第一章 质点运动学1

合集下载

第1章 质点运动学

第1章 质点运动学

100t
4
t3
0
3
x x0
t
t0 vx (t)dt 0
t
(100t
4
t3 )dt
50t 2
1
t4
0
3
3
第一章 质点运动学
1-5 曲线运动
一、匀速圆周运动
1、匀速圆周运动的加速度
A v B
vA B vB
设质△|量=圆点 t|时vvv周处|存'刻。的在在,质半圆。v质点径周根点从为上据在PR点的加Q,运P处速处圆动,度,心到速的速为Q度定度O点为义,为有vv可v在,速;' 得t其度时在瞬中增刻t+时|,v
解:由
a
ann a
v2 R
n
dv dt
v
ds dt
20
0.6t 2 (m
/
s)
当t=1s时
an
v2 r
(20 0.6)2 200
m / s2
1.88m / s2
a
dv dt
1.2t
1.2m / s2
a a2 an2 2.23m / s2
dt
v0 v
0
v
v e(1.0s1 )t 0
由速度的定义: v
dy dt
v e(1.0s1 )t 0
y
t
dy v0 e dt (1.0s1 )t
y 10 1 e( 1.0s1 )t
0
0
由以上结果, t 时, v 0,此时y 10m。
但实际情况是:t 9.2s时, v 0,此时y 10m。
加速度分量
加速度大小 加速度余弦方向
a | a| a2x a2y a2z

大学物理第1章质点运动学

大学物理第1章质点运动学

则有
ax 2 R cost;
a y 2 R sint
加速度的大小
2 2 2 2 2 2 a ax a2 ( R cos t ) ( R sin t ) R y
根据矢量的点积运算,分别计算
v r [(R sint )i (R cost ) j ] [(R cost )i ( R sint ) j ] 0 2 2 v a [(R sint )i (R cost ) j ] [( R cost )i ( R sint ) j ] 0
大学物理
第一章 质点运动学
1.1 运动学的一些基本概念 1.1.1、参考系(reference frame)和坐标系(coordinate) 参考系:为了描述物体的运动而选取的参考标准物体。 (运动描述的相对性) 坐标系:直角坐标系、自然坐标系、极坐标系、球坐标系等. 说明 在运动学中,参考系的选择是任意的;在动力学中则不然 1.1.2、时间和空间的计量 1、时间及其计量 时间表征物理事件的顺序性和物质运动的持续性。时间测量的 标准单位是秒。1967年定义秒为铯—133原子基态的两个超精细 能级之间跃迁辐射周期的9192631770倍。量度时间范围从宇宙 年龄1018s(约200亿年)到微观粒子的最短寿命 10-24s.极限的时 间间隔为普朗克时间10-43s,小于此时间,现有的时间概念就不适 用了。
运动学中的两类问题
1、已知质点的运动学方程求质点的速度、加速度等问
题常称为运动学第一类问题.
r r (t )
微分
v, a
2、由加速度和初始条件求速度方程和运动方程的问题称 为运动学的第二类问题.
a , v0 , r0

第1章-质点运动学

第1章-质点运动学

位移
rrrBArxBxBAii
rA
yA
yB
j j
y
yB A r
r y A A
rB
B
yB yA
(xB xA)i ( yB yA) j
xi yj
o
xA
xB x
xB xA
若质点r 在 (三x维B 空x间A中)i运动( yB
yA)
j
(zB
z A )k
位移的大小为 r x2 y2 z2
23
1-2 求解运动学问题举例
例3 有 一个球体在某液体中竖直下落, 其初速度
为 v0 10 j , 它的加速度为 a 1.0v j. 问:(1)经
过多少时间后可以认为小球已停止运动, (2)此球体
在停止运动前经历的路程有多长?
解:由加速度定义
v dv 1.0
t
dt
,
v v0
0
a dv 1.0v dt
v v2
位矢量
t
0,
t 0
0,
tv
rv
a
dv dt
v2 r
en
2ren
法向单 位矢量
vB
r
o
en
v
vB
vA et r
vA
31
1-3 圆周运动
三alitlami tm 变00速litdmdv圆vvvt0tt周nt运vtavt动dvdttrev2ttleeit切mntv向a0nn加aaevn速tntneen度t 和法向v加2v速tove度2vnrevtv1vn1
一 圆周运动的角速度和角加速度
角坐标 (t)
角速度 (t) d (t)
dt
速率

大学物理——第1章-质点运动学

大学物理——第1章-质点运动学
沿逆时针方向转动角位移取正, 沿顺时针方向转动角位移取负.
21
★ 角速度 ω 大小: ω = lim 单位:rad/s ★ 角加速度 β
v
θ dθ = t →0 t dt
v
ω dω d2θ 大小: β = lim = = 2 t →0 t dt dt
单位:rad/s2
22
★ 线量与角量的关系
dS = R dθ
16
取CF的长度等于CD
v v v v vτ vn v v v = lim + lim 加速度: a = lim = aτ + an t →0 t →0 t →0 t t t
v v 当 t →0 时,B点无限接近A点,vA与 vB v v 的夹角 θ 趋近于零,vτ 的极限方向与 vA v 相同,是A点处圆周的切线方向;vn的极 v 限方向垂直于 vA ,沿圆轨道的半径,指向
y
v v v r = r′ + R
v v v dr dr ′ dR 求导: = + dt dt dt
o
y′ M v u v v r′ r v o′ R
x′
z′
x
z v称为质点M的绝对速度, v称为质点M的相对速度, υ υ′
v 称为牵连速度. u
27
v v υ =υ′ +u
v
in 例1-6 一人向东前进,其速率为 υ1 = 50m/ m ,觉得风从 正南方吹来;假若他把速率增大为υ2 = 75m/ m , in
t
9
初始条件:t = 0 , x = 5m 【不定积分方法】
速度表达式是: v = 4+ 2t
x = ∫ vdt = ∫ (4 + 2t)dt = 4t + t 2 + C

力学舒幼生第一章质点运动学

力学舒幼生第一章质点运动学
d v
通过积分,可以得到轨道方程 r r()
33
例 狐狸沿圆周跑,狗从圆心出发,速度都 为v,圆心、狗、狐狸始终连成一直线。
求狗的速度、加速度和轨道方程。
狐狸的角速度 d v
dt R

狗有横向和纵向速度
v r,vr v2v2
狗的横向和纵向加速度
a2d dd d r t trd d2 2t,ard d22 rtr d d t2


A (r ,,t) A re r A e
与直角坐标系的变换
xrco ,syrsin
27
正交基矢与极坐标的微分关系
正交基矢只依赖 ,与 r 无关
当θ变化时,正交基矢同时改变方向 满足微分关系
der
de
de de r
e
er
d r(t)

参考空间:沿左右、前后、上下三对方向无限扩展, 构成三维平直空间
参考系:参考空间+测量时间的时钟
z 坐标系:在参考空间中任选一点作为原点, 可建立各种坐标系。
时间的零点也可任选
O
y
x
相对运动的参考系
两个参考系之间若有相对运动,
他们观测同一个运动物体 是否会得到相同的距离和时间?
v
z
O
y
x
质点
由繁到简 将物体模型化为一个点——质点
dt dt
加速度
v(t)
dR
d
R


⊙k
a d v d R d R R v d td t d t a 心 v , a 切 R
22
曲线的曲率和曲率半径
曲率 d dl

第一章 质点运动学

第一章 质点运动学
16
物理学
已知:x(t ) 1.0t 2.0,y(t ) 0.25t 2 2.0, 解 (1) 由题意可得
dx dy vx 1.0, vy 0.5t dt dt t 3s 时速度为 v 1.0i 1.5 j
速度 v 与
x 轴之间的夹角
第一章 质点运动学
第一章 质点运动学
14
物理学
讨论 一运动质点在某瞬 y 时位于矢径 r ( x, y ) 的 y 端点处,其速度大小为
dr ( A) dt dr ( C) dt
注意
dr (B) dt
r (t )
x
o
x
dx 2 dy 2 ( D) ( ) ( ) dt dt
dr dr dt dt
1.5 0 arctan 56.3 1.0
17
物理学
x(t ) 1.0t 2.0, (2)运动方程 2 y(t ) 0.25t 2.0,
消去参数 t 可得轨迹方程为
y 0.25x x 3.0
2
轨迹图 t 4s
y/m
6 2
t 4s
t 2s 4
-6 -4 -2 0
dx B v A v x i i vi dt l dy vB v y j j o dt 2 2 2 x y l dx dy 两边求导得 2 x 2y 0 dt dt
第一章 质点运动学

y
A
v
x
20
物理学
dy x dx y 即 dt y dt B x dx vB j y dt dx o v dt vB vtan j

第一章_质点运动学

第一章_质点运动学
v
dv − 1 ) t dt , ( − 1 .0 s − 1 ) t = (−1.0s ∫0 v = v0e ∫v0 v
dy ( −1.0 s −1 ) t v= = v0 e dt
dv a= = ( − 1.0s −1 ) v dt
o
v0
∫0 d y = v 0 ∫0 e
y t
(-1.0s ) t
(2) 运动方程 )
x ( t ) = (1m ⋅ s ) t + 2m
y (t ) = ( 1 m ⋅ s −2 )t 2 + 2 m 4
1 -1 2 y = ( m ) x − x + 3m 4
y/m
6
−1
由运动方程消去参数 t 可得轨迹方程为
轨迹图
t = − 4s
t = 4s
t = − 2s 4
位移的物理意义 A) 确切反映物体在空间位置的变化 与路径无关, 确切反映物体在空间位置的变化, 与路径无关, 只决定于质点的始末位置. 只决定于质点的始末位置 B)反映了运动的矢量性和叠加性 )反映了运动的矢量性和叠加性. 了运动的矢量性和叠加性
第一章
质点运动学
∆ r = ∆ xi + ∆ yj + ∆ zk
z
2
r
r= r = x +y +z
第一章
质点运动学
位矢
r 的方向余弦
cos α = x r cos β = y r cos γ = z r
y
β
P
r
P
α , β , γ 分别是
r
o
和Ox轴, Ox轴
z
γ
α
x
Oy轴和Oz轴之间的夹角。 Oy轴和Oz轴之间的夹角。 轴和Oz轴之间的夹角

(完整版)大学物理01质点运动学习题解答

(完整版)大学物理01质点运动学习题解答

第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。

解:答案是 D。

2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。

简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。

3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。

简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。

4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。

质点运动学

质点运动学

例1-1 已知质点在xy平面内运动,其运动方程是 x R cost ,y R sin t 。 式中R、 均为正常数。求(1)质点的轨迹方程;(2)质点在任意时刻的位矢、 速度和加速度;(3)质点在 t1 0 到 t2 3 2 时间内的位移。
解:(1) 由运动方程消去时间参量,可得质点轨迹方程
O
y
x
s
p2
p1
r
r1 r2
| r | p1p2 | r2 r1 |
s : 路程即弧线 p1p 2
路程s是标量
| r |
|r| || r2| |r1| |
图中 s | r | |r|
平均速度
平均速率
r v t
v2
2 ac tan
vy vx
(3)求加速度 a
3 y


2 1 a a
dv d a (2 i 2t j ) 2 j dt dt

a
2

-1
-2 -3
a
4

x
沿y轴负方向 矢量有两个重要特征: 大小 方向
a a
例1-2 汽车在半径 R 300.0m 的轨道上加速运动,其路程与时间的关系是 s 5.0t 2 0.1t 3 m ,求时 t 1.0s ,汽车的加速度大小。
(
v x i v y j vz k
dt

dt
( xi yj zk )
dt
i
dt
j
dt
k
r (t )
O
v
v | v |
2 2 2 vx v y vz

大学物理第一章质点运动学(1)

大学物理第一章质点运动学(1)

v2 KK
由图中的几何关系,知:
vx

v1 KK
10(m /
s)
y(北)
vy

(vK2 K

v1 KK
)tg
45
v
45
15 10 5(m / s)
10ms-1 15ms-1 x(东)
O
风速的大小:
v 102 52 11.2(m / s)
风速的方向:
2q
由υy=0有 得射高
t v0 sin q g
ym

v02 sin 2 2g
q
讨论:抛射初速度大小v0一定的情况下,抛射角q = 45o 时, 射程最大,q = 90o 时,射高最大。
抛体在任意时刻的运动方程
v dr dt
r tvdt 0
y
v0t
1 gt2 2

t 0
任意时刻速度分量为
y
v x v0 cosq v y v0 sinq gt v0y
积分可得运动方程
v v0
g
θ
x v0 cosq t
y

v0
sinq

t

1 2
gt
2
o
v0 x
x
消去t 得轨迹方程
y

x
t
anq

2v
2 0
g cos2
q
x2
由y =0得射程
xm

v02
sin g
(
x2 h2 u) u
x
x2
h2 dx x2 h2 dt


u2h2 x3

第一章质点运动学1大学物理教程北京邮电大版

第一章质点运动学1大学物理教程北京邮电大版

质点运动的方法。
x
1
gt2
2
1.2.1 位置矢量 运动方程
1 位置矢量 确定质点P某一时刻在坐标系里的位置的物理量称位
r 置矢量, 简称位矢 。
r
xi
yj
zk
y
y
r
*P
k j
式中 i、j 、k 分别为x、y、z
方向的单位矢量。
z ox
i
x
例如: r 2i 3 j 5k z
r 位矢 的大小为: r r x2 y2 z2
x
dx dt
r dr r2 h2 dt
按题意
0
dr dt
由此得船速
x 0
r r2 h2
0
x2 h2 x
v = vxi = -v0
x2 h2 i x
上式中的负号表示船的速度v沿X轴的负方向。
加速度:
ax
dvx dt
0
h2 x2 h2
dx dt
v02h2 x3
a
v02h 2 x3
i
负号表示加速度a的方向与X轴的正方向相反。 由于a与v同向,所以小船是加速靠岸的。
在直角坐标系中分解:
r xi yj zk
在直角坐标系中分 解:
rA xAi yA j zAk rB xBi yB j zB k
则在直角坐标系 Oxyz 中其位移为
r (xB xA)i ( yB yA) j (zB zA)k
xi yj zk
y
yB A r
r y A A
z = z(t)
该r运动2方ti程矢(8量式t:2 )
j
方程组消去t就得到质点的轨迹方程。 例运动学方程为x=2t, y=8-t2,轨迹方程为

质点运动学(1)

质点运动学(1)

第一章质点运动学基本要求一、理解质点模型和参照系、坐标系等概念。

二、掌握位置矢量、位移、速度、加速度等物理量的概念及其关系。

三、掌握直线运动、圆周运动及抛体运动中运动方程及速度、加速度等物理量的计算。

四、理解运动叠加原理及其应用。

内容提要一、参照系、坐标系和质点参照系用来描述物体运动而选作参考的物体或物体系。

运动的相对性决定描述物体运动必须选取参照系。

运动学中参照系可任选,不同参照系中物体的运动形式(如轨迹、速度等)可以不同。

坐标系固定在参照系上的一组有刻度的射线、曲线或角度。

坐标系为参照系的数学抽象。

参照系选定后,坐标系还可以任选。

在同一参照系中用不同的坐标系描述同一运动,物体的运动形式相同,但其运动形式的数学表述却可以不同。

常用坐标系有直角坐标系、球坐标系、柱坐标系等。

质点 如果物体的线度和形状在所研究的现象中不起作用,或所起的作用可以忽略不计,我们就可以近似地把物体看作是一个没有大小和形状的理想物体,称为质点。

二、质点的位置矢量和运动方程位置矢量(位矢、矢径) 用来确定某时刻质点位置(用矢端表示)的矢量。

k j i r r z y x z y x ++== ),,(位置矢量的大小:222z y x r ++==r位置矢量的方向余弦:r zr y r x ===γβαcos ,cos ,cos运动方程 质点位置矢量坐标和时间的函数关系称为质点的运动方程。

k j i r )()()()(t z t y t x t ++=或 )(t x x =,)(t y y =,)(t z z = 三、位移和路程位移(矢量) 质点在一段时间(t ∆)内位置的改变(r ∆)叫作它在这段时间内的位移。

)()(t t t r r r -∆+=∆路程(标量) 质点实际运动轨迹的长度s ∆。

注意:Δt →0时,位移大小等于路程,即r d ds =四、速度和加速度速度 位置矢量对时间的变化率。

平均速度:t∆∆=r v (瞬时)速度:dt d t t r r v =∆∆=→∆lim 0k j i dtdz dt dy dt dx ++= 速度方向:沿轨迹上质点所在点的切线,并指向质点前进的方向。

第一章 质点 运动学

第一章  质点 运动学

rB
r
思考题 质点作曲线运动,判断下列说法的正误 注: r (或称 r |) 位矢大小的变化量
r r
r r
s r
s r
s r
平均速度: v
r t
单位: m s 1
平均速度的方向与 t 时间内位移的方向一致
质点作变加速圆周运动,切 向加速度和法向加速度的大小方 向
当子弹从枪口射出时,椰子刚好从树上由静止 自由下落. 试说明为什么子弹总可以射中椰子 ?
例 设在地球表面附近有一个可视为质点的抛体,
以初速 v0 在 Oxy 平面内沿与 Ox 正向成 角抛出, 并
略去空气对抛体的作用. (1)求抛体的运动方程和其
y
B
角速度:
lim
t d dt

R
s
A

角加速度:
t 0

O
x
lim
t 0
t

d dt
圆周运动的角量描述
角 速 度 的 单位: 弧度/秒(rads-1) ; 角加速度的单位: 弧度/平方秒(rad s-2) 。
讨论:
(1) 角加速度对运动的影响: 等于零,质点作匀速圆周运动; 不等于零但为常数,质点作匀变速圆周运动; 随时间变化,质点作一般的圆周运动。
RES 1.5 108 3 RE 6.4 10
2.4 10 1
4
地球上各点的公转速度相差很小,忽略地球自身尺 寸的影响,作为质点处理。


研究地球自转
v R
地球上各点的速 度相差很大,因 此,地球自身的 大小和形状不能 忽略,这时不能 作质点处理。

第一章- 质点运动学

第一章- 质点运动学

间位置而设置的坐标系统,是固结于参考系上的一个数
学抽象。 常见的坐标系:
角向
r

径向
•P(r,α)
极轴
z
P•(x,y,z)
r
Or
y
x
极坐标系
r n
τr
P(n,τ)
O
•P(r,ϕ ,θ ) r
直角坐标系
自然坐标系
球坐标系
§1-2 描述质点运动的物理量
1-2-1 位置矢量与运动方程
上海
热带风暴
1 PDF 文件使用 "pdfFactory Pro" 试用版本创建
设质点: t+
t ∆t
时位时移刻刻::: AB∆,, rvrvrBvA
z
A v
∆rv
B
rA
v rB
O
y
x
平均速度: vr = ∆rv ∆t
单位:m⋅s-1
平均速度的方向与∆t时间内位移的方向一致
2 PDF 文件使用 "pdfFactory Pro" 试用版本创建
2. 瞬时速度(速度) 精细地描述质 z
avt
=
dv dt
evt
=
d2s dt 2
evt
v 讨论 det
dt
∆evt
=
v et
(t
+
∆t)
-
v et
(t
)
当: ∆t → 0 , ∆θ → 0
有 ∆et = et ⋅ ∆θ = ∆θ
方向 ∆evt ⊥ evt
v d et dt
= lim ∆evt ∆t→0 ∆t
= lim ∆θ ∆t→0 ∆t

第一章质点运动学

第一章质点运动学

3v 1.73v, y 轴正向 沿
作业:习题1-7,1-9
练习:习题1-6
提示:1-1题为第一类质点运动学问题,即 运动方程 加速度
速度 加速度
1-2题为第二类质点运动学问题,即
速度 运动方程
§1-3
圆周运动
y
y
平面极坐标 质点在A点的位置由 (r,θ)来确定. 以(r,θ)为坐标的 坐标系称为平面极坐标系
x x(t ) 分量式 y y (t ) z z(t )
—参数方程
2.运动方程
y
y (t )
r (t )
P
x(t )
从上式中消去参数 t ,可 z (t ) z 得质点运动的轨迹方程:
o
x
f ( x, y, z) 0
选择题.已知一质点位置矢量的表达式为 : r 2i 5 j 37k ,则该质点作 (A) 匀速直线运动。 (B) 静止。 (C) 抛物线运动。 (D)一般曲线运动。
物 理 学
第一章
质点运动学
§1-1
质点运动的描述
一 参考系 质点 1.参考系 为描述物体运动而选定的标准物,称 为参考系。 参考系选取的不同,物体运动的描 述不同,即对物体运动的描述具有相 对性。 2.质点 忽略物体的体积与形状,将其抽象为 具有同等质量的点,称为质点. 质点是理想模型.
二 位置矢量
x(t ) 1.0t 2.0, (2)运动方程 2 y(t ) 0.25t 2.0, 则有 t x 2 ,带入 y 中可消去参数 t ,
可得轨迹方程为
轨迹图
t 4 s
6
y 0.25x x 3.0
2
y/m

大学物理上-知识点

大学物理上-知识点

1、 质点运动量的描述(1) 位置矢量r:运动方程: k t z j t y i t x t r )()()()(++=;模为 222z y x r ++=位移矢量:)()(t r t t r r -∆+=∆;注意:一般r r ∆≠∆(2) 速度:x y z dr v v i v j v k dt ==++,分量式:x y z v ,v ,v dx dy dzdt dt dt===; 速度的大小:222x y z dr ds v v v v v dt dt==++=≡,v 为速率。

速度方向沿曲线切线指向运动的前方。

平均速度:x y z r v v i v j v k t ∆==++∆,分量式:,,x y z x y zv v v t t t∆∆∆===∆∆∆ (3) 加速度:22x y z dv d r a a i a j a k dt dt===++,加速度大小:222xy z a a a a =++ 分量式:222222,,y x z x y z dv dv dv d x d y d za a a dt dt dt dt dt dt ======; 自然坐标系:t e v v =,n n t t e a e a a+=,t dv a dt =(有正负!),2n v a ρ=,此处v 为速率,ρ为曲率半径。

2、 圆周运动:角位置θ,角速度d dt θω=,角加速度:d dtωα=; 角量与线量的关系:θR s =,R v ω=,t dv a R dt α==,22n va R Rω==3、 抛体运动:0000200000cos 1sin 2x x x x y y y y a v v v x v ta g v v gt v gt y v t gt θθ=→==→=⎧⎪⎨=-→=-=-→=-⎪⎩其中0θ为起抛角。

22t n a a g += 4、 相对运动速度变换: AB AC CB v v v =+ 或表示为 AB AC BC v v v =- 加速度变换:AB AC CB a a a =+ 或 AB AC BC a a a =-(注意:这是矢量加法,用平行四边形作图或分解为分量计算;注意下标的规律。

力学赵凯华第一章质点运动学1教学内容

力学赵凯华第一章质点运动学1教学内容

5
第六页,共25页。
v
dr
dx
i
dt dt
a
d
( dr )
d
(
dx
)i
d
2
x
i
dt dt dt dt dt 2
x x(t)
v dx dt
a d2x dt 2
6
第七页,共25页。
例. 某质点运动学方程为
r
A
(t
t
2
)B
, , 为常数,
A, B为常矢量。试证明
它作匀加速直线运动。
v
v
v
17
第十八页,共25页。
a
dv
dvx
i
dv y
j
dvz
k
dt dt dt dt
d2x dt 2
i
d2y dt 2
j
d2z dt 2
k
axi ay j azk
ax
dvx dt
d2x dt 2
ay
dv y dt
d2y dt 2
az
dvz dt
d2z dt 2
18
第十九页,共25页。
v
r
t
v
lim
r
dr
t0 t dt
z
P1
·
ΔS
Δr
·P2
r(t) r(t+Δt )
0
y
v
dr
ds
v
x
dt dt
14
第十五页,共25页。
v v(t t) v(t)
a
lim
t0
v t
dv dt
d 2r dt 2

第1章 质点运动学

第1章 质点运动学
r
dr υ= dt
方向: 方向:切线方向
速度是位置矢量对时间的一阶导数
第一章 质点运动学 9
3) 平均速率和瞬时速率 平均速率
S υ= t
S dS υ = lim = dt 0 t → t
运动路径
P (t1 )
瞬时速率 讨论
υ
r
s
Q(t2 )
速度的矢量性、瞬时性和相对性。 1) 速度的矢量性、瞬时性和相对性。 2) 速度和速率的区别


第一章 质点运动学
18
§1-4 用自然坐标表示平面曲线运 动中的速度和加速度
自然坐标系 (用自然坐标 表示质点位置) 用自然坐标S表示质点位置 表示质点位置)
设质点作曲线运动,且轨迹已知, 设质点作曲线运动,且轨迹已知,则 选参考点和正方向即可建立自然坐标。 选参考点和正方向即可建立自然坐标。运 动方程为: 动方程为: s = s(t) 单位切向量τ : 长度为 ,沿切向指向运动方向 长度为1, 单位法向量 n: 长度为 ,沿法向指向凹的一侧 长度为1,
S = Rωt
第一章 质点运动学 7
§1-2 质点的位移、速度和加速度 质点的位移、
一、位移
描述质点位置变化的物理量 几何描述: 几何描述: PQ 数学描述: 数学描述: r
= r ( t + t ) r ( t )
r( t )
P S Q r
r ( t + t )
r
讨论 (1) 位移是矢量(有大小,有方向) 位移是矢量(有大小,有方向) 位移不同于路程 r ≠ S (2) 位移与坐标选取无关 (3) 由质点的始末位置确定, 由质点的始末位置确定, 与中间运动过程无关 (4) 分清 r 与r 的区别
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 质点运动学 教学基本要求
一 掌握位置矢量、位移、加速度等描述质点运 动及运动变化的物理量 . 理解这些物理量的矢量性、 瞬时性和相对性 . 二 理解运动方程的物理意义及作用 . 掌握运用 运动方程确定质点的位置、位移、速度和加速度的方 法,以及已知质点运动的加速度和初始条件求速度、 运动方程的方法 . 三 能计算质点作圆周运动时的角速度、角加 速度、切向加速度和法向加速度 . 四 理解伽利略速度变换式, 并会用它求简单的质 点相对运动问题 .
2 2
2
讨论 位移与路程
(A)P1P2 两点间的路程 s ' 是不唯一的, 可以是 s或 是唯一的. 而位移r (B) 一般情况, 位移 大小不等于路程.
y
r (t1 )
O
s
'
p1 r
r (t2 )
s
p2
(C)什么情况 r s?
r s
z
x
不改变方向的直线运动; 当 t 0 时 r s .

速度
1 平均速度
在t 时间内, 质点从点 A 运动到点 B, 其位移为
y
B
r (t t)
s r
A
r r (t t ) r (t ) ( xB xA )i ( yB y A ) j o xi yj
r (t)
P2
r
r xi yj zk z 2 2 2 r x y z
注意
P ( x1 , y1 , z1 ) 1 P2 ( x2 , y2 , z2 )
x
r r
2
位矢长度的变化
2 2
r x2 y2 z 2 x1 y1 z1
平均速度大小
2 瞬时速度
当 t 简称速度
0 时平均速度的极限值叫做瞬时速度,
当 t 0 时, dr ds ds v et dt
r dr v lim t 0 t dt x y v lim i lim j t 0 t t 0 t
z
z (t )
o
x

注:运动方程包含了质点运动的全部信息,是运动 学的核心。
轨迹方程:
从运动方程中消去时间参数所得到的坐标之间的关系。 例如:
r 3 sin ti 3 cos tj 6 6

6 t t
——运动方程
写成分 量式

x 3 sin y 3 cos

6
x y 9
2 2
可见运动方程也是轨迹的参数方程
3 位移(位移矢量) y
y
rA
A
r
B
rB
x
x
o
r ( xB xA )i ( yB y A ) j xi yj
r rB rA
rB rA r
经过时间间隔 t 后, 质点位置矢量发生变化, 由 始点 A 指向终点 B 的有向线段 AB 称为点 A 到 B 的 位移矢量 r . 位移矢量也简称位移.
第一章 质点运动学
1-1 质点运动的描述 一 参考系 质点
1 参考系 为描述物体的运动而选择的标准物叫做参考系.
2 质点
忽略物体形状和大小的一种物理模型。

位置矢量 运动方程
位移
y P(x,y,z)
1 位置矢量
r
(位矢)
在坐标系中,描述物体在任 一时刻空间位置的物理量。 在直角坐标系里:
r
x
⒈定义:由坐标原点O指向 物体所在P点的有向线段。
v vx vy
三维空间中:
dx dy dz v i j k dt dt dt
vx i v y j v z k
s 平均速率 v t
速度的性质:
瞬时速率
ds v dt
⑴矢量性: 2 2 2 v vx v y v z 大小: 方向:沿轨道的切向,并指向运动方向。 ⑵相对性:
x
t 时间内, 质点的平均速度
x y r i j v t t t
平均速度
r xi yj
或 其中:
v vx i v y j
v 与 r 同方向.
vx 、vy是平均速度在ox、oy轴上的分量
x 2 y 2 v ( ) ( ) t t
y
若质点在三维空间中运动,
yB yA
rA
A
r
B
则在直角坐标系 Oxyz 中其位
移为
rB
xA xB xB x A
yB y A
o
x
r ( xB x A )i ( yB y A ) j ( zB z A )k
xi yj zk
y y cos r r
r
x
z
j γ. α i o k
x
z
z z cos r r
位矢的性质:
Y`
⑴矢量性:
方向:由O点指向P点。 ⑵相对性: 同一时刻,某一质点的位矢, 相对于不同的坐标系而不同。
Y o` o
P X` X
op o' p oo'
⑶瞬时性:
rop rop' roo'
o
z
位矢在坐标轴上投影x.y.z

y
y
P (x,y,z) β
位矢可表示为:
r op xi yj zk
其中:i、 j、 k分别为ox、oy、 oz坐标轴的单位矢量。
位矢大小: r op x 2 y 2 z 2 r 方向余弦: x x cos r r
r
=
r B rA
y

r B rA
A
不等
rA
Δr rB c Δr
B x
o
⑵位移的大小是否等于路程,即
r ? S
(△S代表路程)(答案 :单向直线运动时相等。) ⑶位移大小的极限是否等于路程的极限,即
lim r dr ? lim s
(答案 :相等。)
速度:
作 业
P23 习题1-6、1-8
先抄题目,再做作业!
当质点做曲线运动时, 质点在某一点的速度方向 就是沿该点曲线的切线方向.
x y v lim i lim j t 0 t t 0 t
在直角坐标系下
y
vy
v
vx
dx dy x v i j v i v j o x y dt dt 其中vx 、 vy 是在坐标轴上的分量,叫速度分量。 dx dy 哪么分速度应为: v x i vy j dt dt

dx 2 dy 2 ( ) ( ) dt dt
y
讨论
rA
A
Δr rB c Δr
B
o
x
2、瞬时速度的大小是否等于速率? 3、速度分量Vx<0意味着什么?
dr 4 v dt
那么是否
d x y v dt
2
2
dr dt
(答案:2、相等。 3、速度方向沿X轴负向。4、不对)
[例]质点的运动方程为 讨论质点的运动性质。 解: 运动方程的矢量式: o y ω x
(D)位移是矢量, 路程是标量.
问题:
⑴位矢之差的大小是否等于位矢大小的差, 即
r
=
r B rA

r B rA
⑵位移的大小是否等于路程,即
r ? S
⑶位移大小的极限是否等于路程的极限,即
lim r dr ? lim s
⑴位矢之差的大小是否等于位矢大小的差, 即
相对于不同的参考系,速度不同。(除光速外) ⑶瞬时性:
v v(t)
讨论
注意
dr dr dt dt
y A
rA rB c Δr
Δr
B x
o
1、一运动质点在某瞬时位于位矢 处,其速度大小为
r ( x, y )的端点
dr (A) dt dr (C) dt
dr (B) dt
(D)
位移的大小为
4 路程( s ): 质点实际运动轨迹的长度.
x 2 y 2 z 2 r
位移的物理意义
A) 确切反映物体在空间 位置的变化, 与路径无关,只 决定于质点的始末位置. B)反映了运动的矢量性 和叠加性.
y
r (t1 )
O
P r 1
r (t2 )
s
同一质点在不同时刻的位矢,相对于同一坐标 系一般不同。
2 运动方程
位矢随时间变化的函数关系
质点运动方程:
r r (t ) x(t )i y(t ) j z (t )k
x x(t )
或写成分量式
y
y (t )
P(x,y,z,t) r (t )
x(t )
y y (t ) z z (t )
相关文档
最新文档