全等三角形证明判定方法分类总结
全等三角形判定经典
11.2三角形全等的判定ABC DEF(1)三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”。
表示方法:如图所示,在△ABC 和△DEF 中,AB DEAC DF BC EF=⎧⎪=⎨⎪=⎩,∴△ABC ≌△DEF (SSS )。
例1. 如图所示,AB =CD ,AC =DB 。
求证:△ABC ≌△DCB 。
A BCD分析:由已知可得AB =CD ,AC =DB ,又因为BC 是两个三角形的公共边,所以根据SSS 可得出△ABC ≌△DCB 。
证明:在△ABC 和△DCB 中,∵⎩⎨⎧AB =CD AC =DB BC =CB,∴△ABC ≌△DCB (SSS )评析:证明格式:①点明要证明的两个三角形;②列举两个三角形全等的条件(注意写在前面的三角形,条件也放在前面),用大括号括起来;③条件按照“SSS ”顺序排序;④得出结论,并把判断的依据注在后面。
“ASA ”。
表示方法:如图所示,在△ABC 和△DEF 中,B E BC EF C F∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA )。
例2. 如图所示,AB ∥CD ,AF ∥DE ,BE =CF ,求证:AB =CD 。
ABEFCD分析:要证明AB =CD ,由于AB 、CD 分别是△ABF 和△DCE 的边,可尝试证明△ABF ≌△DCE ,由已知易证:∠B =∠C ,∠AFB =∠DEC ,下面只需证明有一边对应相等即可。
事实上,由BE =CF 可证得BF =CE ,由ASA 即可证明两三角形全等。
证明:∵AB ∥CD ,∴∠B =∠C (两直线平行,内错角相等) 又∵AF ∥DE ,∴∠AFC =∠DEB (同上) ∴∠AFB =∠CED (等角的补角相等)又∵BE =CF ,∴BE -EF =CF -EF ,即BF =CE 在△ABF 和△DCE 中,()()()B C BF CE AFB CED ∠=∠⎧⎪=⎨⎪∠=∠⎩已证已证已证∴△ABF ≌△DCE (ASA )∴AB =CD (全等三角形对应边相等)角边”或“AAS ”。
全等三角形题型分类及练习
全等三角形知识要点② 全等三角形面积相等. 2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 3. 请填空1) 全等形的概念两个______________的图形叫全等形。
2) 全等形的性质全等图形的________和__________都相同。
3) 全等三角形的判定____________________________________________________ 4)角平分线的性质角平分线的性质:___________________________ 5)角平分线的判定角平分线的判定的判定定理:_________________________________________ 6)三角形角平分线的性质三角形的三条内角平分线交于一点,并且这一点到三条边的距离相等。
题型汇总一、填空题(3分×10=30分) 题型:边角边证明三角形全等 1.如图(1),△ABC 中,AB =AC ,AD 平分∠BAC ,则__________≌__________.2.如图4,已知AB=BE ,BC=BD ,∠1=∠2,那么图中 ≌ ,AC= ,∠ABC= .3、如图,AB =AD ,∠BAD =∠C AE ,AC=AE ,求证:CB=ED4、已知:如图,AB =CD ,AB ∥DC. 求证:,AD∥BC , AD =BCAB CDE5、如图,D 、E 在BC 上,且BD=CE ,AD=AE ,∠ADE=∠AED ,求证:AB=AC 。
6、如图,已知AB=AD ,且AC 平分∠BAD ,求证:BC=DC题型:角角边证明三角形全等 1.如图(3),若∠1=∠2,∠C =∠D ,则△ADB ≌__________,理由______________________.2.如图(5),AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,交BD 于P ,则PD __________PE (填“<”或“>”或“=”).AB C D题型:角边角证明三角形全等1.如图(4),∠C=∠E,∠1=∠2,AC=AE,则△ABD按边分是__________ 三角形.2.(5分)已知EF是AB上的两点,AE=BF,AC∥BD,且AC=DB,求证:CF=DE.题型:边边边证明三角形全等1.如图(6),△ABC中,AB=AC,现利用证三角形全等证明∠B=∠C,若证三角形全等所用的公理是SSS公理,则图中所添加的辅助线AD应是____________________________.题型:角平分线的应用1、如图,在△AB C中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为___________。
全等三角形判定(ASA和AAS)
在△ABC和△DEF中
∠B=∠E BC=EF ∠C=∠F ∴△ABC≌△DEF(ASA)
你能行吗?
× AB=DE可以吗?
B A
C
F
D E
1、如图∠ACB=∠DFE, BC=EF,那么应补充一个条 件 ------------------------- ,才 能使△ABC≌△DEF (写出 一个即可)。
为两角夹边
B
C 图2
在图2中, 边BC是∠A的对 边, 我们称这种位置关系为
两角及其中一角的对边。
二、合作探究
(一)探究一:已知两个角和一条线段,以这 两个角为内角,以这条线段为这两个角的夹边, 画一个三角形.
45°
3 cm
30°
把你画的三角形与小组其他组员画的三角形进
行比较,所有的三角形都全等吗? 都全等
利用“角怎边么角办?定可理以”帮帮可知,带B
A
块去,可以配我到吗?一个与原来全
等的三角形玻璃。
B
考考你
1、如图,已知AB=DE, ∠A =∠D, ,∠B=∠E,则 △ABC ≌△DEF的理由是: 角边角(ASA)
2、如图,已知AB=DE ,∠A=∠D,,∠C=∠F,则
△ABC ≌△DEF的理由是: 角角边(AAS)
Q AB AC
AB AD AC AE (等式的性质)
BD CE
3.已知ABC中,BE AD于E,CF AD于F,
且BE CF,那么BD与DC相等吗?
A
证明:Q BE AD,CF AD
BED CFD 90 (垂直的定义)
F
Q 在BDE和CDF中
B
D
C
BED CFD(已证)
人教版三角形全等的判定(ASA_AAS)
over
例: 如图,O是AB的中点,∠A= ∠B, △AOC与△BOD全等吗?为什么?
两角和夹边 对应相等
C
A
O
B
解:在 DAO和 CDBOD中
D
A B(已知)
AOBO (中点的定义) AOCBO(D 对顶角相等)
\ DAOC DBOD (ASA)
例: 如图,O是AB的中点,∠C= ∠D,
A
A
B
C
B
C
探究5
先任意画出一个△ABC,再画一个 △A/B/C/,使A/B/=AB, ∠A/ =∠A, ∠B/ =∠B (即使两角和它们的夹边对应相等)。把画好的 △A/B/C/剪下,放到△ABC上,它们全等吗?
C
A
B
已知:任意 △ ABC,画一个△ A/B/C/, 使A/B/=AB, ∠A/ =∠A, ∠B/ =∠B :
练一练:
1、如图∠ACB=∠DFE,BC=EF,根据SAS,ASA或AAS,
那么应补充一个直接条件
AC=DF或∠B=∠E或∠A=∠D
--------------------------,
(写出一个即可),才能使△ABC≌△DEF.
A
A
F
E
B
C
D
E
1
2
D
B
C
2、如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?
∠A=∠A(公共角) AC=AB(已知) ∠C=∠B(已知)
D
E
O
∴△ACD≌△ABE(ASA)
B
C
∴AD=AE(全等三角形的对应边相等)
又∵AB=AC(已知)
∴BD=CE
(2) (1)
全等三角形证明判定方法分类归纳
全等三角形证明判定方法分类归纳一、直接证明法直接证明法是指通过对已知条件进行计算和推理,直接得出两个三角形全等的结论。
常用的直接证明法有以下几种:1.SSS判定法SSS判定法是指如果两个三角形的三边分别相等,则这两个三角形全等。
证明思路:设两个三角形ABC和DEF,已知AB=DE,BC=EF,AC=DF,要证明ΔABC≌ΔDEF。
通过SSS判定法可知,只需要证明∠ABC=∠DEF,∠BAC=∠EDF,∠ACB=∠DFE即可。
这个可以通过角的和为180°进行计算和推理得到。
2.SAS判定法SAS判定法是指如果两个三角形的两个边分别相等,并且这两个边夹角相等,则这两个三角形全等。
证明思路:设两个三角形ABC和DEF,已知AB=DE,∠ABC=∠DEF,AC=DF,要证明ΔABC≌ΔDEF。
通过SAS判定法可知,只需要证明BC=EF即可。
这个可以通过边与角关系进行计算和推理得到。
3.ASA判定法ASA判定法是指如果两个三角形的两个角分别相等,并且这两个角的夹边相等,则这两个三角形全等。
证明思路:设两个三角形ABC和DEF,已知∠BAC=∠EDF,AC=DF,∠ABC=∠DEF,要证明ΔABC≌ΔDEF。
通过ASA判定法可知,只需要证明AB=DE即可。
这个可以通过角与角关系进行计算和推理得到。
二、间接证明法间接证明法是指通过假设两个三角形不全等,然后推出与已知条件矛盾的结论,从而得出两个三角形全等的结论。
常用的间接证明法有以下几种:1.矛盾法假设三角形ABC和DEF不全等,然后通过对已知条件进行计算和推理,得出一个与已知条件矛盾的结论,进而推出两个三角形全等的结论。
2.割取法假设三角形ABC和DEF不全等,然后取一个边分别作其平行线或垂线,进而构造出等腰三角形或等边三角形,从而推出两个三角形全等的结论。
三、利用全等条件证明法利用全等条件证明法是指在已知两个三角形之间有一个或多个角、边、角边相等的关系时,可以根据全等条件推出两个三角形全等的结论。
全等三角形判定(ASA和AAS)
证明:在△ABC与△A B C 中
∠A=∠A
∴△ABC≌△A’B’C’(AAS)
A
C
B
A
′
C
B
′
′
′
′
′
′
∠B=∠B
′
′
′
BC=B C
判定3: 两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“ASA”。
判定4: 两角和其中一角的对边分别相等的两个三角形全等,简写成“角角边”或“AAS”
6、如图,AB∥CD,AD∥BC,那么AB=CD吗?为什么?AD与BC呢?
A
B
C
D
1
2
3
4
证明:∵ AB∥CD,AD∥BC(已知 ) ∴ ∠1=∠2 ∠3=∠4 (两直线平行,内错角相等) ∴在△ABC与△CDA中 ∠1=∠2 (已证) AC=AC (公共边) ∠3=∠4 (已证) ∴ △ABC≌△CDA(ASA) ∴ AB=CD BC=AD(全等三角形对应边相等)
03
02
01
如何用符号语言来表达呢?
证明:在△ABC与△A B C 中
∠A=∠A AB=A B
∴△ABC≌△A’B’C’(ASA)
A
C
B
A
′
C
B
′
′
′
′
′
′
′
′
∠B=∠B
′
两角和它们的夹边分别相等的两个三角形全等(ASA).
在△ABC和△DEF中, ∠A=∠D, ∠B=∠E,BC=EF, △ABC和△DEF全等吗?为什么?
A
C
A
B
C
图1
图2
在图1中, 边AB是∠A与∠B的夹边,
精讲精练:全等三角形证明判定方法分类总结-培优
11.如图,已知:AB=AD ,AC=AE ,BC=DE , 求证:CAD BAE ∠=∠2.如图AB=DE ,BC=EF ,AD=CF ,求证:(2)AB//DE ,BC//EF3.如图,在,90︒=∠∆C ABC 中D 、E 分别为AC 、AB 上的点,且BE=BC ,DE=DC ,求证:(1)AB DE ⊥(2)BD 平分∠1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形;④若两个图形是全等图形,则它们的大小一定相同,其中正确的是 A 、①④ B 、①② C 、②③ D 、③④ 2.如图,ABD ∆≌CDB ∆,且AB 和CD 是对应边,下面四个结论中不正确的是A 、CDB ABD ∆∆和的面积相等B 、CDB ABD ∆∆和的周长相等C 、CBD C ABD A ∠+∠=∠+∠ D 、AD//BC 且AD=BC3.如图,ABC ∆≌BAD ∆,A 和B 以及C和D分别是对应点,如果︒=∠︒=∠35,60ABD C ,则BAD ∠的度数为( )A 、︒85B 、︒35C 、︒60D 、︒804.如图,ABC ∆≌DEF ∆,AD=8,BE=2,则AE 等于( )A 、6B 、5C 、4D 、35.如图,要使ACD ∆≌BCE ∆,则下列条件能满足的是( )A 、AC=BC ,AD=CE ,BD=BEB 、AD=BD ,AC=CE ,BE=BDC 、DC=EC ,AC=BC ,BE=AD D 、AD=BE ,AC=DC ,BC=EC6.如图,ABE ∆≌DCF ∆,点A 和点D 、点E 和点F 分别是对应点,则AB= ,=∠A ,AE= ,CE= ,AB// ,若AE 与BC 的关系DF AFD 第4第5题图2是 .7.如图,A B C ∆≌AED ∆,若=∠︒=∠︒=∠︒=∠B A C C E A B B 则,45,30,40=DAC. 8.如图,若AB=AC ,BE=CD ,AE=AD ,则A B E ∆ACD ∆,所以=∠AEB,=∠BAE ,=∠BAD .9.如图,ABC ∆≌DEF ∆,︒=∠90C ,则下列说法错误的是( ) A、互余与F C ∠∠B 、互补与FC ∠∠C、互余与E A ∠∠D 、互余与D B ∠∠10.如图,ACF ∆≌DBE ∆,cmCD cm AD ACF E 5.2,9,110,30==︒=∠︒=∠,求D ∠的度数及BC 的长.11.如图,在ABD ABC ∆∆与中,AC=BD ,AD=BC ,求证:ABC ∆≌ABD ∆全等三角形(一)作业1.如图,ABC ∆≌CDA ∆,AC=7cm ,AB=5cm.,则AD 的长是( )A 、7cmB 、5cmC 、8cmD 、无法确定2.如图,A B C ∆≌DCE ∆,︒=∠︒=∠62,48E A ,点B 、C 、E 在同一) ︒38 C 、︒1103.如图,A B C ∆≌DEF ∆,AF=2cm,CF=5cm ,则AD= .4.如图,A B E ∆≌ACD ∆,D第7题图 第8题图 第9题题图ADE3︒=∠︒=∠25,100B A ,求B DC ∠的度数.5.如图,已知,AB=DE ,BC=EF ,AF=CD ,求证:AB//CD6.如图,已知AB=EF ,BC=DE ,AD=CF , 求证:①ABC ∆≌FED ∆②AB//EF7.如图,已知AB=AD ,AC=AE ,BC=DE ,求证:CAE BAD ∠=∠FE5全等三角形(二)【知识要点】定义:SAS两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS ”,几何表示如图,在ABC ∆和DEF ∆中,ABC EF BC E B DE AB ∆∴⎪⎩⎪⎨⎧=∠=∠=≌)(SAS DEF ∆【典型例题】【例1】 已知:如图,AB=AC ,AD=AE ,求证:BE=CD.【例2】 如图,已知:点D 、E 在BC 上,且BD=CE ,AD=AE ,∠1=∠2,由此你能得出哪些结论?给出证明.【例3】 如图已知:AE=AF ,AB=AC ,∠A=60°,∠B=24°,求∠BOE 的度数.【例4】 如图,B ,C ,D 在同一条直线上,△ABC ,△ADE 是等边三角形, 求证:①CE=AC+DC ; ②∠ECD=60°.【例5】如图,已知△ABC 、△BDE 均为等边三角形。
全等三角形证明判定方式分类总结
全等三角形证明判定方式分类总结全等三角形是指具有完全相同形状和大小的三角形。
在几何学中,判定两个三角形是否全等是一种重要而基础的推理方法。
全等三角形的证明判定方式主要有三种:SSS全等定理、SAS全等定理和ASA全等定理。
接下来我将分别介绍这三种定理的内容及具体应用。
1.SSS全等定理SSS全等定理是指当两个三角形的三条边分别相等时,这两个三角形就全等。
具体表述为:如果两个三角形的三条边分别相等,则这两个三角形全等。
SSS全等定理的证明方法主要是通过边的长度作为条件来判断两个三角形是否全等。
在实际问题中,当已知两个三角形的三条边的长度分别相等时,可以直接通过SSS全等定理来判定这两个三角形是否全等。
例如,当已知两个三角形的三边分别等于3cm、4cm、5cm时,即可判定这两个三角形全等。
2.SAS全等定理SAS全等定理是指当两个三角形的一条边、夹角和另一条边分别相等时,这两个三角形就全等。
具体表述为:如果两个三角形的一条边、夹角和另一条边分别相等,则这两个三角形全等。
SAS全等定理的证明方法主要是通过一条边、夹角和另一条边的关系来判断两个三角形是否全等。
在实际问题中,当已知两个三角形的一个夹角和两条边分别相等时,可以直接通过SAS全等定理来判定这两个三角形是否全等。
例如,当已知两个三角形的一个夹角为60度,两个边分别等于4cm和6cm时,即可判定这两个三角形全等。
3.ASA全等定理ASA全等定理是指当两个三角形的一条角、边和另一条角分别相等时,这两个三角形就全等。
具体表述为:如果两个三角形的一条角、边和另一条角分别相等,则这两个三角形全等。
ASA全等定理的证明方法主要是通过一条角、边和另一条角的关系来判断两个三角形是否全等。
在实际问题中,当已知两个三角形的一个角和两条边分别相等时,可以直接通过ASA全等定理来判定这两个三角形是否全等。
例如,当已知两个三角形的一个角为30度,两个边分别等于5cm和7cm时,即可判定这两个三角形全等。
全等三角形证明判定方法分类总结汇总
全等三角形证明判定方法分类总结汇总第一类:SSS判定法(边边边判定法)SSS判定法是指通过边长的相等来判定两个三角形全等。
当两个三角形的三条边长度分别相等时,可以推断这两个三角形全等。
这是最常用的全等三角形的证明方法。
第二类:SAS判定法(边角边判定法)SAS判定法是指通过边长的相等和两边夹角的相等来判定两个三角形全等。
当两个三角形的两条边长度分别相等,且这两边夹角相等时,可以推断这两个三角形全等。
第三类:ASA判定法(角边角判定法)ASA判定法是指通过角度的相等和一边的相等来判定两个三角形全等。
当两个三角形的两个角度分别相等,且这两个角度之间的边的长度相等时,可以推断这两个三角形全等。
第四类:AAS判定法(角角边判定法)AAS判定法是指通过两个角度的相等和一边的相等来判定两个三角形全等。
当两个三角形的两个角度分别相等,且这两个角度之间的一边的长度相等时,可以推断这两个三角形全等。
第五类:HL判定法(斜边高判定法)HL判定法是指通过边长的相等和一条边上的高线相等来判定两个三角形全等。
当两个三角形的一条边和这条边上的垂线长度分别相等,且这条边夹角相等时,可以推断这两个三角形全等。
第六类:SSA判定法(边边角判定法)SSA判定法是指通过两个边长的相等和这两个边之间的夹角相等来判定两个三角形全等。
但应注意,当只知道两个边的长度和它们之间的夹角时,并不能推断这两个三角形全等。
需要注意的是,以上列举的全等三角形证明判定法是充分条件而不是必要条件。
如果满足了一些判定条件,则可以推断两个三角形全等,但如果不满足判定条件,则并不能推断两个三角形不全等。
因此,在证明中还需要注意辅助线的使用和合理的推理过程。
除了上述分类的判定法,还可以根据题目给出的条件和限制灵活运用相关的定理和性质进行推理。
例如,利用平行线的性质、欧几里得几何的基本定理等进行推理。
综上所述,全等三角形的证明判定方法主要包括SSS判定法、SAS判定法、ASA判定法、AAS判定法、HL判定法和SSA判定法。
三角形全等的判定(综合)
灵活运用
在解题过程中,应根据实 际情况灵活运用不同的判 定方法,以提高解题效率。
验证结论
在得出结论前,应验证结 论是否符合已知条件和推 理过程,确保结论正确。
常见错误与注意事项
混淆判定方法
在解题过程中,应注意区 分不同的判定方法,避免 混淆。
忽视已知条件
在解题过程中,应充分考 虑已知条件,确保推理过 程符合题意。
作已知角的平分线
同样利用三角形全等,可以作出已知 角的平分线,通过构造全等三角形并 利用对应角相等这一性质。
05 练习与提高
CHAPTER
基础练习题
总结词
掌握三角形全等的基本判定方法,包括SSS、SAS、ASA、AAS和HL。
详细描述
基础练习题应包括各种三角形全等的基本判定方法,如给定三边长度判断三角形是否全等,或给定两 边及夹角判断三角形是否全等。这些题目旨在帮助学生熟悉和掌握三角形全等的基本概念和判定方法 。
ASA判定定理
总结词
两角和夹边对应相等的两个三角形全等。
详细描述
如果两个三角形有两个角和它们的夹边分别相等,则这两个三角形全等。这个 定理可以由SAS判定定理推导出来。
AAS判定定理
总结词
两角和非夹边对应相等的两个三角形 全等。
详细描述
如果两个三角形有两个角和一组非夹 边分别相等,则这两个三角形全等。 这个定理可以由ASA判定定理推导出 来。
HL判定定理
总结词
直角边斜边公理,即一直角边和斜边分别等于另一个三角形 的直角边和斜边,则这两个三角形全等。
详细描述
如果两个三角形有一个直角边和斜边分别相等,则这两个三 角形全等。这是三角形全等判定中专门用于直角三角形的方 法。
(完整版)精讲精练:全等三角形证明判定方法分类总结-培优
ACD ,所以 AEB
E ,
BAE
, BAD
.
9.如图, ABC ≌ DEF , C 90 ,则下列说法错误的是(
)
A 、 C与 F互余
B
、 C与 F互补
.
A 、7cm B 、 5cm C 、 8cm D 、无法确定
C、 A与 E互余
D
、 B与 D 互余
10.如图, ACF ≌ DBE , E 30 , ACF 110 , AD 9cm,CD 2.5cm,
B
C
【巩固练习】
1.下面给出四个结论: ① 若两个图形是全等图形,则它们形状一定相同; ② 若两
个图形的形状相同,则它们一定是全等图形;
③ 若两个图形的面积相等,则它们
一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确
的是(
)
A 、 ①④ B 、 ①② C 、 ②③ D 、 ③④
1.如图,已知 AB=AC, AD=AE, BF=CF,求证: BDF ≌ CEF 。
A
D
E
F
B
C
2.如图,△ ABC,△ BDF为等腰直角三角形。求证: (1) CF=AD;( 2) CE⊥ AD。 A
FE
C
BD
.
D
1
E
A
5. 如图,已知 AB⊥AC, AD⊥AE, AB=AC, AD=AE, 求证:( 1)BE=DC,(2) BE⊥ DC.
由. 小明的解答:
OA=OB
OD=OC
12
SAS
△ AOD≌ △ BOC
而△ BAD=△ AOD+△ ADB 所以△ ABC≌ △ BAD
D
全等三角形的判定【题目与答案】
全等三角形的判定一、5种判定方法1、SSS(边边边)2、SAS(边角边)3、ASA(角边角)4、AAS(角角边)5、HL(直角三角形专用)二、注意事项【思考】①要证明两个三角形全等,条件中必须要有“边”吗?至少要有几条边?②要证明两个三角形全等,条件中必须要有“角”吗?至少要有几个角?③使用“两边一角”证明两个三角形全等时,对“角”有什么特殊要求?④使用“两角一边”证明两个三角形全等时,对“边”有什么特殊要求?⑤证明两个直角三角形全等,只能使用“HL”来判断吗?1、判定两个三角形是否全等,必须要有边!2、用“两边一角”来判定三角形全等,必须是夹角!3、虽然直角三角形可以用“HL”来判断(也应该优先考虑),但不意味着只能用“HL”来判断,直角三角形虽然是特殊三角形,但是本质上依然是三角形,所以适用于所有三角形的前面4种方法依然适用于直角三角形!三、如何由已知条件寻找所需条件已知条件可判定方法寻找条件两边对应相等(SS)SSS或SAS第三边或两边的夹角对应相等角的另一边对应相等或边的另一邻角对一边及其邻角对应相等(SA)SAS、ASA、AAS应相等或边的对角相等一边及其对角对应相等(SA)AAS另一个角对应相等两角对应相等(AA)ASA、AAS两角的夹边或其中一角的对边对应相等四、隐含条件1、对顶角一定是对应角;2、公共角一定是对应角;3、直角一定是对应角;4、公共边一定是对应边.真题精炼1、(17-18学年汇文月考)如图,沿直线AD折叠,△ACD与△ABD重合,若∠B=58°,则∠CAD=度.2、(17-18学年求真月考)如图所示,由∠D=∠C,∠BAD=∠ABC推得△ABD≌△BAC,所用的判定定理的简称是()A.AAS B.ASA C.SAS D.SSS3、(17-18学年汇文月考)如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需要加条件.4、(17-18学年南师江宁月考)如图,12∠=∠,要使ABD△,需添加的一个条件△≌ACD是__________(只添一个条件即可).5、(17-18学年汇文月考)如图,已知B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.6、(17-18学年鼓楼区期末)如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF7、(17-18学年求真月考)如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是()A.BD=CE B.∠ABD=∠ACEC.∠BAD=∠CAE D.∠BAC=∠DAE8、(17-18学年汇文月考)下列各条件中,不能作出唯一三角形的是()A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边9、(17-18学年栖霞区期中)根据下列已知条件,能够画出唯一△ABC的是()A.AB=5,BC=6,∠A=70°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8,D.∠A=40°,∠B=50°,∠C=90°10、(16-17学年钟英期末)在△ABC中,∠ABC=30°,AB边长为4,AC边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是()A.3个B.4个C.5个D.6个11、(17-18学年南师江宁月考)在下列各组条件中,不能说明ABC △≌DEF △的是().A .AB DE =,B E ∠=∠,C F ∠=∠B .AC DF =,BC EF =,AD ∠=∠C .AB DE =,A D ∠=∠,B E∠=∠D .AB DE =,BC EF =,AC DF=12、(16-17学年致远期中)如图,小明不小心把一块三角形的玻璃摔成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第__________块去配,这是因为这两块玻璃全等,其全等的依据是__________.可以用字母简写)13、(17-18学年溧水区期末)如图,一个三角形被纸板挡住了一部分,我们还能够画出一个与它完全重合的三角形,其原理是判定两个三角形全等的基本事实或定理,本题中用到的基本事实或定理是()A .ASAB .SASC .SSSD .HL14、(17-18学年南师江宁月考)请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出A O B AOB '''∠=∠的依据是().A .SASB .ASAC .AASD .SSS15、(17-18学年汇文月考)如图,点A 、E 、F 、D 在同一直线上,若AB ∥CD ,AB =CD ,AE =FD ,则图中的全等三角形有()A .1对B .2对C .3对D .4对16、(17-18学年联合体期末)如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有()A、1组B、2组C、3组D、4组17、(16-17学年南外期中)以下四个命题:①有两边和其中一边上的高线对应相等的两个三角形全等;②有两边和第三边上的高线对应相等的两个三角形全等;③有两角和其中一角的角平分线对应相等的两个三角形全等;④两角和第三个角的角平分线对应相等的两个三角形全等.其中真命题有().A.1个B.2个C.3个D.4个18、(17-18学年汇文月考)如图,在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC 交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,③点P在∠AOB的平分线上.正确的是;(填序号)19、(17-18学年汇文月考)如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE 的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm20、(17-18学年栖霞区期中)规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB =A 1B 1,AD =A 1D 1,∠A =∠A 1,∠B =∠B 1,∠C =∠C 1;②AB =A 1B 1,AD =A 1D 1,∠A =∠A 1,∠B =∠B 1,∠D =∠D 1;③AB =A 1B 1,AD =A 1D 1,∠B =∠B 1,∠C =∠C 1,∠D =∠D 1;④AB =A 1B 1,CD =C 1D 1,∠A =∠A 1,∠B =∠B 1,∠C =∠C 1.其中能判定四边形ABCD 和四边形A 1B 1C 1D 1全等有()个A .1B .2C .3D .421、(17-18学年求真月考)如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为4,则BE =()A .1B .2C .3D .4AB C DA 1B 1C 1D122、(16-17学年致远期中)已知:如图,AB AD =,C E ∠=∠,BAE DAC ∠=∠.求证:ABC △≌ADE △.23、(17-18学年南师新城月考)已知:如图,AC =AE ,∠1=∠2,AB =AD .求证:BC =DE .24、(17-18学年建邺区期中)如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD .求证BC =AD .25、(17-18学年汇文月考)如图,在△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD 、CE 交于F .(1)求证:△ABD ≌△ACE .(2)求证:AF 平分∠BAC .BCDA26、(17-18学年汇文月考)(阅读理解题)如图所示,CE⊥AB于点E,BD⊥AC于点D,BD,CE交于点O,且AO平分∠BAC.(1)图中有多少对全等三角形?请一一列举出来(不必说明理由);(2)小明说:欲证BE=CD,可先证明△AOE≌△AOD得到AE=AD,再证明△ADB≌△AEC 得到AB=AC,然后利用等式的性质得到BE=CD,请问他的说法正确吗?如果正确,请按照他的说法写出推导过程,如果不正确,请说明理由;(3)要得到BE=CD,你还有其他思路吗?若有,请写出推理过程.27、(16-17学年南外期中)我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD 和四边形A B C D ''''中,AB A B ''=,BC B C ''=,B B '∠=,C C '∠=∠,现在只需补充一个条件,就可得四边形ABCD ≌四边形A B C D ''''.下列四个条件:①A A '∠=∠;②D D '∠=∠;③''AD A D =;④CD C D ''=(1)其中,符合要求的条件是__________.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD ≌四边形A B C D ''''.全等三角形的判定真题精炼【答案】1、(17-18学年汇文月考)如图,沿直线AD 折叠,△ACD 与△ABD 重合,若∠B =58°,则∠CAD =32度.【解析】解:由题意得:∠B =∠C ,∠ADB =∠ADC =90°,∴∠CAD =90°﹣∠C =32°.故答案为:32.2、(17-18学年求真月考)如图所示,由∠D =∠C ,∠BAD =∠ABC 推得△ABD ≌△BAC ,所用的判定定理的简称是(A )A .AASB .ASAC .SASD .SSS3、(17-18学年汇文月考)如图,△ABC 中,AD ⊥BC 于D ,要使△ABD ≌△ACD ,若根据“HL ”判定,还需要加条件AB=AC.【注意】此题绝对不可以写“BD=CD ”,因为要使用“HL ”,就必须要有“一条直角边、一条斜边”——题目中AD 作为公共边,同时也是“直角边”,所以要找的必须是“斜边”!4、(17-18学年南师江宁月考)如图,12∠=∠,要使ABD △≌ACD △,需添加的一个条件是__________(只添一个条件即可).【答案】BD CD =(或B C ∠=∠,或BAD CAD ∠=∠)【解析】由12∠=∠易得ADC ADB ∠=∠,又知AD AD =,①可添加条件BD CD =⇒由SAS 判定全等;②可添加条件B C ∠=∠或BAD CAD ∠=∠⇒由AAS 判定全等.5、(17-18学年汇文月考)如图,已知B 、E 、F 、C 在同一直线上,BE =CF ,AF =DE ,则添加条件∠AFB =∠DEC 或AB =DC,可以判断△ABF ≌△DCE .【解析】由BE =CF 易得BF=CE 已知两边——BF=CE 和AF =DE要想证明两个三角形全等,只需要再加一组对应边(SSS )或一组对应角(SAS ,必须是夹角)!6、(17-18学年鼓楼区期末)如图,点B 、E 、C 、F 在同一条直线上,AB ∥DE ,AB =DE ,要用SAS 证明△ABC ≌△DEF ,可以添加的条件是(C )A.∠A =∠DB .AC ∥DFC .BE =CFD .AC =DF【解析】∵AB //DE ∴∠ABC =∠DEF∴要想使用SAS 来证明△ABC ≌△DEF 就必须保证BC =EF但是题目的4个选项中却没有BC =EF !但是,因为EC 是BC 、EF 的公共部分,所以只需要保证BE =CF 即可!7、(17-18学年求真月考)如图,已知AB=AC,AD=AE,若要得到“△ABD≌△ACE”,必须添加一个条件,则下列所添条件不恰当的是(B)A.BD=CE B.∠ABD=∠ACEC.∠BAD=∠CAE D.∠BAC=∠DAE【解析】已知“AB=AC,AD=AE”——已知两边,要想保证两个三角形全等 要么再找一条边,要么再找一个角(必须是夹角)!8、(17-18学年汇文月考)下列各条件中,不能作出唯一三角形的是(C)A.已知两边和夹角B.已知两角和夹边C.已知两边和其中一边的对角D.已知三边【提示】用“两边一角”来判断时,必须是夹角!9、(17-18学年栖霞区期中)根据下列已知条件,能够画出唯一△ABC的是(C)A.AB=5,BC=6,∠A=70°B.AB=5,BC=6,AC=13C.∠A=50°,∠B=80°,AB=8,D.∠A=40°,∠B=50°,∠C=90°10、(16-17学年钟英期末)在△ABC中,∠ABC=30°,AB边长为4,AC边的长度可以在1、2、3、4、5中取值,满足这些条件的互不全等的三角形的个数是(C)A.3个B.4个C.5个D.6个【解析】∵点A与l上的各点连线中,垂线段最短——AD=2(直角三角形中,30°角所对的直角边等于斜边的一半),所以AC最小为2.11、(17-18学年南师江宁月考)在下列各组条件中,不能说明ABC △≌DEF △的是(B ).A .AB DE =,B E ∠=∠,C F ∠=∠B .AC DF =,BC EF =,AD ∠=∠C .AB DE =,A D ∠=∠,B E∠=∠D .AB DE =,BC EF =,AC DF=【解析】A 、C 、D 分别为AAS ,ASA ,SSS ;B 为SSA 不可判定全等.12、(16-17学年致远期中)如图,小明不小心把一块三角形的玻璃摔成三块碎片,现要带其中一块去配出与原来完全一样的玻璃,正确的办法是带第__________块去配,这是因为这两块玻璃全等,其全等的依据是__________.可以用字母简写)【答案】③,ASA【解析】因为第③块中有完整的两个角及其夹边,利用ASA 可证三角形全等,故应带第③块.13、(17-18学年溧水区期末)如图,一个三角形被纸板挡住了一部分,我们还能够画出一个与它完全重合的三角形,其原理是判定两个三角形全等的基本事实或定理,本题中用到的基本事实或定理是(A)A .ASAB .SASC .SSSD .HL14、(17-18学年南师江宁月考)请仔细观察用直尺和圆规作一个角等于已知角的示意图,请你根据所学的三角形全等有关的知识,说明画出A O B AOB '''∠=∠的依据是(D).A .SASB .ASAC .AASD .SSS【解析】由作法易得OD O D ''=,OC O C ''=,CD C D ''=,依据SSS 可判定COD △≌C O D '''△,再由全等三角形对应角相等得到COD C O D '''∠=∠,即AOB A O B '''∠=∠.15、(17-18学年汇文月考)如图,点A、E、F、D在同一直线上,若AB∥CD,AB=CD,AE=FD,则图中的全等三角形有(C)A.1对B.2对C.3对D.4对16、(17-18学年联合体期末)如图,给出下列四个条件,AB=DE,BC=EF,∠B=∠E,∠C=∠F,从中任选三个条件能使△ABC≌△DEF的共有(C)A、1组B、2组C、3组D、4组【解析】此题的难度不在于会不会判断,而是能不能快速找全4种组合情况.从4个条件中选3个条件出来,如何才能保证把所有情况都找全——“任选三个条件”的另一层含义也就是“任意不选1个条件”:①不选AB=DE⇒选BC=EF,∠B=∠E,∠C=∠F⇒ASA②不选BC=EF⇒选AB=DE,∠B=∠E,∠C=∠F⇒AAS③不选∠B=∠E⇒选AB=DE,BC=EF,∠C=∠F⇒角不是夹角,错!④不选∠C=∠F⇒选AB=DE,BC=EF,∠B=∠E⇒SAS17、(16-17学年南外期中)以下四个命题:①有两边和其中一边上的高线对应相等的两个三角形全等;②有两边和第三边上的高线对应相等的两个三角形全等;③有两角和其中一角的角平分线对应相等的两个三角形全等;④两角和第三个角的角平分线对应相等的两个三角形全等.其中真命题有(B).A.1个B.2个C.3个D.4个【解析】务必注意“高”的特殊性——高可以在三角形内部、可以在三角形边上也可以在三角形外部!①错误,反例(要否定一个命题,只需要举出一个反例)如下:AC=A’C’,BC=B’C’,AD=A’D’②错误,反例如下:AB=A’B’,AC=A’C’,AD=A’D’③④是正确的.18、(17-18学年汇文月考)如图,在∠AOB的两边截取OA=OB,OC=OD,连接AD,BC 交于点P,则下列结论中①△AOD≌△BOC,②△APC≌△BPD,③点P在∠AOB的平分线上.正确的是①②③;(填序号)【解析】解:∵OA=OB,OC=OD,∠O为公共角,∴△AOD≌△BOC,∴∠A=∠B,又∠APC=∠BPD,∴∠ACP=∠BDP,OA﹣OC=OB﹣OD,即AC=BD,∴△APC≌△BPD,∴AP =BP ,连接OP ,即可得△AOP ≌△BOP ,得出∠AOP =∠BOP ,∴点P 在∠AOB 的平分线上.故题中结论都正确.故答案为:①②③.19、(17-18学年汇文月考)如图,在△ABC 中,∠ABC =45°,AC =8cm ,F 是高AD 和BE 的交点,则BF 的长是(C)A .4cmB .6cmC .8cmD .9cm【解析】∵AD ⊥BC ∴∠ADB =90°∵∠ABC =45°∴∠BAD =∠ABC =45°∴AD =BD在Rt △ADC 中,∠DAC +∠C =90°在Rt △BEC 中,∠DBF +∠C =90°∴∠DAC =∠DBF 在△FBD 和△CAD 中,⎪⎩⎪⎨⎧=︒=∠=∠∠=∠AD BD CDA FDB CAD FBD 90∴△FBD ≌△CAD (AAS )∴BF =AC =8cm20、(17-18学年栖霞区期中)规定:四条边对应相等,四个角对应相等的两个四边形全等.某学习小组在研究后发现判定两个四边形全等需要五组对应条件,于是把五组条件进行分类研究,并且针对二条边和三个角对应相等类型进行研究提出以下几种可能:①AB =A 1B 1,AD =A 1D 1,∠A =∠A 1,∠B =∠B 1,∠C =∠C 1;②AB =A 1B 1,AD =A 1D 1,∠A =∠A 1,∠B =∠B 1,∠D =∠D 1;③AB =A 1B 1,AD =A 1D 1,∠B =∠B 1,∠C =∠C 1,∠D =∠D 1;④AB =A 1B 1,CD =C 1D 1,∠A =∠A 1,∠B =∠B 1,∠C =∠C 1.其中能判定四边形ABCD 和四边形A 1B 1C 1D 1全等有(C)个A .1B .2C .3D .4【解析】(1)除三角形之外,其他多边形要想全等,就必须同时满足“所有的边对应相等和所有的角对应相等”;(2)题目给的4组条件,看似给的都是3组对应角相等,但是根据四边形内角和为360°,所以其实告诉的是4组对应角相等,所以我们只需要再保证4组对应边对应相等即可;(3)我们在课本上只学习了三角形全等的判定条件,没有学习四边形全等的判定条件——这其实意味着我们要想办法把四边形“转化”为我们熟悉的三角形!怎么办?连接对角线,分别证明对角线两侧的两组三角形对应全等即可!(4)能够保证两个四边形全等是①②③.21、(17-18学年求真月考)如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为4,则BE =(B)A .1B .2C .3D .4AB C DA 1B 1C 1D1【解析】解:如图,过B 点作BF ⊥CD ,与DC 的延长线交于F 点,∵∠ABC =∠CDA =90°,BE ⊥AD ,∴四边形EDFB 是矩形,∠EBF =90°,∴∠ABE =∠CBF ,∵在△BCF 和△BAE中,∴△BCF ≌△BAE (ASA ),∴BE =BF ,∴四边形EDFB 是正方形,∴S 四边形ABCD =S 正方形BEDF =4,∴BE ==2.22、(16-17学年致远期中)已知:如图,AB AD =,C E ∠=∠,BAE DAC ∠=∠.求证:ABC △≌ADE △.【答案】见解析【解析】证明:∵BAE DAC ∠=∠,∴BAE CAE DAC CAE ∠-∠=∠-∠,即BAC DAE ∠=∠,在ABC △和ADE △中,BAC DAE C EAB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABC △≌(AAS)ADE △.23、(17-18学年南师新城月考)已知:如图,AC =AE ,∠1=∠2,AB =AD .求证:BC =DE .【解析】∵∠1=∠2∴∠1+∠EAB =∠2+∠EAB ,即∠CAB =∠EAD在△CAB 和△EAD 中,⎪⎩⎪⎨⎧=∠=∠=DA BA EAD CAB EA CA △CAB ≌△EAD (SAS )∴BC =DE24、(17-18学年建邺区期中)如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD .求证BC =AD .【证明】∵AC ⊥BC ,BD ⊥AD ,∴∠C =∠D =90°.在Rt △ABC 和Rt △BAD中,=BA ,=BD .∴Rt △ABC ≌Rt △BAD (HL ).∴BC =AD .B CD A25、(17-18学年汇文月考)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于F.(1)求证:△ABD≌△ACE.(2)求证:AF平分∠BAC.【解析】证明:(1)∵BD⊥AC,CE⊥AB,∴∠AEC=∠ADB=90°,在△ABD和△ACE中,,∴△ABD≌△ACE(AAS).(2)∵△ABD≌△ACE,∴AE=AD,在Rt△AEF和Rt△ADF中,,∴Rt△AEF≌Rt△ADF(HL),∴∠EAF=∠DAF,∴AF平分∠BAC.26、(17-18学年汇文月考)(阅读理解题)如图所示,CE⊥AB于点E,BD⊥AC于点D,BD,CE交于点O,且AO平分∠BAC.(1)图中有多少对全等三角形?请一一列举出来(不必说明理由);(2)小明说:欲证BE=CD,可先证明△AOE≌△AOD得到AE=AD,再证明△ADB≌△AEC 得到AB=AC,然后利用等式的性质得到BE=CD,请问他的说法正确吗?如果正确,请按照他的说法写出推导过程,如果不正确,请说明理由;(3)要得到BE=CD,你还有其他思路吗?若有,请写出推理过程.【解析】解:(1)图中有4对全等三角形,有△ADB≌△AEC,△ADO≌△AEO,△AOB≌△AOC,△EOB≌△DOC.(2)正确,理由是:∵AO平分∠BAC,∴∠EAO=∠DAO,∵CE⊥AB,BD⊥AC,∴∠AEO=∠ADO=90°,∴在△AEO和△ADO中∴△AEO≌△ADO(AAS),∴AE=AD,在△ADB和△AEC中∴△ADB≌△AEC(ASA),∴AB=AC,∵AE=AD,∴BE=CD.(3)有,理由是:∵AO 平分∠BAC ,OE ⊥AB ,OD ⊥AC ,∴OE =OD ,∠BEO =∠CDO =90°,在△BEO 和△CDO中∴△BEO ≌△CDO (ASA ),∴BE =CD .27、(16-17学年南外期中)我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD 和四边形A B C D ''''中,AB A B ''=,BC B C ''=,B B '∠=,C C '∠=∠,现在只需补充一个条件,就可得四边形ABCD ≌四边形A B C D ''''.下列四个条件:①A A '∠=∠;②D D '∠=∠;③''AD A D =;④CD C D ''=(1)其中,符合要求的条件是__________.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD ≌四边形A B C D ''''.【解析】(1)①②④(2)选④证明:连接AC 、A C '',在ABC △和A B C '''△中,AB A B B B BC B C ⎧''=⎪⎪'∠=∠⎨⎪''=⎪⎩,∴ABC △≌(SAS)A B C '''△,∴AC A C ''=,ACB A C B '''∠=∠,∵BCD B C D '''∠=∠,∴BCD ACB B C D A C B ''''''∠-∠=∠-∠,∴ACD A C D '''∠=∠.在ACD △和A C D '''△中,AC A C ACD A C D CD C D ⎧''=⎪⎪'''∠=∠⎨⎪''=⎪⎩,∴ACD △≌A C D '''△,∴D D '∠=∠,DAC D A C '''∠=∠,DA D A ''=,∴BAC DAC B A C D A C ''''''∠+∠=∠+∠,即BAD B A D '''∠=∠,∴四边形ABCD 和四边形A B C D ''''中,AB A B ''=,BC B C ''=,AD A D ''=,DC D C ''=,B B '∠=∠,BCD B C D '''∠=∠,D D '∠=∠,BAD B A D '''∠=∠,∴四边形ABCD ≌四边形A B C D ''''.。
三角形全等的判定方法
三角形全等的判定方法——SSA——探究SSA 三角形全等的判定方法的可行情况通过学习三角形全等,我们可以知道,三角形全等的判定方法只有“SSS”、“AAS”、“SAS”、“ASA”四种,“SSA ”的判定方法是不可行的,但是在某些情况下,“SSA ”是成立的,下面开始分类讨论。
一、直角三角形的SSA 全等判定有一个特殊的名字——“HL ”定理1、定理内容:斜边和一条直角边对应相等的两个直角三角形全等。
2、定理证明HL 定理可以用勾股定理证明如图,已知Rt △ABC 与Rt △DEF, ∠B=∠E=90°,AC=DF,AB=DE在Rt△ABC 中,BC=, 在Rt△DEF 中,EF=,∵AC=DF,AB=DE.∴BC=EF在△ABC 与△DEF 中 ∵∴△ABC≌△DEF(SSS )这样HL 定理成立了,我们在后续证明中需要运用到HL 定理。
A B C D E F那么,当两个三角形都为锐角三角形时,SSA 成立吗锐角三角形有三种情况,但三种情况都是相同的,所以在这里只选择一种证明。
二、锐角三角形如图,已知锐角△ABC 与锐角三角形DEF 中,∠A=∠D ,AB=DE,BC=EF证明△ABC ≌△DEF作AG ⊥BC,EH ⊥DF∵AG ⊥BC,EH ⊥DF∴∠AGB=∠EHD=90°在△ABG 与△DEH 中 ∵∴△ABG ≌△DEH (AAS )∴BG=EH (全等三角形对应边相等)在Rt △BGC 与Rt △EHF 中BC=EFBG=EH∴△BGC ≌△EHF(HL)∴∠C=∠F (全等三角形对应角相等)在△ABC 与△DEF 中 A B CD EFG H ∵∵∴△ABC ≌△DEF (AAS )通过上述证明,我们可以知道,在两三角形都为锐角三角形的情况下,SSA 成立。
那么问题来了,在直角、锐角三角形中都成立的SSA 证明方法在钝角三角形中会不会成立呢因为钝角三角形有三条高,且位置各不相同,所以需要分类讨论。
三角形全等判定(边边边)
小结
1.知道三角形三条边的长度怎样画三角形。
2. 三边对应相等的两个三角形全等 (边边边或SSS); 3、体验分类讨论的数学思想 4、初步学会理解证明的思路
复习
1.什么是全等三角形? 2.判定两个三角形全等要具备什 么条件?
Байду номын сангаас
边角边(SAS) 角边角(ASA) 角角边(AAS)
思考:
对于三个角对应相等的两个三角形全等吗? A 如图, △ABC和△ADE中, 如果 DE∥AB,则∠A=∠A, ∠B=∠ADE,∠C= ∠ AED, 但△ABC和△ADE不重合,所 以不全等.
例2、如图,点B、E、C、F在同一条直线上,且 AB=DE,AC=DF,BE=CF。请将下面说明 △ABC≌ △DEF的过程和理由补充完整. 解:∵BE=CF( 已知 ) ∴BE+EC=CF+EC,即BC=EF 在△ABC和 △DEF中, AB = DE ( 已知
AC = DF ( 已知 B E C A D
D
E
B
C
三个角对应相等的两个三角形不一定全等.
利用作图法: 三条边对应相等的两个三角形全等吗?
有三边对应相等的两个三角形全等. 可以简写成 “边边边” 或“ SSS ”
有三边对应相等的两个三角形全等.
可以简写成 “边边边” 或“ SSS ”
用 数学语言表述: 在△ABC和△ DEF中 AB=DE BC=EF
A
B D
C
CA=FD
∴ △ABC ≌△ DEF(SSS)
E F
判断两个三角形全等的推理过程,叫做证明三角形 全等。
议一议:在下列推理中填写需 要补充的条件,使结论成立: 如图,在△AOB和△DOC中 AO=DO(已知) ______=________(已知) AB DC BO=CO(已知)
全等三角形的判定SAS
F
知识梳理:
三角形全等判定方法2
两边和它们的夹角对应相等的两个三角形全
等。(可以简写成“边角边”或“SAS”)
用符号语言表达为:
A D
在△ABC与△DEF中 AC=DF
∠C=∠F BC=EF
B
C F E
∴△ABC≌△DEF(SAS)
知识梳理:
A
B SSA不能 判定全等
A
C A
B
D
C
B
D
课堂小结
例题讲解
例 1 :如 图 ,在 △ ABC 中, AB = AC , AD 平分 ∠BAC,求证:△ABD≌△ACD. A 证明: ∵ AD平分∠BAC ∴ ∠BAD=∠CAD 在△ABD与△ACD中 ∵ AB=AC B C D ∠BAD=∠CAD AD=AD ∴△ABD≌△ACD(SAS)
例题推广
10cm 8cm 8cm
A
45° B B′
探索边边角
C
10cm
8cm
8cm
45° A B B′
显然: △ABC与△AB’C不全等
SSA不存在
知识梳理:
A
A
B SSA不能 判定全等 A C
B
D
C
全等三角形判定ASA和AAS经典实用
如图,小明不慎将一块三角形模具打碎为两块,他是否可 以只带其中的一块碎片到商店去,就能配一块与原来一 样的三角形模具吗? 如果可以,带哪块去合适? 你能说明其中理由吗?
利用“角怎边么角办?定可理以”帮帮可知,带B
A
块去,可以配我到吗?一个与原来全
等的三角形玻璃。
B
•全等三角形判定(ASA和AAS)
CF
E
“AAS”)。
•全等三角形判定(ASA和AAS)
知识要点: (1) 两角和它们的夹边对应相等的两个三角形全等.
简写成“角边角”或“ASA”. (2) 两角和其中一角的对边对应相等的两个三角形全等.
简写成“角角边”或“AAS”. (3)探索三角形全等是证明线段相等(对应边相等),
角相等(对应角相等)等问题的基本途径。
复习回顾:
我们前面学习了哪几种判定三角形全等的方法 SSS SAS
两边和它们的夹角对应相等的两个三角形全 等.(SAS)
•全等三角形判定(ASA和AAS)
继续探讨三角形全等的条件: 两角一边
思考:已知一个三角形的两个角和一条边,那么两个角
与这条边的位置上有几种可能性呢?
A
B 图1
C
在图1中, 边AB是∠A与∠B 的夹边,我们称这种位置关系
D
E
∠A= ∠A (公共角)
O
AE=AD (已知)
B
C ∴ △ABE ≌△ACD(AAS)
∴ BE=CD (全等三角形对应边相等)
•全等三角形判定(ASA和AAS)
例2. 如图,O是AB的中点,A= B, AOC与 BOD全等吗? 为什么?
C
两角和夹
边对应相
A
等
O
全等三角形判定的分类解析
全等三角形判定的分类解析作者:何兴安来源:《都市家教·下半月》2017年第01期一、全等三角形的性质基本知识:全等三角形的对应边相等;全等三角形的对应角相等。
拓展知识:①全等三角形的对应边上的高、中线以及对应角的平分线相等;②全等三角形的周长相等,面积相等;③平移、翻折、旋转前后的图形全等.二、基本方法的应用1.运用三边“SSS”判定两个三角形全等例1 . 如图所示,已知AB= DC,AC= BD.求证∠ABO=∠DCO.〔解析〕 BC是ΔABC和ΔDCB的公共边,直接利用“SSS”证全等.證明:在ΔABC与ΔDCB中,∴ΔABC≌ΔDCB(SSS),∴∠ABC=∠DCB,∠ACB=∠DBC,∴∠ABO=∠DCO.2.运用角边角“ASA” 判定两个三角形全等例2、如图所示,已知点E,C,D,A在同一条直线上,AB∥DF,ED=AB,∠E=∠CPD.求证ΔABC≌ΔDEF.解析:首先根据平行线的性质可得∠B=∠CPD,∠A=∠FDE,再由∠E=∠CPD可得∠E=∠B,再利用ASA证明ΔABC≌ΔDEF.证明:∵AB∥DF,∴∠B=∠CPD,∠A=∠FDE,∵∠E=∠CPD,∴∠E=∠B,在ΔABC和ΔDEF中,∴ΔABC≌ΔDEF(ASA).3.运用角角边“AAS” 判定两个三角形全等例3、(2015·衡阳中考)如图所示,在ΔABC中,AB=AC,BD=CD,DE⊥AB,DF⊥AC,垂足分别为点E,F.求证ΔBED≌ΔCFD.〔解析〕首先根据AB=AC可得∠B=∠C,再由DE⊥AB,DF⊥AC,可得∠BED=∠CFD=90°,然后根据AAS可判定ΔBED≌ΔCFD.证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.∵AB=AC,∴∠B=∠C.在ΔBED和ΔCFD中,∴ΔBED≌ΔCFD(AAS).4. 运用两边夹角“SAS ” 判定兩个三角形全等 ; ; ; ; ; ; ;例4 、(2016·吉林中考)如图所示,ΔABC和ΔDAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证ΔABD≌ΔAEC.〔解析〕根据∠BAC=∠DAE可得∠BAD=∠CAE,再根据全等三角形的条件可得出结论.证明:∵∠BAC=∠DAE,∴∠BAC-∠BAE=∠DAE-∠BAE,即∠BAD=∠CAE.在ΔABD 和ΔAEC中,∴ΔABD≌ΔAEC(SAS).三、各种方法的灵活应用例5、在ΔABC中,∠ACB=2∠B,如图(1)所示,当∠C=90°,AD为∠BAC的平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.(1)如图(2)所示,当∠C≠90°,AD为∠BAC的平分线时,线段AB,AC,CD又有怎样的数量关系?请写出你的猜想并证明.(2)如图(3)所示,当AD为ΔABC的外角∠CAF的平分线时,线段AB,AC,CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.〔解析〕(1)首先在AB上截取AE=AC,连接DE,易证ΔADE≌ΔADC(SAS),则可得∠AED=∠ACD,ED=CD,又由∠ACB=2∠B,得∠AED=2∠B,即∠B=∠BDE,易得DE=CD=BE,则可得AB=AC+CD.(2)首先在BA的延长线上截取AE=AC,连接ED,易证ΔEAD≌ΔCAD,可得ED=CD,∠AED=∠ACD,又由∠ACB=2∠B,易证DE=EB,则可得AC+AB=CD.解:(1)猜想:AB=AC+CD.证明如下:如图(1)所示,在AB上截取AE=AC,连接DE,∵AD为∠BAC的平分线,∴∠BAD=∠CAD.∵AD=AD,∴ΔADE≌ΔADC(SAS),∴∠AED=∠ACD,ED=CD.∵∠ACB=2∠B,∴∠AED=2∠B.∵∠AED=∠B+∠EDB,∴∠B=∠EDB,∴EB=ED,∴EB=CD,∴AB=AE+BE=AC+CD.(2)猜想:AB+AC=CD.证明如下:如图(2)所示,在BA的延长线上截取AE=AC,连接ED.∵AD平分∠EAC,∴∠EAD=∠CAD.在ΔEAD与ΔCAD中,AE=AC,∠EAD=∠CAD,AD=AD,∴ΔEAD≌ΔCAD(SAS).∴ED=CD,∠AED=∠ACD.∴∠FED=∠ACB,又∵∠ACB=2∠B,∴∠FED=2∠B,∵∠FED=∠B+∠EDB,∴∠EDB=∠B,∴EB=ED.∴EA+AB=EB=ED=CD.∴AC+AB=CD.[规律方法] 在几何证明的过程中,当题目中的已知条件无法解决问题时,我们可以适当地添加辅助线来构造全等三角形,添加辅助线时要先分析题目中的已知条件,然后合理地作辅助线,辅助线添加得正确与否是解决问题的关键.。
人教版初二数学上册:全等三角形判定一(SSS,SAS)(基础)知识讲解
全等三角形判定一(SSS ,SAS )(基础)【学习目标】1.理解和掌握全等三角形判定方法1——“边边边”,和判定方法2——“边角边”; 2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等. 【要点梳理】【高清课堂:379109 全等三角形判定一,基本概念梳理回顾】 要点一、全等三角形判定1——“边边边” 全等三角形判定1——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C .要点二、全等三角形判定2——“边角边” 1. 全等三角形判定2——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【典型例题】类型一、全等三角形的判定1——“边边边”【高清课堂:379109 全等三角形的判定(一)同步练习4】1、已知:如图,△RPQ 中,RP =RQ ,M 为PQ 的中点.求证:RM 平分∠PRQ .【思路点拨】由中点的定义得PM =QM ,RM 为公共边,则可由SSS 定理证明全等. 【答案与解析】证明:∵M 为PQ 的中点(已知), ∴PM =QM在△RPM 和△RQM 中,()(),,RP RQ PM QM RM RM ⎧=⎪=⎨⎪=⎩已知公共边∴△RPM ≌△RQM (SSS ).∴ ∠PRM =∠QRM (全等三角形对应角相等). 即RM 平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.类型二、全等三角形的判定2——“边角边”2、(2016•泉州)如图,△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°,点E 在AB 上.求证:△CDA ≌△CEB .【思路点拨】根据等腰直角三角形的性质得出CE=CD ,BC=AC ,再利用全等三角形的判定证明即可.【答案与解析】证明:∵△ABC 、△CDE 均为等腰直角三角形,∠ACB=∠DCE=90°, ∴CE=CD ,BC=AC ,∴∠ACB ﹣∠ACE=∠DCE ﹣∠ACE , ∴∠ECB=∠DCA ,在△CDA 与△CEB 中,∴△CDA ≌△CEB .【总结升华】本题考查了全等三角形的判定,熟记等腰直角三角形的性质是解题的关键,同时注意证明角等的方法之一:利用等式的性质,等量加等量,还是等量. 举一反三: 【变式】(2014•房县三模)如图,C 是线段AB 的中点,CD 平分∠ACE ,CE 平分∠BCD ,CD=CE .求证:△ACD ≌△BCE .【答案】证明:∵C 是线段AB 的中点,∴AC=BC ,∵CD 平分∠ACE ,CE 平分∠BCD , ∴∠ACD=∠ECD ,∠BCE=∠ECD , ∴∠ACD=∠BCE , 在△ACD 和△BCE 中,∴△ACD ≌△BCE (SAS ).3、如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案与解析】AE =CD ,并且AE ⊥CD 证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形 ∴AB =BC ,BD =BE 在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE≌△CBD(SAS)∴AE=CD,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC=90°∴AE⊥CD【总结升华】通过观察,我们也可以把△CBD看作是由△ABE绕着B点顺时针旋转90°得到的.尝试着从变换的角度看待全等.举一反三:【变式】已知:如图,AP平分∠BAC,且AB=AC,点Q在PA上,求证:QC=QB【答案】证明:∵ AP平分∠BAC∴∠BAP=∠CAP在△ABQ与△ACQ中∵∴△ABQ≌△ACQ(SAS)∴ QC=QB类型三、全等三角形判定的实际应用4、(2014秋•兰州期末)如图,点D为码头,A,B两个灯塔与码头的距离相等,DA,DB为海岸线.一轮船离开码头,计划沿∠ADB的角平分线航行,在航行途中C点处,测得轮船与灯塔A和灯塔B的距离相等.试问:轮船航行是否偏离指定航线?请说明理由.【思路点拨】只要证明轮船与D点的连线平分∠ADB就说明轮船没有偏离航线,也就是证明∠ADC=∠BDC.要证明角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【答案与解析】解:此时轮船没有偏离航线.理由:由题意知:DA=DB,AC=BC,在△ADC和△BDC中,,∴△ADC≌△BDC(SSS),∴∠ADC=∠BDC,即DC为∠ADB的角平分线,∴此时轮船没有偏离航线.【总结升华】本题考查了全等三角形的应用,解答本题的关键是:根据条件设计三角形全等,巧妙地借助两个三角形全等,寻找对应角相等.要学会把实际问题转化为数学问题来解决.举一反三:【变式】工人师傅经常利用角尺平分一个任意角,如图所示,∠AOB是一个任意角,在边OA,边OB上分别取OD=OE,移动角尺,使角尺两边相同的刻度分别与D、E重合,这时过角尺顶点P的射线OP就是∠AOB的平分线,你能先说明△OPE与△OPD全等,再说明OP平分∠AOB吗?【答案】证明:在△OPE与△OPD中∵OE OD OP OP PE PD=⎧⎪=⎨⎪=⎩∴△OPE≌△OPD (SSS)∴∠EOP=∠DOP(全等三角形对应角相等)∴ OP平分∠AOB.附录资料:《三角形》全章复习与巩固(基础)知识讲解【学习目标】1.认识三角形并能用符号语言正确表示三角形,理解并会应用三角形三边之间的关系.2.理解三角形的高、中线、角平分线的概念,通过作三角形的三条高、中线、角平分线,提高学生的基本作图能力,并能运用图形解决问题.3.能够运用三角形内角和定理及三角形的外角性质进行相关的计算,证明问题.4.通过观察和实地操作知道三角形具有稳定性,知道四边形没有稳定性,了解稳定性与没有稳定性在生产、生活中的广泛应用.5.了解多边形、多边形的对角线、正多边形以及镶嵌等有关的概念;掌握多边形内角和及外角和,并能灵活运用公式解决有关问题,体验并掌握探索、归纳图形性质的推理方法,进一步培养说理和进行简单推理的能力. 【知识网络】【要点梳理】要点一、三角形的有关概念和性质 1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.要点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围. 2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.要点诠释:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外. (2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线.要点诠释:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.要点诠释:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.要点二、三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.要点诠释:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.要点三、三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.要点四、多边形及有关概念1. 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.要点诠释:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.要点五、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数) .要点诠释:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和; ②已知多边形内角和,求其边数.2.多边形外角和:n 边形的外角和恒等于360°,它与边数的多少无关.要点诠释:(1)外角和公式的应用:①已知外角度数,求正多边形边数; ②已知正多边形边数,求外角度数. (2)多边形的边数与内角和、外角和的关系:①n 边形的内角和等于(n -2)·180°(n≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.要点六、镶嵌的概念和特征1、定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同. 要点诠释:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边. (2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用. 【典型例题】类型一、三角形的三边关系1. (2016•丰润区二模)若三角形的两条边长分别为6cm 和10cm ,则它的第三边长不可能为( )A .5cmB .8cmC .10cmD .17cm【思路点拨】直接利用三角形三边关系得出第三边的取值范围,进而得出答案. 【答案与解析】解:∵三角形的两条边长分别为6cm 和10cm , ∴第三边长的取值范围是:4<x <16, ∴它的第三边长不可能为:17cm . 故选:D .【总结升华】此题主要考查了三角形三边关系,正确得出第三边的取值范围是解题关键. 【高清课堂:与三角形有关的线段 例1】举一反三【变式】判断下列三条线段能否构成三角形.(1) 3,4,5; (2) 3,5,9 ; (3) 5,5,8. 【答案】(1)能; (2)不能; (3)能.2.若三角形的两边长分别是2和7,则第三边长c 的取值范围是_______. 【答案】59c <<【解析】三角形的两边长分别是2和7, 则第三边长c 的取值范围是│2-7│<c<2+7,即 5<c<9.【总结升华】三角形的两边a 、b ,那么第三边c 的取值范围是│a -b│<c<a+b. 举一反三【变式】(浙江金华)已知三角形的两边长为4,8,则第三边的长度可以是________(写出一个即可)【答案】5,注:答案不唯一,填写大于4,小于12的数都对.类型二、三角形中重要线段3. (江苏连云港)小华在电话中问小明:“已知一个三角形三边长分别为4,9,12,如何求这个三角形的面积?”小明提示:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是( ) .【答案】C【解析】三角形的高就是从三角形的顶点向它的对边所在直线作垂线,顶点和垂足之间的线段.解答本题首先应找到最长边,再找到最长边所对的顶点.然后过这个顶点作最长边的垂线即得到三角形的高.【总结升华】锐角三角形、直角三角形、钝角三角形都有三条高,并且三条高所在的直线交于一点.这里一定要注意钝角三角形的高中有两条高在三角形的外部.举一反三【变式】如图所示,已知△ABC,试画出△ABC各边上的高.【答案】解:所画三角形的高如图所示.4.如图所示,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC =8cm,求边AC的长.【思路点拨】根据题意,结合图形,有下列数量关系:①AD=BD,②△BCD的周长比△ACD的周长大3.【答案与解析】解:依题意:△BCD 的周长比△ACD 的周长大3cm , 故有:BC+CD+BD-(AC+CD+AD)=3. 又∵ CD 为△ABC 的AB 边上的中线,∴ AD =BD ,即BC-AC =3. 又∵ BC =8,∴ AC =5. 答:AC 的长为5cm .【总结升华】运用三角形的中线的定义得到线段AD =BD 是解答本题的关键,另外对图形中线段所在位置的观察,找出它们之间的联系,这种数形结合的数学思想是解几何题常用的方法. 举一反三【变式】如图所示,在△ABC 中,D 、E 分别为BC 、AD 的中点,且4ABC S △,则S 阴影为________.【答案】1类型三、与三角形有关的角5、(2014春•新泰市期末)已知:如图,在△ABC 中,AD 是BC 边上的高,AE 是∠BAC 平分线,∠B=50°,∠DAE=10°, (1)求∠BAE 的度数; (2)求∠C 的度数.【思路点拨】(1)根据AD 是BC 边上的高和∠DAE=10°,求得∠AED 的度数;再进一步根据三角形的外角等于和它不相邻的两个内角的和求解;(2)根据(1)的结论和角平分线的定义求得∠BAC 的度数,再根据三角形的内角和定理就可求得∠C 的度数. 【答案与解析】 解:(1)∵AD 是BC 边上的高,∴∠ADE=90°.∵∠ADE+∠AED+∠DAE=180°,∴∠AED=180°﹣∠ADE﹣∠DAE=180°﹣90°﹣10°=80°. ∵∠B+∠BAE=∠AED,∴∠BAE=∠AED﹣∠B=80°﹣50°=30°. (2)∵AE 是∠BAC 平分线,∴∠BAC=2∠BAE=2×30°=60°. ∵∠B+∠BAC+∠C=180°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣60°=70°.【总结升华】本题主要考查了三角形的内角和定理、角平分线的定义以及三角形的外角性质.【高清课堂:与三角形有关的角例1、】举一反三:【变式】已知,如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.【答案】解:已知△ABC中,∠C=∠ABC=2∠A设∠A=x则∠C=∠ABC=2xx+2x+2x=180°解得:x=36°∴∠C=2x=72°在△BDC中, BD是AC边上的高,∴∠BDC=90°∴∠DBC=180°-90°-72°=18°类型四、三角形的稳定性6. 如图所示,木工师傅在做完门框后,为防止变形常常像图中那样钉上两条斜拉的木板条(即AB、CD),这样做的数学道理是什么?【答案与解析】解:三角形的稳定性.【总结升华】本题是三角形的稳定性在生活中的具体应用.实际生活中,将多边形转化为三角形都是为了利用三角形的稳定性.类型五、多边形内角和及外角和公式7.一个多边形的内角和等于它的外角和的5倍,它是几边形?【思路点拨】本题实际告诉了这个多边形的内角和是.【答案与解析】设这个多边形是边形,则它的内角和是,∴,解得.∴这个多边形是十二边形.【总结升华】本题是多边形的内角和定理和外角和定理的综合运用. 只要设出边数,根据条件列出关于的方程,求出的值即可,这是一种常用的解题思路.举一反三【变式】(2015•徐州)若正多边形的一个内角等于140°,则这个正多边形的边数是.【答案】9.解:∵正多边形的一个内角是140°,∴它的外角是:180°﹣140°=40°,边数:360°÷40°=9.类型六、多边形对角线公式的运用8.一个十二边形有几条对角线.【思路点拨】根据多边形对角线条数公式,把边数代入计算即可.【答案与解析】解:∵过十二边形的任意一个顶点可以画9条对角线,∴十二个顶点可以画12×9条对角线,但每条对角线在每个顶点都数了一次,∴实际对角线的条数应该为12×9÷2=54(条)∴十二边形的对角线共有54条.【总结升华】对于一个n边形的对角线的条数,我们可以总结出规律条,牢记这个公式,以后只要用相应的n的值代入即可求出对角线的条数,要记住这个公式只有在理解的基础之上才能记得牢.举一反三【变式】一个多边形共有20条对角线,则多边形的边数是().A.6 B.7 C.8 D.9【答案】C;类型七、镶嵌问题9.分别用形状、大小完全相同的①三角形木板;②四边形木板;③正五边形木板;④正六边形木板作平面镶嵌,其中不能镶嵌成地板的是( )A、①B、②C、③D、④【答案】C【总结升华】用多边形组合成平面图形,实质上是相关多边形“交接处各角之和能否拼成一个周角”的问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形(一)SSS【知识要点】1.全等图形定义:两个能够重合的图形称为全等图形. 2.全等图形的性质:(1)全等图形的形状和大小都相同,对应边相等,对应角相等 (2)全等图形的面积相等3.全等三角形:两个能够完全重合的三角形称为全等三角形(1)表示方法:两个三角形全等用符号“≌”来表示,读作“全等于” 如DEF ABC ∆∆与全等,记作ABC ∆≌DEF ∆(2)符号“≌”的含义:“∽”表示形状相同,“=”表示大小相等,合起来就是形状相同,大小也相等,这就是全等.(3)两个全等三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.(4)证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS ”.如图,在ABC ∆和DEF ∆中⎪⎩⎪⎨⎧===DF AC EF BC DEABABC ∆∴≌DEF ∆【典型例题】例1.如图,ABC ∆≌ADC ∆,点B 与点D 是对应点,︒=∠26BAC ,且︒=∠20B ,1=∆ABC S ,求ACD D CAD ∠∠∠,,的度数及ACD ∆的面积.例2.如图,ABC ∆≌DEF∆,cm CE cm BC A 5,9,50==︒=∠,求EDF ∠的度数及CF 的长.例3.如图,已知:AB=AD ,AC=AE ,BC=DE ,求证:CAD BAE ∠=∠例4.如图AB=DE ,BC=EF ,AD=CF ,求证:(1)ABC ∆≌DEF ∆ (2)AB//DE ,BC//EFA D例5.如图,在,90︒=∠∆C ABC 中D 、E 分别为AC 、AB 上的点,且BE=BC ,DE=DC ,求证:(1)AB DE ⊥;(2)BD 平分ABC ∠ (角平分线的相关证明及性质)【巩固练习】1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形;④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )A 、①④B 、①②C 、②③D 、③④2.如图,ABD ∆≌CDB ∆,且AB 和CD 是对应边,下面四个结论中 不正确的是( )A 、CDB ABD ∆∆和的面积相等 B 、CDB ABD ∆∆和的周长相等C 、CBD C ABD A ∠+∠=∠+∠ D 、AD//BC 且AD=BC3.如图,ABC ∆≌BAD ∆,A 和 B 以及C 和D 分别是对应点,如果︒=∠︒=∠35,60ABD C ,则BAD ∠的度数为( )A 、︒85B 、︒35C 、︒60D 、︒804.如图,ABC ∆≌DEF ∆,AD=8,BE=2,则AE 等于( ) A 、6 B 、5 C 、4 D 、35.如图,要使ACD ∆≌BCE ∆,则下列条件能满足的是( ) A 、AC=BC ,AD=CE ,BD=BE B 、AD=BD ,AC=CE ,BE=BD C 、DC=EC ,AC=BC ,BE=AD D 、AD=BE ,AC=DC ,BC=EC6.如图,ABE ∆≌DCF ∆,点A 和点D 、点E 和点F 分别是对应点,则AB= ,=∠A ,AE= ,CE= ,AB// ,若BC AE ⊥,则DF 与BC 的关系是 .7.如图,ABC ∆≌AED ∆,若=∠︒=∠︒=∠︒=∠BAC C EAB B 则,45,30,40 ,=∠D ,=∠DAC .8,AE=AD ,则ABE ∆ACD ∆,所以=∠AEB,=∠BAE ,=∠BAD .D 第4题图第5题图B第6题图第7题图 第8题图 第9题题图9.如图,ABC ∆≌DEF ∆,︒=∠90C ,则下列说法错误的是( ) A 、互余与F C ∠∠ B 、互补与F C ∠∠C 、互余与E A ∠∠D 、互余与D B ∠∠10.如图,ACF ∆≌DBE ∆,cm CD cm AD ACF E 5.2,9,110,30==︒=∠︒=∠,求D ∠的度数及BC 的长.11.如图,在ABD ABC ∆∆与中,AC=BD ,AD=BC ,求证:ABC ∆≌ABD ∆全等三角形(一)作业1.如图,ABC ∆≌CDA ∆,AC=7cm ,AB=5cm.,则AD 的长是( ) A 、7cm B 、5cm C 、8cm D 、无法确定2.如图,ABC ∆≌DCE ∆,︒=∠︒=∠62,48E A ,点B 、C 、E 在同一直线上,则ACD ∠的度数为( )A 、︒48B 、︒38C 、︒110D 、︒623.如图,ABC ∆≌DEF ∆,AF=2cm,CF=5cm ,则AD= .4.如图,ABE ∆≌ACD ∆,︒=∠︒=∠25,100B A ,求BDC ∠的度数.5.如图,已知,AB=DE ,BC=EF ,AF=CD ,求证:AB//CDAEAD CAB CDEACF6.如图,已知AB=EF ,BC=DE ,AD=CF ,求证:①ABC ∆≌FED ∆②AB//EF7.如图,已知AB=AD ,AC=AE ,BC=DE ,求证:CAE BAD ∠=∠FE全等三角形(二)【知识要点】定义:SAS两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS ”,几何表示如图,在ABC ∆和DEF ∆中,ABC EF BC E B DE AB ∆∴⎪⎩⎪⎨⎧=∠=∠=≌)(SAS DEF ∆【典型例题】【例1】 已知:如图,AB=AC ,AD=AE ,求证:BE=CD.【例2】 如图,已知:点D 、E 在BC 上,且BD=CE ,AD=AE ,∠1=∠2,由此你能得出哪些结论?给出证明.【例3】 如图已知:AE=AF ,AB=AC ,∠A=60°,∠B=24°,求∠BOE 的度数.【例4】 如图,B ,C ,D 在同一条直线上,△ABC ,△ADE 是等边三角形, 求证:①CE=AC+DC ; ②∠ECD=60°.【例5】如图,已知△ABC 、△BDE 均为等边三角形。
求证:BD +CD=AD 。
C AD B EC ABCE【巩固练习】1.在△ABC 和△C B A '''中,若AB=B A '',AC=C A '',还要加一个角的条件,使△ABC ≌△C B A ''',那么你加的条件是( )A .∠A=∠A ' B.∠B=∠B ' C.∠C=∠C ' D.∠A=∠B ' 2.下列各组条件中,能判断△ABC ≌△DEF 的是( ) A .AB=DE ,BC=EF ;CA=CD B.CA=CD ;∠C=∠F ;AC=EFC .CA=CD ;∠B=∠E D.AB=DE ;BC=EF ,两个三角形周长相等 3.阅读理解题:如图:已知AC ,BD 相交于O ,OA=OB ,OC=OD.那么△AOD 与△BOC 全等吗?请说明理由.△ABC 与△BAD 全等吗?请说明理由.小明的解答:21∠=∠ AOD ≌△BOC而△BAD=△AOD+△ADB △ABC=△BOC+△ 所以△ABC ≌△BAD(1)你认为小明的解答有无错误;(2)如有错误给出正确解答;4.如图,点C 是AB 中点,CD ∥BE ,且CD=BE ,试探究AD 与CE 的关系。
5.如图,AE 是,BAC 的平分线∠AB=AC(1)若D 是AE 上任意一点,则△ABD ≌△ACD ,说明理由. (2)若D 是AE 反向延长线上一点,结论还成立吗?请说明理由.6.如图,已知AB=AC ,EB=EC ,请说明BD=CD 的理由DOA=OB OD=OC全等三角形(二)作业1.如图,已知AB=AC ,AD=AE ,BF=CF ,求证:BDF ∆≌CEF ∆。
2.如图,△ABC ,△BDF 为等腰直角三角形。
求证:(1)CF=AD ;(2)CE ⊥AD 。
3.如图,AB=AC ,AD=AE ,BE 和CD 相交于点O ,AO 的延长线交BC 于点F 。
求证:BF=FC 。
4.已知:如图1,AD ∥BC ,AE=CF ,AD=BC ,E 、F 在直线AC 上,求证:DE ∥BF 。
5. 如图,已知AB ⊥AC ,AD ⊥AE ,AB=AC ,AD=AE , 求证:(1)BE=DC ,(2)BE ⊥DC.6、已知,如图A 、F 、C 、D 四点在一直线上,AF=CD ,AB//DE ,且AB=DE ,求证:(1)△ABC ≌△DEF (2)∠CBF=∠FECAB CE D FA C EFAD E CB F O 1 2 DCABE FD ABQCPE7、已知:如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:BD=CE8、如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG,(1)观察猜想BE与DG之间的大小关系,并证明你的结论。
(2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,请说出旋转过程,若不存在,说明理由。
9、已知:如图,AD是BC上的中线 ,且DF=DE.求证:BE∥CF.10、已知C为AB上一点,△ACN和△BCM是正三角形.求证:(1)AM=BN(2)求∠AFN大小。
11、已知如图,F在正方形ABCD的边BC边上,E在AB的延长线上,FB=EB,AF交CE于G,求∠AGC的度数.12、如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC 的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.CNMBAEDFFDACE BFDACGEB全等三角形(三)ASA【知识要点】ASA如图,在ABC∆与DEF ∆中EB DE AB D A ∠=∠=∠=∠ ∴)(ASA DEF ABC ∆≅∆ASA公理推论(AAS 公理):有两角和其中一角的对边对应相等的两个三角形全等.【典型例题】【例1】下列条件不可推得ABC ∆和'''C B A ∆全等的条件是( ) A 、 AB=A 'B ','A A ∠=∠,'C C ∠=∠B 、 AB= A 'B ',AC=A 'C ',BC='B C 'C 、 AB= A 'B ',AC=A 'C ','B B ∠=∠ D 、 AB= A 'B ','A A ∠=∠,'B B ∠=∠【例2】已知如图,DE AB DE AB D A //,,=∠=∠,求证:BC=EF【例3】如图,AB=AC ,C B ∠=∠,求证:AD=AE【例4】已知如图,43,21∠=∠∠=∠,点P 在AB 上,可以得出PC=PD 吗?试证明之.【例5】如图,321∠=∠=∠,AC=AE ,求证:DE=BCAD A B【例6】如图,21,∠=∠∠=∠D A ,AC ,BD 相交于O , 求证:①AB=CD ②OA=OD【巩固练习】1.如图,AB//CD ,AF//DE ,BE=CF ,求证:AB=CD2.如图,AD//BC ,O 为AC 中点,过点O 的直线分别交AD ,BC 于点M ,N ,求证:AM=CN3.求证:两个全等三角形ABC 与A 'B 'C '的角平分线AD 、A 'D '相等4.如图,AB ,CD 相交于O ,E ,F 分别在AD ,BC 上,若FOB EOD ∆≅∆,求证:COF AOE ∆≅∆5.如图,AB//CD ,AD//BC ,求证:AB=CD6.已知,如图AB=DB ,21,∠=∠∠=∠E C ,求证:AC=DEAD'B D'C 'CBABD全等三角形(三)作业1.已知,如图,CD AF D A =∠=∠∠=∠,21,,求证:AB=DE2.如图,已知CAD BAE ADE AED ∠=∠∠=∠,,求证:BE=CD3.已知如图,AB=AD ,CAE BAD D B ∠=∠∠=∠,,求证:AC=AE4.已知如图,在ABC ∆中,AD 平分BC AD BAC ⊥∠,,求证:ABD ACD ∆≅∆5.已知如图,cm AC ABD DCA DBC ACB 10,,=∠=∠∠=∠,求BD 的长(要求写出完整的过程)6、如图ABC △中,∠B =∠C ,D ,E ,F 分别在AB,BC,AC 上,且BD=CE,∠DEF=∠B 求证:ED=EFCEA D ECBF7、 (1)如图1,以的边、为边分别向外作正方形和正方形,连结,试判断△ABC 与△AEG 面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a 平方米,内圈的所有三角形的面积之和是b 平方米,这条小路一共占地多少平方米?8、已知:如图 , AD 为CE 的垂直平分线 , EF ∥BC.求证:△EDN ≌△CDN ≌△EMN .9、 已知:如图 , AB=AC , AD=AE , 求证:△OBD ≌△OCE10、已知:如图 , AB=CD , AD=BC ,O 为BD 中点 , 过O 作直线分别与DA 、BC 的延长线交于E 、F .求证:OE=OF11、如图在△ABC 和△DBC 中 , ∠1=∠2 , ∠3=∠4 , P 是BC 上任意一点.求证:PA=PD.12、已知 :如图 , 四边形 ABCD 中 , AD ∥BC , F 是AB 的中点 , DF 交CB 延长线 于E , CE=CD . 求证:∠ADE=∠EDC .13、已知:如图 , OA=OE , OB=OF , 直线FA 与BE 交于C , AB 和EF 交于O ,求证:∠1=∠2.AG FC BD E (图1)全等三角形(四)强化训练1、如图,△ABC 是等边三角形,点D 、E 、F 分别是线段AB 、BC 、CA 上的点, (1)若AD BE CF ==,问△DEF 是等边三角形吗?试证明你的结论; (2)若△DEF 是等边三角形,问AD BE CF ==成立吗?试证明你的结论.2、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )3、△ABC 中,∠A=90°,AB=AC ,D 为BC 中点,E 、F 分别在AC 、AB 上,且DE ⊥DF ,试判断DE 、DF 的数量关系,并说明理由.4、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G .(1)求证:BF AC =;(2)求证:12CE BF =;5、 如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=,.将BOC △绕点C 按顺时针方向旋转60得ADC △,连接OD . (1)求证:COD △是等边三角形;(2)当150α=时,试判断AOD △的形状,并说明理由;(3)探究:当α为多少度时,AOD △是等腰三角形?BDA E F C H GB A BCDO110 α7、过等腰直角三角形直角顶点A作直线AM平行于斜边BC,在AM上取点D,使BD=BC,且DB与AC所在直线交于E,求证:CD=CE。