶系统标准传递函数为(1)(2), 对比式和式得n ωξ==12 T 0.2 , T 0.5 , n S S ωξ====若令则。
调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,可以得到过阻尼(ξ>1)、临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。
(1)当K >0.625, 0 < ξ < 1,系统处在欠阻尼状态,它的单位阶跃响应表达式为:图2-3 0 < ξ < 1时的阶跃响应曲线(2)当K =0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为:如图2-4为二阶系统工作临界阻尼时的单位响应曲线。
(2) +2+=222nn nS S )S (G ωξωω1()1sin( 2-3n to d d u t t tgξωωωω--=+=式中图为二阶系统在欠阻尼状态下的单位阶跃响应曲线etn o n t t u ωω-+-=)1(1)(图2-4 ξ=1时的阶跃响应曲线(3)当K < 0.625时,ξ> 1,系统工作在过阻尼状态,它的单位阶跃响应曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者的上升速度比前者缓慢。
新版自动控制理论实验课程教学大纲.答案
《自动控制理论》实验教学大纲课程名称:自动控制理论课程性质:非独立设课使用教材:自编课程编号:面向专业:自动化课程学分:考核方法:成绩是考核学习效果的重要手段,实验成绩按学生的实验态度,独立动手能力和实验报告综合评定,以20%的比例计入本门课程的总成绩。
实验课总成绩由平时成绩(20%)、实验理论考试成绩(40%)、实验操作考试成绩(40%)三部分组成,满分为100分。
实验理论考试内容包含实验原理、实验操作方法、实验现象解析、实验结果评价、实验方案设计等。
考试题型以填空、判断、选择、问答为主,同时可结合课程特点设计其他题型。
实验操作考试根据课程特点设计若干个考试内容,由学生抽签定题。
平时成绩考核满分为20分,平时成绩= 平时各次实验得分总和÷实验次数(≤20分)。
每次实验得分计算办法为:实验报告满分10分(其中未交实验报告或不合格者0分,合格6分,良好8分,优秀10分);实验操作满分10分(其中旷课或不合格者0分,合格6分,良好8分,优秀10分)。
撰写人:任鸟飞审核人:胡皓课程简介:自动控制理论是电气工程及其自动化专业最主要的专业基础必修课。
通过本课程的各个教学环节的实践,要求学生能熟练利用模拟电路搭建需要的控制系统、熟练使用虚拟示波器测试系统的各项性能指标,并能根据性能指标的变化分析参数对系统的影响。
实验过程中要求学生熟悉自动控制理论中相关的知识点,可以在教师预设的实验前提下自己设计实验方案,完成实验任务。
教学大纲要求总学时80,其中理论教学68学时、实验12学时,实验个数6个。
9采样控制系统的分析√4选做10采样控制系统的动态校正√4选做合计实验一典型环节的电路模拟一、实验类型:综合性实验二、实验目的:1.熟悉THBCC-1型实验平台及“THBCC-1”软件的使用;2.熟悉各典型环节的阶跃响应特性及其电路模拟;3.测量各典型环节的阶跃响应曲线,并了解参数变化对其动态特性的影响。
三、实验内容与要求:1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.画出各典型环节的实验电路图,并注明参数。
孙炳达版 《自动控制原理》第5章 控制系统的频率特性分析法-3
比例环节可以完全、真实地复现任何频率的输入 信号,幅值上有放大或衰减作用;υ (ω)=0º ,表示输 出与输入同相位,既不超前也不滞后。
5.3 典型环节的频率特性
二、积分环节 1.代数表达式 传递函数
G (s) 1 s 1
频率特性 相频特性
幅频特性
A( )
1 1 1 j 90 G( j ) j e j () 90
对数频率特性曲线是一条斜线, 斜率为-20dB/dec, 称为高频渐 近线,与低频渐近线的交点为ωn=1/T,ωn称为交接频率或转 折频率,是绘制惯性环节的对数频率特性时的一个重要参数。
5.3 典型环节的频率特性
3.伯德图 对数幅频图
L( ) 20lg A( ) 20lg 1 1 2T 2 20lg 1 2T 2
G ( j ) 1 j 2 2 2 (1 2 2 ) j 2 (1 2 2 ) 2 (2 ) 2 e
2 T j arctan 1 2 2
5.3 典型环节的频率特性
2.极坐标图 理想微分环节的极坐标图在0 <<的范围内,与正虚轴重合。 可见,理想微分环节是高通滤 波器,输入频率越高,对信号的 放大作用越强;并且有相位超前 作用,输出超前输入的相位恒为 90º ,说明输出对输入有提前性、 预见性作用。 (纯微分)
在控制工程中,采用分段直线表示对数幅频特征 曲线,作法为: a.当Tω<<1(ω<<1/T)时,系统处于低频段 L( ) 20lg1 0 b.当Tω>>1(ω>>1/T)时,系统处于高频段
L( ) 20lg T
此直线方程过(1/T,0)点, 且斜率为-20dB/dec。
自动控制理论实验指导(新)
⾃动控制理论实验指导(新)《⾃动控制理论》课程实验指导⼀、实验注意事项1、接线前务必熟悉实验线路的原理及实验⽅法。
2、实验接线前必须先断开总电源与各分电源开关,严禁带电接线。
接线完毕,检查⽆误后,才可进⾏实验。
3、实验⾃始⾄终,实验板上要保持整洁,不可随意放置杂物,特别是导电的⼯具和多余的导线等,以免发⽣短路等故障。
4、实验完毕,应及时关闭各电源开关,并及时清理实验板⾯,整理好连接导线并放置到规定的位置。
5、实验前必须充分预习实验指导书。
⼆、实验模拟装置使⽤注意事项1、⽆源阻容元件可供每个运算放⼤器使⽤。
2、运算放⼤器是有源器件,故连在运算放⼤器上的阻容元件只能供本运算放⼤器选⽤。
3、信号幅值不宜过⼤,按指导书中指⽰的幅值。
否则,可能使运算放⼤器处于饱和状态。
三、每次实验内容第⼀次:实验⼆第⼆次:实验三第三次:实验四备注:实验⼀作为实验前的预习及热⾝实验⼀控制系统典型环节的模拟⼀、实验⽬的1)、熟悉数字⽰波器的使⽤⽅法2)、掌握⽤运放组成控制系统典型环节的电⼦电路 3)、测量典型环节的阶跃响应曲线4)、通过实验了解典型环节中参数的变化对输出动态性能的影响⼆、实验仪器1)、THSSC-1实验箱⼀个 2)、数字⽰波器⼀台三、实验原理以运算放⼤器为核⼼元件,由其不同的R-C 输⼊⽹络和反馈⽹络组成的各种典型环节,如图1-1所⽰。
图中Z 1和Z 2为复数阻抗,它们都是由R 、C 构成。
基于图中A 点的电位为虚地,略去流⼊运放的电流,则由图1-1得:由上式可求得由下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。
1)、⽐例环节⽐例环节的模拟电路如图1-2所⽰:图1-1、运放的反馈连接1u o图1-2 ⽐例环节(1) )(12Z Z u u S G i o =-=2100200)(12===KKZ Z S G2)、惯性环节图1-3、惯性环节3)、积分环节图1-4、积分环节4)、⽐例微分环节(PD ),其接线图如图及阶跃响应如图1-5所⽰。
自动控制理论第五章频率分析法1.详解
5.从低频段第一个转折频率开始做斜直线,该直线
的斜率等于过A点直线的斜率加这个环节的斜率(惯
性环节加-20,振荡环节加-40,一阶微分环节加+20 的斜率),这样过每一个转折频率都要进行斜率的 加减。 6.高频段最后的斜线的斜率应等于-20(n-m) dB/ 十倍频程。 7.若系统中有振荡环节,当<0.4时,需对L()进 行修正。
④
G(j)曲线与负实轴交点坐标,是一个关键点,
高频段,即ωT>>1时
L( ) 20lg( 2T 2 ) 40lg(T )
当ω增加10倍
L( ) 40lg10Tω 40 40lgTω
即高频渐近线是一条斜率为-40dB/dec的直线。当 1 ω ωn T
L( ) 40lg T 40lg1 0(dB)
1 2
振荡环节再分析
L(ω)dB
20lg
1 2 1 2
2 k n G (s ) 2 S 2 S 2 n n (0< <0.707) 0< <0.5
20 lg 1 2
= 0.5
0.5< <1 ω
20lgk
0dB
ωr ωn
[-40]
2 1 2 ωr= n
1. 将开环传递函数化为各典型环节传递函数相乘的形 式,并将分子分母中各因式常数项系数化为1。转化为 开环对数幅频特性;
2.确定出系统开环增益K,并计算 20lg K 。
3.确定各有关环节的转折频率,并把有关的转折频率 标注在半对数坐标的横轴上。 4.在半对数坐标上确定=1(1/s)且纵坐标等于20lgK dB的 点A。过A点做一直线,使其斜率等于-20νdB/dec。当ν=0, ν=1, ν=2时,斜率分别是(0,-20,-40)dB/dec。
典型环节的频率特性
率特性曲线如图所示。 振荡环节为相位滞后环节, 最大滞后相角是1800。 当振荡环节传递函数的分子 是常数K时,
0 时, G( j 0) 1 ,
Im
0
r
G
0
1
Re
G( s)
K T 2 s 2 2Ts 1
5-2 典型环节频率特性的绘制
自动控制系统通常由若干环节构成,根据它们的基本特性,可划分
成几种典型环节。本节介绍典型环节频率特性的绘制方法(极坐标图和
伯德图)。
一、典型环节的幅相特性曲线(极坐标图)
以角频率ω 为参变量,根据系统的幅频特性 G( j ) 和相频特性
G( j ) 在复平面 G( j )上绘制出的频率特性叫做幅相特性曲线或频率
18010振荡环节对数相频特性图二阶微分环节的频率特性对数幅频特性20lgdb4020二阶微分环节与振荡节的bode图关于轴对称渐近线的转折频率为渐近特性180相角变化范围是90二阶微分环节的bode图不稳定环节的频率特性是db对数幅频特性和相频特性分别为20lg不稳定惯性环节的bode图对数幅频特性与惯性环节相同
L( ) dB
40 20 0
-20
-40
( )
0.01
0.1
1
10
100
两个图形上下放置(幅
频特性在上,相频特性
在下),且将纵轴对齐, 便于求出同一频率的幅
90o
值和相角的大小,同时
为求取系统相角裕度带
45o
0 -45o -90o 0.01 0.1 1 10 100
来方便。
用伯德图分析系统有如下优点: (1) 将幅频特性和相频特性分别作图,使系统(或环节)
自动控制原理 第五章 第一讲 典型环节和开环频率特性
对数幅相曲线(又称尼柯尔斯曲线):对数幅相图的横坐标表示对数相频 对数幅相曲线(又称尼柯尔斯曲线):对数幅相图的横坐标表示对数相频 尼柯尔斯曲线): 特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。 特性的相角,纵坐标表示对数幅频特性的幅值的分贝数。
5.2 典型环节和开环频率特性
• 典型环节 • 典型环节的频率特性 • 最小相角系统和非最小相角系统
L(ω ) = −20 lg 1 + ω 2T 2
ω<<1/T, L(ω)≈-20lg1=0 ω>>1/T, L(ω)≈-20lgωT =-20(lgω-lg1/T)
(dB) 20 0 0.1 1/T -20 (o) 90 0 0.1 -90 1 10 ω 1 20dB/dec 10 ω -20dB/dec
幅频特性相同, 幅频特性相同,但相频特性符号相反 。 •最小相角系统的幅频特性和相频特性一一对应,只要根据其对 最小相角系统的幅频特性和相频特性一一对应, 数幅频曲线就能写出系统的传递函数 。 L(dB)
L(dB) 20 10 -20 ω L(dB) -20 100 50 -40 ω -40 -20 ω 2 ω1 ωc ω -40
典型环节
•比例环节:G(s)= K 比例环节: ( ) •惯性环节: G(s)= 1/(Ts+1),式中T>0 惯性环节: ( ) ,式中 •一阶微分环节: G(s)= (Ts+1),式中 一阶微分环节: ( ) ,式中T>0 •积分环节: G(s)= 1/s 积分环节: ( ) 微分环节: ( ) •微分环节: G(s)= s •振荡环节: G(s)= 1/[(s/ωn)2+2ζs/ωn+1]; 振荡环节: ( ) 式中ω , 式中 n>0,0<ζ<1 二阶微分环节: ( ) •二阶微分环节: G(s)= (s/ωn)2+2ζs/ωn+1; 式中ω , 式中 n>0,0<ζ<1
典型环节与系统频率特性
2.积分环节
<1>
G(s)= s1
A(ω )=ω1
G(ωj
)=
1 jω
φ (ω )=-90o
奈氏图
∞
Im 0
Re
<2> 伯德图 对数幅频特性:
ω=0 L(ω ) dB
20 -20dB/dec
L(ω )=20lgA(ω )=-20lgω
0 0.1 -20
1
10 ω
ω=1 L(ω )=-20lg1=0dB φ (ω )
节串联而成的:
幅频特性:
开积环分G(增环s)益节= sKυΠjΠ=ni=1υ-m1((τTjiss++11))系n时>统间m的常A阶数(ω次)=ωKυΠjΠi1=n=m-υ1
1+(ωτ i )2 1+(ω Tj )2
的个数
相频特性:
φ
(ω )=υ- 90o+
∑m tg-ω1 τ
i =1
i
∑nυ- tg-ω1
Im
1 0
L(ω ) dB
20 0
φ (ω )
0 -100 -200 -300
ω=0 Re
ω ω
第二节 典型环节与系统的频率特性
8.非最小相位环节
最小相位环节: 开环传递函数中没有s右半平面上
的极点和零点. 非最小相位环节:
开环传递函数中含有s右半平面上 的极点或零点.
最小相位环节对数幅频特性与对数相 频特性之间存在着唯一的对应关系.对非最 小相位环节来说,不存在这种关系.
第五章 频率特性法
第二节 典型环节与系统频率特性
频率特性法是一种图解分析法,它 是通过系统的频率特性来分析系统的性 能,因而可避免繁杂的求解运算.与其他 方法比较,它具有一些明显的优点.
4.2 典型环节的频率特性图
0, G j ; , G j 0 其相频特性为
V G j arctg arctg 90 U 0 其对数幅频特性为 1
L 20 lg G j 20 lg
1
20 lg
4.8所示。
4.2.3 积分环节频率特性图(2)
2
G j arctg
2T 2T arctg 2 2 1 T 1 T
由此可知,振荡环节的对数频率特性不仅与ω有关,而且与ξ有关。根据对数特性计算
公式可知,振荡环节的低频渐近线为零分贝线,高频渐近线为斜率为-40dB/dec的直 1 线,高频渐近线与低频渐近线相交于T 处,对数相频曲线在φ=-90°弯点处是斜 T 对称的。其伯德图如图4.13所示,不同的ξ 值对应的曲线不同。
1 2
G(jω)的轨迹与虚轴交点处的频率就是无阻尼
4.2.5 振荡环节频率特性图(4)
对数幅频特性为
L 20 lg G j 20 lg
对数相频特性为
1 T 2T
2 2
1
2
20 lg 1 T
2 2
2T
惯性环节的对数幅频特性曲线为折线,在低频段,渐近线为横坐标轴(零分贝线), 在高频段,渐近线为斜率为-20dB/dec,与横坐标轴交于 1 的直线。折点在T 1 T T 处,称ωT为转折(转角)频率。 惯性环节的对数相频特性曲线根据对数相频特性来改变ω,逐点求出φ(ω),然后作图 与对数相频特性图上。对数相频特性曲线在φ=-45°弯点处是斜对称的。
4.2.5 振荡环节频率特性图(5)
4.2.6 一阶微分环节频率特性图(1)
实验四典型环节和系统频率特性的测量
实验四 典型环节和系统频率特性的测量一、实验目的1.了解典型环节和系统的频率特性曲线的测试方法;2.根据实验求得的频率特性曲线求取相应的传递函数。
二、实验设备同实验一三、实验内容1.惯性环节的频率特性测试;2.二阶系统频率特性测试;3.无源滞后—超前校正网络的频率特性测试;4.由实验测得的频率特性曲线,求取相应的传递函数;5.用软件仿真的方法,求取惯性环节和二阶系统的频率特性。
四、实验原理设G(S)为一最小相位系统(环节)的传递函数。
如在它的输入端施加一幅值为Xm 、频率为ω的正弦信号,则系统的稳态输出为 )sin()()sin(ϕωωϕω+=+=t j G Xm t Y y m ①由式①得出系统输出,输入信号的幅值比 )()(ωωj G Xmj G Xm Xm Ym == ② 显然,)(ωj G 是输入X(t)频率的函数,故称其为幅频特性。
如用db (分贝)表示幅频值的大小,则式②可改写为XmYm j G Lg L lg 20)(20)(==ωω ③ 在实验时,只需改变输入信号频率ω的大小(幅值不变),就能测得相应输出信号的幅值Ym ,代入上式,就可计算出该频率下的对数幅频值。
根据实验作出被测系统(环节)的对数幅频曲线,就能对该系统(环节)的数学模型作出估计。
关于被测环节和系统的模拟电路图,请参见附录。
五、实验步骤1.熟悉实验箱上的“低频信号发生器”,掌握改变正弦波信号幅值和频率的方法。
利用实验箱上的模拟电路单元,设计一个惯性环节(可参考本实验附录的图4-4)的模拟电路。
电路接线无误检查后,接通实验装置的总电源,将直流稳压电源接入实验箱。
2.惯性环节频率特性曲线的测试把“低频函数信号发生器”的输出端与惯性环节的输入端相连,当“低频函数信号发生器”输出一个幅值恒定的正弦信号时,用示波器观测该环节的输入与输出波形的幅值,随着正弦信号频率的不断改变,可测得不同频率时惯性环节输出的增益和相位(可用“李沙育”图形),从而画出环节的频率特性。
自动控制原理--典型环节的频率特性
j 1
0j 1
Im
0
Re
0
积分与微分环节
L(dB) 40
积分环节
0
微分环节
40
( )
90
微分环节
0 90
积分环节
20dB / dec
20dB / dec
6
三、微分环节
传递函数: G s s
频率特性:
G(j)
j
ej
π 2
➢1. 幅频特性 A及相频特性
A ,
A
( )
0
1
T
4
2
L,
0
1
T 3dB
4
20lg 2T 2 1
2
近似曲线 精确曲线
对数幅频特性和相频特性:
L() 20 lg 1 (T )2 () tg1 T
0 L0 0
1 L 20 lg 1 3
T
2
4
L
2
L()(dB) 0 0.1 5
10 15 20
0.2
0.3 0.4
0.6 0.8 1
T
2
34
6 8 10
七、一阶不稳定环节
传递函数: G s 1
Ts 1
➢1. 幅相频率特性
频率特性: G j 1
jT 1
G j
1
jT 1
1
1 T2
T
j1 T2
U
jV
U
1 2
2
V
2
1 2
2
一阶不稳定系统的幅相频
率特性是一个为(-1,j0)
为圆心,0.5为半径的半圆。
180O 90O
Im
1
实验三 典型环节(或系统)的频率特性测量
实验三 典型环节(或系统)的频率特性测量一.实验目的1.学习和掌握测量典型环节(或系统)频率特性曲线的方法和技能。
2.学习根据实验所得频率特性曲线求取传递函数的方法。
二.实验内容1.用实验方法完成一阶惯性环节的频率特性曲线测试。
2.用实验方法完成典型二阶系统开环频率特性曲线的测试。
3.用软件仿真方法求取一阶惯性环节频率特性和典型二阶系统开环频率特性,并与实验所得结果比较。
三、实验原理及说明1.实验用一阶惯性环节传递函数参数、电路设计及其幅相频率特性曲线:对于1)(+=Ts Ks G 的一阶惯性环节,其幅相频率特性曲线是一个半圆,见图3.1。
取ωj s =代入,得)()(1)(ωϕωωωj e r T j Kj G =+=(3-2-1)在实验所得特性曲线上,从半园的直径(0)r ,可得到环节的放大倍数K ,K =(0)r 。
在特性曲线上取一点k ω,可以确定环节的时间常数T ,kk tg T ωωϕ)(-=。
(3-2-2)实验用一阶惯性环节传递函数为12.01)(+=s s G ,其中参数为R 0=200K Ω,R 1=200K Ω,C=1uF ,参数根据实验要求可以自行搭配,其模拟电路设计参阅下图3.2。
在进行实验连线之前,先将U13单元输入端的100K 可调电阻顺时针旋转到底(即调至最大),使输入电阻R 0的总阻值为200K;其中,R1、C1在U13单元模块上。
U8单元为反相器单元,将U8单元输入端的10K 可调电阻逆时针旋转到底(即调至最小),使输入电阻R 的总值为10K;注明:所有运放单元的+端所接的100K 、10K 电阻均已经内部接好,实验时不需外接。
图3.22.实验用典型二阶系统开环传递函数参数、电路设计及其幅相频率特性曲线:对于由两个惯性环节组成的二阶系统,其开环传递函数为12)1)(1()(2221++=++=Ts s T Ks T s T K s G ξ )1(≥ξ 令上式中 s j ω=,可以得到对应的频率特性 )(22)(12)(ωϕωωξωωj e r T j T Kj G =++-=二阶系统开环传递函数的幅相频率特性曲线,如图所示。
自动控制原理实验
第二部分控制理论实验一典型环节的电路模拟与软件仿真一、实验目的1.熟悉并掌握THBCC-1型信号与系统·控制理论及计算机控制技术实验平台及上位机软件的使用方法。
2.熟悉各典型环节的电路传递函数及其特性,掌握典型环节的电路模拟与软件仿真研究。
3.测量各典型环节的阶跃响应曲线,了解参数变化对其动态特性的影响。
二、实验设备1.THBCC-1型信号与系统·控制理论及计算机控制技术实验平台2.PC机1台(含上位机软件) 37针通信线1根3.双踪慢扫描示波器1台(可选)三、实验内容1.设计并组建各典型环节的模拟电路;2.测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3.在上位机界面上,填入各典型环节数学模型的实际参数,据此完成它们对阶跃响应的软件仿真,并与模拟电路测试的结果相比较。
四、实验原理自控系统是由比例、积分、惯性环节等按一定的关系连接而成。
熟悉这些惯性环节对阶跃输入的响应,对分析线性系统将是十分有益。
在附录中介绍了典型环节的传递函数、理论上的阶跃响应曲线和环节的模拟电路图。
五、实验步骤1.熟悉实验台,利用实验台上的模拟电路单元,构建所设计的(可参考本实验附录)并连接各典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。
待检查电路接线无误后,接通实验台的电源总开关,并开启±5V,±15V直流稳压电源。
2.对相关的实验单元的运放进行调零(令运放各输入端接地,调节调零电位器,使运放输出端为0V)注意:积分、比例积分、比例积分微分实验中所用到的积分环节单元)不需要锁零(令积分电容放电)时,需将锁零按钮弹开,使用锁零按扭时需要共地,则需要把信号发生器的地和电源地用导线相连。
3.测试各典型环节的阶跃响应,并研究参数变化对输出响应的影响1) 不用上位机时,将实验平台上 “阶跃信号发生器”单元的输出端与相关电路的输入端相连,选择“正输出”然后按下按钮,产生一个阶跃信号(用万用表测试其输出电压,并调节电位器,使其输出电压为“1”V ,用示波器x-t 显示模式观测该电路的输入与输出曲线如果效果不好要做新做则只要按一下锁零开关对电容放电,在重新做即可。
频率特性
U2( jω) 1 G( jω) = = = A(ω)e jϕ(ω) U1( jω) 1+ jωT
A(ω) =
1 1+ (Tω)2
幅值A(ω 幅值A(ω)随着频率升高而衰减 A( 对于低频信号 (ωT << 1) 对于高频信号 (ωT >> 1)
A(ω) ≈ 1
1 A(ω) ≈ ≈0 ωT
频率特性的定义
什么是频率特性? 什么是频率特性? 对于确定的角频率ω,输出与输入之间有确定的关系。 对于确定的角频率 ,输出与输入之间有确定的关系。
x(t ) = X sinωt
& X = X∠0o
ys (t) = Y sin(ωt +ϕ) & Y =Y∠ϕ
频率特性的定义
频率特性的定义
频率特性与传递函数的关系
y(t ) = be− jωt + be jωt + a1e−s1t + a2e−s2t ... + ane−snt
X(s)
t ≥0
对于稳定的所有的闭环极点都在左半s平面,所以, 对于稳定的所有的闭环极点都在左半 平面,所以,输 平面 出的稳态值为: 出的稳态值为:
G( jω) = U(ω) + jV (ω) −112×0.02ω U(ω) = 0.4×10−3ω3 + ω − 112 V(ω) = 0.4×10−3ω3 + ω
频率特性的图示方法
G( jω) = A(ω)e jϕ(ω) lg G( jω) = lg A(ω) + jϕ(ω)lg e
幅值相乘变为相加,简化作图。 幅值相乘变为相加,简化作图。 对数幅频+对数相频 对数幅频 对数相频 为了拓宽频率范围, 为了拓宽频率范围,通常 将对数幅频特性绘在以10 将对数幅频特性绘在以 为底的半对数坐标中。 为底的半对数坐标中。
自动控制原理第五章--频率法
G(s) T 2s2 2Ts 1
频率特性分别为:
G( j ) j G( j ) 1 jT G( j ) 1 T 2 2 j2T
① 纯微分环节: G( j ) j
A() , ()
2
P() 0, Q()
微分环节的极坐标图为 正虚轴。频率从0→∞ 特性曲线由原点趋向虚 轴的+∞。
当 o 时,误差为:2 20lg 1 T 22 20lgT
T L(),dB 渐近线,dB0.1 0.2来自0.5 1 2 510
-0.04 -0.2 -1 -3 -7 -14.2 -20.04
0
0
0 0 -6 -14
-20
最大误差发生在
o
处,为
1 T
误差,dB
0 -1
-0.04 -0.2 -1 -3 -1 -0.2
时:A() 0,() 90
P() 0,Q() 0
2. 对数频率特性
A( ) K 1 T 2 2
G(s) K Ts 1
G( j ) K jT 1
( ) tg1T
①对数幅频特性:L() 20lg A() 20lg K 20lg 1 T 2 2
为了图示简单,采用分段直线近似表示。
二、频率特性的表示方法:
工程上常用图形来表示频率特性,常用的有:
1.幅相频率特性图,极坐标图,也称乃奎斯特(Nyquist) 图。是以开环频率特性的实部为直角坐标横坐标,以其
虚部为纵坐标,以 为参变量的幅值与相位的图解表示
法。
它是在复平面上用一条曲线表示 由 0 时的频
率特性。即用矢量 G( j)的端点轨迹形成的图形。 是
R Ar0o ,C Ac
典型环节的频率特性
第五章频率域方法典型环节的频率特性用频率法研究控制系统的稳定性和动态响应,是根据系统的开环频率特性进行的,而控制系统的开环频率特性通常是由若干个典型环节的频率特性组成的,如直流电机的传递函数为()(1)mm K G s s T s =+可以将该传递函数分解为三个典型环节的乘积,分别是mK 放大环节:1s积分环节:11m T s +惯性环节:掌握好典型环节的频率特性,就能方便地得出系统的开环频率特性。
一、比例环节(放大环节)幅频特性()A Kω=相频特性()0ϕω︒=对数幅频特性()20lg L Kω=Kj()G s K =幅相特性曲线(K>0)(Nyquist 曲线)对数频率特性曲线(K>1)(Bode 图)典型环节的频率特性20lg K/dBL ϕω2π−ω(j )G Kω=AAKϕ2π−ϕω幅频、相频特性曲线(K>0)二、积分环节1()G s s =幅频特性1()A ωω=相频特性()2πϕω=−j2π−ω=ω∞幅相特性曲线(Nyquist 曲线)1()20lg20lg L ωωω==−对数幅频特性对数幅频特性曲线是斜率为-20分贝/十倍频程的直线,该直线在弧度/秒处与零分贝线相交。
1ω=1(j )j G ωω=AAϕ2π−ϕω幅频、相频特性曲线/(rad/s)ω对数频率特性曲线(Bode 图)20dB/dec−/dBL o /()ϕ三、惯性环节(一阶系统)1()1G s Ts =+幅频特性21()()1A T ωω=+相频特性()arctan T ϕωω=−幅相频特性曲线(Nyquist 曲线)j=1/Tω=ω∞=0ωω1-45︒1(j )1+j G T ωω=Aϕ90︒−ϕω145︒−1TA幅频、相频特性曲线对数频率特性曲线(Bode 图)T ω/dBL o /()ϕ2()20lg ()1L T ωω=−+对数幅频相频特性()arctan T ϕωω=−3(dB)L =−45ϕ︒=−当频率时1T ω=2()20lg ()1L T ωω=−+对数幅频()20lg 20lg 20lg L T Tωωω≈−=−−转折频率:1=Tω当频率时1T ω<()20lg10 (dB)L ω≈=当频率时1T ω>惯性环节(一阶系统)1()1G s Ts =+1(j )1+j G T ωω=对数频率特性曲线(Bode 图)T ω 20dB/dec−对数幅频渐近特性曲线3(dB)−dBL /o /()ϕ四、振荡环节(二阶系统)222()2nn nG s s s ωζωω=++2221()[1()][2()]n n A ωωωζωω=−+22()()arctan 1()n n ζωωϕωωω⎛⎫=− ⎪−⎝⎭/nωωA=0ζ=0.2ζ=0.5ζ=0.7ζ=1ζ/nωωo /()ϕ(0) 1 ()1(2) ()0n A A A ωζ==∞=()0d A d ωω=212m nωωζ=−令,得20<<2ζ⎛⎫ ⎪ ⎪⎝⎭(0)0 ()2 ()=n ϕϕωπϕπ==−∞−21()21m m A A ωζζ==−幅频、相频特性曲线(0, 0)n ζω≥>当时,,当时无峰值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告课程名称:_________控制理论(甲)实验_______指导老师:_____ ____成绩:__________________ 实验名称:___典型环节和系统频率特性的测量___实验类型:________________同组学生姓名:__________ 一、实验目的 二、实验原理 三、实验接线图 四、实验设备 五、实验步骤 六、实验数据记录 七、实验数据分析 八、实验结果或结论一、实验目的1.了解典型环节和系统的频率特性曲线的测试方法; 2.根据实验求得的频率特性曲线求取传递函数。
二、实验原理1.系统(环节)的频率特性设G(S)为一最小相位系统(环节)的传递函数。
如在它的输入端施加一幅值为X m 、频率为ω的正弦信号,则系统的稳态输出为)sin()()sin(ϕωωϕω+=+=t j G Xm t Y y m由式①得出系统输出,输入信号的幅值比相位差)()(ωωj G Xmj G Xm Xm Ym == (幅频特性) )()(ωωφj G ∠= (相频特性)式中)(ωj G 和)(ωφ都是输入信号ω的函数。
2.频率特性的测试方法 2.1 李沙育图形法测试 2.1.1幅频特性的测试 由于 mmm m X Y X Y j G 22)(==ω 改变输入信号的频率,即可测出相应的幅值比,并计算mm X YA L 22log 20)(log 20)(==ωω (dB )其测试框图如下所示:实验名称:典型环节和系统频率特性的测量装订线图5-1 幅频特性的测试图(李沙育图形法)注:示波器同一时刻只输入一个通道,即系统(环节)的输入或输出。
2.1.2相频特性的测试图5-2 相频特性的测试图(李沙育图形法)令系统(环节)的输入信号为:tXtXmωsin)(=(5-1)则其输出为)sin()(φω+=tYtYm(5-2)对应的李沙育图形如图5-2所示。
若以t为参变量,则)(tX与)(tY所确定点的轨迹将在示波器的屏幕上形成一条封闭的曲线(通常为椭圆),当t=0时,0)0(=X由式(5-2)得)sin()0(φmYY=于是有mmYYYY2)0(2sin)0(sin)(11--==ωφ(5-3)同理可得mXX2)0(2sin)(1-=ωφ(5-4)其中:)0(2Y为椭圆与Y轴相交点间的长度;)0(2X为椭圆与X轴相交点间的长度。
式(5-3)、(5-4)适用于椭圆的长轴在一、三象限;当椭圆的长轴在二、四时相位φ的计算公式变为mYY2)0(2sin180)(10--=ωφ或mXX2)0(2sin180)(10--=ωφ下表列出了超前与滞后时相位的计算公式和光点的转向。
实验名称:典型环节和系统频率特性的测量装订线=Sin-12Y0/(2Y m)=Sin-12X/(2X)=180°-Sin-12Y0/(2Y m)=180°-=Sin-12Y0/(2Y m=Sin-12X/(2X=180︒-Sin-12Y0/(2Y m)=180°-2.2 用虚拟示波器测试(利用上位机提供的虚拟示波器和信号发生器)图5-3用虚拟示波器测试系统(环节)的频率特性可直接用软件测试出系统(环节)的频率特性,其中U i信号由虚拟示波器的信号发生器产生,并由采集卡DA1通道输出。
测量频率特性时,被测环节或系统的输出信号接采集卡的AD1通道,而DA1通道的信号同时接到采集卡的AD2通道。
3.惯性环节传递函数和电路图为11.011)()()(+=+==sTSKsususGio其幅频的近似图如图5-5所示。
图5-4 惯性环节的电路图图5-5 惯性环节的幅频特性若图5-4中取C=1uF,R1=100K,R2=100K,R0=200K则系统的转折频率为TfT⨯=π21=1.66Hz4.二阶系统由图5-6(Rx=100K)可得系统的传递函数和方框图为:22222255512.01)(nnnSSSSSSSWωξωω++=++=++=实验名称:典型环节和系统频率特性的测量装订线5=nω,12.125525===ξ(过阻尼)图5-6 典型二阶系统的方框图其模拟电路图为图5-7 典型二阶系统的电路图其中Rx可调。
这里可取100K)1(>ξ、10K)707.00(<<ξ两个典型值。
当Rx=100K时的幅频近似图如图5-8所示。
图5-8 典型二阶系统的幅频特性)1(>ξ5.无源滞后—超前校正网络其模拟电路图为图5-9无源滞后—超前校正网络其中R1=100K,R2=100K,C1=0.1uF,C2=1uF其传递函数为1)()1)(1()1)(1()1)(1()(12212212112111221122++++++=+++++=STTTSTTSTSTSCRSCRSCRSCRSCRSGC(5-5) 式中T1=R1C1,T2=R2C2,T12=R1C2实验名称: 典型环节和系统频率特性的测量装订线将上式改为)1)(1()1)(1()(2121++++=S S S T S T S G ττ (5-6)对比式(5-5)、(5-6)得 τ1·τ2=T 1T 2 τ1+τ2=T 1+T 2+T 12由给定的R 1、C 1和R 2、C 2,求得T 1=0.01s ,T 2=0.1s ,T 12=0.1s 。
代入上述二式,解得τ1=4.87×10-3s ,τ2=0.2051s 。
于是得 22211≈==βττT T ,这样式(5-6)又可改等为β )1)(1()1)(1()(1221++++=S T S T S T S T S G ββ (5-7)其幅频的近似图如图5-10所示。
图5-10无源滞后—超前校正网络的幅频特性三.实验设备1.THBDC-2型 控制理论·计算机控制技术实验平台;2.PC 机一台(含“THBDC-2”软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线。
3. 波形发生器一台。
四. 实验步骤1.惯性环节1.1 根据图5-11 惯性环节的电路图,选择实验台上的通用电路单元设计并组建相应的模拟电路。
其中电路的输入端接实验台上信号源的输出端,电路的输出端接数据采集接口单元的AD2输入端;同时将信号源的输出端接数据采集接口单元的AD1输入端。
图5-11 惯性环节的电路图1.2 点击“BodeChart ”软件的“开始采集”;1.3 调节“低频函数信号发生器”正弦波输出起始频率至0.2Hz ,并用交流电压测得其压电有效值为实验名称:典型环节和系统频率特性的测量装订线4V左右,等待到电路输出信号稳定后,点击“手动单采”,等待,软件即会自动完成该频率点的幅值特性,并单点显示在波形窗口上。
1.4 继续增加并调节正弦波输出频率(如0.3Hz,本实验终至频率5Hz即可),等输出信号稳定后,点击“手动单采”,等待,软件即会自动完成该频率点的幅值特性,并单点显示在波形窗口上。
1.5 继续第1.2、1.3步骤,一直到关键频率点都完成。
1.6 点击停止采集,结束硬件采集任务。
1.7 点击“折线连接”,完成波特图的幅频特性图。
注意事项:正弦波的频率在0.2Hz到2Hz的时,采样频率设为1000Hz;正弦波的频率在2Hz到50Hz的时,采样频率设为5000Hz。
1.7 保存波形到画图板。
2.二阶系统图5-12 典型二阶系统的电路图2.1 当KRX100=时具体步骤请参考惯性环节的相关操作,最后的终至频率2Hz即可。
2.2当KRX10=时具体步骤请参考惯性环节的相关操作,最后的终至频率5Hz即可。
3. 无源滞后—超前校正网络根据图5-9无源滞后—超前校正网络的电路图,选择实验台上的U2通用电路单元设计并组建其模拟电路,如图5-13所示。
图5-13无源滞后—超前校正网络(电路参考单元为:U2)具体步骤请参考惯性环节的相关操作,最后的终至频率100Hz即可。
4.根据实验存储的波形,完成实验报告。
实验名称: 典型环节和系统频率特性的测量装订线五.实验数据分析与处理1.写出被测环节和系统的传递函数,并画出相应的模拟电路图; 典型二阶系统的电路图: 无源滞后—超前校正网络:22222255512.01)(n n n S S S S S S S W ωξωω++=++=++=5=n ω,12.125525===ξ(过阻尼) )1)(1()1)(1()(2121++++=S S S T S T S G ττ典型二阶系统:1.当K R X 100=时 理论波特图:用(matlab 显示)如右图2.当K R X 10=时实验名称: 典型环节和系统频率特性的测量装订线理论波特图:用(matlab 显示)如右上图,数据如上图:与理论基本相符。
无源滞后—超前校正网络: 理论伯德图如右上; 实验数据如下:得到实验伯德图如下:与理论基本符合。
误差分析:1.示波器读取幅值的时候有视差;2.设备老化,存在误差;3.电阻及电容等原件非理想原件,存在误差;4.测量次数过少,存在偶然误差;5.输入信号不稳定,在不同频率下可能幅度有所波动;实验名称:典型环节和系统频率特性的测量装订线用上位机实验时,根据由实验测得二阶系统闭环幅频特性曲线,据此写出该系统的传递函数,并把计算所得的谐振峰值和谐振频率与实验结果相比较;六.实验思考题1.在实验中如何选择输入正弦信号的幅值?答:先将频率调到很大,再是信号幅值应该调节信号发生器的信号增益按钮,令示波器的显示方式为信号-时间模式,然后观测输出信号,调节频率,观察在各个频段是否失真。
2.测试频率特性时,示波器Y轴输入开关为什么选择直流?答:因为这样可以较为准确的读出输入信号的幅度3.测试相频特性时,若把信号发生器的正弦信号送入Y轴,被测系统的输出信号送入X轴,则根据椭圆光点的转动方向,如何确定相位的超前和迟后?答:如果输入和输出信号交换输入的话,则判断超前和滞后的方法也要反过来,即顺时针时为滞后,逆时针时为超前。
七.心得与体会这次实验加深了我对系统频域特性及时域特性的理解,因为实验设施的局限性,采用一种新型的数据计量方法,通过李沙育图形可以更好地观察输入输出信号的幅度变化以为相位变化,同时也学会了使用示波器的X-Y模式;。