最新7+恒定磁场+习题解答汇总

合集下载

习题答案(恒定磁场)优秀文档

习题答案(恒定磁场)优秀文档
稳恒磁场习题
一、选择题 BAAAB DBCBC CDBD
二、填空题 1. I1+ I2+ I3+ I4=0 2. 所围面积, 电流, 法线(n). 3. 0. 4. 0.16T. 5. 0Qv/(8l2), z轴负向. 6. 环路L所包围的电流, 环路L上的磁感应强度, 内外. 7. 0I, 0, 20I. 8. IBR .
1. 9. 10-2, /2 2. 10. 7.96×105A/m, 2.42×102A/m.
三、计算题
稳恒磁场习题
1. R=/(2a); j1/j2= r22/r12 2. B=0NI/ (4R)
3.
4. B = By= 0dI/[2(R2-R2)] 方向沿y轴正向
5. 0J; 0
6. F=0I1I2/2 方向向右
7. 课后11-8
8. 课后11-11 9. 课后11-13
10. 课后11-15 11.课后11-20 12. 课后11-22
计算题 1
稳恒磁场习题
计算题 2
稳恒磁场习题
计算题 3
12×10-21 kg·m/s B= 0NI/ (4R)
0I, 0, 2 0I. 稳恒磁场习题 R= /(2 a); j1/j2= r22/r12 课后11-15 11. 环路L所包围的电流, 环路L上的磁感应强度, 内外. 96×105A/m, 2. 2. 所围面积, 电流, 法线(n). 课后11-11 9. B= 0NI/ (4R) R= /(2 a); j1/j2= r22/r12 12×10-21 kg·m/s 96×105A/m, 2. P=mv=ReB=1.
0Qv/(8 l2), z轴负向. 96×105A/m, 2. B= 0NI/ (4R)

大学物理第六章 恒定磁场习题解劝答汇总

大学物理第六章 恒定磁场习题解劝答汇总

第6章 恒定磁场1. 空间某点的磁感应强度B的方向,一般可以用下列几种办法来判断,其中哪个是错误的?( C )(A )小磁针北(N )极在该点的指向;(B )运动正电荷在该点所受最大的力与其速度的矢积的方向; (C )电流元在该点不受力的方向;(D )载流线圈稳定平衡时,磁矩在该点的指向。

2. 下列关于磁感应线的描述,哪个是正确的? ( D )(A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。

3. 磁场的高斯定理⎰⎰=⋅0S d B 说明了下面的哪些叙述是正确的? ( A )a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。

(A )ad ; (B )ac ; (C )cd ; (D )ab 。

4. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ和面上各点的磁感应强度B 将如何变化? ( D )(A )Φ增大,B 也增大;(B )Φ不变,B 也不变; (C )Φ增大,B 不变; (D )Φ不变,B 增大。

5. 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少? ( C )(A )0; (B )R I 2/0μ;(C )R I 2/20μ; (D )R I /0μ。

6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线的同轴的圆柱形闭合高斯面,则通过此闭合面的磁感应通量( A )A 、等于零B 、不一定等于零C 、为μ0ID 、为i ni q 11=∑ε7、一带电粒子垂直射入磁场B 后,作周期为T 的匀速率圆周运动,若要使运动周期变为T/2,磁感应强度应变为(B )A 、B /2 B 、2BC 、BD 、–B8 竖直向下的匀强磁场中,用细线悬挂一条水平导线。

恒定磁场答案解读

恒定磁场答案解读

第7章恒定磁场一、选择题1. B2. C3. A4. B5. B6. B7. C8. C9. C10. A11. A12. D13. C14. C15. D16. B17. B18. B19. B20. D21. A22. C23. C24. B25. D26. B27. C28. A29. A30. B31. D32. D33. B34. D35. D36. B37. A 38. B 39. C 40. D 41. C 42. C 43. B 44. B 45. D 46. C 47. A 48. D 49. C 50. A 51. C 52. B 53. B 54. B 55. A 56. C 57. A 58. C 59. C 60. D 二、填空题1. (T)1045-⨯,500A2. RI80μ,⊗ 3. (T)108.83-⨯4. r I π20μ5. 1.4 A6.a 37. 动能, 动量8. (N)102.323-⨯,(m)101.75-⨯ 9. )s (m 103.6214-⋅⨯,(m)101.33-⨯10. (V)102.25-⨯11. )m (A 100.8823--⋅⨯,m)(N 0.352⋅ 12. )m (A 1026.9224--⋅⨯ 13. -0.14 J 14. 2, 1 15. 7:8 16. 减小; 2R x <区域减小,在2R x >区域增大(x 为离圆心的距离)17. 0, I 0μ- 18. bba aI+lnπ20μ 19.⎪⎭⎫ ⎝⎛+1π240R I μ 20. I 0μ, 0, I 02μ21. 向着长直导线平移22.aBI 223. r I H π2=, r IH B π2μμ==24. 2ln π20IaΦμ=25. x RIz y R I ˆ83)ˆˆ(π400μμ-+- 26. αsin π2B r -27. (Wb)24.0-, 0, (Wb)24.0 28.22IT m π三、计算题1. 解:由载流直导线磁场公式2204π2rL L rIB +=μ一段载流直线在P 点的磁场大小为22222201)(4)2(2π2x l l l xl IB +++=μ2222021π2xl xl Il++=μ正方形线圈整体在P 点的磁场大小为222220221121)π(24cos 4x l x l l I x l l B B B ++=+==μθ方向沿x 轴由B 与H的关系式得22222021)π(2xl x l l I BH ++==μ 方向沿x 轴2. 解:由毕奥—萨伐尔定律可知,两直线部分电流在其延长线上O 点产生的磁感应强度为0.半圆弧电流在O 点的磁感应强度B垂直于半圆面向上,大小为RI R I B 422100μμ==3. 解:由毕奥—萨伐尔定律和电流分布的对称性可知,半径为R 、载流I 的的圆电流在轴线上距离圆心r 处产生的磁感应强度B 沿电流I 的右旋前进方向,大小为2/32220)(2R x IRB +=μ此处设水平向右为正,则两圆电流在O 点r 处的磁感应强度为2/32222202/321221021])[(2])[(2R r l IR R r l IR B B B +-+++=+=μμ4. 解:由于细导线密绕,每匝电流都可以看作圆电流,于是宽度为r d 的圆电流(电流元)总匝数r n d 载流为r nI I d d =由圆电流在轴线上的磁场公式 x R x IRB ˆ)(22/32220+=μ 可得电流元I d 在P 点的磁场为 xr x rnIr xr x Ir B ˆ)(2d ˆ)(2d d 2/322202/32220+=+=μμA7-3-4图所有电流在P 点产生的磁场为x R x R rR x R nI x r x r r nI B B R ˆln 2ˆ)(d 2d 2222002/32220⎥⎥⎦⎤⎢⎢⎣⎡+-⎪⎪⎭⎫ ⎝⎛++=+==⎰⎰μμ5. 解:建立图所示的Oxyz 平面,将导体薄片分成许多沿z 轴的“无限长”直线电流,其中一根电流的载流量为y d II d d =.利用“无限长”直线电流产生磁场的公式r I B π20μ=可得r IB '=π2d d 0μ其中22y r r +='由对称性分析可知,导体薄片上所有电流在P 点产生的磁场将沿y 轴,其大小为⎪⎭⎫⎝⎛=+==⎰⎰-r d Iy y r d rI B B d d 2arctan π2d )(π2sin d 02/2/220μμθ讨论:当∞→d 时,如果保持j dI=为恒量,由上式可得 j I B 00212ππμμ==即无穷大载流平面产生的磁场为均匀场.6. 解:带电圆盘转动时,可看作无数圆电流的磁场在O 点的叠加. 取半径为ξ,宽为ξd 的圆环,其上电流ξσωξπωξπξσd 2d 2d =⋅=i它在中心O 产生的磁感应强度为:ξσωμξμd 212d d 00==i B正电荷部分产生的磁场为:r B r⎰==+00021d 21σωμξσωμ 负电荷部分产生的磁场为:)(21d 2100r R B R r -==⎰-σωμξσωμ 而题设-+=B B ,故得R=2r7. 解:电子运动速度⊥+=v v v// 由电子运动方程B e rm ⊥⊥=v v 2 得电子绕磁力线转一圈的时间为(s)1057.310100.1106.1101.914.32π2π22451931-----⊥⨯=⨯⨯⨯⨯⨯⨯⨯===B e m r T v 电子沿着磁场方向前进一光年所需时间为(s)1015.310301.0103606024365988//⨯=⨯⨯⨯⨯⨯⨯⨯==v 光年s t 在这段时间里电子绕磁力线转的圈数为1029108.81057.31015.3⨯=⨯⨯==-T t N8. 解:导线中通过电流I 时,上面一段通电导线所受的安培力大小为ILB F =方向向上,使得导线跳起. 由牛顿定律得 t F m d d =v 因F v 、同向,故t ILB t F m d d d ==v所以00d 0v v v m m =⎰⎰⎰==qqLBq q LB t I LB 0d d又因为gh 20=v所以,通过导线的电量为gh LBmq 2=A7-3-8图9. 解:建立如图所示的坐标系Ox ,在离“无限长”直线电流x 远处电流元l d I 受力21d d B l I F⨯=方向垂直于电流2I 向上. 于是,整个电流2I 所受的力为21d d B l I F F⨯==⎰⎰大小为2ln π2d 1π22102210I I x x I I F LLμμ==⎰10. 解:(1)在均匀磁场中,圆弧⋂CD 所受的磁力与弧线通以同样的电流所受的磁力相等由安培定律得 (N)283.05.022.022=⨯⨯⨯===⋂RIB F F CD方向与CD 弧线垂直,与OD 夹角为45度,如A7-3-10图所示.(2) 线圈的磁矩 n n n IS P 22m 10π22.0π412-⨯=⨯⨯==所受磁力矩大小为夹角为与,30)6090(=-B n 30sin m B P M =215.010π22⨯⨯⨯=-m)(N 1057.12⋅⨯=- M 的方向将驱使线圈法线n转向与B 平行.11. 解:建立如A7-3-11图所示的坐标系,轴方向,沿z j平板在yz 平面内,取宽度为y d , 长直电流y j I d d =,它在P 点产生的磁感应强度大小为:,π2d π2d d 00r yj r I B μμ==方向如A7-3-11图所示 将y x B B B d d d 和分解为,由对称性可知0d ==⎰x x B B ,θθcos π2d cos d d 0ryj u B B y ==又2222cos ,yx xr x y x r +==+=θ,代入上式并积分,则j u x y y jx u B B y 022021d π2d =+==⎰⎰∞∞-A7-3-9图1IO d A7-3-11图A7-3-10图12. 解:带电圆筒旋转相当于圆筒表面有面电流,单位长度上电流为ωσωσR R i =⋅=π2π2与长直通电螺线管内磁场分布类似.圆筒内为均匀磁场,ω的方向与B 一致(若0<σ,则相反).圆筒外0=B.作如图所示的安培环路L ,由安培环路定理i ab ab B l B L⋅=⋅=⋅⎰0d μ 得圆筒内磁感应强度大小为ωσμμR i B 00==写成矢量式:ωσμμR i B 00==13. 解:(1) 如图示在CD 上距O 点r 处取线元r d ,其上带电量r q d d λ=q d 旋转对应的电流强度为 r q I d π2d π2d λωω==它在O 点产生的磁感应强度大小为rrr I B d 42d d 00⋅==πλωμμ O 点的磁感应强度大小为 aba rrB B b a aO +===⎰⎰+lnπ4d π4d 00λωμωλμ 0>λ时的方向为⊗(2) I d 的磁矩为 r r I r P d 21d πd 22m λω== 总磁矩大小为])[(d 21d 332m m a b a b r r P P ba a-+===⎰⎰+λωλω0>λ时的方向与ω相同,即⊗(3) 若a >> b ,则)31()(,ln 33a ba b a a b a b a +≈+≈+,则有 a qa b B O π4π400ωμωλμ=⋅=,其中b q λ= q a b a b P m 22213ωλω=⋅=o B及m P 的方向同前.14. 解:(1)设上下两电流在P 点产生的磁感应强度分别为1B 和2B由安培环路定理⎰∑=⋅LI l B 0d μ 可得1B 和2B的大小分别为22001π2π2xa IrIB +==μμA7-3-12图22002π2π2xa IrIB +==μμ方向如图所示.由二者叠加,可得:x x x B B B 21+=22220π22xa ax a I +⋅+⋅=μ)π(220x a Ia +=μ 0=y Bi x a Ia x B)π()(220+=μ(2) 令0)π(2d d 2220=+-=x a Iax x Bμ,得0=x ,又得0d d 22<x B所以0=x 出B 有极大值.15. 解:由电流分布具有轴对称,可知磁场分布也应有轴对称,即与轴线距离相同的场点,其场强大小相等,其方向沿以圆筒轴线为轴的过场点的圆环的切向; 又因电流无限长,场强与场点的轴向位置无关.过场点作垂直于圆筒轴线,半径为r 的圆周,由安培环路定理,有 ∑⎰==⋅i L I r B l B 0π2d μ1R r <: 0=∑i I , 0=∴B 21R r R <<:)π(212R r j Ii-=∑rR r j B 2)(220-=μ写成矢量式为 r 21202)(e j rR r B⨯-=μ 2R r >:I R R j Ii=-=∑)π(2122rIrR R j B π22)(021220μμ=-=圆筒外部的磁场相当于全部电流集中在轴线上所产生的场.结果讨论:若R 1=0, 即电流均匀流过无限长实心圆柱,这时由上述解答易得, 圆柱内 r j B⨯=20μ;圆柱外解答不变.16. 解:由于电流分布对于平板厚度的平分面CD 对称,并且沿平面任意方向平移不变, 因此磁场亦具有平面对称性, 即在与平板距离相同的场点, 其磁感应强度相同, 且其值与场点沿板平面的位置坐标无关.磁感应强度的方向可作如下分析:沿电流方向将平板分成许多细长条,如A7-3-16图所示.取一对相对场点位置对称的细长条,由无限长直电流的场强叠加可知,合场强的方向垂直于电流方向而与板面平行.选择坐标如A7-3-16图, 由场分布的对称情况,过场点作图示矩形,使其中两对边与板面平行,由安培环路定理有∑⎰==⋅i LI Bh l B 02d μ2bx <, xh j I i 2⋅=∑, jx B 0μ= 或 x j B ⨯=0μ2b x >’j b hI i =∑, 20jbB μ=或 n 02e j b B⨯=μ 其中, n e为平板的外法线方向.17. 解:闭合曲线1L 环绕电流两圈,每一圈电流均是反向穿过,所以⎰-=⋅102d L I l B μ闭合曲线2L 可看成由2L '和2L ''两部分曲线构成,如A7-3-17图所示,加一辅助线AB ,则A L AB 2'构成一闭合回路,B L BA 2''构成另一回路,对两个回路,电流均是反向穿过,所以II I l B l B l B l B l B l B l B l B l B B L BA A L AB L BA AB L L L L 0002d d d d d d d d d 2222222μμμ-=--=⋅+⋅=⋅+⋅+⋅+⋅=⋅+⋅=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰'''''''''这样可看作电流I 反向穿过回路2L 两次,所以有上式.A7-3-16图A7-3-17图18. 解:在半圆形电流上任取电流元l I d , 该电流元所受磁力为B l I F⨯=d d , 则此半圆弧导线受力为)d (⎰⨯=baB l I F由于磁场均匀,B可移至积分符号之外,因而有 B l I F b a ⨯⎪⎭⎫ ⎝⎛=⎰d 式中⎰b ald 为半圆弧上各有向线元l d 的矢量和,它等于由半圆一端a 到另一端b 的矢量,以l 表示,则B l I B l I F b a ⨯=⨯⎪⎭⎫ ⎝⎛=⎰d上式表示,均匀磁场中半圆形载流导线所受磁力与一段连接其两端的载流直导线所受的磁力相同. 按题设, l 与B之间夹角为α, 因此磁力的大小为IRB RB I F ==αsin 2F 的方向与纸面垂直,指向纸面外.19. 解:带缺口的圆柱面电流的磁场可看作一完整均匀柱面电流的磁场和在缺口位置的密度相同、方向相反的电流的磁场的叠加.由于均匀圆柱面电流在其轴线处的磁感应强度为零, 轴线处磁感应强度由缺口的反向电流的磁场决定.而由于R b <<,缺口电流可视为无限长的载流直导线, 它在轴线处产生的磁感应强度大小RjbB π20μ=方向垂直于轴线由安培力公式, 轴线位置处的载流长直导线所受磁力大小为RIjb IB l Fπ2d d 0μ== 因为两电流平行反向,故磁力方向为垂直于导线的斥力20. 解:载流线圈在均匀磁场中所受合力为⎰⎰=⨯=⨯=0]d [d B l I B l I F所受合力矩大小为()的夹角为线圈法线与B B P B P M m mϕϕ0sin ==⨯=所以线圈处于平衡状态.但因线圈上各电流元都受到安培力作用且沿径向向外,所以线圈导线中存在张力,且各处张力相等,沿切向.T7-3-18图 bA7-3-19图如A7-3-20(a)图任取一电流元,它对圆心O 所张的角为θd ,它两端受张力T 的作用,沿径向受安培力Fd 作用,导线元处于平衡态,则 2d sin 2d θT F = 又 θd d d d IBR lB I B l I F ==⨯=因电流元足够小,θd 足够小2d 2d sinθθ≈ 于是有IBR T =本题也可通过分析一段弧的受力求解.如7-3-20(b)图,考虑半圆形载流导线受力,其所受安培力为 R IB B l I F 2d =⨯=⎰由圆线圈处于平衡态,有T F 2=故IBR T =21. 解:设小磁针的等效磁矩为m p,则小磁针在磁场中所受力矩为θθB p B p M m m -≈-=sin式中θ为m p与B 间的夹角,负号表示该磁力矩为恢复力矩,由定轴转动定律22d d tJ M θ=θθJ B p tm -=22d d J B p m =2ω, B p J T m π=2所以 =π=)2(TB J p m 2.63×10-2 A ·m 2A7-3-20(a)图⋅⋅⋅⋅⋅⋅A7-3-20(b)图⋅⋅⋅⋅⋅⋅T。

《大学物理》恒定磁场练习题及答案解析

《大学物理》恒定磁场练习题及答案解析

《大学物理》恒定磁场练习题及答案解析1、空间某点磁感应强度B 的方向,可以用下述哪一说法来定义( D )A .在该点运动电荷不受力的方向B .在该点运动电荷受磁场力最大的方向C .在该点正电荷的运动速度与最大磁场力叉乘的方向D .在该接点小磁针北极N 所指的方向 2、下列叙述不正确的是( A )A .一根给定的磁感应线上各点处的B 的大小一定相等 B .一根给定的磁感应线上各点处的B 的方向不一定相等C .匀强磁场内的磁感应线是一组平行直线D .载流长直导线周围的磁感应线是一组同心圆环3、一电荷放置在行驶的列车上,相对地面来说,产生电场和磁场的情况怎样( C )A .只产生电场B .只产生磁场C .既产生电场,又产生磁场D .既不产生电场,又不产生磁场4 如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度[ E ](A) 方向垂直环形分路所在平面且指向纸内. (B) 方向垂直环形分路所在平面且指向纸外.(C) 方向在环形分路所在平面,且指向b . (D) 方向在环形分路所在平面内,且指向a . (E) 为零. 5.取一闭合积分回路 L ,使三根载流导线穿过它所围成的面.现改变三根导线之间的相互间隔,但不越出积分回路,则[ B ](A)回路L 内的∑I 不变,L 上各点的B 不变. (B)回路L 内的∑I 不变,L 上各点的B 改变. (C)回路L 内的∑I 改变,L 上各点的B 不变. (D)回路L 内的∑I 改变,L 上各点的B 改变.6. 长直电流I 2与圆形电流I 1共面,并与其一直径相重合如图(但两者间绝缘),设长直电流不动,则圆形电流将 [ C ](A) 绕I 2旋转 (B) 向左运动 (C) 向右运动 (D) 向上运动 (E) 不动. 7. 如图,匀强磁场中有一矩形通电线圈,它的平面与磁场平行,在磁场作用下,线圈发生转动,其方向是 [ A ](A) ab 边转入纸内,cd 边转出纸外 (B) ab 边转出纸外,cd 边转入纸内 (C) ad 边转入纸内,bc 边转出纸外 (D) ad 边转出纸外,bc 边转入纸内1第6题图 第7题图二、填空题1、如图1所示的电流分布中,圆心处B 。

大学物理简明教程陈执平参考解答(完整版)7.恒定磁场习题.

大学物理简明教程陈执平参考解答(完整版)7.恒定磁场习题.

7-1 如图AB 、CD 为长直导线,BC 是一段圆心为O 、半径为R 的圆弧形导线,若导线通有电流I ,求O 点的磁感应强度。

解: AB 段产生:0B 1= BC 段产生:R12IB 02μ=,方向垂直向里CD 段产生:)231(R 2I )60sin 90(sin 2R 4IB 00003-=-=πμπμ方向垂直向里 )6231(R 2I B B B B 03210ππμ+-=++=,垂直纸面向内7-2 两条无限长直载流导线垂直且不相交,它们相距最近处为cm 0.2d =,电流分别为A 0.4I 1=和A 0.6I 2=, P 点到两导线距离都是d ,求P 处的磁感应强度大小。

解: 电流I 1在P 点产生 T 100.4d2I B 5101-⨯==πμ 方向垂直向里 电流I 2在P 点产生 T 100.6d2I B 5202-⨯==πμ 方向在纸面里垂直指向电流I 1P 点 T 102.7B B B 52221-⨯=+=5.1B B tg 12==θ,91560'=θ7-3 一宽度为b 的半无限长金属板置于真空中,均匀通有电流0I 。

P 点为薄板边线延长线上的一点,与薄板边缘的距离为d 。

如图所示。

试求P 点的磁感应强度B 。

解 建立坐标轴OX ,如图所示,P 点为X 轴上的一点。

整个金属板可视为由无限多条无限长的载流导线所组成,其中取任意一条载流线,其宽度为dx ,其上载有电流dx b I dl 0=,它在P 点产生的场强为()x d b b dx I r dIdB P -+==πμπμ44000的方向垂直纸面向里。

由于每一条无限长直载流线在P 点激发的磁感强度dB 具有相同的方向,所以整个载流金属板在P 点产生的磁感应强度为各载流线在该点产生dB 的代数和,即⎰⎰-+==bP P x d b dx bI dB B 004πμbx d b b I 0001ln 4-+=πμb d d b I πμ4ln 00+=P B 方向垂直于纸面向里。

最新第7章稳恒磁场及答案

最新第7章稳恒磁场及答案

第七章稳恒电流1、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B 的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) πr 2B . . (B) 2 πr 2B . (C) -πr 2B sin α. (D) -πr 2B cos α.2、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系?[ ]3、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅LlB d 等于(A) I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ.4、如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动. (C) 逆时针转动. (D) 离开大平板向外运动.5、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量Φ =______________.n B α SOB x O R (A) BxO R (B)Bx O R (D) Bx O R (C)BxO R (E)x 电流 圆筒II ab c d 120°I 1I 2b baI6、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为____,方向________.7、有一根质量为m ,长为l 的直导线,放在磁感强度为 B的均匀磁场中B 的方向在水平面内,导线中电流方向如图所示,当导线所受磁力与重力平衡时,导线中电流I =___________________.8、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面且距平板一边为b 的任意点P 的磁感强度.9、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为μ的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.答案: 一 选择题1、D2、A3、D4、B5、2ln 20πIaμ6、a l I 4/d 20μ 垂直电流元背向半圆弧(即向左)7、)/(lB mgIlI dIBI8、解:利用无限长载流直导线的公式求解. (1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流x i d d δ=(2) 这载流长条在P 点产生的磁感应强度 x i B π=2d d 0μxxπ=2d 0δμ 方向垂直纸面向里. (3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P 点产生的磁感强度==⎰B B d ⎰+πba bxdx x20δμb b a x +π=ln 20δμ 方向垂直纸面向里.9、解:由安培环路定理: ∑⎰⋅=i I l Hd 0< r <R 1区域: 212/2R Ir rH =π 212R Ir H π=, 2102R Ir B π=μR 1< r <R 2区域: I rH =π2r I H π=2, rIB π=2μR 2< r <R 3区域: )()(22223222R R R r I I rH ---=π )1(22223222R R R r r IH ---π= )1(2222322200R R R r r IH B ---π==μμ r >R 3区域: H = 0,B = 0x d x PO x党的十九届四中全会精神解读1.《中共中央关于坚持和完善中国特色社会主义制度、推进国家治理体系和治理能力现代化若干重大问题的决定》提出,到(),各方面制度更加完善,基本实现国家治理体系和治理能力现代化。

恒定磁场作业解答

恒定磁场作业解答
大学 物理学
恒定磁场 作业解答
大学物理
作业参考答案
上页 下页 返回 结束
1
大学 物理学
1. B 解答:
恒定磁场 作业解答
A点的磁感强度由4条直线电流的磁 场合成所得:
B1=B4=0
B2
0I 4l
(cos 900
cos135 0 )
20I 8l
方向垂直向里
B3
0I 4l
(cos
45 0
cos900 )
0I 4R
B
B1
B2
B3
30 I
8R
0I 4R
5
上页 下页 返回 结束
大学
恒定磁场 作业解答
物理学
8.
0.21 0I
R
, 垂直纸面向里
解答:
2
1
3
r 600 OR
o点的磁感强度由2条直线电流和一圆弧
的磁场合成所得:
第8题图
B1=
0I 4r
(cos1
cos2 )
0I 2R
(cos
0
cos
6
)
0I 2R
依右手螺旋定则得如图所示 ,大小
B合
B 0I
2R 再依平行四边形法则合成
B合
20 I
2R
第5题图
6.
B
By
0 R 3 2(R2 y2 )3/ 2
解答:
y
OR
均匀带电线圈转动起来等效为圆
形电流,等效电流强度 I R
第6题图
再依圆形载流导线轴线上任意一点的磁感强
度得: By
0 IR 2
2(R 2 y 2 )3/ 2
0 R3

07《大学物理学》恒定磁场练习题(马)分析

07《大学物理学》恒定磁场练习题(马)分析

07《大学物理学》恒定磁场练习题(马)分析合肥学院《大学物理Ⅰ》自主学习材料《大学物理学》恒定磁场部分自主学习材料要掌握的典型习题:1.载流直导线的磁场:已知:真空中I、?1、?2、x。

建立坐标系Oxy,任取电流元Idl,这里,dl?dy y?2Idl?P 点磁感应强度大小:dB?方向:垂直纸面向里?。

?0Idysin?;4?r2O?1r?Px统一积分变量:y?xcot(???)??xcot?;有:dy?xcsc2?d?;r?xsin(???)。

x??0sin2??0?0Ixd?Isin?则:B???Isin?d??(cos?1?cos?2)。

22??4?xsin?4?x4?x?I①无限长载流直导线:?1?0,?2??,B?0;2?x?I②半无限长载流直导线:?1??2,?2??,B?0。

4?x212.圆型电流轴线上的磁场:已知:R、I,求轴线上P点的磁感应强度。

建立坐标系Oxy:任取电流元Idl,P点磁感应强度大小:ydB??0Idl;方向如图。

4?r2分析对称性、写出分量式:Idl?0Idlsin?。

4?r2?r0?r?dB??dBB???dB??0;Bx??dB??xOR统一积分变量:sin??Rr P ??dBxx?0IR?0Idlsin??0IR?0IR2∴Bx??dB??。

?dl??2?R?222323?3x4?r2(R ?x)4?r4?r结论:大小为B??0IR22(R2?x2)322?0IR2??2??3;方向满足右手螺旋法则。

4?r2①当x??R时,B??0IR2x3??0IR?2??3;4?x?0I?B?RB??I?0I?2?;2R4?R?I ③对于载流圆弧,若圆心角为?,则圆弧圆心处的磁感应强度为:B?0?。

4?R ②当x?0时,:B?恒定磁场-1 合肥学院《大学物理Ⅰ》自主学习材料?Idl?第③情况也可以直接用毕—沙定律求出:B??02?04?R4?一、选择题:1.磁场的高斯定理??0?0IIRd???。

第7章 恒定磁场答案 大学物理 高教版

第7章 恒定磁场答案   大学物理 高教版

第七章 恒定磁场 答案一、选择题1.C 注释:四段载流直导线在O 点的磁场,)135cos 45(cos 2440-=a IB πμ,B 与I 成正比,与a 成反比。

2.B 注释:思路同上题,由一段载流直导线的磁场分布公式)cos (cos 4210θθπμ-=a I B ,可分别求出两段载流导线在O 点的磁感应强度πθθ43,021==,和πθπθ==21,41。

3.D 注释:由磁场的高斯定理απφφcos 2r B S -=-=圆4.D 注释:对磁场安培环路定理的记忆和电流正负的判断,a 回路的方向与I 方向满足右手定则故积分结果应为I l d B a 0μ=⋅⎰ ,对于b 回路内部电流代数和为零,故0=⋅⎰b l d B ,对于c 回路两个电流均满足右手定则,故积分结果I l d B c02μ=⋅⎰ 。

5.B 注释:此题考察对磁场安培环路定理的理解,B 沿某回路的线积分仅取决于回路内所包围电流的代数和,而与电流的形状和分布无关,但回路上各点的B 应取决于电流的具体分布,由此可得到正确答案。

6.C 注释: 载流线圈在磁场中所受最大磁力矩为mB M =max ,由此可知B R I M 2max π=。

7.A 注释:运动电荷垂至于B 的方向进入磁场后将作匀速圆周运动,因此可等效为一个圆电流,而载流线圈的磁矩可表示为IS m =,其中22)(eB mv R S ππ==,qBme T e I π2==,带入磁矩表达式,可得答案。

8.B 注释:略。

9.C 注释:由洛仑兹力的特性,始终垂直与运动电荷的速度方向,所以洛仑兹力不改变运动电荷的速度大小,只改变其方向,所以洛仑兹力对电荷不做功,但其动量发生了变化。

10.B 注释:运动电荷垂至于B 的方向进入磁场后将作匀速圆周运动,轨道曲线所围的面的磁通量为:Bq mv qB mv B BS 222)()(ππφ===,由此可得答案。

11.B 注释:矩形线框左边框受力方向向右且较大,右边框受力向左且较小,所以整个载流线框受合力向右,所以要远离。

大学物理第7章恒定磁场试题及答案.docx

大学物理第7章恒定磁场试题及答案.docx

第7章恒定磁场一、选择题1.磁场可以用下述哪一种说法来定义?[](A)只给电荷以作用力的物理量(B)只给运动电荷以作用力的物理量(C)贮存有能量的空间(D)能对运动电荷作功的物理量2.空间某点磁感应强度的方向,在下列所述定义中错误的是[](A)小磁针N极在该点的指向(B)运动正电荷在该点所受最大的力与其速度的矢积的方向(C)电流元在该点不受力的方向(D)载流线圈稳定平稳时,磁矩在该点的指向3.下列叙述中错误的是[](A) 一根给定的磁力线上各点处的B的大小一定相等一(B)一根给定的磁力线上各点处的〃的方向不一定相同(C)均匀磁场的磁力线是一组平行直线(D)载流长直导线周围的磁力线是一组同心圆坏4.下列关于磁力线的描述中正确的是[](A)条形磁铁的磁力线是从N极到S极的(B)条形磁铁的磁力线在磁铁内部是从S极到N极的(C)磁力线是从N极出发终止在S极的曲线(D)磁力线是不封闭的曲线5.下列叙述中不能正确反映磁力线性质的是[](A)磁力线是闭合曲线(B)磁力线上任一点的切线方向为运动电荷的受力方向(C)磁力线与载流回路彖环一样互相套连(D)磁力线与电流的流向互相服从右手定则6.关于磁场之I'可的相互作用有下列说法,其屮正确的是[](A)同性磁极相吸,异性磁极相斥(B)磁场屮小磁针的磁力线方向只有与磁场磁力线方向一致时,才能保证稳定平稳(C) 小磁针在非均匀磁场中一定向强磁场方向运动 (D) 在涡旋电场中,小磁针沿涡旋电场的电场线运动7. 一电荷放置在行驶的列车上,相对于地面来说,电荷产生电场和磁场的情况将是[](A) (B)只只产生产生电场磁场(C)既产生电场,又产生磁场 (D)既不产生电场,又不产生磁场 T7-1-7图8. 通以稳恒电流的长直导线,在其周阖产生电场和磁场的情况将是 [](A)只产生电场 (B) 只产生磁场(C) 既产生电场,又产生磁场 (D) 既不产生电场,乂不产生磁场9. 在电流元I d/激发的磁场中,若在距离电流元为r 处的磁感应强度为d B .则下列叙述中正确的是(C) dB 一的方向垂直于/d 乙与[组成的平面二T7-1-9图 (D) dB 的方向为(-厂)方向10. 决定长直螺线管中磁感应强度大小的因素是 [](A)通入导线中的电流强度 (B)螺线管的体积(C)螺线管的直径(D)与上述各因素均无关一-11. 磁场的高斯定理B-dS= 0,说明S[](A)穿入闭合曲血的磁感应线的条数必然等于穿出的磁感应线的条数(B) 穿入闭合曲面的磁感应线的条数不等于穿出的磁感应线的条数[](A) d B 一的方向与r 方向相同一(B) dB 的方向与/d/方向相同 dl(C) 一根磁感应线可以终止在闭合曲面内 (D) 一根磁感应线不可能完全处于闭合曲面内13. 磁场中的高斯路理JJ BdS= 0说明了磁场的性质之一是[](A)磁场力是保守力(B)磁力线可能闭合 (C)磁场是无源场(D)磁场是无势场14. 若某空间存在两无限长直载流导线,空间的磁场就不存在简单的对称性.此 时该磁场的分布[](A)可以直接用安培环路定理来计算 (B) 只能用安培环路定理来计算 (C) 只能用毕奥-萨伐尔定律来计算(D) 可以用安培环路定理和磁场的叠加原理求出15.对于安培环 路定律I ,在下面说法中正确的是[](A)H 只是穿过闭合环路的电流所激发,与环路外的电流无关(B)是环路内、外电流的代数和(C) 安培环路定律只在具有高度对称的磁场中才成立(D) 只有磁场分布具有高度对称性时,才能用它直接计算磁场强度的人小16. 在圆形电流的平面内取一同心圆形坏路,由于环路内无电流穿过,所以§H・d/[](A)圆形环路上各点的磁场强度为零(B) 圆形环路上各点的磁场强度方向垂直于环路平面 (C) 圆形坏路上各点的磁场强度方向指向圆心 (D) 圆形环路上各点的磁场强度方向为该点的切线方向12.安培环路定 律/说明了磁场的性质之一是[](A)磁力线是闭合曲线(C)磁场是无源场(B)磁场力是保守力 (D)磁场是无势场17.下述情况中能用安培坏路定律求磁感应强度的是[](A) 一段载流直导线 (C) 一个环形电流(B) 无限长直线电流 (D) 任意形状的电流1& 取一闭合积分回路L,使三根载流导线穿过L 所围成的面.现改变三根导线 之间的相互间隔,但不越出积分回路,则[](A)回路厶内的》/不变,厶上各点的8不变(B)回路厶内的工/不变,L 上各点的B 改变变,厶上各点的B 不变 (D)冋路厶内的》/改变,厶上各点的B 改变19.边长为L 的一个正方形线圈屮通有电流/,则线圈中心的磁感应强度的大小将](A)与厶成正比 (B)与厶成反比(C)与厶无关(D)与厶*成正比T7-1-19图 20. 一无限长直圆柱体,半径为沿轴向均匀流有电流. 磁感应强度大小为Bi,圆柱体外(r>R )感应强度大小为B2,则有[1(A) 31、均与厂成正比设圆柱体内(r<R )的 (B) B 、、B 2均与厂成反比(C) B\与F •成反比,与厂 成正比(D) B 1与F •成正比,〃2与r 成反比 T7-1-20图21.如T7-1-21图所示,两根载有相同电流的无限长直导 线,分别通过x 】 = l 和兀2=3的点,且平行于尹轴.由此可 知,磁感一应强度B 为零的地方是 O12 3 x T7-1-21 图[](A) x=2的直线上(B) x>2的区域(C) x<l 的区域 (D)不在平而内22・一个半径为R 的圆形电流厶其圆心处的磁场强度大小为[1(A)4R (B)(C) 0(D)— 2R23. 有一个圆形冋路1及一个正方形冋路2,圆的直径和正方 形回路的边长相等,二者屮通有大小相等的电流,它们在各自屮心产 生的磁感应强度的大小之比BJB.为[](A) 0.90(B) 1.00(C) 1.11 (D) 1.2224. 一载有电流I 的细导线分别均匀密绕在半径为R 和r 的长直圆筒上形成两个螺 线管(R = 2r ),两螺线管单位长度上的匝数相等•两螺线管屮的磁感应强度大小B R 和B r 应满足关系[](A) B R =2 B 丫 r(D) B R = 4 B r25. 两根载有相同电流的通电导线,彼此之间的斥力为F.如果它们的电流均增加一 倍,相互之间的距离也加倍,则彼此之间的斥力将为变为FF[](A)—(B)— (C)F (D) 2F4226. 两束阴极射线(电子流),以不同的速率向同一方向发射,则两束射线间[](A)存在三种力:安培力、库仑力和洛仑兹力 (B) 存在二种力:库仑力和洛仑兹力 (C) 存在二种力:安培力和洛仑兹力 (D) 只存在洛仑兹力27. 可以证明,无限接近长直电流处(r->0)的B 为--有限值.可是从毕一萨定律 得到的长直电流的公式屮得出,当尸一0时B-8.解释这一矛盾的原因是 [](A)毕一萨定律得出的过程不够严密(B) 不可能存在真正的无限长直导线 (C) 当尸一0 口寸,毕一萨定律已不成立 (D) 毕一萨定律是一个近似理论28. 运动电荷受洛仑兹力后,其动能、动量的变化情况是[](A)动能守恒(B)动量守恒(C)动能、动量都守恒(D)动能、动量都不守恒29. 运动电荷垂直进入均匀磁场后,下列各量中不守恒是T7亠23图(B)B R =B 「 (C) 2B R =B[](A)动量(B)关于圆心的角动量(C)动能(D)电荷与质量的比值30. —电量为g 的带电粒子在均匀磁场中运动,下列说法中正确的是 [](A)只要速度大小相同,粒子所受的洛仑兹力就相同(B) 在速度不变的前提下,若电荷q 变为一么则粒子受力反向,数值不变 (C) 粒子进入磁场后,其动能和动量都不改变 (D) 洛仑兹力与速度方向垂直,所以其运动轨迹是圆31. 一个长直螺线管通有交流电,把一个带负电的粒子沿 螺线管的轴线射入管屮,粒子将在管屮作 ](A)圆周运动 (B)沿管轴来回运动(C)螺旋线运动 (D)匀速直线运动T7-1-31图32. 一束正离子垂直射入一个均匀磁场与均匀电场互相平行 且同向的区域.结果表明离子束在一与入射束垂直放置的荧光屏 上产生一条抛物线,则所有粒子有相同的 [](A)动能(B)质量(C)电量(D)荷质比 T7-1-32图33. 质量为〃?、电量为g 的带电粒子,以速度v 沿与均匀磁场E 成g 角方向射入磁场,英轨迹为一螺旋线.若要增大螺距,应34. 在一个由南指向北的匀强磁场中,一束电子垂直地向下通过_B此 (C) [ ] (A)磁场,受到由由磁场对西下指向上指向它东的作用力的力•向耳V® 0 0T7-1-34 图—11 11 111[](A)增大磁场B (C)减小速度v (B)减少磁场B _(D) 增加夹角q(B)(D)由由北东指向指向南西35. 一电子在垂直于一均匀磁场方向作半径为R 的圆周运动,电子的速度为v ,忽略电子产生的磁场,则此轨道内所包圉面积的磁通量为x BxnmvRT7亠35图36. 一带电粒子垂直射入均匀磁场中,如果粒子质量增大到原来的两倍,入射速度增 大到两倍,磁场的磁感应强度增大到4倍,忽略粒子运动产生的磁场,则粒子运动轨迹所包 围范围内的磁通量增大到原来的1 1 [](A)2 倍 (B)4 倍(C)2 倍(D)4倍37. 一电子以速度丿垂直地入射到一磁感应强度为B 的均匀磁场中•忽略其电子产 生的磁场,此时电子在磁场中运动的轨道所圉面积的磁通量 [](A)正比于3,正比于v 2 (B)反比于B,反比于v 2(C) 正比于5正比于v(D)反比于5反比于v38. 图中六根无限长导线相互绝缘,通过的电流均为/,区域I 、II 、均为相等的正方形.问哪个区域垂直指向里的磁通量最大?1(B) II 区/ III IV (C)III 区(D) IV 区T7-1-38 图39. 在某均匀磁场中放置有两个平面线圈,其面积S]二2S2,通有电流人二2/2,它们所受的最大磁力矩之比M 2为[](A)1 (B)2 (C)4 (D) 1/440. 有一由N 匝细导线绕成的平而正三角形线圈,边长为°,通有电流/,置于均匀外 磁场3中.当线圈平面的法向与外磁场同向时,线圈所受到的磁力矩大小为 [](A) 3Na 岳/ 2(B) 3Na 炼 /4[](A)eR 2(B) emR (C)——eR(D)兀u41.一直径为2.0cm、匝数为300匝的圆线圈,放在5xl0'2T的磁场中,当线圈内通过10mA的电流时,磁场作用于线圈的最大磁力矩为[](A) 4.7 N.m (B) 4.7xlO'2N.m(C) 4.7x1 O'5 N.m (D) 4.7x10-4 N.m42.有一直径为8 cm的线圈,共12匝,通以电流5 A.现将此线圈置于磁感应强度为0.6 T的匀强磁场屮,则[](A)作用在线圈上的最大磁力矩为M=18N.m(B)作用在线圈上的最大磁力矩为M=1.8N.m(C)线圈正法线与B成30。

大学物理稳恒磁场理论及习题解读

大学物理稳恒磁场理论及习题解读

250 0 方向垂直A面
B
BC
0 N C I C
2 RC

0 20 5
2 0.10
O BA
5000 方向垂直C面
B
2 BA
2 BC
7.02 10 T 方向 : tan
4
1
BC 63.4 BA
NIZQ
第14页
大学物理学
恒定磁场
NIZQ
问题: 磁现象产生的原因是什么?
第 2页
大学物理学
恒定磁场
• 电流的磁效应 1820年奥斯特实验表明: 电流对磁极有 力的作用. 1820年 9月 11日在法国科学院演示的奥 斯特的实验 ,引起了安培的兴趣 .一周之后 安培发现了电流间也存在着相互作用力.
此后安培又提出了著名的安 培定律 : 磁体附近的载流导线 会受到力的作用而发生运动.
NIZQ
第 3页
大学物理学
恒定磁场
结论: 磁现象与电荷的运动有着密切的关系 . 运动电荷既能产 生磁效应,也受到磁力的作用. 安培把磁性归结为电流之间的相互作用 . 1822年安培提 出了分子电流假说:
• 一切磁现象起源于电荷的运动.
• 磁性物质的分子中存在分子电流, 每个分子电流相当于一基元磁体。
写成矢量表示:
0 Idl sin
2 4π r 0 Idl r dB 4π r 3
真空中的磁导率: 0= 410-7亨利· 米-1 (H· m-1)
NIZQ
第 8页
大学物理学
恒定磁场
• 毕奥—萨伐尔定律的应用 恒定磁场的计算: 1.选取电流元或某些典型电流分布为积分元. 2.由毕-萨定律写出积分元的磁场dB .

大学物理第06章恒定磁场习题解答

大学物理第06章恒定磁场习题解答

第6章 恒定磁场习题解答1. 空间某点的磁感应强度B的方向,一般可以用下列几种办法来判断,其中哪个是错误的 ( C )(A )小磁针北(N )极在该点的指向;(B )运动正电荷在该点所受最大的力与其速度的矢积的方向; (C )电流元在该点不受力的方向;(D )载流线圈稳定平衡时,磁矩在该点的指向。

2. 下列关于磁感应线的描述,哪个是正确的 ( D )(A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。

3. 磁场的高斯定理 0S d B说明了下面的哪些叙述是正确的 ( A )a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。

(A )ad ; (B )ac ; (C )cd ; (D )ab 。

4. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量 和面上各点的磁感应强度B 将如何变化 ( D )(A ) 增大,B 也增大;(B ) 不变,B 也不变; (C ) 增大,B 不变; (D ) 不变,B 增大。

5. 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少 ( C )(A )0; (B )R I 2/0 ;(C )R I 2/20 ; (D )R I /0 。

6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线的同轴的圆柱形闭合高斯面,则通过此闭合面的磁感应通量( A )A 、等于零B 、不一定等于零C 、为μ0ID 、为i ni q 117、一带电粒子垂直射入磁场B后,作周期为T 的匀速率圆周运动,若要使运动周期变为T/2,磁感应强度应变为(B )A 、B /2 B 、2BC 、BD 、–BI8 竖直向下的匀强磁场中,用细线悬挂一条水平导线。

大学物理第06章 恒定磁场习题解答解读

大学物理第06章 恒定磁场习题解答解读

第6章 恒定磁场习题解答1. 空间某点的磁感应强度B的方向,一般可以用下列几种办法来判断,其中哪个是错误的? ( C )(A )小磁针北(N )极在该点的指向;(B )运动正电荷在该点所受最大的力与其速度的矢积的方向; (C )电流元在该点不受力的方向;(D )载流线圈稳定平衡时,磁矩在该点的指向。

2. 下列关于磁感应线的描述,哪个是正确的? ( D )(A )条形磁铁的磁感应线是从N 极到S 极的; (B )条形磁铁的磁感应线是从S 极到N 极的; (C )磁感应线是从N 极出发终止于S 极的曲线; (D )磁感应线是无头无尾的闭合曲线。

3. 磁场的高斯定理⎰⎰=⋅0S d B说明了下面的哪些叙述是正确的? ( A )a 穿入闭合曲面的磁感应线条数必然等于穿出的磁感应线条数;b 穿入闭合曲面的磁感应线条数不等于穿出的磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。

(A )ad ; (B )ac ; (C )cd ; (D )ab 。

4. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ和面上各点的磁感应强度B 将如何变化? ( D )(A )Φ增大,B 也增大;(B )Φ不变,B 也不变; (C )Φ增大,B 不变; (D )Φ不变,B 增大。

5. 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,则在圆心o 处的磁感应强度大小为多少? ( C )(A )0; (B )R I 2/0μ;(C )R I 2/20μ; (D )R I /0μ。

6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线的同轴的圆柱形闭合高斯面,则通过此闭合面的磁感应通量( A )A 、等于零B 、不一定等于零C 、为μ0ID 、为i ni q 11=∑ε7、一带电粒子垂直射入磁场B后,作周期为T 的匀速率圆周运动,若要使运动周期变为T/2,磁感应强度应变为(B )A 、B /2 B 、2BC 、BD 、–BIS IIo8 竖直向下的匀强磁场中,用细线悬挂一条水平导线。

第七章恒定磁场-习题解答

第七章恒定磁场-习题解答
第七章、稳恒磁场
7-3 如图所示,一无限长载流绝缘直导线弯成如附图所示的
形状。求使o点的磁感应强度为零的半径a和b的比值。
解 该载流系统由三部分组成,o点的磁感
应强度为载有相同电流的无限长直导线
及两个半径分别为a和b的圆环分别在该
处激发的磁感应强度的矢量和。设磁场 方向以垂直纸面向内为正,向外为负。
方向垂直纸面向里。 (2)由磁矩定义
方向垂直纸面向里。
第七章、稳恒磁场
7-20 质谱仪的构造原理如图所示。离子源S提供质量为M、
电荷为q的离子。离子初速很小,可以看作是静止的,然后经
过电压U的加速,进入磁感应强度为B的均匀磁场,沿着半圆
周运动,最后到达记录底片P上。测得离子在P上的位置到入
口处A的距离为x。试证明该离子的质量为:M ? qB 2 x 2 。
或由磁感应线是闭合曲线,也可推知
??
Φaefd
?
? Φabcd
?
0.24Wb
? Φ ? ?B?dS ? 0
第七章、稳恒磁场
7-9 一个非均匀磁场磁感应强度的变化规律为B=ky(k为常 量),方向垂直纸面向外。磁场中有一边长为a的正方形线 框,其位置如图所示。求通过线框的磁通量。
解 在线框内坐标为y处取一长为a宽为 dy的矩形面积元dS,在dS中磁场可认 为是均匀的,则通过dS的磁通量
? I2l
? 0 I1
2πx1
I2l
? ?7.2?
F2 10?4
? B2I2l N
?
? 0 I1
2πx2
I2l
负号表示合力方向水平向左。
第七章、稳恒磁场
习题7-16 一长直导线通有电流I =20A,另一导线ab通 有电流I?=10A,两者互相垂直且共面,如图所示。求导 线ab所受的作用力和对o点的力矩。

第七章--恒定磁场-习题知识讲解

第七章--恒定磁场-习题知识讲解

第七章 恒定磁场1.均匀磁场的磁感强度B垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为 ( B ) (A) B r 22 . (B)B r 2 .(C) 0. (D) 无法确定的量.2.载流的圆形线圈(半径a 1 )与正方形线圈(边长a 2 )通有相同电流I .若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为( D ) (A) 1∶1 (B) 2∶ 1 (C) 2∶4 (D)2∶83.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分 Ll B d 等于( D )(A) I 0 . (B)I 031. (C) 4/0I . (D) 3/20I .4.在匀强磁场中,有两个平面线圈,其面积A 1 = 2 A 2,通有电流I 1 = 2 I 2,它们所受的最大磁力矩之比M 1 / M 2等于( C ) (A) 1. (B) 2. (C) 4. (D) 1/4.5.如图所示,无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 ( D ) (A)RI20 ; (B)RI0 ;IIa bc d120°O R I(C))11(40 R I; (D) )11(20R I 。

6.如图所示,处在某匀强磁场中的载流金属导体块中出现霍耳效应,测得两底面M 、N 的电势差为V V V N M 3103.0 ,则图中所加匀强磁场的方向为( C )(A )、竖直向上; (B )、竖直向下; (C )、水平向前; (D )、水平向后。

1、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2,外半径为R 3的同轴导体圆筒组成, 中间充满磁导率 的各向同性均匀非铁磁绝缘材料,如图。

传导电流I 沿导线向上流去,由圆筒向下 流回,在它们的截面上电流都是均匀分布的,求同轴线内外的磁感强度大小B 的的分布。

第七章 恒定磁场-习题解答ppt课件

第七章 恒定磁场-习题解答ppt课件

dΦBdSkyady
对正方形线框平面积分,
Φ

a
k
yad1y k3 a
0
2
题 7-9 图
.
7-11 同轴长电缆由内、外两导体构成,内导体是半径为a 的实心圆柱,外导体是内外半径分别为b和c的圆筒。在两 导体中,有大小相等、方向相反的电流I通过。试求磁感应 强度B的分布:(1)圆柱导体内离轴r处(r<a); (2)两导体间(a<r<b);(3)圆筒形导体内(b<r<c); (4)圆筒形导体外(r >c)。
B1B22πd 0I/221 04T
B1和B2的方向分别指向x轴的负方向和z轴 的正方向。
由磁场叠加原理,P处磁感应强度的大小为
BP B12B222π 2d 02 I2.8104T
BP的方向在x-z平面内,与z轴正方向和x轴负方向均成 45°夹角。
.
7-3 如图所示,一无限长载流绝缘直导线弯成如附图所示的
七、磁场中的磁介质—— 1、磁介质的分类 2、铁磁质的应用
.
习题7-2 如图所示,两根无限长直导线互相垂直地放置,相距 d=2.010-2m。设两根导线通过的电流均为I=10A,求两导线 垂直距离中点P处的磁感应强度。
解 :两根载有相同电流的无限长直导线在P处的磁感应强 度的大小相同,由安培环路定理
如图所示。试求:(1)通过图中abcd面的磁通量;(2)通
过图中befc面的磁通量;(3)通过图中aefd面的磁通量。
解: 磁通量 ΦBS ,设各面向外法线为正
Φ abc d BSBaSbc cdo 1s8 0 0
0.2W 4 b
Φ bef cBSBbSec f co9s0 0

大学物理答案-07恒定磁场(2)

大学物理答案-07恒定磁场(2)
3π (cos − cos B2 = 4 • ) a 4 4 4π • 2 I
μ0I
π
2 2μ0I = πa
α1
α2
a
2. 圆形载流导线轴线上的磁场
已知: 真空中R、I,求 轴线上P点的磁感应强度 建立坐标系OXY
r Idl
I
O
Y
α
R
r er
r r dB⊥ dB
r p dB

x
X
r 任取电流元 Idl
v dB
P* v
v Id l
v dB
v r
I
θ
r
v Id l
例、在一平面内有两条垂直交叉但 相互绝缘的导线,过每条导线的电流I大 小相等,方向如图所示,问哪些区域可 能存在磁感应强度为零的点? A 答案: B和D D
I I
B
C
三、毕奥---萨伐尔定律的应用 1. 载流直导线的磁场 I
已知:真空中I、α1、 α2、a r 任取电流元 Idl r μ 0 Idl sin α dB大小 dB = 2 4π r r dB 方向 ⊗ μ0 Idlsinα B = ∫ dB = ∫ 4π r 2 统一积分变量
μ 0 I 1 2π − θ B1 = 2R 2π
μ0I2 θ B2 = 2 R 2π
方向相反 O点总磁感强度B=0
作业1: P51二填空题1 作业2: P54四讨论题2(2)左边图的 情 况。
α2
dl
α
r α1
r dB
P
l
O
a

r = a / sin(π − α ) = a / sinα 2 = −a cotα l = a cot(π − α ) dl = a csc αdα

《大学物理》恒定磁场练习题及答案

《大学物理》恒定磁场练习题及答案

《大学物理》恒定磁场练习题及答案一、简答题1、如何使一根磁针的磁性反转过来?答:磁化:比如摩擦,用一个磁体的N 极去摩擦小磁针的N 极可以让它变为S 极,另一端成N 极。

2、为什么装指南针的盒子不是用铁,而是用胶木等材料做成的? 答:铁盒子产生磁屏蔽使得指南针无法使用。

3、在垂直和水平的两个金属圆中通以相等的电流,如图所示,问圆心O 点处的磁场强度大小及方向如何?答:根据圆电流中心处磁感应强度公式,水平金属圆在O 点的磁感应强度大小为RI20μ;方向垂直向下,竖直金属圆在O 点的磁感应强度大小为RI20μ;方向垂直指向纸面内。

故O 点叠加后的磁感应强度大小为RI220μ;方向为斜下450指向纸面内。

4、长直螺旋管中从管口进去的磁力线数目是否等于管中部磁力线的数目? 为什么管中部的磁感应强度比管口处大?答:因为磁力线是闭合曲线,故磁力线数目相等。

根据载流长直螺旋管磁感应强度计算公式)cos (cos 21120θθμ-=nI B 可知,管口处21πθ→,0cos 1=θ,管口处磁感应强度为20cos 21θμnI B =;中心处212cos 2cos cos θθθ'='-',故中心处磁感应强度为20cos θμ'=nI B ,因为22θθ>',所以中心处磁感应强度比管口处大。

5、电荷在磁场中运动时,磁力是否对它做功? 为什么? 答:不作功,因为磁力和电荷位移方向成直角。

6、在均匀磁场中,怎样放置一个正方型的载流线圈才能使其各边所受到的磁力大小相等?答:磁力线垂直穿过正四方型线圈的位置。

因为线圈每边受到的安培力为B Ia F ⨯=,由于处在以上平面时,每边受到的磁力为IaB F =。

7、一个电流元Idl 放在磁场中某点,当它沿x 轴放置时不受力,如把它转向y 轴正方向时,则受到的力沿z 铀负方向,问该点磁感应强度的方向如何?答:由安培力公式B Idl dF ⨯=可知,当Idl 沿x 轴放置时不受力,即0=dF ,可知B 与Idl 的方向一致或相反,即B 的方向沿x 轴线方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7+恒定磁场+习题解答仅供学习与交流,如有侵权请联系网站删除 谢谢2第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4=分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C )。

7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π2仅供学习与交流,如有侵权请联系网站删除 谢谢3分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ).7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。

因而正确答案为(B ).仅供学习与交流,如有侵权请联系网站删除 谢谢4 7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( )(A )()r I μr π2/1-- (B ) ()r I μr π2/1-(C ) r I μr π2/- (D ) r μI r π2/仅供学习与交流,如有侵权请联系网站删除 谢谢5分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。

分析 一个电子绕存储环近似以光速运动时,对电流的贡献为c I e I /Δ=,因而由lNec I =,可解出环中的电子数。

解 通过分析结果可得环中的电子数10104⨯==ecIl N 7 -7 已知铜的摩尔质量M =63.75 g·mol -1 ,密度ρ =8.9 g · cm -3 ,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度26.0A mm m j -=⋅ ,求此时铜线内电子的漂移速率v d ;(2) 在室温下电子热运动的平均速率是电子漂移速率v d 的多少倍? 分析 一个铜原子的质量A N M m /=,其中N A 为阿伏伽德罗常数,由铜的密度ρ 可以推算出铜的原子数密度m ρn /=根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度d m ne j v = .从而可解得电子的漂移速率v d .将电子气视为理想气体,根据气体动理论,电子热运动的平均速率em kT π8=v仅供学习与交流,如有侵权请联系网站删除 谢谢6其中k 为玻耳兹曼常量,m e 为电子质量.从而可解得电子的平均速率与漂移速率的关系.解 (1) 铜导线单位体积的原子数为M ρN n A /=电流密度为j m 时铜线内电子的漂移速率14s m 1046.4//--⋅⨯===e ρN M j ne j A m m d v(2) 室温下(T =300 K)电子热运动的平均速率与电子漂移速率之比为81042.2π81⨯≈=ed d m kT v v v 室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的.7 -8 有两个同轴导体圆柱面,它们的长度均为20 m ,内圆柱面的半径为3.0 mm ,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 μA 电流沿径向流过,求通过半径为6.0 mm 的圆柱面上的电流密度.仅供学习与交流,如有侵权请联系网站删除 谢谢7分析 如图所示是同轴柱面的横截面,电流密度j 对中心轴对称分布.根据恒定电流的连续性,在两个同轴导体之间的任意一个半径为r 的同轴圆柱面上流过的电流I 都相等,因此可得rl I j π2/=解 由分析可知,在半径r =6.0 mm 的圆柱面上的电流密度2m m A 3.13π2/-⋅==rl I j7 -9 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T .如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大? 流向如何?仅供学习与交流,如有侵权请联系网站删除 谢谢8解 设赤道电流为I ,则由教材第7 -4 节例2 知,圆电流轴线上北极点的磁感强度 ()R I μR R IR μB 24202/3220=+= 因此赤道上的等效圆电流为A 1073.12490⨯==μRB I 由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.7 -10 如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接。

求环心O 的磁感强度.仅供学习与交流,如有侵权请联系网站删除 谢谢9分析 根据叠加原理,点O 的磁感强度可视作由ef 、b e 、fa 三段直线以及ac b 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而b e 、fa 两段直线的延长线通过点O ,由于0Idl r ⨯=,由毕-萨定律知0be fa ==B B .流过圆弧的电流I 1 、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为21101π4r l I μB =,22202π4rl I μB = 其中I 1 、I 2 分别是圆弧ac b 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧ac b 、a d b 又构成并联电路,故有2211l I l I =将B1 、B2 叠加可得点O 的磁感强度B . 解 由上述分析可知,点O 的合磁感强度0π4π42220211021=-=-=r l I μr l I μB B B 7 -11 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?仅供学习与交流,如有侵权请联系网站删除 谢谢10分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=i B B 0解 (a) 长直电流对点O 而言,有0=⨯r l Id ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RI μB 800=B 0 的方向垂直纸面向外. (b) 将载流导线看作圆电流和长直电流,由叠加原理可得RI μR I μB π22000-= B 0 的方向垂直纸面向里.(c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RI μR I μR I μR I μR I μB 4π24π4π4000000+=++=B 0 的方向垂直纸面向外. 7 -12 载流导线形状如图所示(图中直线部分导线延伸到无穷远),求点O 的磁感强度B .分析 由教材7 -4 节例题可知,圆弧载流导线在圆心激发的磁感强度RαI μB π40=,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O 激发的磁感强度RI μB π40=,磁感强度的方向依照右手定则确定。

点O 的磁感强度B O 可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O 的叠加。

解 根据磁场的叠加在图(a)中,k i k k i B RI μR I μR I μR I μR I μπ24π4π44000000--=---= 在图(b)中, k i k i i B RI μR I μR I μR I μR I μπ41π14π44π4000000-⎪⎭⎫ ⎝⎛+-=---= 在图(c )中, k j i B RI μR I μR I μπ4π4830000---=7 -13 如图所示,一个半径为R 的无限长半圆柱面导体,沿长度方向的电流I 在柱面上均匀分布.求半圆柱面轴线OO ′上的磁感强度.分析 毕-萨定理只能用于求线电流的磁场分布,对于本题的半圆柱形面电流,可将半圆柱面分割成宽度θR I d d =的细电流,细电流与轴线OO ′平行,将细电流在轴线上产生的磁感强度叠加,即可求得半圆柱面轴线上的磁感强度.解 根据分析,由于长直细线中的电流R l I I π/d d =,它在轴线上一点激发的磁感强度的大小为I RμB d 2πd 0= 其方向在Oxy 平面内,且与由dl 引向点O 的半径垂直,如图7 -13(b)所示.由对称性可知,半圆柱面上细电流在轴线OO ′上产生的磁感强度叠加后,得⎰==0sin d θB B yRI μθθR R I R μθB B x 20π00π0πsin d π2πsin d =⋅==⎰⎰ 则轴线上总的磁感强度大小 R I μB B x 20π== B 的方向指向Ox 轴负向.7 -14 实验室中常用所谓的亥姆霍兹线圈在局部区域内获得一近似均匀的磁场,其装置简图如图(a)所示.一对完全相同、彼此平行的线圈,它们的半径均为R ,通过的电流均为I ,且两线圈中电流的流向相同.试证:当两线圈中心之间的距离d 等于线圈的半径R 时,在两线圈中心连线的中点附近区域,磁场可看成是均匀磁场.(提示:如以两线圈中心连线的中点为坐标原点O ,两线圈中心连线为x 轴,则中点附近的磁场可看成是均匀磁场的条件为0=dxdB ;022=dx B d )分析 设磁感强度在Ox 轴线上的分布为B (x )(可由两个圆电流线圈在轴线上磁场的叠加而得),如在轴线上某点处0d d =xB ,这表明在该点附近的磁感强度有三种可能,即有极大值(0d d 22<x B )、极小值(0d d 22>x B ) 或均匀(0d d 22=xB ).据此可得获得均匀磁场的条件①.证 取两线圈中心连线的中点为坐标原点O ,两线圈中心轴线为x 轴,在x 轴上任一点的磁感强度()[]()[]2/322202/322202/2/2x d R IR μx d R IR μB ++--+=则当 ()()()[]()()[]02/2/32/2/32d d 2/5222/52220=+++-⎪⎩⎪⎨⎧-+-=x d Rx d x d R x d IR μx x B ()()()[]()()[]02/2/42/2/423d d 2/722222/72222022=++-+-⎪⎩⎪⎨⎧-+-=x d R R x d x d R x d IR μx x B 时,磁感强度在该点附近小区域内是均匀的,该小区域的磁场为均匀场.由0d d =xB , 解得 x =0 由 0d d 022==x xB ,解得 d =R ① 将磁感强度B 在两线圈中点附近用泰勒级数展开,则 ()()()()...d 0d 21d 0d 0222+++=x x B x x B B x B 若x <<1;且()0d 0d =xB ;()0d 0d 22=x B .则磁感强度B (x )在中点O 附近近似为常量,场为均匀场.这表明在d =R 时,中点(x =0)附近区域的磁场可视为均匀磁场.7 -15 如图所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x [图(b)],载流长直导线的磁场穿过该面元的磁通量为x l xl μΦd π2d d 0=⋅=S B 矩形平面的总磁通量ΦΦ⎰=d 解 由上述分析可得矩形平面的总磁通量⎰==211200ln π2d π2d d d d Il μx l x l μΦ 7 -16 已知10 mm 2 裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求:(1) 导线内、外磁感强度的分布;(2) 导线表面的磁感强度.分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等.方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 (1) 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B 在导线内r <R , 2222πππRr r R I I ==∑,因而 202πRIr μB =在导线外r >R ,I I =∑,因而 rI μB 2π0= 磁感强度分布曲线如图所示.(2) 在导线表面磁感强度连续,由I =50 A ,m 1078.1π/3-⨯==s R ,得T 106.52π30-⨯==RI μB7 -17 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3)R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径, πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度.解 由上述分析得r <R 122101ππ12πr R μr B =⋅ 2112πR Ir μB = R 1 <r <R 2I μr B 022π=⋅rI μB 2π02= R 2 <r <R 3()()⎥⎦⎤⎢⎣⎡---=⋅IRRRrIμrB2223223ππ2π222322332πRRrRrIμB--=r>R3()02π4=-=⋅IIμrB4=B磁感强度B(r)的分布曲线如图(b).7 -18如图所示,N匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I 后,环内外磁场的分布.分析根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r的圆周为积分环路,由于磁感强度在每一环路上为常量,因而πr2d⋅=⋅⎰BlB依照安培环路定理∑⎰=⋅Iμd lB,可以解得螺线管内磁感强度的分布.解依照上述分析,有∑=⋅IμrB2πr<R102π1=⋅r B01=BR 2 >r >R 1NI μr B 022π=⋅rNI μB 2π02= r >R 202π3=⋅r B03=B在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若112R R R <<- 和R 2 ,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径()1221R R R +=,则环内的磁感强度近似为 RNI μB 2π0≈ 7 -19 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.分析 由题7 -16 可得导线内部距轴线为r 处的磁感强度()202πRIr μr B = 在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ⎰=r Φ来求解.沿轴线方向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量⎰=Sr B Φd 解 由分析可得单位长度导线内的磁通量4πd 2π0020I μr R Ir μΦR ==⎰ 7 -20 设电流均匀流过无限大导电平面,其面电流密度为j .求导电平面两侧的磁感强度.(提示:可参考本章问题7 -11,并用安培环路定理求解.)分析 依照右手螺旋定则,磁感强度B 和电流j 相互垂直,同时由对称性分析,无限大导电平面两侧的磁感强度大小相同,方向反向平行.如图所示,在垂直导电平面的平面上对称地取矩形回路a b c d ,回路所在平面与导电平面相交于OO ′,且使a b ∥c d ∥OO ′,a d ⊥OO ′,c d ⊥OO ′,a b =c d =L ,根据磁场的面对称分布和安培环路定理可解得磁感强度B 的分布.解 在如图所示的矩形回路a b c d 中,磁感强度沿回路的环路积分⎰⎰⎰⎰⎰⋅+⋅+⋅+⋅=⋅dabc cd ab l l B l B l B l B l B d d d d d 由于对称性B 1 =B 2 =B ,B 3 、B 4 与积分路径正交,因而Bl d l2=⋅⎰l B (1) 回路a b c d 内包围的电流I =jL ,根据安培环路定理,有jL μBl l 02d ==⋅⎰l B (2)由式(1)和式(2)可得导电板两侧磁感强度的大小为j μB 021=磁感强度的方向由右手螺旋关系确定. 7 -21 设有两无限大平行载流平面,它们的面电流密度均为j ,电流流向相反.求:(1) 两载流平面之间的磁感强度;(2) 两面之外空间的磁感强度.解 由上题计算的结果,单块无限大载流平面在两侧的磁感强度大小为012j μ,方向如图所示,根据磁场的叠加原理可得 (1) 取垂直于纸面向里为x 轴正向,合磁场为i i i B 000j μj μj μ=+=22 (2) 两导体载流平面之外,合磁场的磁感强度 022==i -i B 00j μj μ 7 -22 已知地面上空某处地磁场的磁感强度40.410T B -=⨯,方向向北.若宇宙射线中有一速率715.010m s -=⨯v 的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2) 洛伦兹力的大小,并与该质子受到的万有引力相比较.解 (1) 依照B F ⋅=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示.(2) 因B ⊥v ,质子所受的洛伦兹力N 102.316-⨯==B F v q L在地球表面质子所受的万有引力N 1064.116-⨯==g m G p因而,有101095.1/⨯=G F L ,即质子所受的洛伦兹力远大于重力.7 -23 在一个显像管的电子束中,电子有41.210eV ⨯的动能,这个显像管安放的位置使电子水平地由南向北运动.地球磁场的垂直分量55.510T B -⊥=⨯,并且方向向下.求:(1) 电子束偏转方向;(2) 电子束在显像管内通过20 cm 到达屏面时光点的偏转间距.解 (1) 如图所示,由洛伦兹力B F ⨯=v q电子带负电,q <0,因而可以判断电子束将偏向东侧.(2) 在如图所示的坐标中,电子在洛伦兹力作用下,沿圆周运动,其轨道半径R (参见教材第7 -7 节)为m 71.62===eBmE eB m R k v 由题知cm 20=y ,并由图中的几何关系可得电子束偏向东侧的距离m 1098.2Δ322-⨯=--=y R R x 即显示屏上的图像将整体向东平移近3 mm .这种平移并不会影响整幅图像的质量.7 -24 试证明霍耳电场强度与稳恒电场强度之比nep B E E C H //=,这里ρ 为材料电阻率,n 为载流子的数密度. 分析 在导体内部,稳恒电场推动导体中的载流子定向运动形成电流,由欧姆定律的微分形式,稳恒电场强度与电流密度应满足j E ρC =其中ρ 是导体的电阻率.当电流流过位于稳恒磁场中的导体时,载流子受到洛伦兹力的作用,导体侧面出现电荷积累,形成霍耳电场,其电场强度为B E ⨯-=v H其中v 是载流子定向运动速率.根据导体内电流密度v ne =j由上述关系可得要证明的结果.证 由分析知,在导体内稳恒电场强度为nev ρρC ==j E由霍耳效应,霍耳电场强度B E ⨯-=v H因载流子定向运动方向与磁感强度正交,故E H =v B ,因而B/ne ρB/ρ/ρB/ρ/E E C H ===v v v /7 -25 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度.解 依照分析m/s 63.0===dBU B E H H v 7 -26 磁力可以用来输送导电液体,如液态金属、血液等而不需要机械活动组件.如图所示是输送液态钠的管道,在长为l 的部分加一横向磁场B ,同时沿垂直于磁场和管道方向加一电流,其电流密度为J .(1) 证明在管内液体l 段两端由磁力产生的压力差为p JlB ∆=,此压力差将驱动液体沿管道流动.(2) 要在l 段两端产生1.00 atm (1 atm =101 325 P a )的压力差,电流密度应多大? (l =2.00 cm ,B =1.50T)解 (1) 由题意电流垂直流过管内导电液体,磁场中的导电液体受到安培力的作用,在管道方向产生一压力差JBl SIBl S F p ===Δ (2) 26A/m 1038.3Δ⨯==Blp J7 -27 带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5 cm 的圆弧径迹,测得磁感强度为0.20 T,求此质子的动量和动能.解 根据带电粒子回转半径与粒子运动速率的关系有m /s kg 1012.121⋅⨯===-ReB m p vkeV 35.222==mp E k 7 -28 从太阳射来的速度为0.80 ×108 m /s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少?解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径m 101.1311⨯==eB m R v 地磁北极附近的回转半径m 2322==eB m R v 7 -29 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm ,b =8.0 cm ,l =0.12 m .分析 矩形上、下两段导线受安培力F 1 和F 2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3 和F 4 大小不同,且方向相反,因此线框所受的力为这两个力的合力.解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为dl I I μF π22103=()b d l I I μF +=π22104 故合力的大小为()N 1028.1π2π2321021043-⨯=+-=-=b d l I I μd l I I μF F F 合力的方向朝左,指向直导线. 7 -30 一直流变电站将电压为500k V 的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为3.0×10-11F·m -1 ,若导线间的静电力与安培力正好抵消.求:(1) 通过输电线的电流;(2) 输送的功率.分析 当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d ,一导线在另一导线位置激发的磁感强度dI μB π20=,导线单位长度所受安培力的大小BI F B =.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C 和电压U 已知,则单位长度导线所带电荷λ=CU ,一导线在另一导线位置所激发的电场强度dελE 0π2=,两导线间单位长度所受的静电吸引力λE F E =.依照题意,导线间的静电力和安培力正好抵消,即0=+E B F F从中可解得输电线中的电流.解 (1) 由分析知单位长度导线所受的安培力和静电力分别为dI μBI F B π220== dεU C λE F E 022π2== 由0=+E B f f 可得dεU C d I μ02220π2π2= 解得A 105.4300⨯==μεCU I (2) 输出功率 W 1025.29⨯==IU N7 -31 将一电流均匀分布的无限大载流平面放入磁感强度为B 0 的均匀磁场中,电流方向与磁场垂直.放入后,平面两侧磁场的磁感强度分别为B 1 和B 2(如图所示),求该载流平面上单位面积所受磁场力的大小和方向.分析 依照题7 -20 的分析,无限大载流平面两侧为均匀磁场,磁感强度大小为j μ021,依照右手螺旋定则可知,它们的方向反向平行,并与原有磁感强度B 0的均匀外磁场叠加,则有j μB B 00121-= j μB B 00221+= 从而可解得原均匀磁场的磁感强度B 0和电流面密度j .载流平面在均匀外磁场中受到安培力的作用,由于载流平面自身激发的磁场不会对自身的电流产生作用力,因此作用在dS 面积上的安培力0d B l F ⨯=Id由此可求得单位面积载流平面所受的安培力.解 由分析可得j μB B 00121-= (1)j μB B 00221+= (2) 由式(1)、(2)解得()21021B B B += ()1201B B μj -= 外磁场B 0 作用在单位面积载流平面上的安培力()212200021d d d d d d B B μjB y x yB x j S F -=== 依照右手定则可知磁场力的方向为水平指向左侧.7 -32 在直径为1.0 cm 的铜棒上,切割下一个圆盘,设想这个圆盘的厚度只有一个原子线度那么大,这样在圆盘上约有6.2 ×1014 个铜原子.每个铜原子有27 个电子,每个电子的自旋磁矩为224m A 103.9⋅⨯=-e μ.我们假设所有电子的自旋磁矩方向都相同,且平行于铜棒的轴线.求: (1) 圆盘的磁矩;(2) 如这磁矩是由圆盘上的电流产生的,那么圆盘边缘上需要有多大的电流.解 (1) 因为所有电子的磁矩方向相同,则圆盘的磁矩27m A 1056.1⋅⨯==-e μN m(2) 由磁矩的定义,可得圆盘边缘等效电流A 100.2/3-⨯==S m I7 -33 在氢原子中,设电子以轨道角动量π2/h L =绕质子作圆周运动,其半径为m 1029.5110-⨯=a .求质子所在处的磁感强度.h 为普朗克常量,其值为s J 1063.634⋅⨯-分析 根据电子绕核运动的角动量π2/0h a m L ==v可求得电子绕核运动的速率v .如认为电子绕核作圆周运动,其等效圆电流v/π20a e T e i ==在圆心处,即质子所在处的磁感强度为 002a i μB =解 由分析可得,电子绕核运动的速率 0π2ma h =v 其等效圆电流2020π4π2ma he ma e i ==该圆电流在圆心处产生的磁感强度 T 5.12π82202000===ma he μa i μB 7 -34 半径为R 的圆片均匀带电,电荷面密度为σ,令该圆片以角速度ω绕通过其中心且垂直于圆平面的轴旋转.求轴线上距圆片中心为x 处的P 点的磁感强度和旋转圆片的磁矩.分析 旋转的带电圆盘可等效为一组同心圆电流,在盘面上割取细圆环(如图所示),其等效圆电流σωrdr Trdr σI ==π2d 此圆电流在轴线上点P 处激发的磁感强度的大小为 ()2/32220d 2d xr I r μB += 所有圆电流在轴线上激发的磁场均沿O x 轴,因而点P 处的合磁场为⎰=B B d .由磁矩的定义,等效圆电流的磁矩I r m d πd 2=,方向沿O x 轴正向,将不同半径的等效圆电流磁矩叠加可以得到旋转圆片的磁矩⎰=I r m d π2解 由上述分析可知,轴线上x 处的磁感强度大小为()⎥⎦⎤⎢⎣⎡-++=+=⎰x R x x R σωμx r r σωr μB R222d 22222002/3223032200223/20222()R r dr B x r x μμσωσω⎡⎤==-⎥+⎦⎰ 圆片的磁矩m 的大小为 403π41πR σωdr σωr m R ==⎰ 磁感强度B 和磁矩m 的方向都沿Ox 轴正向.7 -35 一根长直同轴电缆,内、外导体之间充满磁介质[图(a)],磁介质的相对磁导率为μr (μr <1),导体的磁化可以忽略不计.沿轴向有恒定电流I 通过电缆,内、外导体上电流的方向相反.求:(1) 空间各区域内的磁感强度和磁化强度;*(2) 磁介质表面的磁化电流.分析 电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有⎰=⋅r πH d 2l H ,利用安培环路定理 ⎰∑=⋅f I d l H求出环路内的传导电流,并由H μB =,()H μM r 1-=,可求出磁感强度和磁化强度.再由磁化电流的电流面密度与磁化强度的关系求出磁化电流.解 (1) 取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有 ∑=f I r H π2 对r <R 1221ππr R I If =∑ 得 2112πR Ir H = 忽略导体的磁化(即导体相对磁导率μr =1),有 01=M ,21012πR Ir μB =对R 2 >r >R 1I If =∑得rI H 2π2=填充的磁介质相对磁导率为μr ,有 ()r I μM r 2π12-=,rI μμB r 2π02= 对R 3 >r >R 2()()2223223ππR r R R I I I f -⋅--=∑ 得 ()()222322332πR R r r R I H --= 同样忽略导体的磁化,有 03=M ,()()2223223032πR R r r R I μB --= 对r >R 3 0=-=∑I I If得 04=H ,04=M ,04=B(2) 由r M I s 2π⋅=,磁介质内、外表面磁化电流的大小为()()I μR R M I r si 12π112-=⋅=()()I μR R M I r se 12π222-=⋅=对抗磁质(1r μ<),在磁介质内表面(r =R 1 ),磁化电流与内导体传导电流方向相反;在磁介质外表面(r =R 2 ),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H (r )和B (r )分布曲线分别如图(b)和(c ).7 -36 设长L =5.0 cm ,截面积S =1.0 cm 2 的铁棒中所有铁原子的磁偶极矩都沿轴向整齐排列,且每个铁原子的磁偶极矩2230m A 108.1⋅⨯=-m .求:(1) 铁棒的磁偶极矩;(2) 要使铁棒与磁感强度T 5.10=B 的外磁场正交,需用多大的力矩? 设铁的密度3cm g 8.7-⋅=ρ ,铁的摩尔质量10mol g 85.55-⋅=M . 分析 (1) 根据铁棒的体积和密度求得铁棒的质量,再根据铁的摩尔质量求得棒内的铁原子数N ,即A N M V ρN 0= 其中N A 为阿伏伽德罗常量.维持铁棒内铁原子磁偶极矩同方向排列,因而棒的磁偶极矩0Nm m =(2) 将铁棒视为一个磁偶极子,其与磁场正交时所需力矩0B m M ⋅=解 (1) 由分析知,铁棒内的铁原子数为A N M SL ρN 0= 故铁棒的磁偶极矩为2000m A 85.7-⋅===m N M SL ρNm m A (2) 维持铁棒与磁场正交所需力矩等于该位置上磁矩所受的磁力矩m N 4.110⋅=⋅=B m M7 -37 在实验室,为了测试某种磁性材料的相对磁导率μr ,常将这种材料做成截面为矩形的环形样品,然后用漆包线绕成一环形螺线管.设圆环的平均周长为0.10 m ,横截面积为0.50×10-4 m 2 ,线圈的匝数为200 匝.当线圈通以0.10 A 的电流时,测得穿过圆环横截面积的磁通量为6.0 ×10-5 Wb ,求此时该材料的相对磁导率μr .。

相关文档
最新文档