模拟电子线路11 半导体物理基础知识
(完整word版)半导体物理知识点总结.doc

一、半导体物理知识大纲核心知识单元 A:半导体电子状态与能级(课程基础——掌握物理概念与物理过程、是后面知识的基础)半导体中的电子状态(第 1 章)半导体中的杂质和缺陷能级(第 2 章)核心知识单元 B:半导体载流子统计分布与输运(课程重点——掌握物理概念、掌握物理过程的分析方法、相关参数的计算方法)半导体中载流子的统计分布(第 3 章)半导体的导电性(第 4 章)非平衡载流子(第 5 章)核心知识单元 C:半导体的基本效应(物理效应与应用——掌握各种半导体物理效应、分析其产生的物理机理、掌握具体的应用)半导体光学性质(第10 章)半导体热电性质(第11 章)半导体磁和压阻效应(第12 章)二、半导体物理知识点和考点总结第一章半导体中的电子状态本章各节内容提要:本章主要讨论半导体中电子的运动状态。
主要介绍了半导体的几种常见晶体结构,半导体中能带的形成,半导体中电子的状态和能带特点,在讲解半导体中电子的运动时,引入了有效质量的概念。
阐述本征半导体的导电机构,引入了空穴散射的概念。
最后,介绍了Si、Ge 和 GaAs 的能带结构。
在 1.1 节,半导体的几种常见晶体结构及结合性质。
(重点掌握)在 1.2 节,为了深入理解能带的形成,介绍了电子的共有化运动。
介绍半导体中电子的状态和能带特点,并对导体、半导体和绝缘体的能带进行比较,在此基础上引入本征激发的概念。
(重点掌握)在 1.3 节,引入有效质量的概念。
讨论半导体中电子的平均速度和加速度。
(重点掌握)在1.4 节,阐述本征半导体的导电机构,由此引入了空穴散射的概念,得到空穴的特点。
(重点掌握)在 1.5 节,介绍回旋共振测试有效质量的原理和方法。
(理解即可)在 1.6 节,介绍 Si 、Ge 的能带结构。
(掌握能带结构特征)在 1.7 节,介绍Ⅲ -Ⅴ族化合物的能带结构,主要了解GaAs 的能带结构。
(掌握能带结构特征)本章重难点:重点:1、半导体硅、锗的晶体结构(金刚石型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。
大学物理课件半导体基础

+ +++++ + +++++ + +++++ + +++++
空间电荷区, 也称耗尽层。
扩散运动
扩散的结果是使空间电 荷区逐渐加宽,空间电 荷区越宽。
(1-19)
漂移运动
P型半导体
内电场E N型半导体
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
在常温下,由于热激发,使一些价电子获 得足够的能量而脱离共价键的束缚,成为自由电 子,同时共价键上留下一个空位,称为空穴。
(1-9)
空穴
+4
+4
+4
+4
自由电子 束缚电子
(1-10)
2.本征半导体的导电机理
本征半导体中存在数量相等的两种载流子,即 自由电子和空穴。
+4
+4
+4
+4
在其它力的作用下, 空穴吸引附近的电子 来填补,这样的结果 相当于空穴的迁移, 而空穴的迁移相当于 正电荷的移动,因此 可以认为空穴是载流 子。
绝缘体:有的物质几乎不导电,称为绝缘体,如橡 皮、陶瓷、塑料和石英。
半导体:另有一类物质的导电特性处于导体和绝缘 体之间,称为半导体,如锗、硅、砷化镓 和一些硫化物、氧化物等。
模电第一章半导体基础知识

杂质能3
对电子的影响
施主杂质能级向导带提供 电子,使半导体呈现n型 导电性。
对空穴的影响
受主杂质能级接受价带的 电子成为空穴,使半导体 呈现p型导电性。
影响程度
杂质浓度越高,对电子和 空穴的影响越显著,半导 体的导电性能也越强。
06
半导体中的光电效应
光电效应的原理和分类
光电器件的特性
光电器件的主要特性包括光谱响应、光电灵敏度、响应速度和噪声等,这些特性决定了光电器件的应用范围和效 果。
光电器件的应用和发展趋势
光电器件的应用
光电器件在多个领域都有应用,如光电探测、光电转换、光通信等。
光电器件的发展趋势
随着科技的不断进步和应用需求的不断提高,光电器件的发展趋势包括高灵敏度、高速响应、高稳定 性、多功能化等。
半导体的热学性质
热导率
半导体的热导率取决于其材料 和结构,热导率越高,导热性
能越好。
热容
半导体的热容取决于其材料和 温度,它决定了半导体的耐热 性能。
热膨胀
半导体的热膨胀系数决定了其 在温度变化时的尺寸变化,对 器件的稳定性有影响。
温差电动势率
半导体的温差电动势率是指在 温度梯度下产生的电动势,它
05
半导体中的掺杂和杂质能级
掺杂的概念和分类
掺杂
在半导体材料中人为地加入某种元素,以改变其导电性能的过程。
分类
施主掺杂、受主掺杂、中性杂质掺杂。
杂质能级的形成和特性
形成
杂质原子在半导体晶体中占据了特定 的位置,这些位置上的电子能级与晶 体中的其他电子能级不同,形成了杂 质能级。
特性
杂质能级位于禁带中,其能量位置取 决于掺杂元素的种类和浓度,对半导 体的导电性能有重要影响。
模拟电子技术重点笔记

模拟电子技术重点笔记一、半导体基础知识在模拟电子技术中,半导体是至关重要的材料。
半导体的导电性能介于导体和绝缘体之间,常见的半导体材料有硅(Si)和锗(Ge)。
半导体中有两种载流子:自由电子和空穴。
在纯净的半导体中,掺入微量的杂质可以显著改变其导电性能。
比如,掺入五价杂质形成 N 型半导体,其中自由电子是多数载流子;掺入三价杂质形成 P 型半导体,空穴则成为多数载流子。
PN 结是半导体器件的核心结构,它是由 P 型半导体和 N 型半导体接触形成的。
PN 结具有单向导电性,正向偏置时导通,反向偏置时截止。
这一特性为二极管等器件的工作原理奠定了基础。
二、二极管二极管是最简单的半导体器件之一。
它的主要特性就是上述提到的单向导电性。
二极管的伏安特性曲线可以清晰地展示其工作状态。
当正向电压超过开启电压时,电流迅速增大;反向电压在一定范围内,反向电流很小,当反向电压超过击穿电压时,反向电流急剧增大。
二极管在电路中有多种应用,如整流、限幅、钳位等。
在整流电路中,利用其单向导电性将交流转换为直流;在限幅电路中,可以限制信号的幅度;在钳位电路中,能将信号的电位固定在某个值。
三、三极管三极管是一种具有放大作用的半导体器件,分为NPN 型和PNP 型。
三极管的工作状态有截止、放大和饱和三种。
在放大状态下,基极电流的微小变化会引起集电极电流的较大变化,这就是三极管的放大作用。
要使三极管工作在放大状态,需要满足一定的外部条件,即发射结正偏,集电结反偏。
通过合理设置电路参数,可以实现对输入信号的放大。
三极管在模拟电子电路中广泛应用于放大电路、开关电路等。
四、基本放大电路基本放大电路是模拟电子技术中的重要内容。
常见的有共射极放大电路、共集电极放大电路和共基极放大电路。
共射极放大电路具有较大的电压放大倍数和电流放大倍数,但输入输出电阻适中;共集电极放大电路的电压放大倍数接近于 1,但输入电阻大,输出电阻小,常用于输入级和输出级;共基极放大电路具有较大的高频特性和宽频带。
11半导体基础知识

第一章 常用半导体器件
back
25
多余 电子
磷原子
+4 +4 +5 +4
N 型半导体中 的载流子是什 么?
1、由施主原子提供的电子,浓度与施主原子相同。 2、本征半导体中成对产生的电子和空穴。
掺杂浓度远大于本征半导体中载流子浓度,所以,自 由电子浓度远大于空穴浓度。自由电子称为多数载流 子(多子),空穴称为少数载流子(少子)。
变薄
+ P
-+ -+ -+ -+
内电场被削弱,多子 的扩散加强能够形成 较大的扩散电流。
_ N
外电场
R
内电场
E
第一章 常用半导体器件
back
38
2、PN 结反向偏置
变厚
_ P
-+ -+ -+ -+
内电场被被加强,多子
的扩散受抑制。少子漂
移加强,但少子数量有
限,只能形成较小的反
向电流。
+
N
内电场
外电场
第一章 常用半导体器件
back
26
二、P 型半导体
在硅或锗晶体中掺入少量的三价元素,如硼
(或铟),晶体点阵中的某些半导体原子被杂质
取代,硼原子的最外层有三个价电子,与相邻的
半导体原子形成共价键时, 空穴
产生一个空穴。这个空穴 可能吸引束缚电子来填补,
+4
+4
使得硼原子成为不能移动
的带负电的离子。由于硼 原子接受电子,所以称为
比掺杂前载流子增加106,即一百万倍。
第一章 常用半导体器件
back
29
半导体物理知识点汇总总结

半导体物理知识点汇总总结一、半导体物理基本概念半导体是介于导体和绝缘体之间的材料,它具有一些导体和绝缘体的特性。
半导体是由单一、多层、回交或互相稀释的混合晶形的二元、三元或多元化合物所组成。
它的特点是它的电导率介于导体和绝缘体之间,是导体的电导率∗101~1015倍,是绝缘体的电导率÷102~103倍。
半导体材料具有晶体结构,对它取决于结晶度的大小,织排效应特别大。
由于它的电导率数值在半导体晶体内并不等同,所以它是隔离的,具有相当大的飞行束度,并且不容易受到外界的干扰。
二、半导体晶体结构半导体是晶体材料中最均匀最典型的材料之一,半导体的基本结构是一个由原子排成的一种规则有序的晶体结构。
半导体原子是立方体的晶体,具有600个原子的立方体晶体结构,又称之为立方的晶体结构。
半导体晶体结构的代表性六面体晶体结构,是一种由两个或两个以上的六面全部说构成的立方晶体。
半导体晶体的界面都是由两个或两个以上的六面全部说构成的晶体包围构成,是由两个或两个以上的六面全部说构成的立方晶体。
半导体晶体的界面都是由两个或两个以上的六面全部说构成的晶点构成,是由两个或两个以上的六面全部说构成的晶点构成。
三、半导体的能带结构半导体的能带“带”是指其电子是在“带”中运动的,是光电子带,又称作价带,当其中的自由电子都填满时另一种平面,又称导电带,当其中的自由电子并不填满时其另一种平面在有一些能够使电子轻易穿越的东西。
半导体的能带是由两个非常临近的能带组成的,其中价带的最上一层电子不足,而导电带的下一层电子却相当到往动能,这一些动能可能直到加到电子摆脱它自己体原子,变成自由电子,并且在整体晶体里自由活动。
四、半导体的导电机理半导体的导电机理是在外加电压加大时一部分自由电子均可以在各自能带中加速骚扰,从而增加在给导电子处所需要的电压增大并最终触碰到另一种平面上产生电流就可以。
五、半导体的掺杂掺杂是指在纯净半导体中加入某些以外杂质元素的行为。
半导体物理基础知识

半导体物理基础知识目录1. 基本概念 (2)1.1 半导体的定义与分类 (2)1.2 반도체材料的结构与性质 (3)1.3 晶体结构与晶格常数 (4)1.4 能带理论与电子跃迁 (5)1.5 费米能级与电子的填充 (6)2. 电子输运机制 (7)2.1 能带结构与导电特性 (8)2.2 漂移电流与散乱 (9)2.3 扩散电流与载流子浓度梯度 (10)2.4 霍尔效应与霍尔系数 (11)3. 半导体器件物理 (12)4. 半导体材料与工艺 (14)4.1 元素掺杂与输运特性 (16)4.2 晶体生长法与缺陷控制 (18)4.3 半导体氧化与金属沉积 (19)5. 电力电子器件 (20)5.1 功率二极管与肖特基二极管 (22)5.2 功率晶体管与MOSFET (23)5.3 整流桥与交流调制 (25)6. 可见光与光电子器件 (26)6.1 半导体光吸收与发射 (27)6.2 光电二极管与光电晶体管 (28)6.3 激光器与光放大器 (29)7. 量子力学与半导体 (31)7.1 量子点与量子阱结构 (33)7.2 量子计算机与量子力学计算 (34)1. 基本概念半导体物理是研究半导体材料和器件的电子性质、能带结构以及其在电磁场中的行为的一门学科。
半导体是一种介于导体和绝缘体之间的材料,其电导率介于导体和绝缘体之间。
半导体物理的基本概念包括:本征载流子、费米能级、载流子浓度、迁移率、漂移速度等。
本征载流子是指处于基态的半导体原子或分子所具有的自由电子和空穴。
费米能级是指在半导体中,电子和空穴的能量相等且低于或高于价带顶的能级。
载流子浓度是指单位体积内半导体中存在的电子和空穴的数量。
迁移率是指载流子在半导体中从高能级向低能级跃迁时的速度。
漂移速度是指载流子在半导体中受到电场作用而发生漂移的速度。
半导体物理的研究涉及到许多重要的现象,如结、整流效应、光电效应、热效应等。
这些现象在实际应用中具有广泛的应用,如二极管、晶体管、太阳能电池等。
模拟电子技术基础知识总结

模拟电子技术基础知识总结【导语】下面给大家分享模拟电子技术基础知识总结(共4篇),欢迎阅读!篇1:模拟电子技术基础知识总结一.半导体的基础知识1.半导体#导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性#光敏、热敏和掺杂特性。
3.本征半导体#纯净的具有单晶体结构的半导体。
4. 两种载流子 #带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体#在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体:在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6. 杂质半导体的特性*载流子的浓度#多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻#通常把杂质半导体自身的电阻称为体电阻。
7. PN结* PN结的单向导电性#正偏导通,反偏截止。
* PN结的导通电压#硅材料约为~,锗材料约为~。
8. PN结的伏安特性二. 半导体二极管*单向导电性正向导通,反向截止。
*二极管伏安特性#同PN结。
*正向导通压降硅管~,锗管~。
*死区电压硅管,锗管。
3.分析方法将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路); 若 V阳该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法直流等效电路法*总的解题手段#将二极管断开,分析二极管两端电位的高低: 若 V阳 >V阴( 正偏 ),二极管导通(短路); 若 V阳微变等效电路法三. 稳压二极管及其稳压电路*稳压二极管的特性#正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
三极管及其基本放大电路一. 三极管的结构、类型及特点 1.类型#分为NPN和PNP两种。
2.特点#基区很薄,且掺杂浓度最低;发射区掺杂浓度很高,与基区接触面积较小;集电区掺杂浓度较高,与基区接触面积较大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本征半导体中,自由电子和空穴总是成对出现,称 为 电子 - 空穴对。
本征半导体中自由电子和空穴的浓度用 ni 和 pi 表 示,显然 ni = pi 。
由于物质的运动,自由电子和空穴不断的产生又不 断的复合。在一定的温度下,产生与复合运动会达到平 衡,载流子的浓度就一定了。
热平衡载流子浓度
简化模型:
说明:
1. 掺入杂质的浓度决定多数载流子浓度;温度决 定少数载流子的浓度。
2. 杂质半导体载流子的数目要远远高于本征半导 体,因而其导电能力大大改善。
3. 杂质半导体总体上保持电中性。
4. 杂质半导体的表示方法如下图所示。
(a)N 型半导体
(b) P 型半导体
杂质半导体的的简化表示法
杂质半导体中载流浓度计算
载流子在电场作用下的运动运动称漂移运动, 所形成的电流称漂移电流。
漂移电流密度
J pt qpP E J nt -(-q) pn E
迁移率
总漂移电流密度: J t J pt J nt Eq( pP nn )
半导体的电导率 电压: V = E l 电流: I = S Jt
少子——空穴
简化模型:
二、 P 型半导体
在硅或锗的晶体中掺入少量的 3 价杂质元素,如 硼、镓、铟、铝等,即构成 P 型半导体。
+4
+4
+4
3 价杂质原子称为
空穴
受主杂质。
+4
+43 受主 +4
杂质
+4
+4
+4
P型半导体
本征半导体中掺入少量三价元素构成。
空穴
+4
+4
+3
Hale Waihona Puke +4+4
多子——空穴 P型半导体 少子——自由电子
贬谪的除了范仲淹和滕子京之外,还有范仲淹改革的另一位支持者——北宋大文学家、史学家欧阳修。他于庆历五年被贬谪到滁州,也就是今天的安徽省滁州市。也是在此期间,欧阳修在滁州留下了不逊于
《岳阳楼记》的千古名篇——《醉翁亭记》。接下来就让我们一起来学习这篇课文吧!【教学提示】结合前文教学,有利于学生把握本文写作背景,进而加深学生对作品含义的理解。二、教学新课目标导学
+4
+4
+4
体。
本征激发
若 T 或受到光线照
T
射时,将有少数价电子克
服共价键的束缚成为自由
电子,在原来的共价键中 +4
+4
留下一个空位——空穴。
空穴
自由电子和空穴使本 +4
+4
征半导体具有导电能力,
但很微弱。
+4
+4
+4 自由电子
+4
+4
空穴可看成带正电的载流
当T升高或光线照射时 产生自由电子空穴对。
室温(T=300K)时,硅的ni≈1.5×1010cm-3,锗的 ni≈2.4×1010cm-3,硅的原子密度为4.96×1022cm-3,故 ni仅为它的三万亿分之一,故本征半导体的导电能力 是很低的。
T 或光照 ni
导电能力
热敏特性 光敏特性
1.1.2 杂质半导体
杂质半导体有两种
N 型半导体 P 型半导体
截面积S
I
电阻:
R V El l
I JtS S
电场E 长度l
+V
电导率:
1
Jt E
q( pP nn )
扩散与扩散电流
载流子在浓度差作用下的运动称扩散运动, 所形成的电流称扩散电流。
光照
N型硅
载流子浓度
n(x) no
p(x) po
扩散电流密度:
J pd
-qDp
一、 N 型半导体(Negative)
在硅或锗的晶体中掺入少量的 5 价杂质元素,如 磷、锑、砷等,即构成 N 型半导体(或称电子型半导 体)。
常用的 5 价杂质元素有磷、锑、砷等。
N型半导体:本征半导体中掺入少量五价元素构成。
自由电子
+4
+4
+5
施主 杂质
+4
+4
多子——自由电子 N型半导体
dp( x) dx
J nd
-(-q)Dn
dn( x) dx
x
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受到
本征激发——产生自由电子空穴对。 本征半导体中
电子和空穴相遇释放能量——复合。
温度一定时: 激发与复合在某一热平衡值上达到动态平衡。
热平衡载流子浓度:
ni
3 - Eg0
AT 2e 2kT
pi
A是常数(硅:3.88×1016cm-3K-3/2,锗: 1.76×1016cm-3K-3/2 ) K是玻尔兹曼常数(8.63×10-5eV/K =1.38×10-23J/K) Eg0是T=0K时的禁带宽度(硅:1.21eV,锗:0.785eV)
+4
价电子
完全纯净的、不含其他杂质且具有晶体结构
1.1.1 本征半导体
的半导体
硅和锗的单晶称为本征半导体。它们是制造
半导体器件的基本材料。
硅和锗共价键结构示意图:
共价键具有很强
+4
+4
+4
的结合力。 当T=0K
共
(无外界影响)时, 价
键
+4
+4
价 电 子
+4
共价键中无自由移
动的电子,半导体 不导电,如同绝缘
一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江西)人,因吉州原属庐陵郡,因此他又以“庐陵欧阳修”自居。谥号文忠,世称欧 阳文忠公。北宋政治家、文学家、史学家,与韩愈、柳宗元、王安石、苏洵、苏轼、苏辙、曾巩合称“唐宋八大家”。后人又将其与韩愈、柳宗元和苏轼合称“千古文章四大家”。
N型半导体
nno pno ni2 (质量作用定理)
nno Nd pno Nd (电中性方程)
P型半导体
pponpo ni2
ppo N a npo N a
多子浓度取决于掺杂浓度。 杂质半导体呈电中性
少子浓度取决于温度。
1.1.3 两种导电机理——漂移和扩散 漂移与漂移电流
1.1 半导体物理基础知识
1. 导体:电阻率 < 10-4 ·cm 的物质。如铜、
银、铝等金属材料。
2. 绝缘体:电阻率 > 109 ·cm 物质。如橡胶、
塑料等。
半导体:导电能力介于导体与绝缘体之间的物质。
硅 ( Si ) 、锗 ( Ge ) 原子结构及简化模型: 惯性核
+14 2 8 4 +32 2 8 18 4
这种现象称
本征激发。
注意:空穴的出现是半导体区别于导体的重要特征。
空穴的运动
当原子中的价电子激发为自由电子时,原子中留 下空位,同时原子因失去价电子而带正电。
当邻近原子中的价电子不断填补这些空位时形成 一种运动,该运动可等效地看作是空穴的运动。
注意:空穴运动方向与价电子填补方向相反。
自由电子 — 带负电 半导体中有两种导电的载流子