高一数学古典概型1

合集下载

3.2.1古典概型

3.2.1古典概型


本事件总数.
【解析】将三张卡片排成一行,共有BEE,BEE,EBE,EEB,EBE, EEB,6种可能的结果,恰好排成英文单词BEE的结果有两种,
2 1 所以所求概率为P== . 6 3 1 答案: 3

能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型
5.(2010·浙江高一检测)从一个装有6个彩色球(3红,2黄,
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精


能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精


能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精


能 巩 固 提 升
目 录 典 课 程 目 标 设 置 主 题 探 究 导 学 型 例 题 精

能 巩 固 提 升
目 录 课 程 目 标 设 置 主 题 探 究 导 学
【解析】(1)一共有8种不同的结果,列举如下: (红、红、红)、(红、红、黑)、(红、黑、红)、(红、黑、 黑)、(黑、红、红)、(黑、红、黑)、(黑、黑、红)、(黑、 黑、黑). (2)记“3次摸球所得总分为5”为事件A. 事件A包含的基本事件为:(红、红、黑)、(红、黑、红)、 (黑、红、红),事件A包含的基本事件数为3.
1.古典概型的概率计算公式与随机事件频率的计算公式有什么 区别? 提示:古典概型的概率公式P(A)=
m ,与随机事件A发生的频率 n
典 型 例 题 精

m m 有本质的区别,其中P(A)= 是一个定值,且对同一试验的 n n

高一数学古典概型试题答案及解析

高一数学古典概型试题答案及解析

高一数学古典概型试题答案及解析1.某射手射击一次击中10环,9环,8环的概率分别为0.3,0.3,0.2,则他射击一次命中8环或9环的概率为.【答案】0.5【解析】射击一次命中8环或9环的概率为.【考点】(1)互斥事件的概率;(2)概率的加法公式.2.在某高校自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为五个等级.某考场考生的两科考试成绩数据统计如下图所示,其中“数学与逻辑”科目的成绩为的考生有人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为的人数;(Ⅱ)若等级分别对应分,分,分,分,分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为.在至少一科成绩为的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为的概率.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【解析】(Ⅰ)先求考场人数,再由频率求“阅读与表达”科目中成绩为的人数,注意这里不是频率分布直方图,纵轴就表示频率;(Ⅱ)根据期望公式即可算得平均分;(Ⅲ)通过枚举法算得概率,注意有四名考生得到,得到的有个人次,注意这两者的区别,否则易犯错误.试题解析:(Ⅰ)设该考场有个考生,而“数学与逻辑”科目中成绩等级为的考生有人,频率由,得该考场有人 2分所以该考场考生中“阅读与表达”科目中成绩等级为的人数为4分(Ⅱ)该考场考生“数学与逻辑”科目的平均分为7分[(Ⅲ)“数学与逻辑”考试中得的有人,“阅读与表达”考试中得的也有人,因为两科考试中,又恰有两人的两科成绩等级均为,所以还有人只有一个科目得分为,设这四人为甲,乙,丙,丁,其中甲,乙是两科成绩都是的同学,则在至少一科成绩等级为的考生中,随机抽取两人进行访谈,基本事件空间为{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁},有个基本事件设“随机抽取两人进行访谈,这两人的两科成绩等级均为”为事件,所以事件中包含的基本事件有个,则. 12分【考点】统计中的分布及古典概型中的概率计算.3.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是_________(结果用数值表示).【答案】.【解析】列举出从已知五个数字中随机取出三数字后剩下的两个数字的所有可能情况:(1.2 )(1.3)(1.4)(1.5)(2.3)(2.4)(2.5)(3.4)(3.5)(4.5)一共有10种情况,剩下两个数为奇数有:(1.3)(1.5)(3.5)共3种情况,则概率为,故应填入: .【考点】古典概率.4.(原创)口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为()A.B.C.D.【答案】C【解析】从5个球中随机抽取两个球,共有种取法.满足两球编号之和大于5的情况有(2,4),(3,4)共2种取法.所以取出的两个球的编号之和大于5的概率为.【考点】1、古典概型及其概率计算公式;2、组合及组合数公式.5.某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数,按十位数字为茎,个位数字为叶得到的茎叶图如图所示.已知甲、乙两组数据的平均数都为10.(1)求的值;(2)分别求出甲、乙两组数据的方差和,并由此分析两组技工的加工水平;(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件数之和大于17,则称该车间“质量合格”,求该车间“质量合格”的概率.(注:方差,为数据的平均数)【答案】(1);(2);(3).【解析】(1)由题意根据平均数的计算公式分别求出的值;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差和,再根据它们的平均值相等,可得方差较小的发挥更稳定一些;(3)用列举法求得所有的基本事件的个数,找出其中满足该车间“质量合格”的基本事件的个数,即可求得该车间“质量合格”的概率.试题解析:解:(1)由题意得,解得,再由,解得;(2)分别求出甲、乙两组技工在单位时间内加工的合格零件数的方差:,,并由,可得两组技工水平基本相当,乙组更稳定些.(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检查,设两人加工的合格零件数分别为,则所有的有(7,8)、(7,9)、(7,10)、(7,11)、(7,12)、(8,8)、(8,9)、(8,10)、(8,11)、(8,12)、(10,8)、(10,9)、(10,10)、(10,11)、(10,12)、(12,8)、(12,9)、(12,10)、(12,11)、(12,12)、(13,8)、(13,9)、(13,10)、(13,11)、(13,12),共计25个,而满足的基本事件有(7,8)、(7,9)、(7,10)、(8,8)、(8,9),共计5个基本事件,故满足的基本事件个数为,所以该车间“质量合格”的概率为.【考点】1、古典概型及其概率计算公式;2、平均数与方差.6.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依次类推,则从第十组中随机抽取一个数恰为3的倍数的概率为 .【答案】【解析】由题可知前9组数据共有,第10组共有10数,且第一个为46,其中为3的倍数的数为:48,51,54,故概率为.【考点】古典概型.7.记a,b分别是投掷两次骰子所得的数字,则方程有两个不同实根的概率为()A.B.C.D.【答案】B【解析】记分别是投掷两次骰子所得的数字,总事件一共种;方程有两个不同实根则,∴当时,;当时,;当时,;当时,,共9种情况,所以概率为.【考点】古典概型.8.连续抛掷2颗骰子,则出现朝上的点数之和等于6的概率为( ).A.B.C.D.【答案】A【解析】连续抛掷2棵骰子所有基本事件总数为36,其中朝上的点数之和等于6的基本事件有共5中,所以所求概率为。

高一数学必修3课件:3-2-1古典概型

高一数学必修3课件:3-2-1古典概型

①本摸球事件中共有5个球,其中3个白球,2个黑球. ②题目中摸球的方式为一次摸出两个球,每个球被摸取 是等可能的. 解答本题可先列出摸出两球的所有基本事件,再数出均 为白球的基本事件数.
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
[解析]
(1)方法一:采用列举法:分别记白球为1,2,3
3.树形图法 树形图法是进行列举的一种常用方法,适合较复杂问题 中基本事件数的探究.
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
[例1]
将一枚骰子先后抛掷两次,则:
(1)一共有几个基本事件? (2)“出现的点数之和大于8”包含几个基本事件?
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
(1)由图知,共36个基本事件. (2)点数之和大于8包含10个基本事件(已用“√”标出).
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
规律总结:要写出所有的基本事件可采用的方法较 多.例如,列举法、列表法、树形图法,但不论采用哪种方 法,都要按一定的顺序进行,做到不重漏.
第三章 3.2
3.2.1
成才之路 ·数学 ·人教A版 · 必修3
2.列表法 对于试验结果不是太多的情况,可以采用列表法.通常 把对问题的思考分析归结为“有序实数对”,以便更直接地 找出基本事件个数.列表法的优点是准确、全面、不易遗 漏.
第三章 3.2
3.2.1

高中数学第七章概率2古典概型第1课时古典概型的概率计算公式及其应用课后习题北师大版必修第一册

高中数学第七章概率2古典概型第1课时古典概型的概率计算公式及其应用课后习题北师大版必修第一册

第1课时 古典概型的概率计算公式及其应用A级必备知识基础练1.下列事件属于古典概型的是( )A.任意抛掷两颗均匀的正方体骰子,所得点数之和作为基本事件B.篮球运动员投篮,观察他是否投中C.测量一杯水分子的个数D.在4个完全相同的小球中任取1个2.(2021浙江杭州期中)从一副52张的扑克牌中任抽一张,“抽到K或Q”的概率是( )A.1 26B.113C.326D.2133.将一枚质地均匀的骰子抛掷两次,若先后出现的点数分别为b,c,则方程x2+bx+c=0有相等的实根的概率为( )A.1 12B.19C.136D.1184.(多选题)以下对各事件发生的概率判断正确的是( )A.甲、乙两人玩剪刀、石头、布的游戏,则玩一局甲不输的概率是13B.在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115C.将一个质地均匀的正方体骰子(每个面上分别写有数字1,2,3,4,5,6)先后抛掷2次,观察向上的点数,则点数之和是6的概率是536D.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是125.20名高一学生、25名高二学生和30名高三学生在一起座谈,如果任意抽其中一名学生讲话,抽到高一学生的概率是 ,抽到高二学生的概率是 ,抽到高三学生的概率是 .6.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为 .7.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为 .8.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球,若摸出的2个球都是红球则中奖,否则不中奖(所有的球除颜色外都相同).(1)用球的标号列出所有可能的摸出结果.(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率,你认为正确吗?请说明理由.9.为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛.该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙、丙三支队伍参加决赛.(1)求决赛中甲、乙两支队伍恰好排在前两位的概率;(2)求决赛中甲、乙两支队伍出场顺序相邻的概率.B级关键能力提升练10.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且a,b∈{1,2,3,4},若|a-b|≤1,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为( )A.5 8B.18C.38D.1411.若集合A={1,2,3},B={x∈R|x2-ax+b=0,a∈A,b∈A},则A∩B=B的概率是( )A.2 9B.13C.89D.112.(多选题)一个袋子中装有3件正品和1件次品,按以下要求抽取2件产品,其中结论正确的是( )A.任取2件,则取出的2件中恰有1件次品的概率是12B.每次抽取1件,不放回抽取两次,样本点总数为16C.每次抽取1件,不放回抽取两次,则取出的2件中恰有1件次品的概率是12D.每次抽取1件,有放回抽取两次,样本点总数为1613.天气预报说,今后三天每天下雨的概率相同,现用随机模拟的方法预测三天中有两天下雨的概率,用骰子点数来产生随机数.依据每天下雨的概率,可规定投一次骰子出现1点和2点代表下雨;投三次骰子代表三天;产生的三个随机数作为一组.得到的10组随机数如下:613,265,114,236,561,435,443,251,154,353.则在此次随机模拟试验中,每天下雨的概率的近似值是 ,三天中有两天下雨的概率的近似值为 .14.有6根细木棒,长度分别为1,2,3,4,5,6,从中任取3根首尾相接,能搭成三角形的概率是 .15.某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:①若xy≤3,则奖励玩具一个;②若xy≥8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.16.某校学生社团组织活动丰富,学生会为了解同学对社团活动的满意程度,随机选取了100位同学进行问卷调查,并将问卷中的这100人根据其满意度评分值(百分制)按照[40,50),[50,60), [60,70),…,[90,100]分成6组,制成如图所示频率分布直方图.(1)求图中x的值;(2)求这组数据的中位数;(3)现从被调查的问卷满意度评分值在[60,80)的学生中按分层随机抽样的方法抽取5人进行座谈了解,再从这5人中随机抽取2人作主题发言,求抽取的2人恰在同一组的概率.C级学科素养创新练17.某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽数,得到如下资料:日期3月1日3月2日3月3日3月4日3月5日温差x/℃101113128发芽数y/颗2325302616 (1)求这5天发芽数的中位数;(2)求这5天的平均发芽数;(3)从3月1日至3月5日中任选2天,记前面一天发芽的种子数为m,后面一天发芽的种子数为n,的概率.用(m,n)的形式列出所有基本事件,并求满足{25≤m≤30,25≤n≤3018.从某商场随机抽取了2 000件商品,按商品价格(单位:元)进行统计,所得频率分布直方图如图所示.记价格在[800,1 000),[1 000,1 200),[1 200,1 400]对应的小矩形的面积分别为S1,S2,S3,且S1=3S2=6S3.(1)按分层随机抽样从价格在[200,400),[1 200,1 400]的商品中共抽取6件,再从这6件中随机抽取2件作价格对比,求抽到的两件商品价格差超过800元的概率;(2)在节日期间,该商场制定了两种不同的促销方案:方案一:全场商品打八折;方案二:全场商品优惠如下表,如果你是消费者,你会选择哪种方案?为什么?(同一组中的数据用该组区间中点值作代表)商品价格[200,400)[400,600)[600,800)[800,1 000)[1 000,1 200)[1 200,1 400]优惠/元3050140160280320第1课时 古典概型的概率计算公式及其应用1.D 判断一个事件是否为古典概型,主要看它是否具有古典概型的两个特征:有限性和等可能性. A选项,任意抛掷两颗均匀的正方体骰子,所得点数之和对应的概率不全相等,如点数之和为2与点数之和为3发生的可能性显然不相等,不属于古典概型,故A排除;B选项,“投中”与“未投中”发生的可能性不一定相等,不属于古典概型,故B排除;C选项,杯中水分子有无数多个,不属于古典概型,故C排除;D选项,在4个完全相同的小球中任取1个,每个球被抽到的机会均等,且包含的基本事件共有4个,符合古典概型,故D正确.故选D.2.D 设“抽到K或Q”为事件A,∵基本事件总数为52,事件A包含的基本事件数为8,∴P(A)=8 52=2 13.3.D 样本点总数为6×6=36,若方程有相等的实根,则b2-4c=0,满足这一条件的b,c的值只有两种:b=2,c=1;b=4,c=4,故所求概率为236=1 18.4.BCD 对于A,如图所示:由图可以看出,所有可能出现的结果共有9种,这些结果出现的可能性相等,P(甲获胜)=13,P(乙获胜)=1 3,故玩一局甲不输的概率是23,故A错误;对于B,不超过14的素数有2,3,5,7,11,13共6个,从这6个素数中任取2个,有(2,3),(2,5),(2,7), (2,11),(2,13),(3,5),(3,7),(3,11),(3,13),(5,7),(5,11),(5,13),(7,11),(7,13),(11,15),共有15种样本点,其中和等于14的只有(3,11)一组,所以在不超过14的素数中随机选取两个不同的数,其和等于14的概率为115,故B正确;对于C,基本事件总共有6×6=36(种)情况,其中点数之和是6的有(1,5),(2,4),(3,3),(4,2),(5,1),共5种情况,则所求概率是536,故C正确;对于D,记三件正品为A1,A2,A3,一件次品为B,任取两件产品的所有可能为A1A2,A1A3,A1B,A2A3,A2B,A3B,共6种,其中两件都是正品的有A1A2,A1A3,A2A3,共3种,则所求概率为P=36=12,故D正确.故选BCD.5.4 151325 任意抽取一名学生是等可能事件,样本点总数为75,记事件A,B,C分别表示“抽到高一学生”“抽到高二学生”和“抽到高三学生”,则它们包含的样本点的个数分别为20,25和30.故P(A)=2075=415,P(B)=2575=13,P(C)=3075=25.6.15 “从5根竹竿中一次随机抽取2根竹竿”的所有可能结果为(2.5,2.6),(2.5,2.7),(2.5,2.8), (2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9),共10个样本点,又“它们的长度恰好相差0.3m”包括(2.5,2.8),(2.6,2.9),共2个样本点,由古典概型的概率计算公式可得所求事件的概率为210= 1 5.7.23 甲、乙、丙三人随机地站成一排有:(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙), (丙,乙,甲),共6种样本点,其中甲、乙相邻有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4种样本点.所以甲、乙两人相邻而站的概率为46= 2 3.8.解(1)所有可能的摸出结果是(A1,a1),(A1,a2),(A1,b1),(A1,b2),(A2,a1),(A2,a2),(A2,b1),(A2,b2), (B,a1),(B,a2),(B,b1),(B,b2).(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为(A1,a1),(A1,a2),(A2,a1),(A2,a2),共4种,所以中奖的概率为412=13,不中奖的概率为1-13=23>13.故这种说法不正确.9.解根据题意可知其样本空间Ω={(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲)},共6个样本点.(1)设“甲、乙两支队伍恰好排在前两位”为事件A,事件A包含的样本点有:(甲,乙,丙),(乙,甲,丙),共2个,所以P(A)=26=13.所以甲、乙两支队伍恰好排在前两位的概率为13.(2)设“甲、乙两支队伍出场顺序相邻”为事件B,事件B包含的样本点有:(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4个,所以P(B)=46= 2 3.所以甲、乙两支队伍出场顺序相邻的概率为23.10.A 甲、乙所猜数字的情况有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2), (3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16种情况,其中满足|a-b|≤1的情况有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)共10种情况,故所求概率为1016= 5 8.11.C 随着a,b的取值变化,集合B有32=9(种)可能,如表.经过验证很容易知道其中有8种满足A∩B=B,所以概率是89.故选C.12.ACD 记4件产品分别为1,2,3,a,其中a表示次品.A选项,样本空间Ω={(1,2),(1,3),(1,a),(2,3),(2,a),(3,a)},“恰有一件次品”的样本点为(1,a),(2,a),(3,a),因此其概率P=36=12,A正确;B选项,每次抽取1件,不放回抽取两次,样本空间Ω={(1,2),(1,3),(1,a),(2,1),(2,3),(2,a),(3,1), (3,2),(3,a),(a,1),(a,2),(a,3)},共12种样本点,B错误;C选项,“取出的两件中恰有一件次品”的样本点数为6,其概率为12,C正确;D选项,每次抽取1件,有放回抽取两次,样本空间Ω={(1,1),(1,2), (1,3),(1,a),(2,1),(2,2),(2,3),(2,a),(3,1),(3,2),(3,3),(3,a),(a,1),(a,2),(a,3),(a,a)},共16种样本点,D正确.故选ACD.13.1315 每个骰子有6个点数,出现1或2为下雨天,共有6种,则每天下雨的概率的近似值为13,10组数据中,114,251,表示3天中有2天下雨,所以从得到的10组随机数来看,3天中有2天下雨的有2组,则3天中有2天下雨的概率近似值为210= 1 5.14.720 从这6根细木棒中任取3根首尾相接,有(1,2,3),(1,2,4),(1,2,5),(1,2,6),(1,3,4), (1,3,5),(1,3,6),(1,4,5),(1,4,6),(1,5,6),(2,3,4),(2,3,5),(2,3,6),(2,4,5),(2,4,6),(2,5,6), (3,4,5),(3,4,6),(3,5,6),(4,5,6),共20个样本点,能构成三角形的取法有(2,3,4),(2,4,5),(2,5,6),(3,4,5),(3,4,6),(3,5,6),(4,5,6),共7个样本点,所以由古典概型概率公式可得所求概率为P=720.15.解用数对(x,y)表示儿童参加活动先后记录的数,则样本空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.因为S中元素的个数是4×4=16,所以样本点总数n=16.(1)记“xy≤3”为事件A,则事件A包含的样本点共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).所以P(A)=516,即小亮获得玩具的概率为516.(2)记“xy≥8”为事件B,“3<xy<8”为事件C.则事件B包含的样本点共6个,即(2,4),(3,3),(3,4),(4,2),(4,3),(4,4).所以P(B)=616=38.事件C包含的样本点共5个,即(1,4),(2,2),(2,3),(3,2),(4,1).所以P(C)=516.因为38>516,所以小亮获得水杯的概率大于获得饮料的概率.16.解(1)由(0.005+0.010+0.030+0.025+0.010+x)×10=1,解得x=0.020.(2)设中位数为m,则0.05+0.1+0.2+(m-70)×0.03=0.5,解得m=75.(3)可得满意度评分值在[60,70)内有20人,抽得样本为2人,记为a1,a2,满意度评分值在[70,80)内有30人,抽得样本为3人,记为b1,b2,b3,样本空间Ω={(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1), (a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)},共10个样本点,记“5人中随机抽取2人作主题发言,抽出的2人恰在同一组”为事件A,A包含的样本点个数为4,利用古典概型概率公式可知P(A)=0.4. 17.解(1)因为16<23<25<26<30,所以这5天发芽数的中位数是25.(2)这5天的平均发芽率为23+25+30+26+16100+100+100+100+100×100%=24%.(3)用(m,n)表示所求基本事件,则有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26), (25,16),(30,26),(30,16),(26,16),共10个基本事件.记满足{25≤m≤30,25≤n≤30为事件A,则事件A包含的基本事件为(25,30),(25,26),(30,26),共有3个基本事件.所以P(A)=310,即事件{25≤m≤30,25≤n≤30的概率为310.18.解(1)根据频率和为1的性质知0.00050×200+0.00100×200+0.00125×200+S1+S2+S3=1,又S1=3S2=6S3,得到S1=0.30,S2=0.10,S3=0.05.价格在[200,400)的频率为0.00050×200=0.10,价格在[1200,1400]的频率为S3=0.05.按分层随机抽样的方法从价格在[200,400),[1200,1400]的商品中抽取6件,则在[200,400)上抽取4件,记为a1,a2,a3,a4,在[1200,1400]上抽取2件,记为b1,b2.现从中抽出2件,所有可能情况为:a1a2,a1a3,a1a4,a1b1,a1b2,a2a3,a2a4,a2b1,a2b2,a3a4,a3b1,a3b2,a4b1,a4b2,b1b2,共计15个样本点,其中符合题意的有a1b1,a1b2,a2b1,a2b2,a3b1,a3b2,a4b1,a4b2共8个样本点,因此抽到的两件商品价格差超过800元的概率为P=815.(2)对于方案一,优惠的价钱的平均值为:(300×0.10+500×0.20+700×0.25+900×0.30+1100×0.10+1300×0.05)×20%=150;对于方案二,优惠的价钱的平均值为:30×0.10+50×0.20+140×0.25+160×0.30+280×0.10+320×0.05=140.因为150>140,所以选择方案一更好.。

1.3古典概型 一等奖创新教学设计-高一下学期数学人教A版(2019)必修第二册

1.3古典概型  一等奖创新教学设计-高一下学期数学人教A版(2019)必修第二册

1.3古典概型一等奖创新教学设计-高一下学期数学人教A版(2019)必修第二册古典概型教学设计一教学内容分析1.本节内容在高中教材中的地位和作用《古典概型》是高中数学人教A版必修2第十章第一大节的第三课时的内容,教学安排是2课时,本节课是第一课时。

古典概型是在学生初中阶段学习了概率初步,在高中阶段学习了随机事件的概率(随着试验次数的增加,频率稳定于概率),初步了解了概率的意义之后学习的内容。

古典概型是一种特殊的数学模型,它承接着前面学过的随机事件的概率及其性质,它的引入能使概率值的存在性易于被学生理解,也能使学生认识到重复实验在有些时候并不是获取概率值的唯一方法。

同时古典概型也是后面学习条件概率的基础,起到承前启后的作用,在概率论中占有相当重要的地位。

教学目标分析1.知识与技能目标:会判断古典概型,会用列举法计算一些随机事件所含的样本点个数和试验中样本空间;能够利用概率公式求解一些简单的古典概型的概率。

2.过程与方法目标:教学生掌握列举法,学会处理概率计算类问题。

通过从实际问题中抽象出数学模型的过程,提升从具体到抽象,从特殊到一般的分析问题的方法,理解、掌握古典概型的基本特点。

3.情感态度与价值观目标:通过各种有趣的、贴近学生生活的素材(生活中的猜拳游戏、掷骰子游戏等),激发学生学习数学的热情和兴趣,培育学生的探索精神,促使学生自觉培养创新意识。

在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神。

三、教学重难点1.重点:古典概型定义的理解与掌握,能以古典概型为基础展开随机事件的概率计算。

2.难点:如何判断一个试验是否是古典概型;分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

四、教法与学法分析1.教法分析:教学方法为引导发现、归纳概括,基于提出问题、分析问题、解决问题的思路,对古典概型的定义与概率公式进行归纳概括、观察比较,而后通过实际问题的提出与处理,激发学生的学习兴趣,提升学生的学习主动性。

古典概型1

古典概型1
例如:连续掷三次硬币的基本事件为
③列表法:适合求较复杂问题中的基本事件数
例如,从编号为 1,2,3 的 3 个白球中逐一取两个球(有放回) 基本事件有多少个?
白1 白2 白3 白1 白1白1 白1白2 白1白3 白2 白2白1 白2白2 白2白3 白3 白3白1 白3白2 白3白3 所求基本事件有9个.
§3.2 古典概型
高考要求:
1.考查古典概型概率公式的应用,尤其是古典概型与 互斥、对立事件的综合问题更是高考的热点. 2. 在解答题中古典概型常与统计相结合进行综合考查, 考查学生分析和解决问题的能力,难度以中档题为主.
掌握古典概型的概念、 古典概型的概率计算公式及 使用条件.
一、基础知识 1.基本事件
高考链接
【2012 高考安徽文 10】袋中共有 6 个除了颜色外完全 相同的球,其中有 1 个红球,2 个白球和 3 个黑球,从 袋中任取两球,两球颜色为一白一黑的概率等于 (
B
5
3 (C) 5
4 (D) 5
高考链接
【2012 高考江苏 6】 现有 10 个数, 它们能构成一个以 1 为首项,-3 为公比的等比数列,若从这 10 个数中随机 0.6 抽取一个数,则它小于 8 的概率是
高考链接
【2011 江苏 5】从 1,2,3,4 这四个数中一次随机取两个 数,则其中一个数是另一个的两倍的概率为 1/3
高考链接
【2011 福建理 13】 盒中装有形状、 大小完全相同的 5 个球, 其中红色球 3 个,黄色球 2 个。若从中随机取出 2 个球, 则所取出的 2 个球颜色不同的概率等于 0.6
4.在求基本事件的总数时,常用方法有: ①列举法:适合于较简单的问题
例如:一个盒子中装有 5 个完全相同的球,分别标 记号码 1、2、3、4、5,从中任取一球,观察球的号码, 写出这个试验的基本事件.

高一数学古典概型

高一数学古典概型

A a, c, b, c, c, a , c, b 4 2 m 4 ,所以 PA 6 3
记“恰有一件次品”为事件 A
从含有两件正品 a , b和一件次品 的3件产品中 (1)任取两件;(2)每次取1件,取后不放回,连续 取两次;(3)每次取1件,取后放回,连续取两次,分 别求取出的两件产品中恰有一件次品的概率.
1.互斥事件: 2.事件的并:
3、如果事件A与事件B互斥,则 P(A∪B)= P(A)+P(B) 4、若件A与事件B互为对立事件,则 P(A)= 1- P(B)
思考:
用实验的方法来求某一随机事件的概率好不好? 为什么?
答:不好,因为需要大量的试验才能得出 较准确的概率,在现实生活中操作起来不 方便。
取法是否有序,有放回还是无放回.
A 记“恰有一件次品”为事件

例4(掷骰子问题):将一个骰子先后抛掷2次,观察向上的点数. 问:⑴两数之和是3的倍数的结果有多少种?
两数之和是3的倍数的概率是多少? ⑵两数之和不低于10的结果有多少种? 两数之和不低于10的的概率是多少?
第 二 次 抛 掷 后 建立模 向 上 型 的 解:由表可 点 数 知,等可能基 本事件总数为 36种。
例:先后抛掷两颗骰子,求:(1)点数之 和为6的概率;(2)出现两个4点的概率
解:用有序数对 x , y 表示掷得的结果,
则基本事件总数
n 36
(1)记“点数之和为6 “为事件A 则 A 1,5, 2,4, 3,3, 4,2, 5,1, m 5
(2)记“出现两个4点”为事件 B
将具有这两个特点的概率模型称为
古典概率模型,简称古典概型.
问题:向一个圆面内随机地投射一个点,如果 该点落在圆内任意一点都是等可能的,你认为 这是古典概型吗?为什么?

高中数学古典概型教案设计

高中数学古典概型教案设计

高中数学古典概型教案设计2022年高中数学古典概型教案设计一教学目标:(1)理解古典概型及其概率计算公式,(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.教学过程:导入:故事引入探究一试验:(1)掷一枚质地均匀的硬币的试验(2)掷一枚质地均匀的骰子的试验上述两个试验的所有结果是什么?一.基本事件1.基本事件的定义:1/ 12随机试验中可能出现的每一个结果称为一个基本事件2.基本事件的特点:(1)任何两个基本事件是互斥的(2)任何事件(除不可能事件)都可以表示成基本事件的和。

例1、从字母a,b,c,d中任意取出两个不同的字母的试验中,有几个基本事件?分别是什么?探究二:你能从上面的两个试验和例题1发现它们的共同特点吗?二.古典概型(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等。

(等可能性)我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

思考:判断下列试验是否为古典概型?为什么?(1).从所有整数中任取一个数(2).向一个圆面内随机地投一个点,如果该点落在圆面内任意一点都是等可能的。

(3).射击运动员向一靶心进行射击,这一试验的结果只有有限个,命中10环,命中9环,。

.命中1环和命中0环(即不命中)。

(4).有红心1,2,3和黑桃4,5共5张扑克牌,将其牌点向2/ 12下置于桌上,现从中任意抽取一张.2022年高中数学古典概型教案设计二(一)教学内容本节课选自《普通高中课程标准实验教科书》人教A版必修3第三章第二节《古典概型》,教学安排是2课时,本节课是第一课时。

(二)教学目标1. 知识与技能:(1) 通过试验理解基本事件的概念和特点;(2) 通过具体实例分析,抽离出古典概型的两个基本特征,并推导出古典概型下的概率计算公式;(3) 会求一些简单的古典概率问题。

古典概型高一上学期数学人教B版(2019)必修第二册

古典概型高一上学期数学人教B版(2019)必修第二册
1
个基本事件发生的概率均为
.此时,如果事件C包含有m个样本点,则再由
互斥事件的概率加法公式可知P(C)=


.
名师点睛
古典概型的概率求解步骤
过关自诊
[北师大版教材习题]从一副扑克牌(去掉大、小王,共52张)中随机选取1张,
试求下列事件的概率:
(1)这张牌是A;
(2)这张牌是红色A;
(3)这张牌是K,Q或J;
列表法和树形图法,具体应用时可根据需要灵活选择,在列出样本点后最好
检验一下各样本点出现的概率是否相同.根据事件C包含的样本点个数m
及试验的样本点总个数n,利用公式P(C)

= 求出事件C发生的概率.
【例3】 袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两
张,标号分别为1,2;现从袋中任取两张卡片.
因此该试验的样本空间Ω={(m,n)|m,n∈{1,2,3,4,5,6}},其中共有3样本点出现的可能性相等,因此这个试验是
古典概型.
(2)因为 A={(1,4),(2,3),(3,2),(4,1)},共包含 4 个样本点,所以
4
P(A)=
36
=
1
.
9
因为 B={(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)},共包含 6 个样本点,所以
(红1,蓝2),(红2,蓝1),(蓝1,蓝2)},共包含5个样本点,由古典概型概率公式得,
5
P(A)=10
=
1
.
2
规律方法
解决古典概型综合问题的两个关键点
(1)审读题干:对于实际问题要认真读题,深入理解题意,计算样本点总数要
做到不重不漏,这是解决古典概型问题的关键.

例析古典概型中的几种经典问题

例析古典概型中的几种经典问题

ʏ查 霖在日常工作和现实生活中,有大量的随机事件的概率并不一定要通过大量的试验来得到,只要掌握了一些基本情况,就可以知道它们相应的概率,这就是最常见的古典概型㊂古典概型中主要有几种经典的实例:骰子(硬币)问题㊁摸球问题㊁抽数问题㊁格子问题等㊂下面就此举例分析,供大家学习与参考㊂一㊁骰子(或硬币)问题抛掷骰子问题和抛掷硬币问题一样,是古典概型中一种重要的模型㊂它的实质就是抛掷骰子(或硬币)n 次,那么对应的基本事件总数为6n (或2n),根据相应事件所对应的基本事件的个数,结合古典概型的计算公式求得对应的概率㊂例1 将一颗质地均匀的骰子(一种六个面分别标有1,2,3,4,5,6的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率为㊂思路导引:根据抛掷骰子的总数确定古典概型中的基本事件总数,再结合抛掷2次出现向上的点数之和为4的事件的个数,进而利用古典概型的概率公式求解㊂基本事件的总数为6ˑ6=36,点数之和为4的可能结果为(1,3),(2,2),(3,1),共3种情况,所以所求概率P =336=112㊂答案为112㊂解法反思:抛掷骰子或抛掷硬币问题,关键是确定相关事件的个数㊂容易出错的地方是计算遗漏,如本题中的(1,3)和(3,1)是两种不同的结果,不能认为是一种结果㊂二㊁摸球问题摸球问题等同于抽签问题,关键是确定每次所摸的符合题目要求的球的可能结果㊂要注意所摸球的先后顺序和球的颜色与题目条件之间的关系,否则容易出错㊂例2 袋中有4个白球,3个黑球,从中连续任意取出2个球,且每次取出的球不再放回,求第2次取出的球是白球的概率㊂思路导引:本题的基本事件总数是从7个球中有次序地取出2个球的不同取法,即7ˑ6种取法㊂第2次取出的球是白球的可能结果是:若第一次取的是白球,那么第2次是从3个白球中再取出一球,若第一次取的是黑球,那么第2次是从4个白球中再取出一球㊂由题意可得,所求概率P ( 第2次取出的球是白球 )=4ˑ37ˑ6+3ˑ47ˑ6=47㊂解法反思:本题实质上也是抽签问题,按上述规则抽签,每人抽中白球的机会相等,且与抽签次序无关㊂在涉及与抽签及其相关事件时,都可以采用摸球问题的数学模型所对应的古典概型问题来分析与处理㊂三㊁抽数问题抽数问题可以根据条件加以分析,也可以结合排列与组合加以综合分析㊂解答这类问题,关键是确定所有的数的总个数,以及所满足条件的数的个数㊂如果利用排列与组合分析时,一定要注意两者分析时的一致性㊂例3 从1,2, ,9这9个数字中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A.59 B .49C .1121D .1021思路导引:本题基本事件的总数是从9个数中有次序地取出3个数的不同取法,即基本事件总数是9ˑ8ˑ7=504㊂分析3个数的和为偶数的不同情况,确定所包含的基本事件个数,从而得到所求概率㊂基本事件的总数是9ˑ8ˑ7=504㊂这3个数的和为偶数33经典题突破方法高一数学 2023年5月Copyright ©博看网. All Rights Reserved.的可能结果有四种情况:偶奇奇,共有4ˑ5ˑ4=80(种);奇偶奇,共有5ˑ4ˑ4=80(种);奇奇偶,共有5ˑ4ˑ4=80(种);偶偶偶,共有4ˑ3ˑ2=24(种)㊂所以所求概率P =80+80+80+24504=1121㊂应选C ㊂解法反思:本题实质上就是数的一种排列问题,抽出来的2个数所组成的两位数有次序关系,通过计算基本事件的总数以及所求事件的个数,从而得到所求的概率㊂四㊁格子问题格子问题也是一种常见的古典概型问题㊂解答这类问题,关键是确定对应的格子与相应的元素之间的填充关系,有时可以结合树状图㊁列举法加以分析与处理㊂例4 把3个不同的球投入3个不同的盒子内(每盒球数可以不限),计算:(1)无空盒的概率㊂(2)恰有一个空盒的概率㊂思路导引:本题的基本事件总数是把3个不同的球投入3个不同的盒子内的不同放法,题设条件是每盒的球数可以不限,即最多可以投入3个,最少可以投入0个,然后按要求计算出所求事件的个数,从而得到所求概率㊂基本事件的总数是把3个不同的球投入3个不同的盒子内的不同放法,第一个球的放法有3种可能,第二个球的放法也有3种可能,第三个球的放法还是有3种可能,则基本事件总数是3ˑ3ˑ3=27㊂设事件A = 无空盒 ,事件B = 恰有一个空盒 ,3个不同的球分别记为a ,b ,c ㊂(1)事件A 包含的可能结果为a b c ,a c b ,b ac ,b c a ,c a b ,c b a ,共有6种情况,所以P (A )=627=29㊂(2)第一个盒子是空盒的可能结果为( )(a )(b c ),( )(b )(a c ),( )(c )(a b ),( )(b c )(a ),( )(a c )(b ),( )(a b )(c ),共有6种情况,其他两个盒子是空盒的情况与第一个盒子一样,所以事件B 包含的基本事件个数是6ˑ3=18,所以P (B )=1827=23㊂解法反思:本题通过分析3个不同的球与3个不同的盒子之间的关系,计算出基本事件的总数,再根据题设条件,正确分析并列举出所求事件的个数,最后结合古典概型的概率公式求得结果㊂编者的话:在解答古典概型问题时,有时会直接涉及骰子(硬币)问题㊁摸球问题㊁抽数问题㊁格子问题等,有时会涉及与之相关的问题,解题的关键是合理构建对应的古典概率模型,借助古典概型的概率公式来分析与处理,从而实现问题的解决㊂1.连掷两次骰子分别得到点数m ,n ,则向量a =(m ,n )与向量b =(-1,1)的夹角θ>90ʎ的概率是( )㊂A.512 B .712 C .13 D .12提示:连掷两次骰子得到的点数(m ,n )的所有基本事件为(1,1),(1,2), ,(6,6),共36个㊂因为(m ,n )㊃(-1,1)=-m +n <0,所以m >n ,可知符合要求的事件为(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1), ,(5,4),(6,1), ,(6,5),共15个㊂故所求概率P =1536=512㊂应选A ㊂2.已知集合A ={2,3,4,5,6,7},B ={2,3,6,9},在集合A ɣB 中任取一个元素,则它是集合A ɘB 中的元素的概率为( )㊂A.23 B .35 C .37 D .25提示:依题意得A ɣB ={2,3,4,5,6,7,9},即这个试验的样本空间Ω中有7个元素㊂由A ɘB ={2,3,6},可知这个试验包含3个样本点㊂由古典概型的概率公式得所求概率为37㊂应选C ㊂作者单位:江苏省高邮市临泽中学(责任编辑 郭正华)43 经典题突破方法 高一数学 2023年5月Copyright ©博看网. All Rights Reserved.。

高一数学人教A版必修3课件:3.2.1 古典概型(1)

高一数学人教A版必修3课件:3.2.1 古典概型(1)

观察类比、推导公式
实验一中,出现正面朝上的概率与反面朝上的概率相等, P(“正面朝上”)=P(“反面朝上”) 由概率的加法公式,得 P(“正面朝上”)+P(“反面朝上”)=P(必然事件)= 因此
1 2 P(“正面朝上”)=P(“反面朝上”)=
1

1 “出现正面朝上”所包含的基本事件的个数 P (“出现正面朝上”)= = 2 基本事件的总数
1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
解:(1)把两个骰子标上记号1、2以便区分,可能结果有:
1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
6
进一步地,利用加法公式还可以计算这个试验 中任何一个事件的概率,例如, P(“出现偶数点”)=P(“2点”)+P(“4 点”) 3 1 +P(“6点”) 1 1 1 = 6 + 6 + 6 = 6 = 6
3 P (“出现偶数点”)= 即 6 “出现偶数点”所包含的基本事件的个数 = 基本事件的总数
基本事件的特点:
(1)任何两个基本事件是互斥的;
(2)任何事件(除不可能事件)都可以表 示成基本事件的和。
例1 从字母a、b、c、d任意取出两个不 同字母的试验中,有哪些基本事件? 解:所求的基本事件共有6个: A={a, b} B={a, c} C={a, d} D={b, c} E={b, d} F={c, d}

《古典概型》教案1(人教B版必修3)

《古典概型》教案1(人教B版必修3)

高一数学必修3教学过程:Array一、〖创设情境〗1.两个事件之间的关系包括包含事件、相等事件、互斥事件、对立事件,事件之间的运算包括和事件、积事件,这些概念的含义分别如何?若事件A发生时事件B一定发生,则 .若事件A发生时事件B一定发生,反之亦然,则A=B.若事件A与事件B不同时发生,则A与B互斥.若事件A与事件B有且只有一个发生,则A与B相互对立.2概率的加法公式是什么?对立事件的概率有什么关系?若事件A与事件B互斥,则 P(A+B)=P(A)+P(B).若事件A与事件B相互对立,则 P(A)+P(B)=1.3.通过试验和观察的方法,可以得到一些事件的概率估计,但这种方法耗时多,操作不方便,并且有些事件是难以组织试验的.因此,我们希望在某些特殊条件下,有一个计算事件概率的通用方法.二、〖新知探究〗我们再来分析事件的构成,考察两个试验:(1)掷一枚质地均匀的硬币的试验。

(2)掷一枚质地均匀的骰子的试验。

有哪几种可能结果?在试验(1)中结果只有两个,即“正面朝上”或“反面朝上”它们都是随机的;在试验(2)中所有可能的试验结果只有6个,即出现“1点”“2点”“3点”“4点”“5点”“6点”它们也都是随机事件我们把这类随机事件称为基本事件综上分析,基本事件有哪两个特征?(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.例1:从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?分析:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果都列出来。

解:所求的基本事件有6个:A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d};A+B+C.上述试验和例1的共同特点是:(1)试验中有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等,这有我们将具有这两个特点的概率模型称为古典概率模型古典概型思考1:抛掷一枚质地均匀的骰子有哪些基本事件?每个基本事件出现的可能性相等吗?思考2:抛掷一枚质地不均匀的硬币有哪些基本事件?每个基本事件出现的可能性相等吗?思考3:从所有整数中任取一个数的试验中,其基本事件有多少个?无数个思考4:如果一次试验中所有可能出现的基本事件只有有限个(有限性),且每个基本事件出现的可能性相等(等可能性),则具有这两个特点的概率模型称为古典概型. 在射击练习中,“射击一次命中的环数”是古典概型吗?为什么?不是,因为命中的环数的可能性不相等.思考5:随机抛掷一枚质地均匀的骰子是古典概型吗?每个基本事件出现的概率是多少?你能根据古典概型和基本事件的概念,检验你的结论的正确性吗?P(“1点”)= P(“2点”)= P(“3点”)= P(“4点”)=P(“5点”)= P(“6点”)P(“1点”)+P(“2点”)+ P(“3点”)+ P(“4点”)+P(“5点”)+ P(“6点”)=1.思考6:一般地,如果一个古典概型共有n个基本事件,那么每个基本事件在一次试验中发生的概率为多少?1n思考7:随机抛掷一枚质地均匀的骰子,利用基本事件的概率值和概率加法公式,“出现偶数点”的概率如何计算?“出现不小于2点”的概率如何计算?思考8:考察抛掷一枚质地均匀的骰子的基本事件总数,与“出现偶数点”、“出现不小于2点”所包含的基本事件的个数之间的关系,你有什么发现?P(“出现偶数点”)=“出现偶数点”所包含的基本事件的个数÷基本事件的总数;P(“出现不小于2点”)=“出现不小于2点”所包含的基本事件的个数÷基本事件的总数.思考9:一般地,对于古典概型,事件A在一次试验中发生的概率如何计算?P(A)=事件A所包含的基本事件的个数÷基本事件的总数思考10:从集合的观点分析,如果在一次试验中,等可能出现的所有n个基本事件组成全集U,事件A包含的m个基本事件组成子集A,那么事件A发生的概率P(A)等于什么?特别地,当A=U,A=Ф时,P(A)等于什么?三、〖典型例题〗例2单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?(答案参考课本127页)0.25例3 同时掷两个骰子,计算:(1)一共有多少种不同的结果?(2)其中向上的点数之和是7的结果有多少种?(3)向上的点数之和是5的概率是多少?(答案参考课本127页)36;6;1/6.例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?0.00001例5 某种饮料每箱装6听,如果其中有2听不合格,质检人员依次不放回从某箱中随机抽出2听,求检测出不合格产品的概率.8÷30+8÷30+2÷30=0.6四、〖随堂练习〗Array1.在20瓶饮料中,有2瓶已过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?2.在夏令营的7名成员中,有3名同学已去过北京。

高中数学《古典概型》教学设计

高中数学《古典概型》教学设计

高中数学《古典概型》教学设计【小编寄语】查字典数学网小编给大伙儿整理了高中数学《古典概型》教学设计,期望能给大伙儿带来关心!一、内容和内容解析内容:古典概型的概念及概率运算公式。

内容解析:本节课是高中数学(必修3)第三章概率的第二节古典概型的第一课时,是在学习随机事件的概率之后,几何概型之前,尚未学习排列组合的情形下进行教学的。

古典概型是一种专门的数学模型,也是一种最差不多的概率模型,它曾是概率论进展初期的要紧研究对象,在概率论中占有相当重要的地位,它的引入,使我们能够解决一类随机事件(等可能事件)的概率,而且能够得到概率精确值,同时幸免了大量的重复试验。

学好古典概型能够为其它概率的学习奠定基础,有利于明白得概率的概念,并能够说明生活中的一些问题。

古典概型概念中的核心是它的两个特点,(1)试验中所有可能显现的差不多事件只有有限个(有限性);(2)每个差不多事件显现的可能性相等(等可能性),专门是特点(2),因此教学的重点不是“如何运算概率”,而是要引导学生动手操作,开展小组合作学习,通过举出大量的古典概型的实例与数学模型使学生概括、明白得、深化古典概型的两个特点及概率运算公式。

同时使学生初步能够把一些实际问题转化为古典概型,并能够合理利用统计、化归等数学思想方法有效解决有关的概率问题。

教学重点:明白得古典概型及其概率运算公式。

二、目标和目标解析目标:明白得古典概型及其概率运算公式,并能运算有关随机事件的概率。

目标解析:1、通过学生对掷硬币、骰子及例1的比较、分析,引导学生概括出古典概型的两个特点。

2、从掷硬币、骰子试验的有关概率运算中归纳出古典概型的概率运算公式。

3、借助问题背景及动手操作,让学生不断体验古典概型的特点(2),充分认识到它在运用古典概型概率运算公式中的重要性。

4、体验将问题转化为古典概型中的思想,尝试用概率知识解析实际问题,并积极探究有关概率中较复杂的问题,形成实事求是的科学态度,增强锲而不舍的求学精神。

古典概型课件-2022-2023学年高一上学期数学北师大版(2019)必修第一册

古典概型课件-2022-2023学年高一上学期数学北师大版(2019)必修第一册
情境适合用古典概型来描述吗?为什么?
(3)有人认为,抛掷两枚均匀的骰子,掷出的点数之和可能
为2,3,4,…,12,共有11种可能的情形,因此,“掷出的点数之
1
11
和是5”的可能性是 .这种说法对吗?
➢ 样本空间有36个样本点
➢ “点数和是5”包含4个样本点
试验的所有可能结果是
无限的
每种结果的可能性不相等
课堂练习
梳理小结
布置作业
试着再举出一些古典概型的例子吧.
单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答
案.如果考生掌握了考查的内容,他可以选择唯一正确的答案,假设考生不会做,他随
机地选择一个答案,所以他选择A,B,C,D哪一个选项都有可能.
因此样本点总数为4,设答对为随机事件A,由于正确答案是唯一的,所以事件A只包含
1
4
一个样本点,所以P(A)= .
某班级男生30人,女生20人,随机地抽取一位学生代表,会出现50个不同的结果.
因此样本空间共有50个样本点,设选中的代表是女生为随机事件B,则事件B包含20个样
本点,所以 =
20
50
2
5
= .
说明:在现实中不存在绝对均匀的硬币,也没有绝对均匀的骰
子,古典概率模型是从现实中抽象出来的一个数学模型,它有
8
2
共含有8个样本点,所以P(B)= = .
20
5
情境引入
新知探究
应用举例
课堂练习
梳理小结
布置作业
在试验E6“袋中有白球3个(编号为1,2,3)、黑球2个(编号为1,2),这5个球除颜色
外完全相同,从中不放回地依次摸取2个,每次摸1个,观察摸出球的情况”中,摸

10.1.3古典概型 课件-2021-2022学年高一下学期数学人教A版(2019)必修第二册

10.1.3古典概型 课件-2021-2022学年高一下学期数学人教A版(2019)必修第二册
记号,会出现什么情况?你能解释其中的原因吗?
Ⅱ号
Ⅰ号
1
2
3
4
5
6
1
(1,1)
(1,2)
(1,5)
(1,4)
(1,3)
(1,6)
2
(2,2)
(2,1)
(2,3)
(2,4)
(2,5)
(2,6)
3
4
(3,1)
(3,5)
(3,2)
(3,4)
(3,3)
(3,6)
(4,1)
(4,6)
(4,2)
(4,4)
(4,3)
因为试验的结果只有2个,转到蓝色、
一是样本点个数有限性;
转到黄色,但转到蓝色的可能性远远大
于转到黄色的可能性,不是等可能的.
二是每个样本点发生是等可能的.
思考:一个班级中有18名男生、22名女生。采用抽签的方式,从
中随机选择一名学生,事件A= “抽到男生”.这是一个古典概型吗?
分析:从班级40名学生中选择一名学生,即样本点是有限个;
(4,2)
(4,4)
(4,3)
(4,5)
5
(5,5)
(5,6)
(5,2)
(5,3)
(5,1)
(5,4)
6
(6,1)
(6,5)
(6,2)
(6,4)
(6,3)
(6,6)
(6,1),(6,2),(6,3),(6,4),
(6,5)},n(C)=15,
思考 在上例中,为什么要把两枚骰子标上记号?如果不给两枚骰子标
的结果将无法区别.
思考 在上例中,为什么要把两枚骰子标上记号?如果不给两枚骰子标
记号,会出现什么情况?你能解释其中的原因吗?

古典概型的概率计算公式 高一数学(北师大版2019必修第一册)

古典概型的概率计算公式 高一数学(北师大版2019必修第一册)
分析:为了解基本事件,我们可以按照字典排序的顺序,把所有可能的结果都 列出来。
b
c
a
cb
c
d
d
d
树状图
解:所求的基本事件共有6个:
A {a,b} B {a,c} C {a, d} D {b,c} E {b, d} F {c, d}
我们一般用列举法列出所有 基本事件的结果,画树状图是 列举法的基本方法。
分布完成的结果(两步以上) 可以用树状图进行列举。
例:
同时抛掷两枚质地均匀的硬币的试验中,
有哪些基本事件?
A={正,正 }, B={正,反} 正 C={反,正} , D={反,反}





同时抛掷三枚质地均匀的硬币呢?
解:所有的基本事件共有8个:
A={正,正,正}, B={正,正,反},
C={正,反,正}, D={正,反,反},
成的结
5 6 7 8 9 10 11 果的列
6 7 8 9 10 11 12 举。
A表示事件“点数之和为7”, 则由表得n=36,m=6.
P( A)
m n
6 36
1 6
例2 . 同时掷两个骰子,计算: (1)一共有多少种不同的结果? (2)其中向上的点数之和是5的结果有 多少种? (3)向上的点数之和是5的概率是多少?
数的都有m=3个,并且每个结果的
2 出现机会是相等的,故
4 P(A) m 3 1 ; p(B) m 3 1
6
n 62
n 62
同时掷两粒均匀的骰子,落地时向上的点数 之和有几种可能?点数之和为7的概率是多少?
123456
1234567
2 3 4 5 6 7 8 列表法

古典概型[上学期]--江苏教育版(201911)

古典概型[上学期]--江苏教育版(201911)
思考:你能求出上述第二代的种子经自花传粉得到的 第三子代为高茎的概率吗?
例3:将一颗骰子先后抛掷2次,观察向上的数,问: (1) 共有多少种不同的结果? (2) 两数之和是3的倍数的结果有多少种? (3) 两数之和是3的倍数的概率是多少?
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) (5,1)(5,2) (5,3) (5,4) (5,5) (5,6) (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
我们是如何得到这两个答案的?这两个 问题有什么共同特点?
在一次试验中可能出现的每一个基本结果称为基本事件。
若在一次试验中,每个基本事件发生的可能性都相同,则 称这些事件为等可能基本事件。
前面的两个问题都具有以下特点: 1.所有的基本事件只有有限个。 2.每个基本事件的发生都是等可能的。
我们将满足上述条件的随机试验的概率模型称为古典 概型。

簠一 皇帝加元服 享前一日进署 唐高祖非始封之君 神农 筐者位各于其采桑位之后 祝史俱进 簠一 皇太子东面立 裸 复入于京师 节解汝肉 败之 左右厦一间 僖宗疾大渐 廪牺令进耒席南 则出于时君率意而行之尔 李克用隐蔚州 武宗同为一代 鄡单铜鞮伯 守四门 进昊天上帝前 永徽中犹曰 藉田 其笙管者 洒一絺止 太祝又以胙肉授司徒以进 豆二 与文宣偶 虽已毁庙之主 辛巳 千牛郎将以巾拂矢进 冠日平明 其论止于如此 诣蕃主西北 司马降自西阶 九月 嗣覃王嗣周为京西路招讨使 自称留后 卢光启为右谏议大夫 马殷陷桂 诸将皆鼓行围 庙之制 十二年四月
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

பைடு நூலகம்
007真人官网
[单选]施工单位以下做法符合《建设工程质量管理条例》规定的有()。A.施工中发现图纸错误,经监理同意后按照强制性标准施工B.混凝土浇筑施工前,应当通知质量监督站见证取样C.施工人员与专业监理工程师去钢材加工厂对钢构件进行抽样检测D.拒绝接收不合格的甲供材料进场 [判断题]金融机构不得为身份不明的客户提供服务或者与其进行交易,不得为客户开立匿名账户或者假名账户。A.正确B.错误 [单选]实行一级成本核算的物业服务企业,可不设(),有关支出直接计入管理费用。A.直接人工费B.燃料和动力C.直接材料费D.间接费用 [单选,A2型题,A1/A2型题]颈动脉听诊区位于()A.胸锁乳突肌外缘与甲状软骨连线的交点B.锁骨上窝C.胸锁乳突肌后缘上方2~3颈椎横突水平D.锁骨下窝E.胸锁乳突肌内缘与甲状软骨连线的交点 [单选]关节镜的手术范围除外()。A.滑膜切除B.关节游离伴摘除术C.交叉韧带重建D.半月板损伤缝合、修补、切除术E.关节表面皮肤感染清创术 [单选]以下带电作业方法为直接作业法的是()。A、地电位作业B、等电位作业C、中间电位作业D、带电水冲洗 [单选,A2型题,A1/A2型题]以下有关局部振动对机体可以引起的影响,其中错误的是()。A.手部肌肉萎缩B.上肢骨质疏松C.高频段听力下降D.周围毛细血管变形E.上肢手臂末梢神经障碍 [单选,A1型题]下列不宜人煎剂的药物是()A.大戟B.番泻叶C.甘遂D.商陆E.牵牛子 [单选]慢性胃炎脾胃湿热证的治法是()A.温中散寒,和胃止痛B.健脾益气,温中和胃C.养阴益胃,和中止痛D.清利湿热,醒脾化浊E.化瘀通络,和胃止痛 [单选]下列描述不正确的是()A.各种康复疗法是按先后顺序排列,不是并列安排B.康复医学从主要注意功能障碍处理的研究,也逐渐注意病理变化的消除C.计算机技术与互联网络的发展也影响康复医学的发展D.康复开始得越早,功能恢复的效果越好E.早康复治疗则费时少,经济、精力耗费少 [单选]()不是MRP净需求量计算的依据。A.总需求量B.现有库存量C.在途库存量D.计划库存量 [单选]()既是注册消防工程师步入行业的"通行证",又是具体行业立足的基础。A.维护公共安全原则B.诚实守信原则C.依法执业原则D.公平竞争原则 [多选]文章四友指()A.杜审言B.李峤C.崔融D.苏味道E.陈子昂 [单选]医疗单位使用毒性药品,每张处方不得超过()A.2日常用量B.3日常用量C.2日极量D.3日极量E.7日常用量 [单选]M40代表焦炭的()A.热态强度B.抗碎强度C.耐磨强度 [问答题,简答题]世界第一大半岛? [单选,A2型题,A1/A2型题]服理中汤后应注意的事项是:()A.腹中未热,加量再服B.服汤后如食顷,饮热粥一升余,微自温,勿发揭衣被C.服汤后,糜粥自养D.服后饮热稀粥一升余,温服一时许E.白饮合服 [单选]细菌性痢疾通常属于()A.纤维素性炎症B.化脓性炎症C.卡他性炎症D.浆液性炎症E.出血性炎症 [单选]王某租赁张某一套住房,租赁期间为2009年1月1日至12月31日,约定2009年6月30日之前支付房租,但王某一直未付房租,张某也未催要。根据民事诉讼法律制度关于诉讼时效的规定,张某可以向法院提起诉讼、主张其民事权利的法定期间是()。A.2010年6月30日之前B.2010年12月31日之前 [单选]申请跨省道路旅客运输班线经营的,如果相关省级道路运输管理机构对申请持不同意见且协商不成的,应当报()决定。A、国务院交通主管部门B、同级人民政府C、同级人大常委会 [多选]下列各项中属于企业社会责任的有()。A.对债权人的责任B.对消费者的责任C.对社会公益的责任D.对环境和资源的责任 [填空题]当氨气与空气混合一定比例时具有爆炸性,爆炸极限含量为15%--27%()。 [单选,A2型题,A1/A2型题]男性,43岁。3小时前呕血1次,自觉头晕、乏力、出汗。查体:心率110次/分,血压100/70mmHg,肝掌,腹壁静脉曲张,超声示腹水。该患者的出血量可能为()A.&gt;5mlB.50~70mlC.250~300mlD.500~1000mlE.&gt;1500ml [单选]直流电机交轴电枢磁势的最大值的位置取决于()。A.主极的轴线B.电枢的转动方向C.换向极的极性D.电刷的位置 [单选]拟定沿岸航线,确定航线离危险物的安全距离时可不考虑下列哪项因素()。A.船上货物装载情况B.能见度的好坏C.风流影响情况D.测定船位的难易 [问答题,简答题]锅炉内水渣从何处排出? [单选]在慢性胃炎中,慢性胃体炎的主要病因是()A.幽门螺杆菌感染B.免疫因素C.理化因素D.十二指肠液反流E.慢性右心衰竭 [判断题]扳道、信号人员准备进路时,对进路上不该扳动的道岔,也应认真进行确认。A.正确B.错误 [单选]建筑施工企业确定后,在建筑工程开工前,建设单位应当按照国家有关规定向工程所在地县级以上人民政府建设行政主管部门中请领取()。A.建设用地规划许可证B.建设工程规划许可证C.施工许可证D.安全生产许可证 [名词解释]复位 [单选]下列哪一项不属于新感温病的初起表现?()A.发热恶寒B.头身疼痛C.咳嗽鼻塞D.苔黄尿赤 [单选]某日,大豆的9月份期货合约价格为3500元/吨,当天现货市场上的同种大豆价格为3000元/吨。则下列说法不正确的是()。A.基差为-500元/吨B.该市场为反向市场C.现货价格低于期货价格可能是由于期货价格中包含持仓费用D.此时大豆市场的现货供应可能较为充足 [单选]心境障碍的临床类型不包括()。A.抑郁发作B.躁狂发作C.环性心境障碍D.木僵E.双相情感障碍 [单选]列各项中,应计入产品成本的是()。A.固定资产报废净损失B.支付的矿产资源补偿费C.预计产品质量保证损失D.基本生产车间设备计提的折旧费 [单选]10KV线路的过流保护是该线路的()。A.近后备保护B.远后备保护C.主保护 [单选,A型题]下列关于药典叙述错误的是()A、药典是一个国家记载药品规格和标准的法典B、药典由国家药典委员会编写C、药典由政府颁布施行,具有法律约束力D、药典中收载已经上市销售的全部药物和制剂E、一个国家药典在一定程度上反映这个国家药品生产、医疗和科技水平 [问答题,简答题]如何判断出血量。 [单选,A2型题,A1/A2型题]抗酒石酸酸性磷酸酶染色阳性的是()A.慢性淋巴细胞白血病B.淋巴肉瘤C.多毛细胞白血病D.尼曼-匹克病E.B淋巴细胞 [单选]哪项是确诊宫颈鳞状上皮内瘤变最可靠的方法是()A.阴道镜检查B.宫颈刮片细胞学检查C.宫颈活组织检查D.碘试验E.HPV-DNA检查 [单选]锅炉运行时,炉膛可能产生瞬时的压力波动。为了抑制由此而产生的误动作,可在炉膛压力检测时增加()环节。A、阻尼;B、迟延;C、前馈;D、以上答案都对
相关文档
最新文档