第二讲:直线的投影、两直线的相对位置(平行、相交、交叉)
合集下载
第二章 直线的投影
如果两直线都不平行于投影轴,则有两个投影面投 影平行则可以认为直线平行。 如果两直线都平行于某投影面,则必须根据第三投 影或比例关系判断。
2.已知直线 AB 平行直线 CD,试完成直线
例:已知直线AB平行直线CD,试完成直线AB
AB 和 CD 的三面投影。 和CD的三面投影。
题解: c′〝
c
NEW
c
c
b
点C的投影在直线的同面投影上,并 符合点的投影规律。
二、D点不在 直线AB上。
a A d b a b
NEW
a b
D
d
B
d
例:判断点M是否在直线CD 上 解法1:
NEW
点M的投影不符合点在直线上的投影规律, 故M点不在直线CD上。
例:判断点M是否在直线CD 上
直线 水 平 线
直观图
投影图
投影特征 1、水平投影ab 反映实长 及直线的倾角β 和γ 。 2、正面投影a b //o x轴, 侧面投影a"b "//oy w 轴,且 均短于实长。 1、正面投影e f 反映实长 及直线的倾角α 和γ 。 2、水平投影ef //o x轴,侧 面投影e"f "//oz 轴,且均 短于实长。 1、侧面投影e"f" 反映实 长及直线的倾角α 和β 。 2、水平投影e f//oy H 轴,正 面投影e f //oz 轴,且均 短于实长。
• 1. 直线上的点,其投影必在该直线的同面投影上。 • 2. 直线上的点,分割线段之比,在投影后保持不变。
三.直线上的点 (一) 直线上点的投影特性
点C在直线上 AB上
1.直线上的点,
其投影必在该 直线的同面投 影上。
2.直线上的点,
2.已知直线 AB 平行直线 CD,试完成直线
例:已知直线AB平行直线CD,试完成直线AB
AB 和 CD 的三面投影。 和CD的三面投影。
题解: c′〝
c
NEW
c
c
b
点C的投影在直线的同面投影上,并 符合点的投影规律。
二、D点不在 直线AB上。
a A d b a b
NEW
a b
D
d
B
d
例:判断点M是否在直线CD 上 解法1:
NEW
点M的投影不符合点在直线上的投影规律, 故M点不在直线CD上。
例:判断点M是否在直线CD 上
直线 水 平 线
直观图
投影图
投影特征 1、水平投影ab 反映实长 及直线的倾角β 和γ 。 2、正面投影a b //o x轴, 侧面投影a"b "//oy w 轴,且 均短于实长。 1、正面投影e f 反映实长 及直线的倾角α 和γ 。 2、水平投影ef //o x轴,侧 面投影e"f "//oz 轴,且均 短于实长。 1、侧面投影e"f" 反映实 长及直线的倾角α 和β 。 2、水平投影e f//oy H 轴,正 面投影e f //oz 轴,且均 短于实长。
• 1. 直线上的点,其投影必在该直线的同面投影上。 • 2. 直线上的点,分割线段之比,在投影后保持不变。
三.直线上的点 (一) 直线上点的投影特性
点C在直线上 AB上
1.直线上的点,
其投影必在该 直线的同面投 影上。
2.直线上的点,
直线投影基本知识
b
b a O YW
B a b a X
X
A
O
a
b
Y
a
b YH
投影特性: 1、ab OX ; a b OZ 2、a b=AB 3、反映、角的真实大小
(2)投影面平行线
侧平线— 平行于侧面投影面的直线
Z a A a X b a Z a
O
a b B b Y b YH
①垂直于投影面的直 线在该投影面上的投影, 积聚成一点(积聚性)。 ②平行于投影面的直 线在该投影面上的投影, 与直线本身平行且等长。
a
③倾斜于投影面的直线在该投影面上的投影,短于直 线的真长。
2 直线对投影面的各种相对位置
一般位置直线:对三个投影面H、V、W都倾斜
水平线(∥H面,对V、W面都倾斜) 投影面平行线 正平线(∥V面,对H、W面都倾斜) (只平行于一个投影面) 侧平线(∥W面,对H、V面都倾斜) 投影面垂直线 (垂直于一个投影面, 正垂线(⊥V 面,∥ H面,∥ W面) 平行于另外两个投影面) 侧垂线(⊥W 面,∥ H面,∥ V面) 铅垂线(⊥H面,∥ V面,∥ W面)
b'(d') c'(a') e' a c(e) d(f) b" a" c" e" f" d" B D
f'
b
A
C E F
AB为 EF为
正 平
线 线
CD为 一般位置直 线
水 平
(3)投影面垂直线
铅垂线— 垂直于水平投影面的直线
Z a A b a
a
b X
Z
a
b
第二讲:直线的投影、两直线的相对位置(平行、相交、交叉)详解
投影面平行线—— 水平线(平行于H面且…) 正平线(平行于V面且…) 侧平线(平行于W面且…)
2020/9/21
4
正平线—平行于V面,倾斜于H、W面的直线。
Z
b
实长
b
b
a
B
a
a
a
A
b
X
O
YW
正平线的投影特性:
1、正面a 投影反b 映直线段的实a长。该投b影与OX轴、OZ轴
的夹角,分别反映该直线与H、W面的倾角。YH (a b=AB, 反映、角的真实大小);
b’
1.根据直角三角形的组成,利
用a’b’及实长作直角三角形;
O 2 .求出Y坐标差;
3. 利用Y坐标差求ab投影。
思考:若将已知条件实长换 b 成=30°,则如何解题?
18
直线上的点 V
直线上点的投影特性—— a
➢从属性:若点在直线上, 则点的投影必在直线的同面 投影上,且符合点的投影规 律。反之,亦然。
对c(水d)平投影面的倾角——
对正立投影面的倾角——
对侧立投影面的倾角——
各种位置直线的投影特性
直线在三投影面体系中分为:
平行于某一投影面,且 倾斜于另两个投影面
垂直于某一投影面
投影面平行线 特殊位置直线 投影面垂直线
水平线 正平线 侧平线
铅垂线 正垂线 侧垂线
与三个投影面都倾斜 一般位置直线
各种位置直线的投影特性
b
YH
9
各种位置直线的投影特性
一般位置直线(投影面倾斜线)
与三个投影面都倾斜的直线。
b Z
投影特性:
b
三个投影都是缩短了的倾
斜线段, 都不反映空间线段的
2020/9/21
4
正平线—平行于V面,倾斜于H、W面的直线。
Z
b
实长
b
b
a
B
a
a
a
A
b
X
O
YW
正平线的投影特性:
1、正面a 投影反b 映直线段的实a长。该投b影与OX轴、OZ轴
的夹角,分别反映该直线与H、W面的倾角。YH (a b=AB, 反映、角的真实大小);
b’
1.根据直角三角形的组成,利
用a’b’及实长作直角三角形;
O 2 .求出Y坐标差;
3. 利用Y坐标差求ab投影。
思考:若将已知条件实长换 b 成=30°,则如何解题?
18
直线上的点 V
直线上点的投影特性—— a
➢从属性:若点在直线上, 则点的投影必在直线的同面 投影上,且符合点的投影规 律。反之,亦然。
对c(水d)平投影面的倾角——
对正立投影面的倾角——
对侧立投影面的倾角——
各种位置直线的投影特性
直线在三投影面体系中分为:
平行于某一投影面,且 倾斜于另两个投影面
垂直于某一投影面
投影面平行线 特殊位置直线 投影面垂直线
水平线 正平线 侧平线
铅垂线 正垂线 侧垂线
与三个投影面都倾斜 一般位置直线
各种位置直线的投影特性
b
YH
9
各种位置直线的投影特性
一般位置直线(投影面倾斜线)
与三个投影面都倾斜的直线。
b Z
投影特性:
b
三个投影都是缩短了的倾
斜线段, 都不反映空间线段的
3-直线的投影及两只线的相对位置关系
一边平行于投影面的直角的投 影特性
例题 3
练习1
练 习 2
练习3
练习4
各种位置的直线的投影及相对位置关系
一、各种位置的直线的投影特性及应用
投影面平行线 投影面垂直线 一般位置直线
二、直线的相对位置关系
相交 平行 交叉
投影特性 及应用
一、特殊位置直线的投影及特性
1. 投影面平行线的投影及其特性:正平 线、侧平线、水平线
2. 投影面垂直线的投影及其特性:正垂 线、侧垂线、铅垂线
二、一般位置直线的投影及其 真长与倾角的图解方法
1. 一般位置直线的投影特性
2. 一般位置的直线的真长与倾角的图解 方法
直角 三角 形法 求直 线实 长的 基本 原理
三、 直线上的点的投影特性
1. 在直线的同面投影上
2. 按比例等分线段
2~4 两直线的相对位置
1. 相交
2. 平行
投影 特性
及
3. 交叉
应用
两相交直线的判断方法
两 相 交 直 线 的 投 影
例 题 1
两 平 行 直 线 的 投 影
例题 2
两交叉直线的空间位置及投影
两交叉直线的投影特性----1
重影点 可见性 的判断
交叉直线的投影----2
二、一边平行于投影面的直角的投影
1. 投影特性 2. 应用:例题:求点A到水平线BC的距 离
两直线的相对位置平面的投影
例1:判断点C是否在线段AB上。
点C不在直线AB上
点C在直线AB上
a
b
c
a
b
c
①
o
x
c
②
a
b
c
a
b
●
o
x
例2:判断点K是否在线段AB上。
a
b
●
k
因k不在a b上, 故点K不在AB上。
应用定比性
a
b
k
a
b
k
另一判断法?
Y
H
Y
W
X
Z
O
k
k
a
b
a
b
x
a1
b1
k1
●
例3:已知直线AB,在AB上取点C和D,点C距 H面10mm,点D分割AB成AD:DB=3:1,作点 C和D的两面投影。
2、AD、BC直线的投影不满足 平行条件,又不满足相交条件, 为交叉直线,则A、B、C、D四 点不共面
3、AB不平行于CD
例3:过C点作水平线CD与AB相交。
●
●
c
a
b
b
a
c
d
k
k
d
先作正面投影
O
X
分析: 1、水平线投影特性 2、相交两直线投影特性
例4:判断直线AB与CD的相对位置
X
C
d
a
b
c'
c
a
b
b
a
c
O
X
d
d
15
10
k
k
e'
e
f'
f
b
c
k
a
点C不在直线AB上
点C在直线AB上
a
b
c
a
b
c
①
o
x
c
②
a
b
c
a
b
●
o
x
例2:判断点K是否在线段AB上。
a
b
●
k
因k不在a b上, 故点K不在AB上。
应用定比性
a
b
k
a
b
k
另一判断法?
Y
H
Y
W
X
Z
O
k
k
a
b
a
b
x
a1
b1
k1
●
例3:已知直线AB,在AB上取点C和D,点C距 H面10mm,点D分割AB成AD:DB=3:1,作点 C和D的两面投影。
2、AD、BC直线的投影不满足 平行条件,又不满足相交条件, 为交叉直线,则A、B、C、D四 点不共面
3、AB不平行于CD
例3:过C点作水平线CD与AB相交。
●
●
c
a
b
b
a
c
d
k
k
d
先作正面投影
O
X
分析: 1、水平线投影特性 2、相交两直线投影特性
例4:判断直线AB与CD的相对位置
X
C
d
a
b
c'
c
a
b
b
a
c
O
X
d
d
15
10
k
k
e'
e
f'
f
b
c
k
a
3.第二章 2直线的投影
3' 4'
d' b' 0
D d
X
2 b a H 1 3(4)
b d
判别方法: 判别方法: 若空间两直线交叉,则其三面投影无共有点, 若空间两直线交叉,则其三面投影无共有点, 至少有一对投影不平行。如图所示, 至少有一对投影不平行。如图所示,三面投影 的相交处是重影点。 的相交处是重影点。
应当强调指出的是: 应当强调指出的是 判断两直线是平行、 判断两直线是平行、相 交或交叉,必须对其三面 交或交叉 必须对其三面 投影进行综合分析否则 容易造成误判,如图所示 容易造成误判 如图所示 的两直线,其 的两直线 其V 、H投影 投影 是平行的,但 投影却显 是平行的 但W投影却显 示出两直线是交叉两直 线. 求出侧面投影可知: 求出侧面投影可知:
a′ ′ c9 9 c
●
投影特性:
d′ ′
1′(2′ ) 3′ ′ ′ ′ 4′ ′
●
为什么? 为什么? 两直线相交吗? 两直线相交吗?
b′ ′
●
●
2
●
b d
a
1 3(4 )
●
Ⅰ、Ⅱ是V面的重影点, 面的重影点, 面的重影点。 Ⅲ、Ⅳ是H面的重影点。 面的重影点
同名投影可能相交, ★ 同名投影可能相交, 交点” 但 “交点”不符合空间 一个点的投影规律。 一个点的投影规律。 交点” ★ “交点”是两直线上 重影点的投影, 的一 对重影点的投影, 用其可帮助判断两直线 的空间位置。 的空间位置。
2.定比性:由初等几何知识可以证明,C点分直线 2.定比性 由初等几何知识可以证明,C点分直线 定比性: AB及其投影成定比. AB及其投影成定比 及其投影成定比. :AC:CB=ac’ :c’ :cb=a’’c c’’b 即:AC:CB=ac’ :c’b’=ac :cb=a’’c’’ : c’’b’’
第二讲 直线的投影
投影面垂直面
铅垂面
相仿性
a b Z c c β b a o c b
相仿性
a YW
投影面 垂直面的投 影特性是:
X
积聚性
γ
1)在其所垂直的投影面上,投影为斜直 线,有积聚性;该斜直线与投影轴的夹角反映 该平面对相应投影面的倾角; 2)如用平面图形表示平面,则在另外两 个投影面上的投影不是实形,但有相仿性。
作业
• 2-10,2-11,2-12,2-14,2-15
例1 试根据各种位置直线的投影特性判断三棱锥上六 条 棱边为什么位置的直线。 AB为 水平线 SB为 侧平线
V
;BC为 水平线 ; AC为 侧垂线 ; ;SA为一般位置直线 ; SC为 一般位置直线 。
Z
s'
Z
s"
S a'
X
b'
s b
A B
投影面垂直线 侧垂线(垂直于W面) 垂直于某一投影面
铅垂线(垂直于H面)
一般位置直线
与三个投影面都倾斜的直线
2.1 一般位置直线
直线与H、V 和W 三投影面的夹角分别用 α、β、γ表示。 投影长分别是: a b = AB cosα
ab = AB cosβ ab=AB cosγ
一般位置直线投影特性
YH
名称 铅垂面 (H)
立体图
投影图
投影特性
1)H投影为斜直线, 有积聚性,且反 映、 大小 2)V、W投影不是 实形,但有相仿 性。 1)V投影为斜直线, 有积聚性,且反 映、大小 2)H、W投影不是 实形,但有相仿 性。
正垂面 (V)
侧垂面
(W)
1)W投影为斜直线, 有积聚性,且反 映、大小 2)H、V投影不是 实形,但有相仿 性。
第四节-直线的投影
定比性:AC:CB=a 'c ':c 'b '=ac:cb=a"c" :c "b "
d' b' c' e' a'
X
O
d'
D
a
e
cd
d
b
1、 C点在直线AB上
a
a A
c
c
b
C
ac B
b
b
点C在直线上AB上。
C点在直线AB上
a
c
b
a
c
b
a
c
b
点C的投影在直线的同面投影上,并符合点的 投影规律。
2、D点不在 直线AB上。
既不符合平行两直线的投影特性,又不符合 相交两直线的投影特性
交叉直线的同面投影若相交,其交点并非一 个点的投影,而是两条直线上的两个点的重 影。其重影点的可见性应根据两个点的相对 位置来判别。
两直线交叉
d
a
1(2
)
3 ●
投影特性:
●
●4
c'
c 2
●
b ★ 同名投影可能相交,但 “交点”不符合空间一个点
水平线投影图
e
f e
f
e
EF实长
f
(2 )正平线 反映AB实长
A A
反映AB实长
正平线投影图
(3)侧平线
反映CD实长
c
C
c
d
d
D
c
d
侧平线投影图
c
d
c
d
c CD实长
d
水平平行线的投影特征:
(1)在与其平行的投影面上的投影反映实长; (2)该投影与相应投影轴之间的夹角反映直线与另 外两个投影面的倾角; (3)其余的两个投影平行于投影轴,但不反映实 长。
画法几何及机械制图-两直线的相对位置
a c
平行
§3-4 两线段的相对位置
一、两直线平行
例1 过点E(e、e’)作直线∥AB。
分析:
a’
f’
若使 EF ∥ AB, 须 ef ∥ ab ;ຫໍສະໝຸດ b’e’f’∥a’b’ 。
X
e’ O 作图:
b
e
a
f
解题完毕
§3-4 两线段的相对位置
二、两直线相交
空间两直线相交,其同面投影必相交,且交点的
投影符合点的投影规律。
d
作图:
结论: AB、CD 两交叉直线。
§3-4 两线段的相对位置
本节结束
§3-4 两线段的相对位置
c’
V
Z c'
b’
k'
a’
b' k' B
C a'
d’ X
O
d' X
K
b
D d
k
O c
A
a
b
d Y
k
c a
§3-4 两线段的相对位置
三、两直线交叉
既不平行也不相交的空间两直线称为交叉。
投影图上的交点是重影点。 不符合投影规律
V
c' Z
b'
(2’ ) 1‘
C
d' B
a' Ⅲ
X
Ⅱ
O
b
Ⅰ D
d
Ⅳ Ac
§3-4 两直线的相对位置
一、两直线平行 二、两直线相交 三、两直线交叉
§3-4 两线段的相对位置
一、两直线平行
两直线在空间平行则它们的各组同面投影必平行
平行 即若AB∥CD 则ab∥cd ; a’b’∥c’d’ 。
平行
§3-4 两线段的相对位置
一、两直线平行
例1 过点E(e、e’)作直线∥AB。
分析:
a’
f’
若使 EF ∥ AB, 须 ef ∥ ab ;ຫໍສະໝຸດ b’e’f’∥a’b’ 。
X
e’ O 作图:
b
e
a
f
解题完毕
§3-4 两线段的相对位置
二、两直线相交
空间两直线相交,其同面投影必相交,且交点的
投影符合点的投影规律。
d
作图:
结论: AB、CD 两交叉直线。
§3-4 两线段的相对位置
本节结束
§3-4 两线段的相对位置
c’
V
Z c'
b’
k'
a’
b' k' B
C a'
d’ X
O
d' X
K
b
D d
k
O c
A
a
b
d Y
k
c a
§3-4 两线段的相对位置
三、两直线交叉
既不平行也不相交的空间两直线称为交叉。
投影图上的交点是重影点。 不符合投影规律
V
c' Z
b'
(2’ ) 1‘
C
d' B
a' Ⅲ
X
Ⅱ
O
b
Ⅰ D
d
Ⅳ Ac
§3-4 两直线的相对位置
一、两直线平行 二、两直线相交 三、两直线交叉
§3-4 两线段的相对位置
一、两直线平行
两直线在空间平行则它们的各组同面投影必平行
平行 即若AB∥CD 则ab∥cd ; a’b’∥c’d’ 。
《机械制图》两直线的相对位置
机械制图
MECHANICAL DRAWING
目录
CONTENTS
两直线的相对位置
两直线的相对位置
一、平行两直线
若空间两直线相互平行,则它们的同面投影必然相互平行。反之,如果两直线的各个同面投 影相互平行,则此两直线在空间也一定相互平行。
B
A
D
C
a
b c
d
3
两直线的相对位置 一、平行两直线
平行于某一投影面的两条直线是否平行的判断: 如果两条直线同时平行于某一投影面,必须看 两条直线所平行的那个投影面上的投影平行与否,才能最后确定这两条直线在空间是否互相平行。
7
两直线的相对位置 三、交叉两直线
两直线既不平行也不相交,称两直线交叉 。
8
两直线的相对位置
三、交叉两直线
➢ 交叉两直线可能有一组或二组同面投影 互相平行,但决不可能三组同面投影都 互相平行。
➢ 交叉两直线的同面投影,可能有一组、 二组或三组同面投影都相交,但它们交 点的投影一定不符合点的投影规律。
6
两直线的相对位置
二、相交两直线
在空间两条直线是否相交要区分情况: (1)对于两条一般位置直线,只要根据其任意两组投影,就可确定这两条直线在空间是否相交。 (2)当两条直线中有一条是投影面平行线时,则要看两条直线在三个投影面上的投影交点是否符合 点的投影规律,才能确定两直线是否相交。
两条直线中有一条是投影 面平行线时,两直线是否 相交的判断
➢ 实际上,交叉两直线同面投影的交点是 空间两直线上的对该投影面的一对重影 点。
9
a X
a
1(2) c
2 1 c
d b
b d
两直线的相对位置
三、交叉两直线
MECHANICAL DRAWING
目录
CONTENTS
两直线的相对位置
两直线的相对位置
一、平行两直线
若空间两直线相互平行,则它们的同面投影必然相互平行。反之,如果两直线的各个同面投 影相互平行,则此两直线在空间也一定相互平行。
B
A
D
C
a
b c
d
3
两直线的相对位置 一、平行两直线
平行于某一投影面的两条直线是否平行的判断: 如果两条直线同时平行于某一投影面,必须看 两条直线所平行的那个投影面上的投影平行与否,才能最后确定这两条直线在空间是否互相平行。
7
两直线的相对位置 三、交叉两直线
两直线既不平行也不相交,称两直线交叉 。
8
两直线的相对位置
三、交叉两直线
➢ 交叉两直线可能有一组或二组同面投影 互相平行,但决不可能三组同面投影都 互相平行。
➢ 交叉两直线的同面投影,可能有一组、 二组或三组同面投影都相交,但它们交 点的投影一定不符合点的投影规律。
6
两直线的相对位置
二、相交两直线
在空间两条直线是否相交要区分情况: (1)对于两条一般位置直线,只要根据其任意两组投影,就可确定这两条直线在空间是否相交。 (2)当两条直线中有一条是投影面平行线时,则要看两条直线在三个投影面上的投影交点是否符合 点的投影规律,才能确定两直线是否相交。
两条直线中有一条是投影 面平行线时,两直线是否 相交的判断
➢ 实际上,交叉两直线同面投影的交点是 空间两直线上的对该投影面的一对重影 点。
9
a X
a
1(2) c
2 1 c
d b
b d
两直线的相对位置
三、交叉两直线
直线的投影(共36张PPT)
a
bc=BC
ab b
c
AB
c
b
a
|yA-yB|
小结
1 掌握三类、7种位置直线的投影特性
2 掌握直线上取点的方法
3 掌握直线三种相互位置的投影特性
4 掌握直角投影定理,并会应用作图
P3~P12
1、3、6、8、14、16、17
[例题4] 已知线段AB的投影,试定出属于线段AB的点C的投影, 使 BC 的实长等于已知长度L。
L
AB
c
zA-zB
ab
c
§3-5 两直线的相对位置
一、两直线平行
二、两直线相交 三、两直线交叉
四、判断两交叉直线重影点的可见性
一、两直线平行
d b
c a
a
X
b
b
a
c
a
b
d
c
b
d
c
1.若空间两直线相互平行,则它们的同名投影必然相互平行。反之,如
2.直线垂直于一个投影面
(1)铅垂线 (2)正垂线 (3)侧垂线
3.从属于投影面的直线
二、一般位置直线
(1) 水平线 — 只平行于水平投影面的直线
z
a b
a
b
a
b
A
a
X
O
YW
B
b
a
a
b
b YH
投影特性:1.ab OX ; ab OYW
2. ab=AB
3.反映、 角的真实大小
(2)正平线—只平行于正面投影面的直线
A a §3-6 直角投影定理
[例题8] 过点A作线段EF的垂线AB,并使AB平行于V 面。
a
|xA-xB|
直线的投影
2.投影面垂直线
正垂线
立 体 及 其 三 视 图
投 影 轴 测 图
直 线 投 影 图
直线的投影
铅垂线
侧垂线
投影特性: 在所垂直的
投影面上的投影 积聚为一点;
另外两个投 影反映实长,且 垂直于相应的轴。
直线的投影 二、直线对投影面的各种相对位置及投影特性
3.一般位置直线 对三个投影面都是倾斜的直线称为一般位置直线。
特殊位置直线在三面投影中能直接显示其真长及对投影面的倾角,而一般位 置直线则不能。
用直角三角形法求一般位置直线的真长和倾角。
ΔABD为直角三角形,
其中AB为实长,AD=ab,α
为AB对H面的倾角,BD=Bb-
Db=b'bX- a'aX=ΔZ(直 线段AB两端点的Z坐标差)。
D
因此,已知AB投影,可以
通过ab和ΔZ作辅助直角三
角形求出AB及α角。
直线的投影 三、用直角三角形法求直线的真长及对投影面的倾角
特殊位置直线在三面投影中能直接显示其真长及对投影面的倾角,而一般位 置直线则不能。
用直角三角形法求一般位置直线的真长和倾角。
D
直线的投影 三、用直角三角形法求直线的真长及对投影面的倾角
特殊位置直线在三面投影中能直接显示其真长及对投影面的倾角,而一般位 置直线则不能。
在两直线交叉垂直时,也同样具有上述特性。
直线的投影 六、一边平行于投影面的直角的投影
例5: 如图a所示,求点A到直线BC的距离AK。
分析:由图可知BC∥V面,而AK⊥BC,故根据直 角投影定理可得:a′k′⊥b′c′。
图a
用直角三角形法求AK的实长
投影。投影用粗实线绘制。
直线的投影
第二章直线的投影
二、直线的复辅助投影
例2-10 求点C 到任意倾斜直线AB的距离。
§2-7 直线的辅助投影
各投影都相交,投影的交点符合点 虽然投影也相交,但投影的交点不符 的投影规律,所以AB与CD相交。 合点的投影规律,故EF和GH不相交。
§2-5 两直线的相对位置
例2-3 试判断两直线AB 和CD 是否相交。 解: 各投影的交点不符合点的投影规律, 所以两直线不相交。
§2-5 两直线的相对位置
例2-4 已知平行两直线 AB、CD,试作一直线KL与AB、CD 都相交,且该直线 距H 面为10。 解:
点击后自动演播
§2-5 两直线的相对位置
三、两直线交错
若两直线既不平行也不相交,那必然是交错两直线,也称交 叉两直线,即异面直线。 下面这些都是交错直线。
交错直线同面投影的交点是两直线上一对重影点的投影,对 此重影需进行可见性判断。
§2-5 两直线的相对位置
例2-5 试判断交错两直线AB、CD之重影的可见性。 解: zⅣ>zⅢ,所以4可见,3不可见。
§2-2 直线上的点
一、直线上的点 从属性:直线上的点其投影必在直线的同面投影上。 定比性:直线线段上一点把线段分成两段,其长度之比, 等于这两段在同一投影面上的投影长度之比。
ac∶cb=a'c'∶c'b'= a"c"∶c"b"=AC∶CB
§2-2 直线上的点
例2-1 已知线段EF的两投影,试在其上取一点K,使EK∶KF =3∶4。 解:
求任意倾斜直线段的实长和倾角的基本方法是直角三角形 法。下图表示它的原理和作图过程。
§2-3 直线的倾角和直线段的实长
例2-2 已知直线CD 的正面投影c'd'和点C 的水平投影c,且知 直线CD 对H 面的倾角α=30°,求作线段CD 的H 面投影。 解:
例2-10 求点C 到任意倾斜直线AB的距离。
§2-7 直线的辅助投影
各投影都相交,投影的交点符合点 虽然投影也相交,但投影的交点不符 的投影规律,所以AB与CD相交。 合点的投影规律,故EF和GH不相交。
§2-5 两直线的相对位置
例2-3 试判断两直线AB 和CD 是否相交。 解: 各投影的交点不符合点的投影规律, 所以两直线不相交。
§2-5 两直线的相对位置
例2-4 已知平行两直线 AB、CD,试作一直线KL与AB、CD 都相交,且该直线 距H 面为10。 解:
点击后自动演播
§2-5 两直线的相对位置
三、两直线交错
若两直线既不平行也不相交,那必然是交错两直线,也称交 叉两直线,即异面直线。 下面这些都是交错直线。
交错直线同面投影的交点是两直线上一对重影点的投影,对 此重影需进行可见性判断。
§2-5 两直线的相对位置
例2-5 试判断交错两直线AB、CD之重影的可见性。 解: zⅣ>zⅢ,所以4可见,3不可见。
§2-2 直线上的点
一、直线上的点 从属性:直线上的点其投影必在直线的同面投影上。 定比性:直线线段上一点把线段分成两段,其长度之比, 等于这两段在同一投影面上的投影长度之比。
ac∶cb=a'c'∶c'b'= a"c"∶c"b"=AC∶CB
§2-2 直线上的点
例2-1 已知线段EF的两投影,试在其上取一点K,使EK∶KF =3∶4。 解:
求任意倾斜直线段的实长和倾角的基本方法是直角三角形 法。下图表示它的原理和作图过程。
§2-3 直线的倾角和直线段的实长
例2-2 已知直线CD 的正面投影c'd'和点C 的水平投影c,且知 直线CD 对H 面的倾角α=30°,求作线段CD 的H 面投影。 解:
工程制图--直线的投影 ppt课件
其它二投影面平行线的分析同上p。pt课件
6
投影面平行线
投影面平行线的投影特性概括为: (1)在直线段所平行的投影面上的投影反映实长,且其投影与投轴的夹角反 映直线与另两投影面的倾角; (2)另两投影面平行于相应的投影轴(构成所平行的投影面的两根轴)。
投影面平行线的辨认: (1)当直线的投影有两个平行于投影轴时; (2)第三投影与投影轴倾斜时,则该直线一定是投影面的平行线,且一定平 行于其投影为倾斜线的那个投影面。
一般位置直线。
11
求一般位置直线的实长及对投影面的倾角
一般位置直线的投影不能反应其时常及其对 投影面的倾角,因此,若求其时常及其对投影面 的倾角时有两种方法: 一是利用直角三角形法 二是利用换面法
ppt课件
12
直角三角形法
在直角三角形中,一条直角边为直线的投影长,另一 条直角边为直线的坐标差,则斜边即为该直线的真长; 真长与投影长之间的夹角为直线与该投影面的倾角。
k′
a′
X
a
Z b′
a″
O
b″
K
点
k″
在
直
YW
线
AB
上
k
b YH
ppt课件
16
【例题2】判断点K是否在直线AB上。
a′
k′ b′ X
a
k
Z a″
k″ O
K
点
不
在
直
b″
线
YW
AB
上
b
YpHpt课件
17
【例题3】试在直线AB上确定一点C,使AC:CB=2:3,求C点 的两面投影。
b′
C′
a′
X
O
a c
工程制图4(直线的投影)
本节回顾
• 直线的投影
– 直线投影的定义,直线实长及其与各投影面夹 角的求法
– 直线投影和点投影的关系 – 各种位置直线的投影 – 两直线的相对位置
• 作业
– 习题集17-20页
3-2 直线的投影
一、直线的投影图 二、各种位置直线的投影 三、直线上点的投影 四、两直线的相对位置
一、直线的投影图 z
b’ b”
a’
a”
X
o
YW
b
a
YH
两点决定一条直线。因此,直线直线的的投投影影图可以由直 线上任意两个点的投影来决定。
1. 直线对一个投影面的投影特性
A
B
B
M
A
B
α
A
b
b
a(b)(m) H
b’
c’
Z坐标差
a’
a c
C0
b
三、直线上点的投影
1. 从属性。若点在直线上,则点的各个投影必定在该直线的 同面投影上,并且符合空间一点的投影特性。
2. 定比性。若点在直线上,则点分线段之比等于其投影之比。
AC:CB= ac:cb = a’c’:c’b’ = a”c”:c”b”
b’
z
b”
c’
c”
例6 已知AB∥V面,试过点C作一直线CD与AB垂 直相交。
b’
d’
a’
X
a
d
直线CD与正平线AB所成的 直角正面投影上反映直角。
c’ b
c
例7 求两直线AB、CD的公垂线。
公垂线MN是水平
D N
线 c’
A
n’ d’
a’ m’
M
C
BX
画法几何及土木工程制图 第二章 直线的投影
1、平行两直线投影特性
两直线的同面投影相互平行,且其长度之比等 于投影长度之比。
如何利用投影特性根据投影判断两直线是否平 行?
如果两直线都不平行于投影轴,则有两个投影面投 影平行则可以认为直线平行。
如果两直线都平行于某投影面,则必须根据第三投 影或比例关系判断。
2.已知直线 AB 平行直线 CD,试完成直线
2、水平投影cd ⊥ox轴,侧 面投影c"d" ⊥oz,且均反映
实长。
1、侧面投影积聚成一点
e"(f")。 2、水平投影ef oxH 正面 投影e f oz,且均反映
实长。
总结:投影面垂直线的投影特性
在所垂直的投影面上积聚为一点; 其它两投影垂直于相应的投影轴。 “一点两平行”
三、一般位置直线的投影特性
直线
水 平 线
正 平 线
侧 平 线
直观图
Y
H
Y
投影图
YW
YH
YW
YH
YW
YH
投影特征
1、水平投影ab反映实长 及直线的倾角β和γ。 2、正面投影a b //ox轴, 侧面投影a"b"//oy w 轴,且
均短于实长。
1、正面投影e f 反映实长 及直线的倾角α和γ。 2、水平投影ef //ox轴,侧 面投影e"f "//oz轴,且均
短于实长。
1、侧面投影e"f" 反映实 长及直线的倾角α和β。 2、水平投影ef//oy H 轴,正 面投影e f //oz轴,且均
短于实长。
总结:投影面平行线的投影特性
在所平行的投影面上的投影反映实长;且 反映直线对另外两个投影面的倾角; 其它两投影平行于相应的投影轴,且小于 实长。 “一斜两平行“ ”
第3章 直线的投影【画法几何】.
d˝
b˝
O
Yw
YH
两条平行的投影面垂直线
A C
B
D
a (b)
c (d)
ac=AB和CD的距离
例3-7:已知直线AB平行直线CD,试完成直线AB和CD的三面投影
c′ a′ d′
c″
a″ d″
b′ b″
d
b
c
a
二、两直线相交
a’
A c’
d’
k’
D
b’
K
C
B
a
ck
d b
1、两直线相交,则它们的同名投影必相交,并且交点的投影符合点的投影规律
2、其他两个投影平行于相应的投影轴,并且 小于实长。
三、 投影面垂直线
(一)含义:垂直于投影面的直线称为投 影面垂直线
垂直于H面的直线称为铅垂线 垂直于V面的直线称为正垂线 垂直于W面的直线称为侧垂线
(二) 铅垂线的投影特性 (1)铅垂线
铅垂线的投影特 性
1、水平投影积聚为 一点a(b)
2、正面投影a’b’垂直 于ox轴,侧面投影 a”b”垂直于OYw轴, 且都反映实长。
b˝
a´
d´
c a
a˝ d˝
d b
AB和CD相交
c´
c˝
b´
b˝
a´
d´
d a
d˝ a˝
c b
AB和CD不相交
例3-8:已知三条直线A、B、C,作直线DE平行直线C,并与 直线A、B交于D、E点
e´ b´ d´
c´
a´
ad
c
e
b
三、两直线交叉
空间既不平行又不相交的两直线为交叉直线(异面直线)
制图讲解—直线的投影
b
c
B
C A
ac
b H
定比定理
直线上的点具有两个特性:
从属性 若点在直线上,则点的各个投影必在直线的各同面投影 上。利用这一特性可以在直线上找点,或判断已知点是 否在直线上。
定比性 属于线段上的点分割线段之比等于其投影之比。即
A C: C B = a c : c b= ac : cb = ac : c b
X
ab
AB
|yA-yB|
a
ab
b ab
4.2 直线与点及两直线的相对位置
一、直线与点的相对位置
点在直线上的判别方法:
◆若点在直线上, 则点的
V
投影必在直线的同名投
a
影上。并将线段的同名
投影分割成与空间相同
的比例。即:
AC/CB=ac/cb= ac / cb
◆若点的投影有一个不在直线 的同名投影上, 则该点必 不在此直线上。
c
e
b' O b 两直线交叉
例题 过点E 作线段AB、CD 的公垂线EF。
b
f
e
c
X
b
e
a d
ad O
f c
小结
重点掌握:
★点与直线的投影特性,尤其是特殊位置直线 的投影特性。
★点与直线及两直线的相对位置的判断方法及
投影特性。 ★定比定理。 ★直角定理,即两直线垂直时的投影特性。
一、各种位置直线的投影特性
⒉ 两直线中有一条平行于某一投影面时, 在该投影面上的投影反映直角。
⒊ 两直线均为一般位置直线时, 在三个投影面上的投影都不 直角定理 反映直角。
b
b a
投影特性:
三个投影都缩短。 即: 都不反映空间线段 的实长及与三个投影面 夹角的实大,且与三根 投影轴都倾斜。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影特性,明确正面投 O 影平行于投影轴。
b
例3:
过点A向右上方作一正平线AB,使其实长为25,与 H面的倾角=30°。
Z b’
a’ 30° X
O
解题思路:熟悉正平 b” 线的投影特性,并从
反映实长和的投影 a” 入手。
YW 作图要点:1.做正 平线的正面投影;
a
b
YH
2.过点a做正平线 的水平投影和侧面投 影。
第二章 点、直线、平面的投影
➢直线的投影 ➢直角三角形法求线段实长及倾角 ➢直线上的点 ➢两直线的相对位置关系
直线的投影
直线的两投点影决仍定为一直线条,直特线殊。情况下为一点。a’Z a”
分别将两点的同名(同面)投影 b’
用直线连接,就得到直线的投影。 X
O
a
b”
YW
a
b
b
直线对投影面的Y倾H 角:
对c(水d)平投影面的倾角——
对正立投影面的倾角——
对侧立投影面的倾角——
各种位置直线的投影特性
直线在三投影面体系中分为:
平行于某一投影面,且 倾斜于另两个投影面
垂直于某一投影面
投影面平行线 特殊位置直线 投影面垂直线
水平线 正平线 侧平线
铅垂线 正垂线 侧垂线
与三个投影面都倾斜 一般位置直线
各种位置直线的投影特性
OX轴、OY轴。(ab = ab = AB;a bOX ;a b OYW )
垂直线的投影投特影性面:垂直线
1、在V其所垂直的投影面上的投V 影,积聚为一点; 2直、于在相其应它a'的b'B两投个A影投轴b影"。面a" 上的投影,a'反A映实b' B长,b"a" 且垂
正
b
垂
a
线 a'b'
Z
b"
a"
直角三角形法求线段实长及线段与投影面的倾角
|zA-zB|
AB |zA-zB|
ab
AB
ab
|zA-zB |
AB
|zA-zB| 求直线AB的实长及其对
水平投影面的倾角 角。
求直线的实长及对正面投影面的倾角 角
AB
b
|yA-yB|
|yA-yB| X
a
O
ab
b
AB
a
|yA-yB|
求直线的实长及对侧面投影面的倾角 角
X a’
O 2 .求出Y坐标差;
a
3. 利用Y坐标差求ab投影。
思考:若将已知条件实长换 b 成=30°,则如何解题?
直线上的点 V
直线上点的投影特性—— a
➢从属性:若点在直线上, 则点的投影必在直线的同面 投影上,且符合点的投影规 律。反之,亦然。
b
c
B
C A
ac
b H
➢定比性:若点在直线上,则点的投影分割线 段的同面投影之比与空间点分割线段之比相 等。反之,亦然。 即AC/CB=ac/cb= ac / cb = ac : c b,利用这一特性,在不作侧面投 影的情况下,可以在侧平线上找点或判断已 知点是否在侧平线上。
2、在H面、W面上的投影,分别平行于OX轴、OZ轴,且
小于实长。 (ab OX ; a b OZ)
投影面平行线的投投影影特面性平: 行线
1、在其所平行的投影面上的投影,反映直线段的实长。
该倾角投;影与V投a'影A 轴的b' 夹a角" ,反映该直线V与其a' 它A 两投a影" 面的
b"
b'
2且水平线、小在于其a实 它长两a。b投 z影面a上bB 的投影b ,侧平线平行于a 相应aZ的投Bb 影轴b",
b B b
a
Ab
a
a
|xA-xB|
直角三角形法求线段实长 及线段与投影面的倾角
即:直角三角形的组成:斜边-实长
直角边1-投影,直角边2-坐标差, 投影与实长的夹角-倾角。
例5:
已知直线的一个投影a’b’及实长,求直线的投影 ab。
AB
实长
B0
解题思路及步骤——
b’ 1.根据直角三角形的组成,利 用a’b’及实长作直角三角形;
侧
a
b
垂
线
a'
Z b'
b"a"
X
O
YW
b
X
YW
O
a YH
a
b
YH
各种位置直线的投影特性
一般位置直线(投影面倾斜线)
与三个投影面都倾斜的直线。
b Z
投影特性:
b
三个投影都是缩短了的倾
斜线段, 都不反映空间线段的
a
a
实长及与三个投影面的倾角。
X
O
YW
思考:从属于投影面及投影轴的
a
直线的投影特性是什么?其投影
投影面平行线—— 水平线(平行于H面且…) 正平线(平行于V面且…) 侧平线(平行于W面且…)
正平线—平行于V面,倾斜于H、W面的直线。
Z
b
实长
b
b
a
B
a
a
a
A
b
X
O
YW
正平线的投影特性:
1、正面a 投影反b 映直线段的实a长。该投b影与OX轴、OZ轴
的夹角,分别反映该直线与H、W面的倾角。YH (a b=AB, 反映、角的真实大小);
例6:判断点C是否在线段AB上。
①
c
b
a’
X
c
bO
a
点C在直 线AB上
② a’ c● X ac
●
b’ O
b
点C不在直 线AB上
例7:判断点K是否在线段AB上。
a
k● b X a k●
b
Z a
方法一:作出第三投影
● k O
b
YW
因k不在a b上, 故点K不在AB上。
方法二:应用定比定理
YH
因 ak/kb不等于a’k’/k’b’,
b YH
如何作图?
例1:根据投影图,判断下列直线的空间位置。
a
侧
b
平X 线
a
b
a 铅 O 垂 b 线X
Z a
b
O
YW
YH
c
d
侧 垂 线X
水
平 O线
c
Z d c d
c
d
X
O
YW
YH
解题要点:1、垂直线用垂直判断;2、平行线用平行判断。
例2:已知AB为水解题思路:
b’
熟悉水平线的投
故点K不在AB上。
例8 已知线段AB的投影图,试将AB分成2﹕1两段, 求分点C的投影c、c 。
c
O
c
直线上的特殊点——迹点
迹点:直线与投影面的交点(正面迹点、
水平迹点、侧面迹点)。
n’ a’
作图要点:
X
n a
M是水平迹点, N是正面迹点。
b’ b
1、迹点既是投影面
m’ O
上的点又是直线上的
点,故必同时符合投
影面上点和直线上的
点的投影规律;
m 2、求迹点时,先延 长投影到投影轴。
两直线的相对位置
空间两直线的相对位置关系分为四种:
平行、相交、交叉、垂直。
⒈ 两直线平行
投影特性(判别方法):
b a
A
V d
B c
C
D
a
c
b
dH
1.若空间两直线相互 平行,则其各同面投影必 相互平行;反之,若两直 线的各同面投影相互平行, 则此两直线在空间也一定 相互平行。
b
b
X
O
a
b YH
YW X
O
YW
a
b YH
各种位置直线的投影特性
投影面垂直线
铅垂线(垂直于H面) 正垂线(垂直于V面) 侧垂线(垂直于W面)
铅垂线— 垂直于水平投影面的直线
a
a
Z a
A b
a
b
b
X
O
YW
铅垂线的投影特性: b
B
1、水平投影a(积b)聚为一点(ab积聚a成(b一) 点)YH;
2、在其它两个投影面上的投影反映实长,且分别垂直于
b
例3:
过点A向右上方作一正平线AB,使其实长为25,与 H面的倾角=30°。
Z b’
a’ 30° X
O
解题思路:熟悉正平 b” 线的投影特性,并从
反映实长和的投影 a” 入手。
YW 作图要点:1.做正 平线的正面投影;
a
b
YH
2.过点a做正平线 的水平投影和侧面投 影。
第二章 点、直线、平面的投影
➢直线的投影 ➢直角三角形法求线段实长及倾角 ➢直线上的点 ➢两直线的相对位置关系
直线的投影
直线的两投点影决仍定为一直线条,直特线殊。情况下为一点。a’Z a”
分别将两点的同名(同面)投影 b’
用直线连接,就得到直线的投影。 X
O
a
b”
YW
a
b
b
直线对投影面的Y倾H 角:
对c(水d)平投影面的倾角——
对正立投影面的倾角——
对侧立投影面的倾角——
各种位置直线的投影特性
直线在三投影面体系中分为:
平行于某一投影面,且 倾斜于另两个投影面
垂直于某一投影面
投影面平行线 特殊位置直线 投影面垂直线
水平线 正平线 侧平线
铅垂线 正垂线 侧垂线
与三个投影面都倾斜 一般位置直线
各种位置直线的投影特性
OX轴、OY轴。(ab = ab = AB;a bOX ;a b OYW )
垂直线的投影投特影性面:垂直线
1、在V其所垂直的投影面上的投V 影,积聚为一点; 2直、于在相其应它a'的b'B两投个A影投轴b影"。面a" 上的投影,a'反A映实b' B长,b"a" 且垂
正
b
垂
a
线 a'b'
Z
b"
a"
直角三角形法求线段实长及线段与投影面的倾角
|zA-zB|
AB |zA-zB|
ab
AB
ab
|zA-zB |
AB
|zA-zB| 求直线AB的实长及其对
水平投影面的倾角 角。
求直线的实长及对正面投影面的倾角 角
AB
b
|yA-yB|
|yA-yB| X
a
O
ab
b
AB
a
|yA-yB|
求直线的实长及对侧面投影面的倾角 角
X a’
O 2 .求出Y坐标差;
a
3. 利用Y坐标差求ab投影。
思考:若将已知条件实长换 b 成=30°,则如何解题?
直线上的点 V
直线上点的投影特性—— a
➢从属性:若点在直线上, 则点的投影必在直线的同面 投影上,且符合点的投影规 律。反之,亦然。
b
c
B
C A
ac
b H
➢定比性:若点在直线上,则点的投影分割线 段的同面投影之比与空间点分割线段之比相 等。反之,亦然。 即AC/CB=ac/cb= ac / cb = ac : c b,利用这一特性,在不作侧面投 影的情况下,可以在侧平线上找点或判断已 知点是否在侧平线上。
2、在H面、W面上的投影,分别平行于OX轴、OZ轴,且
小于实长。 (ab OX ; a b OZ)
投影面平行线的投投影影特面性平: 行线
1、在其所平行的投影面上的投影,反映直线段的实长。
该倾角投;影与V投a'影A 轴的b' 夹a角" ,反映该直线V与其a' 它A 两投a影" 面的
b"
b'
2且水平线、小在于其a实 它长两a。b投 z影面a上bB 的投影b ,侧平线平行于a 相应aZ的投Bb 影轴b",
b B b
a
Ab
a
a
|xA-xB|
直角三角形法求线段实长 及线段与投影面的倾角
即:直角三角形的组成:斜边-实长
直角边1-投影,直角边2-坐标差, 投影与实长的夹角-倾角。
例5:
已知直线的一个投影a’b’及实长,求直线的投影 ab。
AB
实长
B0
解题思路及步骤——
b’ 1.根据直角三角形的组成,利 用a’b’及实长作直角三角形;
侧
a
b
垂
线
a'
Z b'
b"a"
X
O
YW
b
X
YW
O
a YH
a
b
YH
各种位置直线的投影特性
一般位置直线(投影面倾斜线)
与三个投影面都倾斜的直线。
b Z
投影特性:
b
三个投影都是缩短了的倾
斜线段, 都不反映空间线段的
a
a
实长及与三个投影面的倾角。
X
O
YW
思考:从属于投影面及投影轴的
a
直线的投影特性是什么?其投影
投影面平行线—— 水平线(平行于H面且…) 正平线(平行于V面且…) 侧平线(平行于W面且…)
正平线—平行于V面,倾斜于H、W面的直线。
Z
b
实长
b
b
a
B
a
a
a
A
b
X
O
YW
正平线的投影特性:
1、正面a 投影反b 映直线段的实a长。该投b影与OX轴、OZ轴
的夹角,分别反映该直线与H、W面的倾角。YH (a b=AB, 反映、角的真实大小);
例6:判断点C是否在线段AB上。
①
c
b
a’
X
c
bO
a
点C在直 线AB上
② a’ c● X ac
●
b’ O
b
点C不在直 线AB上
例7:判断点K是否在线段AB上。
a
k● b X a k●
b
Z a
方法一:作出第三投影
● k O
b
YW
因k不在a b上, 故点K不在AB上。
方法二:应用定比定理
YH
因 ak/kb不等于a’k’/k’b’,
b YH
如何作图?
例1:根据投影图,判断下列直线的空间位置。
a
侧
b
平X 线
a
b
a 铅 O 垂 b 线X
Z a
b
O
YW
YH
c
d
侧 垂 线X
水
平 O线
c
Z d c d
c
d
X
O
YW
YH
解题要点:1、垂直线用垂直判断;2、平行线用平行判断。
例2:已知AB为水解题思路:
b’
熟悉水平线的投
故点K不在AB上。
例8 已知线段AB的投影图,试将AB分成2﹕1两段, 求分点C的投影c、c 。
c
O
c
直线上的特殊点——迹点
迹点:直线与投影面的交点(正面迹点、
水平迹点、侧面迹点)。
n’ a’
作图要点:
X
n a
M是水平迹点, N是正面迹点。
b’ b
1、迹点既是投影面
m’ O
上的点又是直线上的
点,故必同时符合投
影面上点和直线上的
点的投影规律;
m 2、求迹点时,先延 长投影到投影轴。
两直线的相对位置
空间两直线的相对位置关系分为四种:
平行、相交、交叉、垂直。
⒈ 两直线平行
投影特性(判别方法):
b a
A
V d
B c
C
D
a
c
b
dH
1.若空间两直线相互 平行,则其各同面投影必 相互平行;反之,若两直 线的各同面投影相互平行, 则此两直线在空间也一定 相互平行。
b
b
X
O
a
b YH
YW X
O
YW
a
b YH
各种位置直线的投影特性
投影面垂直线
铅垂线(垂直于H面) 正垂线(垂直于V面) 侧垂线(垂直于W面)
铅垂线— 垂直于水平投影面的直线
a
a
Z a
A b
a
b
b
X
O
YW
铅垂线的投影特性: b
B
1、水平投影a(积b)聚为一点(ab积聚a成(b一) 点)YH;
2、在其它两个投影面上的投影反映实长,且分别垂直于