《2011版义务教育数学课程标准》基本理念解读分析

合集下载

《义务教育数学课程标准》(2011年版)解读...

《义务教育数学课程标准》(2011年版)解读...

《义务教育数学课程标准》(2011年版)解读——初中数学浙江省教育厅教研室许芬英一、“课程基本理念”的修改1.将“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。

2.将“数学学习”和“数学教学”两条合并成一条“教学活动”,整体上阐述数学教学活动的特征。

表述为:“教学活动是师生积极参与、交往互动、共同发展的过程。

有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。

”二、“设计思路”的修改1.对“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”四个方面的课程内容做了明确的阐述。

2.将“空间与图形”改为“图形与几何”、“实践与综合应用”改为“综合与实践”。

确立了“数感”、“符号意识”、“运算能力”、“模型思想”、“空间观念”、“几何直观”、“推理能力”、“数据分析观念”等八个关键词,并给出具体描述。

并专门阐述了“应用意识”和“创新意识”。

三、“课程目标”的修改1.明确提出“四基”,即基础知识、基本技能、基本思想和基本活动经验。

2.提出了发现和提出问题的能力:在原分析和解决问题能力的基础上,进一步提出培养学生发现和提出问题的能力。

3.完善了一些具体目标的描述:比如对于学习习惯,明确指出使学生养成“认真勤奋、独立思考、合作交流、反思质疑等学习习惯”。

4.规范了课程目标的若干术语。

并在学段目标中使用这些术语。

四、“课程内容”(原“内容标准”)的修改1.对“数与代数”,“图形与几何”,“统计与概率”和“综合与实践”四个方面的内容及要求进行了适当的调整,使用规定的课程目标术语,对某些课程目标的表述进行了修改。

2.从总体结构上看,“几何与图形”领域发生了一些变化,另外三个领域的结构基本没变。

“几何与图形”结构的变化表现在:将实验稿中分四个方面对内容进行的要求(即“图形的认识”、“图形与变换”、“图形与坐标”、“图形与证明”)改为从三个方面展开内容要求,即“图形的性质”、“图形的变化”、“图形与坐标”,这三部分中的“图形的性质”基本上是整合了实验稿中的第一和第四部分而成,而其他两个部分与原来的两部分对应。

《2011版义务教育数学课程标准》基本理念解读

《2011版义务教育数学课程标准》基本理念解读

.
20
2.关于直观与抽象
波利亚:“抽象的道理是重要的,但要 用一切办法使它们看得见、摸得着。”
.
21
充分利用图形所具有的几何直观
将复杂的数学对象简明化 恰当地构造数学问题的现实情境
将抽象的数学关系具体化
.
22
通过直观调动学生的直觉思维
以获得数学猜想 通过数形结合的方法实现
抽象与具体之间的转化
.
2.数学课堂教学中最需要做的事
数学教学活动应激发学生兴趣,调动学生积极性,引发 学生的数学思考,鼓励学生的创造性思维;要注重培养学生 良好的数学学习习惯,使学生掌握恰当的数学学习方法。
.
28
3.学生的数学学习应当是一个什么样的过程
学生学习应当是一个生动活泼的、主动的和富有个性的过 程。除接受学习外,动手实践、自主探索与合作交流同样是学 习数学的重要方式。应当使学生有足够的时间和空间经历观察、 实验、猜测、计算、推理、验证等活动过程。
良好的数学学习过程
.
29
例:《孝义市课堂教学评价标准》
.
30
评价项目
评价要点
情境导入
自然、新颖、简洁,用多元化手段激发学习动力、调整学习状态、做好新旧知识与方法的衔接。
自主 学习
教师层面: 1.设计好90%能通过自学解决的具有层次性、思维性,突出重点的问题。 2.向学生说明自学的目标、方法、流程与要求。 3、留心观察学生的学习状态,自主学习结束时及时点评,并出示自学问题的答案。 学生层面: 1.专心致志、独立思考、严谨认真、规范书写、动作敏捷,用圈、点、勾、画的方式完成自学任务。 2.养成爱动脑、勤动手、善发现等良好学习习惯。 3.组长先完成学习任务,并督促本组成员圆满完成自学任务,协助老师完成自学情况的检查工作。 4、组员主动接受组长对自学情况的检查,认真纠正自学中出现的问题。

解读《义务教育数学课程标准(2011年版)》

解读《义务教育数学课程标准(2011年版)》
明:

教师 的 “ 组织” 作用 主要体 现在 两 个方 面: 第 一, 教师应 当准确把握教学 内容的数学实质 和 学生 的实 际情 况, 定合理 的教学 目标, 确 设 计 一个好 的教学方案; 二, 教学活动 中, 第 在 教 师要选择适 当的教 学方 式, 因势 利导 、适 时调 控 , 力 营造 师 生 互 动 、生 生 互 动 、生 动 活 泼 努 的课堂氛 围, 形成有效的学习活动.
122 1 年 版 课 标 明确 了教 师 在 教 学 活动 . 01 中的作 用
实验稿课标指 出: “ 教师应激发学生 的学 习 积 极 性,向学 生提 供充 分 从 事数 学 活动 的机 会, 帮助他们在 自主探索和合作 交流 的过程 中 真 正 理 解 和 掌 握 基 本 的 数 学 知 识 与 技 能 、 数 学 思 想 和 方 法 , 得 广 泛 的 数 学 活 动 经 验 .学 获 生 是 数 学 学 习 的 主 人 ,教 师 是 数 学 学 习 的 组 织者 、引导者 与合作 者. 由于 实验稿课 标强 ” 调让学生 自主 学习, 因此有 的教 师在课堂上不 敢 开 口讲, 很忌 讳 “ , 了谈 “ 色 变 的程 讲” 到 讲” 度 . 是 乎 ,“ 讲” “ 讲” 为 不 少 教 师 平 于 少 或 不 成 时教 学 的 原 则 . 来 一 讲 就 明 的 问题 , 要 让 本 非 学生 “ 自主 ” 玩 “ , 捉迷 藏 ” .认 为 这 样 避 开 了 “ 灌 输” 填 鸭” 、“ 之嫌.有 的教师 还提 出学 习内容 由学生 自己提 , 习方 式 由学生 自己选, 习 学 学 伙 伴 由 自己 挑 想 与 谁 交 流 就 与 谁 交 流 等 等 . 这 是 典 型 的 “ 羊 式” 放 的学 习方 式 , 生 表 面 上 学 获得 了 自主的权利, 可实际上并没有做 到真 正 的 自主. 实际上 以学 生为本的教学过 程 中, 在 并 不意 味着教 师责任 的减轻 和教师 作用 的 降 低 , 反 对 教 师 提 出 了更 高 的 要 求 :随 时 要 调 相

《义务教育数学课程标准》(2011版)解读

《义务教育数学课程标准》(2011版)解读

与2001年版相比,数学课程标准从基 本理念、课程目标、课程内容到实施建议 都更加准确、规范、明了和全面。 下面我们就2011修订版与2001版课标 相比较所体现出的变化具体的进行解读。
一、总体框架结构的变化 2001年版分四个部分:前言、课程目标、 内容标准和课程实施建议。 2011年版:前言、课程目标、课程内容 和实施建议,并有附录。把其中的“内容标 准”改为“课程内容”。前言部分由原来的 基本理念和设计思路,改为课程基本性质、 课程基本理念和课程设计思路三部分。
《义务教育数学课程标准》(2011年版) 解读——小学数学
关于修订工作的几点说明
2001年,在国务院的直接领导下,教育部 启动了基础教育课程改革,颁布了义务教 育20个学科课程标准(实验稿)。 按照改革工作的总体部署,2003年开始组 织课程标准修订工作,2011年3月,基本 完成了修订任务。 2011年12月28日教育部正式颁布《全日制 义务教育数学课程标准(修改稿)》。
1.提纲挈领,领悟课标。 (1)理解课标理念 (2)明确“四基”要求 (3)正确处理“四个关系” (4)掌握四个领域内容调整 (5)提高“四个问题”能力( (6)领悟10个核心关键词的内涵和外延
2.依据课标,找出差距。 (1)改变教学中的“十多十少“现象 ●课程理念知道多,理解落实比较少; ●关注教学情景多,创设有效情景少; ●关注教学形式多,关注教学实效少; ●操作实践活动多,有效探究活动少; ●师生互动废话多,启发引导语言少; ●课堂无效活动多,学生必要练习少; ●教学设计拼凑多,个性创新设计少; ●现代媒体运用多,优化整合运用少; ●关注表面知识多,领悟思想方法少; ●学生参与活动多,积累活动经验少。 (2)克服课堂教学中的“四个满堂” ●满堂问●满堂动●满堂放●满堂夸 (3)避免教学中的“四个虚假“ ●虚假地自主学习 ●虚假地合作交流 ●虚假地自主探究 ●虚假地情感、态度、价值观的渗透

2011年版数学新课标解读

2011年版数学新课标解读

2011年版数学新课标解读一:从理念到行为把握操作方法最重要从理念到行为把握操作方法最重要新修订的数学课程标准到底对我们的教学会产生怎样的影响呢?我认为,准确把握标准变化特点、以案例为载体形成具体的实践操作方法、关注广义教材是三个核心环节进一步明确“学生发展为本”的教育理念,把握从“双基到四基,从两能到四能,从单一思维到复合思维、增加多个核心词”的变化特点。

修订后的课标对实验稿课标既有传承,也有发展,我学习了修订后的课标,觉得以下三点变化最为深刻。

调试数学观,明确新的数学课程观。

实验稿课标认为,“数学是人们对客观世界定性把握和定量刻画、逐步抽象概括、形成方法和理论,并进行广泛应用的过程。

”而修订后的标准将其调整为“数学是研究空间形式和数量关系的科学。

”数学是一门科学,而非过程,无论是直接来源于现实世界的,还是来源于数学世界的,只要是空间形式和数量关系,都可以构成数学的研究对象。

与此同时,将原有的“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”的数学课程观,修改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”,这样的表述方式,保留了实验稿课标所界定的数学课程观的精髓。

明确提出“四基”、“四能”和复合思维的要求。

对学生的培养目标,在注重基础知识、基本技能的前提下,增加了针对基本思想和基本活动经验的具体要求,更加凸显数学对于学生发展的特殊作用,将实验稿标准提出而尚未显性化的有关理念显性化,这是对10年改革成功经验的提纯和升华。

对于能力培养的问题,不仅直接提出能力培养,而且增加了“发现问题、提出问题”的能力要求。

这种变化,不仅充分延续实验稿对于创新精神关注,而且有了显著发展。

在继续关注归纳、猜测等思维形式的基础上,修订后的课标明确提出“归纳思维”与“演绎思维”并举的具体要求。

在核心词上,增加了“几何直观”,将“符号感”修改为“符号意识”,将“统计观念”修改为“数据分析观念”,并对“数感”、“空间观念”的内涵作了修正。

小学数学人教2011课标版一年级课标分析

小学数学人教2011课标版一年级课标分析

课标分析一、课标要求《义务教育数学课程标准(2011年版)》在“学段目标”的“第二学段”中提出“体验从具体情境中抽象出数的过程,认识万以上的数;理解分数、小数、百分数的意义,了解负数的意义;掌握必要的运算技能;理解估算的意义;能用方程表示简单的数量关系,能解简单的方程”“初步形成数感和空间观念,感受符号和几何直观的作用”“尝试从日常生活中发现并提出简单的数学问题,并运用一些知识加以解决”“愿意了解社会生活中与数学相关的信息,主动参与数学学习活动”“在运用数学知识和方法解决问题的过程,认识数学的价值”。

《义务教育数学课程标准(2011年版)》在“课程内容”的“第二学段”中提出“了解公因数和最大公因数”“在1~100的自然数中能找出10以内自然数的所有倍数,能找出10以内两个自然数的公倍数和最小公倍数”“在1~100的自然数中,能找出一个自然数的所有因数,能找出两个自然数的公因数和最大公因数”“结合具体情境,理解小数和分数的意义”“能比较小数的大小和分数的大小。

二、课标解读(一)经历具体到抽象的学习过程,揭示分数意义的本质在分数概念教学中,要充分利用教材提供的学习材料,尽可能地联系学生的生活经验,运用各种直观因素,让学生借助充分的感性材料,发现和归结一类事物的一般和本质特征,从而辅助其建构抽象的数学概念。

例如在分数的意义教学中,首先,可以用正方形、长方形、三角形等图形表示,去除图形的形状、大小等因素,提炼出“把一个图形平均分成4份,其中的1份用表示”;接着应用范围从一个图形拓展到把若干个物体看成的一个整体,去除整体的个数、部分的个数等因素,提炼出“把一个整体平均分成4份,其中的1份用分数表示”;最后,提供丰富的生活素材,通过整体(单位“1”)与部分(取得份数)不变,而等分的份数不同,分数大小相应在发生变化;或者通过整体不变,等分的份数以及取得份数不同,得到不同的分数等练习,以进一步揭示概括分数的意义。

义务教育阶段数学课程标准(2011年版)的理念及总体目标解读新课标

义务教育阶段数学课程标准(2011年版)的理念及总体目标解读新课标

(《义务教育阶段数学课程标准(2011年版)》的理念及总体目标)解读新课标大英县实验学校:吴长琼通过对《<义务教育阶段数学课程标准(2011年版)>的理念及总体目标》课程的学习,我深深感受到新课程标准与教学大纲有着很大的不同,新课程标准无论是从理念上还是目标上都发生了较大的变化。

一、理解新课标基本理念,灵活运用教学方法。

先看《大纲》,教学大纲反映国家对教学工作做出的规定,主要在教学目的、教学内容、教学中应注意的问题等方面做出相应的要求,使教师较为关注学生对知识点的掌握情况,近年的教学大纲已对学生的学习和培养个性方面给予了较多的关注,其出发点主要是着眼于改进教师的教学.再看《标准》,新课标指出,教育要面向全体学生,让整体在数学教育上有良好的发展,又要适应个性,让个体在数学上得到不同的发展。

要求我们在打好学生数学基础的同时,要充分利用教学资源和手段营造良好的数学教育氛围,在“三维”上使得每一个学生都能获取他应该得到的发展。

《大纲》的课程目标是在它的教学目的中体现的,即以培养学生获取数学知识、技能和能力为首要目标,将发展思维能力作为能力培养的核心.随着时代的发展,教学大纲也越来越重视对创新意识、良好个性品质、唯物辩证观点等方面的培养.新课标指出,课程内容应注意层次性和多样性。

课程要反映社会需要,要符合学生的认知规律,要贴近学生生活,致力于培养学生的观察、实验、猜测、计算、验证、推理与交流等活动能力。

新课标指出,学生是学习的主体,教师是学习的组织者、引导者和参与者。

教学活动需是师生积极参与、交流互动的共同发展过程。

教师应以学生的认知发展水平和已有的经验为基础,面向全体注重启发式和因材施教。

要求我们必须精准的掌握教材的重难点,创新教学设计,分散难点,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,从而使学生理解掌握基本的数学知识和技能、数学思想和方法,也能获取更多的数学活动经验。

“小学数学基本思想”解读

“小学数学基本思想”解读

“小学数学基本思想”解读刘玉和《数学课程标准》(2011版)在总体目标中明确指出:“通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必须的数学的基础知识、基本技能、基本思想、基本活动经验……”把“基本思想”作为“四基”之一,这就明确了数学思想在数学教学中的重要地位。

那么,什么是数学基本思想?数学“基本思想”蕴涵在教材的哪些内容之中?教学中怎样帮助学生获得“基本思想”呢?一、什么是数学基本思想?数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。

数学思想是对数学事实与理论经过概括后产生的本质认识;基本数学思想则是体现或应该体现于基础数学中的具有奠基性、总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的。

通过数学思想的培养,数学的能力才会有一个大幅度的提高。

掌握数学思想,就是掌握数学的精髓。

史宁中教授指出:基本数学思想不应当是个案的,而必须是一般的。

这大概需要满足两个条件:一是数学产生以及数学发展过程中所必须依赖的那些思想。

二是学习过数学的人所具有的思维特征。

这些特征表现在日常的生活之中。

这就可以归纳为三种基本思想,即抽象、推理和模型。

通过抽象,人们把外部世界与数学有关的东西抽象到数学内部,形成数学研究的对象,其思维特征是抽象能力强;通过推理,人们得到数学的命题和计算方法,促进数学内部的发展,其思维特征是逻辑能力强;通过模型,人们创造出具有表现力的数学语言,构建了数学与外部世界的桥梁,其思维特征是应用能力强。

1、什么是抽象抽象是在思维中抛开对象的非特有、非本质属性,从中抽取对象的特有属性或本质属性的方法。

数学中抽象主要包括两方面的内容:数量与数量关系的抽象,图形与图形关系的抽象。

通过抽象得到数学的基本概念,这些基本概念包括:数学研究对象的定义、刻画对象之间关系的术语和符号以及刻画对象之间关系的运算方法。

《义务教育阶段数学课程标准(2011年版)》的理念及总体目标

《义务教育阶段数学课程标准(2011年版)》的理念及总体目标

《义务教育阶段数学课程标准(2011年版)》的理念及总体目标一.《义务教育阶段数学课程标准(修订稿)》中十个核心概念在《义务教育阶段数学课程标准(修订稿)》中十个核心概念的内涵在标准当中,设计了十个核心概念,和原来的标准实验稿相比有所增加,有数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力、模型思想、应用意识和创新意识。

1、数感主要是指关于数与数量,数量关系,运算结果估计等方面的感悟。

建立数感,有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。

2、符号意识主要是指能够理解并且运用符号,来表示数,数量关系和变化规律。

知道使用符号可以进行运算和推理,另外可以获得一个结论,获得一个结论具有一般性。

符号意识有助于学生理解符号的使用,是数学表达和数学思考的重要的形式。

3、空间观念主要是指根据物体特征,抽象出的几何图形,根据几何图形想象出所描写实物,想象出实物的方位和它们的相互位置关系,描述图形的运动和变化,根据语言的描述,画出图形等等。

4、几何直观主要是指利用图形描述和分析问题,借助几何直观,可以把复杂的数学问题,变得简明、形象,有助于探索解决问题的思路,预测结果。

几何直观可以帮助学生直观的理解数学,在整个数学的学习中,发挥着重要的作用。

5、数据分析的观念是指:了解在现实生活中,有许多问题应当先做调查研究,搜集数据,通过分析做出判断。

体会数据中蕴含着信息,了解对于同样的数据可以有多种分析的方法,需要根据问题的背景,选择合适的方法,通过数据分析体验随机性。

一方面对于同样的事物,每次收到的数据可能不同,另一方面只要有足够的数据,就可以从中发现规律,数据分析是统计的核心。

6、运算能力是指能够根据法则和运算正确的进行运算的能力。

培养运算能力有助于学生理解运算的算力,寻求合理、简洁的运算途径解决问题。

7、推理是数学的基本思维方式,也是人们学习和生活当中,经常使用这样一种思维方式,推理一般包括合情推理和演绎推理。

课程标准(2011年版)》的理念及总体目标

课程标准(2011年版)》的理念及总体目标

专题讲座《义务教务阶段数学课程标准(2011年版)》的理念及总体目标王尚志(首都师范大学教授)马云鹏(东北师范大学教授)刘晓玫(首都师范大学教授)话题一、课程标准的基本理念课程标准的理念和目标,是非常重要的两部分内容,课程标准的理念,从五个方面来阐述,分别从数学教育,课程内容,教学方式,评价还有新技术,这几个方面来阐述。

(一)数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

课程标准基本理念的第一条,是一个总的论述。

这一条是对义务教育阶段数学教育做了总体的阐述,就是义务教育的阶段的数学,在这个阶段的数学教育使学生获得一个什么样的数学教育,使他在数学方面,获得什么样的发展,这里边强调的要根据义务教育阶段的培养目标,义务教育阶段的学生的成长,是整个人发展的一个重要阶段,是它为学生打基础的阶段,在打基础的阶段,要面向全体学生,使学生在各个方面打好基础,而数学是学生应该掌握基础知识、基本能力和基本素养的非常重要组成部分。

正因为是义务教育,所以强调要面向全体学生,义务教育阶段是面向所有学生发展的阶段。

这里强调两个要点,第一,人人都能获得良好的数学教育,面向全体学生,使每一个学生都接受良好的数学教育。

每个学生都要提高数学素养,进而提高学生的公民素养,数学素养是学生公民素养的一个重要组成部分。

义务教育重要的任务就是使学生将来能够成为一个社会需要的、具有良好的素养、各方面能够健康发展的公民。

他们有良好的数学素养是非常重要,所以良好的数学教育就是让每一个学生获得他所需要的良好的数学素养。

第二,不同的人在数学上得到不同的发展,这个是针对学生的差异,因为每一个学生都要接受义务教育,而在学生的发展和学生原有的基础存在很大的差异。

良好的数学教育,使每一个学生都得到一样的教育,得到一样的机会,但最后的发展可能是有差别的。

根据学生的智力的差异,根据兴趣的不同,标准特别强调要照顾到学生的个别差异,使每一个学生都能获得他所应该得到的发展。

2011版 课程标准总目标

2011版  课程标准总目标

标题:(《义务教育阶段数学课程标准(2011年版)》的理念及总体目标)2011年版数学课程标准的变化内容:请就课程学习的内容,找出《义务教育阶段数学课程标准(2011年版)》与修订版的内容变化的例子(至少找出三处),并谈谈自己的看法。

答题内容:一、“课程基本理念”的修改《2011版数学课程标准》将“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。

这个理念能让我认识到义务教育是“普及教育”,不同于“精英教育”。

《2011版数学课程标准》将“数学学习”和“数学教学”两条合并成一条“教学活动”,整体上阐述数学教学活动的特征。

表述为:“教学活动是师生积极参与、交往互动、共同发展的过程。

有效的数学教学活动是学生学与教师教的统一,学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者。

”2011版《数学课程标准》重新提及“教师要发挥主导作用”,并指出:“学生是数学学习的主体,教师是数学学习的组织者、引导者与合作者”。

这里从整体上阐述数学教学过程的特征,教学活动是师生积极参与、交往互动、共同发展的过程。

有效的数学教学活动是学生学与教师教的统一,既能培养学生良好的学习习惯,也能让学生掌握有效的学习方法。

二、“课程目标”的修改数学课程标准修改前后的第二部分课程目标都是两个方面的内容:一、总目标,二、学段目标。

总目标由原来的四条变为现在的三条,总目标由原来三个方面(知识技能,过程方法、情感态度)的具体阐述变为现在的四个方面(知识技能,数学思考、解决问题、情感态度)具体阐述。

《2011版数学课程标准》在原有“双基”的基础上,进一步明确提出了“基本思想”和“基本活动经验”的要求。

,即“四基”基础知识、基本技能、基本思想和基本活动经验。

这里的基本思想不是前几年的教学实验“数学思想方法“,是指支撑数学科学发展的思想,核心在于数学推理、数学建模。

《义务教育数学课程标准》(2011年版)

《义务教育数学课程标准》(2011年版)

《义务教育数学课程标准》(2011年版)解读——小学数学2011年12月28日,教育部正式公布了《义务教育阶段数学课程标准(2011年版)》(以下简称《标准》),并于2012年秋季开始执行。

这意味着2001年公布的义务教育阶段数学课程标准(实验稿)将完成它的历史使命,随之而来的,就是教材的改革,数学课程改革也必将进入一个新的发展阶段。

对修订版数学课程标准的学习和研究也将成为数学教育工作者们当前的头等大事。

经过几年来对数学课程标准修订情况的跟踪研究以及对数学课程标准(2011年版)的深入研读,我认为修订版是对实验稿的继承和发扬,改进与完善,但又不乏创新之举,让人读来眼前一亮,对数学与数学教育的意义与价值的定位更准确,对学生思维能力和创新能力的培养目标的要求更明晰,对学习方式、教学方式等教学策略与手段的指导更明确,对课程内容的调整更合理。

与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。

具体变化为如下几个方面:一、总体框架结构的变化2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。

2011年版把其中的“内容标准”改为“课程内容”。

前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。

二、关于数学观的变化2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。

数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。

2011年版:数学是研究数量关系和空间形式的科学。

数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。

数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

三、基本理念“三句”变“两句”,“6 条”改“5条”2001年版“三句话”:“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。

义务教育数学新“课标”的理念、内容及案例解读资料

义务教育数学新“课标”的理念、内容及案例解读资料
。 比,大大降低了要求。同时使这部分内容更具可操作性,符合小学阶段学生
学习的特点
24
第二学段具体内容的修改
删除“了解两点确定一条直线和两条相交直线确定一个点”。这个内 容对于小学生来说较为抽象,与生活经验的联系也不很紧密,要求学 生了解意义不大,而把“了解两点确定一条直线”(及 “ 掌握等式 的基本性质” )放在第三学段作为进行演绎证明的基本事实之一。
22
第一学段具体内容的修改
调整的内容包括:
估算的要求改为“能结合具体情境,选择适当的单位进行简单估算,体会估 算在生活中的作用”。使估算的要求更加具体、明确。有助于清楚地认识和 理解估算的价值与意义。强调了“选择适当的单位进行简单估算”,明确估 算的重点一是要有具体的情境,二是在一个确定的情境中,根据实际需要选 择适当的单位进行估算。《标准(2011年版)》的例6做了上述说明。
10
理念上的变化
人人都能获得良好的数学教育,不同的人在数学 上得到不同的发展。
知识技能、数学思考、问题解决、情感态度四个方面的 课程目标的整体实现Байду номын сангаас是学生受到良好数学教育的标志。
(原:人人学有价值的数学,人人获得必需的数学 ,不同的人在数学上得到不同的发展。)
11
理念上的变化
10个数学课程与教学中应当注重发展的核心概念: 数感、符号意识、空间观念、几何直观、数据分
增加“结合简单的实际情境,了解等量关系,并能用字母表示”。了解数量 关系是学习字母表示数的重点目的。使学生在实际情境中了解数量关系。也 为学习简易方程做准备。
。 增加“了解圆的周长与直径的比为定值”,强调学生在探索周长与直径比的 过程中认识圆周率
26
第三学段具体内容的修改

2011版义务教育数学课程标准解读

2011版义务教育数学课程标准解读

2011版义务教育数学课程标准解读(一)《义务教育数学课程标准(修订稿)解读》编写提纲前言(绪论): 数学课程改革的若干问题(史宁中,马云鹏0.5万)含对《标准》的功能定位,数学课程改革的重要问题。

第一部分义务教育数学课程改革10年回顾第一章义务教育数学课程标准(实验稿)的设计(刘晓玫,1万)第一节数学课程改革的背景(3千)第二节《标准(实验稿)》的制定(3千)一.数学课程改革的基本理念1、面向全体学生的数学2、尊重学生差异的数学3、使学生感兴趣的数学二、《标准(实验稿)》的制定的方法与过程1、多方参与的专家团队2、集体审议的研究模式3、广泛征求各方意见第三节《标准(实验稿)》的结构与内容(3千)1. 理念与目标2. 内容结构3. 实施建议第二章《标准(实验稿)》的实施与讨论(马云鹏 1.5万)第一节《标准(实验稿)》的实施过程1、实验的几个阶段2、实施状况的调研与分析3、影响实验的有关因素第二节《标准》实施的成效1. 对数学课程的认同感2. 教师观念的转变3. 教学方式的转变4. 评价方式的转变第三节《标准》实施中的问题1、有关数学课程的实施策略2、有关数学课程的适切性3、有关数学课程的理念与目标4、有关数学的教学方式第三章《标准(修订稿)》的研制(马云鹏 1.5万)第一节修订的组织与基本原则第二节修订的基本过程与方法1、组织广泛深入的调查研究2、开展全面认真的修改研讨3、采取多种形式征求意见第三节修订的主要内容1、体例与结构的调整2、基本理念与目标的修改3、具体内容的调整4、实施建议的修改第二部分义务教育数学课程标准解读第四章数学与数学课程第一节正确认识数学(3千)一、数学是一门什么样的学科二、从多角度认识数学)三、现代社会与数学四、树立正确的数学观对数学教学所产生的积极影响第二节如何正确认识数学课程(3千5)(黄)一、制约数学课程的三个重要因素1. 社会需求与数学课程2. 数学发展与数学课程3. 学生身心发展规律与数学课程二、义务教育阶段数学课程应具有的基本属性1. 义务教育阶段数学课程具有公共基础的地位(基础性、普及性、发展性)2. 数学课程在此阶段学生发展上的独特功能(着眼于数学的基本特征和学生思维哦发展的阶段性特征)3. 义务教育阶段数学课程的立足点(促进学生整体素质提高和全面、持续、和谐发展)第五章数学课程基本理念(黄翔2万)第一节义务教育阶段数学课程观的核心理念1. 人人都能获得良好的数学教育2. 不同的人在数学上得到不同的发展3. 关注数学中的“人人”和“不同的人”第三节义务教育阶段数学课程内容的选择与组织(2千5)(黄)一、对数学课程内容的正确认识(依据、内涵、选取原则)二、数学课程内容的组织需处理好几个关系(过程与结果、直观与抽象、直接经验与间接经验…….)第四节如何认识数学教学(3千5)(黄)一、对数学教学本质的基本看法二、什么是数学课堂教学中最需要做的事(激发兴趣,引发数学思考……)三、学生学习应当是一个生动活泼的、主动和富有个性的过程四、在教学中教师的主导性如何发挥第五节如何认识学习评价(3千)(黄)一、评价是“筛子”还是“泵”二、评价目标的多元性三、评价方法的多样性第六节应重视信息技术的运用(2千)(黄)一、信息技术对数学课程与教学所产生的影响二、要注意信息技术与课程内容的整合三、信息技术运用要致力于改善学生的学习方式第七节义务教育阶段数学课程的设计思路(3千5)(黄)一、对义务教育阶段数学课程作整体性、贯通式的设计1. 学段安排的必要性与合理性2. 数学课程实施如何适应课程结构的这一变化二、关于义务教育阶段数学课程目标的设计1. 反映在《标准》中的数学课程目标是一个具有层次结构的目标体系(总目标、具体表述的四个方面、学段目标)2. 结果性目标与过程性目标3. 数学课程目标在实质上反映的是三维一体的新课程目标价值取向三、关于义务教育阶段数学课程内容标准的设计1. 数学课程内容所包括的范围2. 处理好课程内容四板块之间的关系第六章设计思路与核心概念(史宁中-统稿,黄翔,1.5万)第一节设计思路第二节《标准》中的核心概念及其意义“数感”、“符号意识”、“运算能力”、“模型思想”、“空间观念”、“几何直观”、“推理能力”、“数据分析观念”、“应用意识”、“创新意识”。

数学课程标准(2011版)解读

数学课程标准(2011版)解读

八、内容标准的变化
调整的内容和要求: ❖将“理解等式的性质”,改为“了解等式的性质” ❖将“会用等式的性质解简单的方程(如3x+2=5, 2x-x=3)”,改为“能解简单的方程(如3x+2=5, 2x-x=3)”。 ❖降低要求:降低了“可能性”部分的要求,只要 求学生体会随机现象,并能对随机现象发生的可能 性大小做定性描述,定量描述放入第三学段。
珠海新世纪学校
四、设计思路的变化
❖学段划分保持不变; ❖对课程目标动词及水平要求的设计基本保持不变, 增加了目标动词的同义词; ❖对四个学习领域的名称作适当调整; ❖对学习内容中的若干关键词作适当调整对其意义 作更明确的阐释。
珠海新世纪学校
五、四个领域名称的变化
❖ 2001年版:数与代数、空间与图形、统计与概率、 实践与综合应用。 ❖2011年版:数与代数、图形与几何、统计与概率、 综合与实践。
珠海新世纪学校
六、核心概念的变化
应用意识有两个方面的含义,一方面有意识利用数学的概念、 原理和方法解释现实世界中的现象,解决现实世界中的问题; 另一方面,认识到现实生活中蕴涵着大量与数量和图形有关 的问题,这些问题可以抽象成数学问题,用数学的方法予以 解决。在整个数学教育的过程中都应该培养学生的应用意识, 综合实践活动是培养应用意识很好的载体。
七、目标的变化
活动经验:亲自或间接经历了活动过程而获得的经 验,包括操作的经验,思考的经验,探究的经验, 复合的经验。
七、目标的变化
2 、“两能”变“四能” ❖“两能”:分析问题和解决问题能力 ❖“四能”:发现问题、提出问题、分析问题和解 决问题能力
3、总目标和学段目标分别并从知识技能、数学思考、 问题解决、情感态度等四个方面加以具体阐述。学 段表述目标有所变化。

2011版数学课程总体目标的阐述及理解

2011版数学课程总体目标的阐述及理解

专题讲座《义务教务阶段数学课程标准(修订版)》的理念及总体目标话题二、课程总体目标的阐述及理解(一)标准课程目标的整体解析( 二)课程总体目标的理解通过义务教育阶段的数学学习,学生能:1. 获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。

2. 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题、分析和解决问题的能力。

3. 了解数学的价值,提高学习数学的兴趣,增强学好数学的信心,养成良好的学习习惯,具有初步的创新意识和实事求是的科学态度。

——《义务教育阶段数学课程标准(修订稿)》1. 总体目标第一条的变化、背景及理解。

第一个大的变化是从以双基为目标,发展到现在以四基为目标,这是一个标志性的一个变化。

当时在讨论目标的时候,每一个人都可以问自己这样一个问题,就是在学习数学的过程中,除了基础知识和基本技能之外,还有什么是重要的,是必须重视的,如果没有,说出理由,如果有,应该是什么。

这个时候就进行了应该说讨论和争论,最后感觉,经过反复的讨论,就形成这样一个四基的认识,除了基础知识和基本技能之外,还应该关注数学的基本思想和数学的基本活动经验,这些是基础知识和基本技能所不能包括的。

应该算是对于课程的一个发展,也是一次成功的完善,使得能够对数学有了一个全面的把握。

也是学生获得良好数学教育的重要的组成部分。

四基是指基础知识、基本技能、基本思想、基本活动经验。

把学生的数学素养体现在这四个方面,也就是说传统的数学教育仅仅重视基础知识、基本技能应该重视,基础知识、基本技能是学生打好基础的一个非常重要的两个方面,但学生只有知识技能是不够的,学生还要学会思考,还要去经历,还要有体验,而后边的基本思想和基本活动经验,是在知识技能这个基础上发展的,这个发展数学思想其实是让学生学会数学的思考,这种数学思考。

体现在什么地方,更多体现在基本思想上,这个基本思想包括抽象思想、推理,推理的思想和模型的思想。

2011年版义务教育小学数学课程标准解读

2011年版义务教育小学数学课程标准解读

八、实施建议的变化 不再分学段阐述,而是分教学建议、 评价建议、教材编写建议、课程资源 利用和开发建议。在强调学生主体作 用的同时,明确提出教师的组织和引 导作用。
具体变化
数与代数 数与代数现行大纲这部分内容主要侧重有 关数、代数式、方程、函数的运算,《标准》 对此作了较大地改革: 1.重视数与符号意义以及对数的感受,体 会数字用来表示和交流的作用。通过探索丰富 的问题情景发展运算的含义,在保持基本笔算 训练的前提下,强调能够根据题目条件寻求合 理、简捷的运算途径和运算方法,加强估算, 引进计算器,鼓励算法多样化。
《标准》中还指出,逻辑证明的要求并不局限于几 何内容,而应该体现在数学学习各个领域,包括代数 和统计与概率等;对于几何证明的教学来说,它的目 的不应当是追求证明的技巧、证明的速度和题目的难 度,而应服从于使学生养成“说明有据”的态度、尊 重客观事实的精神和质疑的习惯,形成证明的意识, 理解证明的必要性和意义,体会证明的思想,掌握证 明的基本方法等等。因此,《标准》中在强调探索图 形性质的基础之上,要求证明基本图形(三角形、四 边形)的基本性质,降低了对论证过程形式化和证明 技巧的要求,删节去了繁难的几何证明题,旨在通过 这些让学生体验逻辑证明的意义、过程,掌握基本的 证明方法,同时,向学生介绍欧几里得和《几何原 本》,使学生体会它们对于人类历史和思想发展中的 重要作用。综上所述,《标准》大大地加强和改善了 目前的几何教学。
⑵ 加强分析图表的能力里的培养。提升 “读图能力”的培养。 ⑶加强调查等活动的体验。(主要是小调 查) 在收集数据方法方面,考虑到学生年龄 特征,要求学生了解测量、调查等的简单方 法,不要求学生从报刊、杂志、电视等去收 集资料。 ⑷第二学段与《标准》相比,在统计方面, 只要求学生体会平均数的意义,不要求学生 学习中位数、众数(这些内容放在第三学段) 平均数易受极端数的影响(最大数与最小数 的影响)。 ⑸另外,删去“体会数据可能产生的误导” 这一要求。

简述《义务教育阶段数学课程标准(2011年版)》的理念及总

简述《义务教育阶段数学课程标准(2011年版)》的理念及总

简述《义务教育阶段数学课程标准(2011年版)》的理念及总体目标最近我认真学习了《义务教育阶段数学课程标准(修订版)》的理念及总体目标,通过本次学习,使我进一步认识到数学课程改革从理念、内容到实施,都有较大变化。

数学课程力求将教育改革的基本理念与课程的框架设计、内容确定以及课程实施有机结合起来,为广大数学教师深刻领会数学新课改精神,有效的进行数学教学改革指明了方向。

新课标无论教学内容安排还是呈现形式,处处都是以学生为中心,以重视和培养学生的能力为目的。

现简述如下:(一)数学课程应致力于实现义务教育阶段的培养目标,要面向全体学生,适应学生个性发展的需要,使得:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。

第一,人人都能获得良好的数学教育,面向全体学生,使每一个学生都接受良好的数学教育。

每个学生都要提高数学素养,进而提高学生的公民素养,数学素养是学生公民素养的一个重要组成部分。

义务教育重要的任务就是使学生将来能够成为一个社会需要的、具有良好的素养、各方面能够健康发展的公民。

他们有良好的数学素养是非常重要,所以良好的数学教育就是让每一个学生获得他所需要的良好的数学素养。

第二,不同的人在数学上得到不同的发展,这个是针对学生的差异,因为每一个学生都要接受义务教育,而在学生的发展和学生原有的基础存在很大的差异。

良好的数学教育,使每一个学生都得到一样的教育,得到一样的机会,但最后的发展可能是有差别的。

根据学生的智力的差异,根据兴趣的不同,标准特别强调要照顾到学生的个别差异,使每一个学生都能获得他所应该得到的发展。

在任何国家,数学教育都是一个具有基础性、发展性的一个学科,一般在很多国家都把它叫做核心课程,或者说它在某种意义上,和语文、外语等成为一个人发展的非常重要的一个基础。

所以在义务教育阶段,要保证人人都得到发展。

才能保证一个国家的基本教育水平。

不是有人可以学数学,有人可以不学数学,而是所有的人都必须接受一个良好的数学教育。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师教学应该以学生的认知发展水平和已有的经验为基础,面向全体学生, 注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关 系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知 识与技能、数学思想和方法,获得基本的数学活动经验。
1.对教学活动本质的基本看法
教学活动是师生积极参与、交往互动、共同发展的过程。 有效的教学活动是学生学与教师教的统一,学生是学习的主 体,教师是学习的组织者、引导者与合作者。
数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓 励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的 数学学习方法。
学生学习应当是一个生动活泼的、主动的和富有个性的过程。除接受学习外, 动手实践、自主探索与合作交流同样是学习数学的重要方式。应当使学生有足够 的时间和空间经历观察、实验、猜测、计算、推理、验证等活动过程。
一.数学学习评价的含义及功能
强调评价的主要目的是为了全面了解学生数学学习 的过程和结果,激励学生学习,以改进教师教学。 评价的整体要求
了解
激励
例:综合与实践
一.数学学习评价的含义及功能
强调评价的主要目的是为了全面了解学生数学学习 的过程和结果,激励学生学习,以改进教师教学。
评价的整体要求
了解
激励

3.学生的数学学习应当是一个什么样的过程 学
4.教师的主导性如何发挥


学习评价
学习评价的主要目的是为了全面了解学生数学学习的 过程和结果,激励学生学习和改进教师教学。
应建立目标多元、方法多样的评价体系。评价既要关 注学生学习的结果,也要重视学习的过程;既要关注学生 数学学习的水平,也要重视学生在数学活动中所表现出来 的情感与态度,帮助学生认识自我、建立信心。
结果和过程 三维目标 多角度、多层次、多维度
全面而有个性
课后反思、数学口试、 数学调查报告、 观察记录、多方互评、 课堂观察、数学日记
……
二.评价目标多元和评价方法多样
《开展素质测评,提升学生素养》
林清玄《考7至17名的孩子最有出息》
二.不同的人在数学上得到不同的发展
数学课程应致力于实现义务教育阶段的培养 目标,要面向全体学生,适应学生个性发展的需要, 使得:人人都能获得良好的数学教育,不同的人在 数学上得到不同的发展。
课程内容
课程内容要反映社会的需要、数学的特点,要符合 学生的认知规律。它不仅包括数学的结果,也包括数学 结果的形成过程和蕴含的数学思想方法。课程内容的选 择要贴近学生的实际,有利于学生体验与理解、思考与 探索。
教师层面: 1. 营造民主与和谐、耐心与宽容的展示氛围。 2. 针对所展示的内容,适时追问、激发质疑;做好必要的补充、完善、拓展、深化、升华与总结。 3. 做好展示环节的评价工作,对展示错的要纠正,正确的或有创新的要肯定与鼓励,及时发现学生的闪光点和
不足,做出准确、具体的评价。 4、随机应变、因势利导,促进课堂展示的精彩生成。 学生层面: 1. 从不同角度和不同形式,大方、自信地表达自己的想法,解答学习过程中的疑惑和问题。 2. 利用信息技术等手段重点展示问题解决的过程与方法、经验与感悟等。 3、非展示、点评的同学认真倾听、记录,发现问题及时质疑、补充。
教师层面: 1. 围绕学习重、难点,适时提出必要的合作学习任务及问题,明确提出具体的学习目标及要求,合理调控合作
时间,营造宽松和生动的学习氛围。 1. 及时、全面了解各小组学习进度和遇到的困惑,并针对性地进行思维点拨和学法指导;以激励为主,理性评
价小组及组员的表现,根据合作内容遴选班内展示的对象,培养小组乐于合作的精神。 学生层面: 1. 明确合作学习的问题及要求,在组长的引领下恰当利用多种资源主动、有序地进行讨论、探究。组员之 间相互尊重,认真倾听,大胆质疑并提出不同见解,形成良好的合作学习氛围。 2、组长及时梳理合作学习的成果,在组内达成共识,人人做好班内展示的准备。
数学课程标准(2011年版)基本理念解读
山西省孝义市教研室: 张孝萍
课程内容课程总论 教学方式来自学习评价信息技术
课程总论
数学课程应致力于实现义务教育阶段的培养 目标,要面向全体学生,适应学生个性发展的需要, 使得:人人都能获得良好的数学教育,不同的人在 数学上得到不同的发展。
不同的人在数学上得到不同的发展 人人都能获得良好的数学教育
它表明重视课程内容中的直接经验也是 课程内容改革的目标。
三。课程内容的呈现应注意层次性和多样性 “层次性和多样性”
体现
“让不同的人在数学上得到不同的发展”
教学方式
教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是 学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合 作者。
2.学习过程是课程内容的重要部分 它不仅包括数学的结果,也包括数学结 果的形成过程和蕴含的数学思想方法。 例如:《小树有多少棵》
算理为计算提供了正确的思维方式,保证的计算的合理性与正确性; 算法为计算提供了快捷的操作方式,提高了计算的速度; 算理往往是隐性的,算法往往是显性的。
透过现象,揭示本质 迁移类推,理法沟通
改进
二.评价目标多元和评价方法多样
应建立评价目标多元、评价方法多样的评价体系。评价既要 关学注习学的生水学平习,不的也同人结要的人果重人都, 视在能也 学数获要 生学得重 在上良视 数得好学 学到的习 活不数的 动同学过 中的教程 所发育; 表展,既 现。要 出关来注的学情生感数与学态 度,帮助学生认识自、建立信心。”
二.不同的人在数学上得到不同的发展
义务教育阶段的数学课程不仅要面向全体学生,而 且要适应学生个性发展的需要,即既要关注“人人”, 也要关注“不同的人”,既要促使全体学生数学基本 质量标准的达成,也要为不同学生的多样性发展提供 空间。
二.不同的人在数学上得到不同的发展
例如:一位老师在体育课上让学生们跳高, 假设有5%的孩子能够跳过一米八,95%的孩 子只能跳过一米二,如果标杆一定要固定 在一米五不许改变,那么很多孩子因跳不 过去而丧失了信心,少数有天赋的孩子因 无法继续提高而丧失了成为运动健将的可 能。
二.不同的人在数学上得到不同的发展
我们提出“不同的人在数学上得到不同 的发展”,就是希望数学教育能最大限度地 满足每一个学生的数学需求,最大限度地开 启每一个学生的智慧潜能,为每一个学生提 供多样性的弹性发展空间。
二.不同的人在数学上得到不同的发展
这个世界的悲哀就是把所有不一样集合在一个 校园里,希望教育成一样的样子,这是个大问题。 因为世界上每个孩子都是不一样的,就像种植物一 样,山坡地种竹笋、香蕉,沙地种西瓜和哈密瓜, 烂泥巴里种芋头,不同植物适合不同土地,不是只 有一个样子的。
课程内容的组织要重视过程、处理好过程与结果的 关系,要重视直观、处理好直观与抽象的关系,要重视 直接经验、处理好直接经验与间接经验的关系。
课程内容的呈现应注意层次性和多样性。
一。对内容及选择的正确认识
1.衡量内容取舍的原则 课程内容要反应社会的需要 课程内容要反应数学的特点 课程内容要符合学生的认知规律
1.良好的数学教育是促进公平的教育
下面是某电动车厂第一、二车间2015年下半年的产量统计图。
2.良好的数学教育是适宜学生发展需求的教育
例:一年级上册《整理房间》 符合学生的身心发展规律 符合学生的认知规律
2.良好的数学教育是适宜学生发展需求的教育
符合学生的身心发展规律 符合学生的认知规律 满足学生的发展需求
教师教学应该以学生的认知发展水平和已有的经验 为基础,面向全体学生,注重启发式和因材施教。
立足“人人”和“不同的人”
③处理好讲授和学生自主学习的关系。

教师讲授给学生自主以启发、动力、灵感、方向。
统一 学 学生自主给教师讲授以反馈、分享、调控、反思。

1.对教学活动本质的基本看法

2.数学课堂教学中最需要做的事
发现规律,形成技能
二。数学课程内容的组织需要处理好三个关系
1.关于过程和结果
例:教学两位数进位加法27+36时,前面的不进位加法的学习 中学生已经掌握了列竖式计算,在列竖式计算中如果我们只注重结 果,教给学生满十进一,学生也就会计算了。但是学生理解不了为 什么要进位,因此,为了学生便于理解进位的缘由,我们借助小棒 利用摆小棒的形式加深理解,27就是2捆零7根,36就是3捆零6根, 7根加6根就是13根,而13根可以看作是一捆和3根,很明显加起来 是6捆零3根,这样借助学具再来教学列竖式中的进位,学生理解起 来更加容易些。
3.良好的数学教育是全面实现育人目标的教育
案例:《耶鲁大学物理课的开场白》
我们希望今天的数学教育是一个对学生发展全 面体现其育人价值的教育,它不仅关注数学知识、 技能的传授,也关注思想的感悟及经验的积累,不 仅关注数学能力的培养,也关注学生的情感态度、 价值观的培养,即关注学生作为一个“全人”的智 力与人格的全面协调的发展。这也是制订课程标准 的一个基点。
一. 人人都能获得良好的数学教育
义务教育阶段的数学课程
基础性 普及性 发展性
人人
强迫性
1.良好的数学教育是促进公平的教育
1983年在华沙国际数学家大会上首次提出 “大众数学”的 概念后,所倡导的“为了全体学生的数学”的教育观念对各国数 学课程设计产生了积极影响;
美国2000年数学课程标准提出的公平性原则强调:本原则 “向当今流行于北美的社会观念——只有少部分学生能够学好数 学提出了挑战”,“公平需要对所有的学生都有高要求并提供均 等且优良的机会”
2.数学课堂教学中最需要做的事
数学教学活动应激发学生兴趣,调动学生积极性,引发 学生的数学思考,鼓励学生的创造性思维;要注重培养学生 良好的数学学习习惯,使学生掌握恰当的数学学习方法。
相关文档
最新文档