大学数学论文
大学数学论文(5篇)
大学数学论文(5篇)高校数学论文(5篇)高校数学论文范文第1篇参与全国高校生数学竞赛除了上述的必要条件之外,还需具备四个充分条件:如何稳固参与预赛的人数、制定合理有效的培训内容、师资队伍的建设以及经费来源等。
首先,如何有效地组织高校生参与竞赛,可谓是四个条件中最重要的一项,也是下一节笔者所讨论的重点;另外,作为数学竞赛的主要内容:《高等数学》是工科类同学必修的基础理论课,《数学分析》、《高等代数》、《解析几何》等课程是数学专业的专业基础课。
这些是数学竞赛得以顺当开展的基础。
第三,调动部分高校专任的数学老师组成竞赛培训团队也是一项重要的环节,笔者将会在第三节做具体的讨论。
最终是竞赛活动经费,笔者认为可以从以下三个方面获得:第一方面,每所高校都会有专项的创新活经费,可以从今项经费中申请一部分;其次方面,各赛区的主办方会拔给每个学校一些经费;第三方面,适当地向参与培训的同学收取(或变相地收取)一部分。
这些经费主要用于:参与竞赛的同学报名费、培训老师的课时费和同学竞赛时的考试相关费用等。
基于上述分析,在一般高校开展数学竞赛培训以及组织同学参与全国高校生数学竞赛是完全可行的并具有实际意义的。
2一般高校同学现状分析为了吸引、鼓舞更多的同学参加数学竞赛活动,必需先了解现在一般高校本科生的生源现状及其学习状态。
不得不承认,全国高校自扩招以来,一般高校高校生的质量普遍下降。
主要缘由有两个:一是高校的教育已由精英式转为大众式;二是随着扩招的进行,大多数优质生源进入了985或211这样的重点高校,这样就导致一般高校中的优质生源比例相对削减。
限于优质生源比例小的问题,再加上数学理论繁杂与浅显,学习起来困难重重,多数同学在学习数学时会产生犯难心情从而心生畏惧。
还有小部分的同学在进校时数学基础就比较差,(或由此产生的)学习数学的乐观性很低。
还有一部分同学认为数学无实际用途,从主观上学习数学的爱好消极。
基于以上几点缘由加上一些来自一般高校教学条件的限制,许多高校生的实际数学水平较低,所引发的直接结果就是学习成果下降、考试分数偏低、补考人数增多,更有甚者一些同学由于数学不及格而无法毕业。
大学数学建模论文范文3000字(汇总5篇)
大学数学建模论文范文3000字第1篇一、小学数学建模_数学建模_已经越来越被广大教师所接受和采用,所谓的_数学建模_思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为_数学建模_,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。
叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。
二、小学数学建模的定位1.定位于儿童的生活经验儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。
_数学建模_要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。
同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的.挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。
2.定位于儿童的思维方式小学生的特点是年龄小,思维简单。
因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。
实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。
我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使_数量关系_与数学原型_一乘两除_结合起来,并且使学生利用抽象与类比的思维方法完成了_数量关系_的_意义建模_,从而创建了完善的认知体系。
大一数学论文大学生范文精选
大一数学论文大学生范文精选大一数学论文范文篇一:《数学学科德育教育渗透思考》摘要:结合数学学科的特点教师对学生进行道德教育,数学教师要善于在学科教学中渗透德育教育,培养学生尊重事实的科学态度,正确的学习目的,理性思考的精神和科学的态度,培养学生辩证唯物主义世界观,增强学生喜爱数学的兴趣,培养学生高尚的人格特征和思想道德修养。
关键词:数学学科;渗透;德育教育我国教育部印发《中等职业学校德育大纲》指出,学校要充分发挥主导作用,与家庭、社会密切配合,拓宽德育途径,实现全员、全程、全方位育人。
上至教育部下至学校都越来越意识到在学生中进行德育教育的重要性,那么在学校怎么能更好地开展德育教育呢学科德育就是进行德育教育的重要阵地之一。
现今各个国家都把德育教育作为一项非常重要的工作,并且都在积极探讨在学科教学中如何渗透德育教育。
因此,我们职业学校的每个教师都应该努力探索德育教育的本质和特点,充分发挥德育的主渠道作用。
数学学科作为学校学科教育的重要组成部分,有其独特的风格和特点,也应承担着德育教育的任务。
第一,数学是一门研究客观物质世界的数量关系及空间形式科学,具有严密的符号体系、独特的公式结构和图像语言,其显著的特点有:高度的抽象性、严密的逻辑性、应用的广泛性和内涵的辩证性。
第二,数学学科学习的目的是掌握一定的数学基础知识,形成一定的数学素养,是对学生一生受用的方法和能力。
这些数学能力包括:空间想象能力、逻辑思维能力、基础运算能力和数学建模能力等。
第三,数学课作为职业学校文化基础课之一,所用资源少,易开展教学活动。
结合数学学科的特点,笔者认为可以从以下几点进行德育教育。
1根据中职学校数学学科的特点和数学课的现状,教师的人格品行和良好的师生关系是进行德育教育的关键数学学科的特点给人的感觉是枯燥、无味,对于职业学校的学生更是如此。
德育要讲究艺术性,要充分发挥情感的感染作用。
作为一名数学教师在数学课上每位教师尊重和顺应人性、同学的个性,保护同学的尊严,发掘和表扬学生的内在情感,调动他们积极的心理因素。
数学专业大学论文1000字范文
数学专业大学论文1000字范文数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。
下文是店铺为大家搜集整理的关于数学论文的内容,欢迎大家阅读参考!数学论文1000字篇1浅谈提高课堂的有效性思维的策略有效的课堂教学是通过课堂教学活动,让学生在认知和情感上均有所发展。
从事小学数学教学的过程中,对于其有效性有以下几点思考:一、重视情境创设充分调动学生有效的学习情感构建良好的师生关系,调动有效的学习情感,对于维持学生的学习兴趣和注意力至关重要。
调动有效的学习情感,既能培养学生的学习信心,调动其学习的主动性,又能切实提高课堂教学的有效性。
在情境创设中,应注意以下几点:1、情境创设应目的明确每一节课都有一定的教学任务。
情境的创设,要有利于学生数学学习,有利于促进学生认知技能、数学思考、情感态度、价值观等方面的发展。
所以,教学中既要紧紧围绕教学目标创设情境,又要充分发挥情境的作用,及时引导学生从情境中运用数学语言提炼出数学问题。
如果是问题情境,提出的问题则要具体、明确,有新意和启发性,不能笼统地提出诸如“你发现了什么”等问题。
?2.教学情境应具有一定的时代气息作为教师,应该用动态的、发展的眼光来看待学生。
在当今的信息社会里,学生可以通过多种渠道获得大量信息,教师创设的情境也应具有一种时代气息,让他们学会关心社会,关心国家发展。
如教学《百分数的应用》,创设了中国北京申奥成功的情境:出示第二轮得票统计图(北京56票,多伦多22票,巴黎18票,伊斯坦布尔9票)请学生根据统计图用学的百分数知识来提出问题,解决问题。
?3.情境的内容和形式应根据学生的生活经验与年龄特征进行设计?教学情境的形式有很多,如问题情境、故事情境、活动情境、实验情境、竞争情境等。
情境的创设要遵循不同年龄儿童的心理特征和认知规律,要根据学生的实际生活经验而设计。
对低、中高年级的儿童,可以通过讲故事、做游戏、直观演示等形式创设情境,而对于高年级的学生,则要创设有助于学生自主学习、合作交流的问题情境,用数本身的魅力去吸引学生。
本科数学专业毕业论文
本科数学专业毕业论文和中学数学相比较,大学数学内容多,抽象性和理论性强,很多学生对于大学数学的学习不能适应。
下面是店铺为大家整理的本科数学专业毕业论文,供大家参考。
本科数学专业毕业论文范文一:大学数学数学文化渗透思考摘要:大学教育中非常重要的一门基础学科就是数学,学好数学有利于大学生培养逻辑思维能力,提高创新意识。
在大学数学教学中渗透数学文化,能够让大学生对于数学知识有更加深刻的理解,激发大学生探究数学知识的兴趣,在学习中发现数学的乐趣,养成用严谨的态度看待周边的事物,为大学生今后步入社会做好准备。
关键词:大学数学;教学;渗透;数学文化一、数学文化的具体含义数学文化是指数学的思想、精神、观点、语言以及它们的形成和发展,还包含了数学家、数学史、数学教育和数学发展中的数学与社会的联系,数学与各种文化的关系等。
我国数学文化最早在孙小礼和邓东皋等人共同编写的《数学与文化》中被提及,这本书浓缩了许多数学名家的相关理论学说,记录了从自然辩证法角度对数学文化的思考。
数学不单单是一种符号或者是一种真理,其内涵包含了用数学的观点来观察周边的现实,构造数学模型,学习数学语言、图表和符合的表示,进行数学的沟通。
数学文化可以在具体的数学理念和数学思想、数学方法中揭示内涵。
数学从本质上与文学的思考方式是共通的,数学文化中的逻辑思维、形象思维、抽象思维等在文学思考方式中也有体现。
但是数学文化与其他文化相比较,也有其本身的独特性。
数学在历史发展的长河中不断改变和融合,现在已经成为世界上的一种通用语言,不再受到不同国家文化、语言的束缚,受到了各国人民的推崇和发展,数学文化利用科学的方式对人类生活中的其他文化的本质进行了深刻的揭示,是其他文化发展的基础。
二、教学中渗透数学文化的意义大学数学中综合了物理、计算机、电子等知识,教学课程包含了高等数学、线性代数、概率论与数理统计等,大学开展数学课程符合时代的发展潮流。
在大学数学教学中渗透数学文化,能够使学生在对数学进行系统化的学习之前,充分理解数学文化的内涵,发现数学文化与其他各种文化间的紧密联系,使大学生能够在数学教学的学习中提高数学学习能力,发展独立发现问题和解决问题的能力,开发大脑的潜能,树立正确的数学学习观念,通过学生深入了解数学的内容,从不同的角度对数学人文、科学方面等知识进行分析和理解。
数学与应用数学专业大学毕业论文
数学与应用数学专业大学毕业论文一、引言数学与应用数学专业涵盖了数学理论和数学应用的学习,旨在培养学生在数学理论和方法上的深入理解和应用能力。
本次毕业论文旨在探究数学与应用数学的重要性以及其在现代社会中的应用。
二、数学的重要性1. 数学理论的推动作用数学理论作为科学发展的基础,对现代科学和技术的发展起到了重要的推动作用。
通过深入理解数学的基本原理和概念,学生可以在未来的职业生涯中运用数学方法解决实际问题。
2. 数学在科学研究中的应用数学在自然科学和社会科学等领域中起到了重要的作用。
在物理学、化学、生物学等自然科学领域,数学模型被广泛运用于预测、解释以及模拟实验。
在经济学、管理学、社会学等社会科学领域,数学方法可以用来分析数据、描述现象以及推理推论。
3. 数学教育的培养能力数学学科的学习不仅仅是为了培养学生的数学知识和技能,更重要的是培养学生的逻辑思维能力、抽象思维能力、创造力以及解决问题的能力。
这些能力在学生的终身学习和职业发展中都起到了重要的作用。
三、数学与应用数学的应用领域1. 工程与技术领域数学在工程和技术领域中应用广泛。
在电子工程、计算机科学和信息技术等领域,数学方法被用于设计和优化算法、模拟和分析电路,以及解决不同领域的工程问题。
2. 金融与经济领域数学在金融与经济领域中起到了重要的作用。
通过建立数学模型和运用数学方法,可以预测市场走势、风险管理和投资决策。
金融数学和金融工程等学科的发展也证明了数学在金融领域中的重要性。
3. 自然科学领域数学在自然科学领域中也有广泛的应用。
在物理学、化学、天文学等领域中,数学方法被用于解决实验数据分析、数值计算和模拟实验等问题。
数学模型和方程式可以帮助科学家理解和解释现象,指导实验和观测。
4. 社会科学领域社会科学领域也离不开数学的应用。
例如,在心理学、社会学和统计学等领域中,数学方法可以帮助研究者分析数据、探索关联性以及验证假设。
数学模型的运用可以揭示出隐藏在数据背后的规律和趋势。
大学数学专业论文范文3000字
大学数学专业论文范文3000字数学这门古老而又充满生命力同时兼顾理论性和应用性的课程,被誉为“思维的体操”,其中无论是理论(纯数学)还是实践(应用数学),都包含丰富的知识和思维的技巧。
下文是店铺为大家搜集整理的关于数学论文的内容,欢迎大家阅读参考!数学论文范文篇1浅析小学数学学习特点对教学的影响小学数学是知识学习的起始点,与人类的学习比起来,小学数学的学习更有具体性。
小学生对数量关系和空间形式知识的学习,具有抽象性,需要学生认真思考。
要从学生的实际情况出发,分析学生在学习小学数学前在知识、能力、情感态度价值观等方面所达到的水平,使教师根据小学数学学习特点策划教学方案,为教学提供理论依据。
本文从学习内容、学习过程以及学习方式三点来论述小学数学学习特点对教学的影响。
一、学习内容的抽象性与形象性1.抽象性和形象性的特点教材编写人员将富有抽象的数学知识转变为儿童易理解的形象化数学知识,通过转化,它不但没有失去数学学科的抽象性、逻辑性和严密性,而且更加形象生动。
大大提高了学生的学习兴趣。
教材通过丰富多样的图片和故事,把数学知识以多种方式呈现在学生面前。
使学生想学爱学。
虽然小学数学学习内容很抽象,但经过多种方式的呈现,使知识更形象生动。
这种方法解决了数学知识特点与小学生思维之间的矛盾问题。
2.抽象性和形象性特点对小学数学教学的影响教师在讲解小学数学时要使形象性与抽象性相结合,通过各种教学方式把抽象的数学知识形象化。
因此教师需恰当地解决具体与抽象之间的联系,即要解决以下四个问题:第一,怎样将学习内容的形象性与数学的本质结合起来;第二怎样进行抽象概括;第三,怎样对数学知识的理解深入到学生心中;第四,使学生学会用自己的语言来描述数学问题。
二、学习过程的渐进性和系统性1.渐进性和系统性的特点教学模式开发和应用的过程,是一个随着教育理论和教学实践不断发展的过程。
它具有渐进性和系统性。
这两种特性遵循了小学生的发展规律,对知识的学习是一个循环渐进的过程。
大学数学微积分论文(专业推荐范文10篇)7700字
大学数学微积分论文(专业推荐范文10篇)7700字大学数学微积分包括极限、微分学、积分学及其应用,也包括求导数的运算,是一套关于变化率的理论。
本篇文章就向大家介绍几篇大学数学微积分论文,希望大家通过以下论文,跟大家一起探讨这个课题。
大学数学微积分论文专业推荐10篇之第一篇:浅析微积分在大学数学学习和生活中的应用摘要:经济社会的发展和科技的进步,计算机应用领域的扩大,也不断拓展了微积分的应用范围。
微积在大学数学学习和生活中很常见,应用广泛。
本文主要针对微积分在大学数学学习和生活中的应用进行了分析。
关键词:微积分;大学数学;学习生活;应用;数学作为一项重要的工具,在社会长期发展中发挥着重要的作用,尤其是在其他学科知识的学习、日常生活的应用等方面,数学工具不可或缺。
在大学中,微积分属于大学数学的一个分支,其研究对象是函数的微分、积分及其他内容。
微积分是很多在校大学生的必修课程,同时,在生活中也有广泛的应用空间。
研究微积分,具有重要的现实意义。
1. 大学教学中微积分的应用大学教育的过程中,很多专业知识的学习中都需要运用到微积分,可以说,大学教学中微积分的应用十分广泛,尤其是数学教学和学习,微积分是高等数学研究的一个分支,且在具体的学习中有重要的指导意义。
具体应用分析如下。
1.1 数学建模。
数学建模主要用于把一个抽象的生活问题用具体的数学模型做简化和假设,在此基础上,运算得出一个相对合理的对应方案。
数学建模在现实生活中具有较强的实际意义。
在传统的数学应用中,人们运用微积分建构了多个数学模型,并且为科学研究做出了很大的贡献。
历史上将数学模型运用到科学研究的典型例子,牛顿借助自己研究的微积分,提出万有引力定律,这些典型的现实性案例,都证明了微积分在数学建模中的重要作用。
1.2 等式证明中的微积分使用。
在变量关系的研究过程中,会涉及到有关等式作证明的问题,可以利用微积分无线分割的思想,在处理数学问题的过程中,以简御繁,其次,微积分中的值订立、函数的增减性、极值的判定等,都在在等式的证明中有重要的作用,在具体的运用中,能简化等式,降低了普通方法证明等式时的技巧性和高难度性,因此,微积分的使用让等式证明更加简化和简单。
大学数学课程论文范文
1.大学数学论文范文数学与生活自从懂事以来,数学就已进入了我们的生活,数学无处不在影响着我们的生活,指引着智慧的方向,陪伴我们度过学习与成长的各个阶段。
数学是一门给人智慧、让人聪明的学科,在数学的世界中,我们可以探索以前所不知道的神秘,在这个过程中我们变得睿智、变得聪明。
由于以前选择了文科,所以到大学才接触到危机分的知识,也开始了对微积分的探索,现在可以说是略知一、二了,在此期间间间的了解到微积分的美好,以及新引力的强大。
但学习微积分的过程是困难与艰辛的,与此同时,我也了解到——数学是一种寻求众所周知的公理法思想的方法,这种方法包括明确的表述出将要讨论的概念的含义,以及准确的表述出作为推理基础的公设。
具有极其严密的逻辑思维能力的人从这些定义和公设出发,推导出结论。
同时数学是一门需要创造性的科学,而数学的这些创造性的动力往往来自于生活。
反过来,数学的这些创造性地成果往往又作用于生活的各个方面。
例如,商业和金融事务、航海和历法的计算、桥梁、水坝、教堂和供电的建造、作战武器和工事的设计,以及许多人类的需要。
与此同时,数学又能对这些问题给出最完满的解决。
在我们高速发展的社会中,数学被当作普遍工具的事实更是毋庸置疑的。
在我们的日常生活中,微积分确确实实的存在着,只是我们缺少善于发现的精神而已。
比如说,我们在养花,而花瓶中水过多了,我们这时就要倒出部分水,这是上活中的公式就产生了,这个问题是:我们要将瓶子倾斜多少度时才能降水倒出一半来?这是微积分就派上用场了。
假设花瓶的纵截面是抛物线 Y=ax^2(a>0) 首先,先算出瓶子直立水满时的体积用一个积分就可以了,结果等于V=πh^2/(2a);第二步,假设倾斜角为α,正好倒掉了一半的水,重新建立坐标系,令此时瓶的对称轴为y轴,垂直于瓶的对称轴的射线为x轴,然后将坐标系还原为常规正立的图形,此时瓶里水的横截面图像为抛物线和水面所在直线的公共部分,注意此时水面所在直线与x轴的倾角是刚好为题目所提到的倾斜角α(如原图所示,倾斜后的水平面此时与x轴平行,因此水面与瓶的对称轴的夹角为90-α,也即在新建坐标系下,水面所在直线与y轴的夹角也为90-α,因此它与x轴的夹角为α)。
纯数学数论大学期末论文
纯数学数论大学期末论文摘要:本文主要研究了纯数学领域中的数论问题,重点关注了数学中的整数理论、素数分布、同余关系等方面。
通过对相关理论的梳理和分析,深入探讨了数论在数学研究中的重要性和应用价值。
本文结构清晰,内容准确,旨在给读者提供一种全面的数论知识体验。
1. 引言数论作为数学中的一个重要分支,研究的是整数之间的性质与关系。
在现代科学与技术的发展中,数论在密码学、编码理论、计算机科学等方面有着广泛的应用。
本文将从整数理论、素数分布和同余关系三个方面展开探讨,希望能够为读者提供深入了解数论的机会。
2. 整数理论整数作为数论研究的核心对象,其性质与结构一直是学者们关注的焦点。
在整数理论中,包括数的因子分解、整数性质的研究等内容。
例如,欧几里得算法、质因数分解算法等都是整数理论中的经典问题。
通过研究整数理论,我们可以更好地理解数的结构及其与其他数学领域的联系。
3. 素数分布素数作为数论领域中的重要研究对象,其分布规律一直是数学家们关注的焦点。
在素数分布方面,有著名的素数定理和黎曼猜想。
素数定理表明,素数的分布密度随着数值的增大而减小。
而黎曼猜想则研究了素数的分布与复数的零点有关的性质。
研究素数的分布规律对于理解数的性质及其应用具有重要意义。
4. 同余关系同余关系是数论中一个基本且重要的概念,研究的是同余数之间的性质与关系。
同余关系可以用于解决余数问题、密码学中的加密算法等。
在同余关系的研究中,有著名的费马小定理和中国剩余定理。
费马小定理给出了同余关系的一种应用,可以用来求解模幂问题。
中国剩余定理则研究了一类多元线性同余方程组的解的存在性和唯一性。
5. 应用和展望数论作为纯数学中的一个重要分支,其在密码学、编码理论、计算机科学等方面有着广泛的应用。
例如,在RSA加密算法中,素数分解的难度被用来保证数据的安全性。
在编码理论中,纠错码的设计和性能评估也涉及到数论的知识。
未来,随着科学技术的不断发展,数论在更多领域的应用将会得到进一步的拓展。
大学数学论文格式模板范文(精选篇)
大学数学论文格式模板范文(精选篇)[摘要]将网络课程资源的丰富多样性、教学方式的自主灵活性与课堂教学的集中针对性、引导启迪性相结合,革新传统的以课堂教学为主的单一型大学数学课程教学模式,建立虚拟与现实、课上与课下相结合的混合型课程教学模式,有效解决了应用型高校普遍存在的大学数学课程学时短缺的问题,有利于激发学生学习大学数学的内驱力,提高学生的数学素养,增强学生的实践动手能力,有助于应用技术型人才的培养。
[关键词]应用型高校;慕课;混合型教学;大学数学引言从2003年教育部启动国家精品课程项目到2023年累计建设3910门国家精品课程,从2023年11月9日由北大、清华等18所知名大学建设的首批20门“中国大学视频公开课”免费向社会公众开放到2023年共建成992门视频公开课、2884门资源共享课,这些成果为国内在线课程建设打下了坚实的基础。
大规模(massive)开放(open)在线(online)课程(course)[1]即MOOC这一教育信息化的最新成果随着2023年美国三大MOOC平台(Coursera、Udacity、Edx)的建成[2],进入井喷式发展阶段,全球数百所顶尖高校的知名教授提供了数百种在线课程供学习者免费使用。
自2023年5月,清华大学和北京大学加盟Edx平台,国内也掀起了MOOC的热潮,如清华大学于2023年10月10日推出的学堂在线面向全球提供在线课程,由北京慕课科技中心成立的慕课网是目前国内慕课的先驱者之一,两岸五大交通大学(上海交大、西安交大、西南交大、北京交大、台湾交大)共同组建了MOOC平台ewant等。
MOOC以其大规模的课程资源、开放式的教学理念、自主灵活的在线教学模式,正在迅速引领一场教育风潮。
与此同时,中国高校正经历着一场规模盛大的转型浪潮[3],一大批地方普通高校正逐步向应用技术型大学转型,转型势必对传统课程造成冲击。
应用型高校不断增加工程实践学时,导致以大学数学为代表的基础课程课时学分不断减少,而大学数学课程却担负着培养大学生数学素养、提高大学生理性思维能力的使命,为大学生后续专业课程学习和工程技术研究打下重要基础,是应用技术型人才培养必不可少的课程,加之大学数学课程具有内容的高度抽象性、思维的严密逻辑性、方法的灵活多样性等特点,大学数学课程不仅需要花费较多的课时进行讲解,同时也需要学生课下花费足够的时间进行巩固。
大学数学论文5篇
大学数学论文5篇论文题目:大学代数知识在互联网络中的应用关键词:代数;对称;自同构一、引言与基本概念《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。
前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一、这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。
甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。
即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。
众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。
当然,做课后习题和考试是检验是否学会的一个重要手段。
然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。
这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。
笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。
下面介绍一些相关的概念。
一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。
称V为G的顶点集合,E为G的边集合。
E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。
图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。
图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。
图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。
图G称为是边对称的,如对于G的任意两条边{u,v}和{某,y},存在G的自同构f使得{uf,vf}={某,y}。
设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。
由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。
数学毕业论文(精选3篇)
数学毕业论文(精选3篇)数学是所有理工科学科的基础,大学生中数学专业的人也很多,读书是学习,摘抄是整理,写作是创造,这里是小编给家人们分享的数学毕业论文【精选3篇】,仅供借鉴。
大学数学研究论文篇一【摘要】本研究以高职院校单招班级为调查对象,通过问卷调查法研究高职单招学生对高等数学课程分层教学的看法,采用有效的分层次教学形式,培养学生的学习能力、激发学生学习的内动力,进而为分层教学的具体实施提供参考。
【关键词】高等数学;分层次教学;教学改革高职单招的生源较为复杂,其中一类对象是中职生,其特点是在进入高等职业教育前具有相应专业课的理论知识,并具备一定的职业技能素养,但在公共文化课程方面与统招生相比,存在一定的差距。
目前来看,部分高职院校将高考统招生源和单招生源放在同一个班级上课,造成学生接收程度不一、教学效果不佳等问题。
本文将根据高职部分单招生源在高中时期数学基础薄弱的事实,对其教学方法及课程设置进行合理的分层教学探索[1]。
1分层教学改革的原因高职生源与本科生源在高等数学课程教学上的区别高等数学课程具有较强的工具性和实用性,是学生提高自身能力和素质的载体。
从教学内容来看,高职版虽然基本上是本科版的压缩,但是高职高等数学的教材和课堂结构、教学模式和教学方法应与本科高校不同,须改变传统的以教师讲授为主的满堂灌,改变课堂教学模式的单一性,寻找优质的适合高职生源的课程资源、教材及教学方法以满足学生的学习需求及毕业后的岗位需求。
用教学改革的办法推进高职单招班高等数学分层教学的课堂教学结构战略性调整,增强应对不同生源学生需求的适应性和灵活性,提高课堂教学的效率,改变满堂灌的课堂教学模式。
高职不同生源学生在学习高等数学时的基础差异高职院校主要招生形式是高考统招和对口单招。
生源结构的复杂性和生源素质的差异性对高职院校的教育教学工作带来了极大的考验和挑战。
不同生源的同层教学会让高职单招生源中原本基础不好的学生跟不上进度,进而造成部分学生缺乏独立学习能力和探索精神。
大一数学论文大学生范文精选
大一数学论文大学生范文精选随着高等教育的普及和数学科学的重要性逐渐凸显,大一数学课程成为了大学生学习的重要组成部分。
在大一数学学习的过程中,学生们需要通过论文的形式来表达自己对数学问题的理解和应用能力。
本文将选取几篇优秀的大一数学论文范文,为大学生们提供参考。
第一篇:函数的图像与性质函数是数学中最基础的概念之一,它在实际生活中有着广泛的应用。
在这篇论文中,作者以 y = x^2 + 2x + 1 为例,通过求解顶点、判别式、导数等方法,详细分析了该函数的图像和性质。
通过对函数图像的观察,作者发现了与二次函数相关的重要特点:顶点坐标、开口方向、零点等,并对这些性质进行了解释和应用。
作者通过清晰的图表和简洁明了的语言,全面展示了对函数图像与性质的深入理解。
第二篇:线性方程组的解法比较线性方程组是数学中的一类重要问题,它在各个领域具有广泛的应用。
本篇论文选取了两种解线性方程组的方法:高斯消元法和矩阵法。
论文以具体的例子引入问题,详细介绍了两种方法的步骤和原理,并通过对比不同方法的优缺点,提出了在不同情况下选择合适解法的建议。
作者通过清晰的逻辑框架和恰当的例子,使读者能够深入理解和掌握线性方程组的解法。
第三篇:微分的应用微分作为数学的重要概念之一,具有广泛的应用价值。
本篇论文选取了一个典型的应用案例,即求解函数的极值问题。
作者通过对函数取极值的条件和求解方法的介绍,结合实际例子,详细解释了如何通过微分的方法求解函数的极值问题。
论文通过对问题的分析和解决过程的详细论述,使读者能够全面理解微分在实际问题中的应用。
第四篇:概率与统计概率与统计是数学中的重要分支,它在各个领域都有重要的应用。
本篇论文选取了一个与现实生活紧密相关的问题,即某次学生考试成绩的概率分布。
通过对成绩的数据进行统计和分析,作者详细介绍了概率密度函数、期望值、方差等基本概念,并通过图表和计算展示了这些概念的实际应用。
论文通过生动的例子和清晰的逻辑,使读者对概率与统计有了更深入的了解。
大学数学建模论文范文
大学数学建模论文范文第一部分,问题描述。
我们选取了某城市的交通拥堵问题作为研究对象。
该城市的交通拥堵问题严重影响了市民的出行和城市的发展。
我们希望通过数学建模的方法,分析该城市的交通拥堵问题,并提出解决方案。
第二部分,问题分析。
我们首先对该城市的交通情况进行了调研,了解了交通拥堵的主要原因包括道路狭窄、交通信号不畅、车辆过多等。
然后,我们运用数学模型对这些因素进行了量化分析,并得出了交通拥堵的数学描述。
第三部分,模型建立。
在模型建立过程中,我们运用了交通流理论、优化理论等数学知识,建立了一个包括道路网络、交通信号、车辆流量等因素的数学模型。
通过模型的建立,我们可以定量地分析交通拥堵问题,并找到最优的解决方案。
第四部分,模型求解。
我们采用了数值计算的方法,对建立的数学模型进行了求解。
通过对模型的求解,我们得出了一些有关交通拥堵问题的定量结论,并提出了一些解决方案。
第五部分,结果分析。
在结果分析部分,我们对模型的求解结果进行了分析和讨论。
我们发现了一些关于交通拥堵问题的规律性结论,并在此基础上提出了一些可行的解决方案。
第六部分,结论和展望。
在结论部分,我们总结了我们的研究成果,并提出了一些对未来研究的展望。
我们认为,通过数学建模的方法,可以有效地分析和解决实际问题,为城市的发展和居民的生活带来更多的便利。
通过以上范文的展示,我们可以看到一个完整的数学建模论文的写作过程。
在写作过程中,我们需要对问题进行深入的分析,建立合适的数学模型,并进行求解和结果分析,最终得出结论和展望。
希望这篇范文可以对大家在数学建模论文写作中有所帮助。
数学分析的毕业论文
数学分析的毕业论文数学分析的毕业论文数学分析是数学的一个重要分支,它研究的是数学对象的性质和变化规律。
作为数学专业的学生,我在大学期间学习了数学分析的相关知识,并对其产生了浓厚的兴趣。
在即将毕业之际,我决定以数学分析为主题撰写我的毕业论文,以探索更深入的数学领域。
一、引言在引言部分,我将简要介绍数学分析的背景和重要性。
数学分析作为数学学科的核心内容,具有广泛的应用价值。
它不仅为其他学科提供了重要的理论基础,也在实际问题的解决中发挥着重要作用。
在本文中,我将重点研究数学分析的一些基本概念和定理,并探讨它们在实际问题中的应用。
二、基本概念和定理的介绍在这一部分,我将详细介绍数学分析中的一些基本概念和定理。
首先,我将介绍实数和实数集的概念,以及实数的基本性质。
接着,我将介绍极限和连续的概念,并讨论它们的性质和应用。
此外,我还将介绍导数和微分的概念,并探讨它们在函数研究中的重要性。
最后,我将介绍积分的概念和性质,以及它在数学分析中的应用。
三、实际问题的数学建模和分析在这一部分,我将探讨数学分析在实际问题中的应用。
数学分析作为一门应用性很强的学科,可以通过建立数学模型来解决实际问题。
我将以一些具体的实际问题为例,介绍如何利用数学分析的方法进行建模和分析。
例如,我可以选择研究一个物体的运动问题,通过分析其位移、速度和加速度的关系,来推导出物体的运动规律。
此外,我还可以选择研究一个经济问题,通过建立数学模型来分析市场供求关系和价格变动的规律。
四、数学分析的发展和前景在这一部分,我将探讨数学分析的发展和前景。
数学分析作为数学学科的核心内容,一直在不断发展和完善。
随着科学技术的进步和应用领域的拓展,数学分析的研究和应用也将越来越广泛。
在未来,数学分析将继续发挥重要作用,并为其他学科的发展提供理论支持。
同时,数学分析的研究也将面临一些挑战和困难,需要不断探索和创新。
五、结论在结论部分,我将总结本文的主要内容,并对数学分析的研究进行回顾和展望。
大一高等数学论文大学数学论文
大一高等数学论文大学数学论文高等数学在大一的学习中占据着重要的地位,它是一门基础性的数学课程,对于培养学生的数学思维和解决问题的能力有着重要的作用。
本论文旨在探讨大一高等数学的学习方法和效果,并对如何进行大学数学的进一步学习提出一些建议。
一、大一高等数学的学习方法在大一学习高等数学时,我们应该注重以下几个学习方法:1.理解概念:高等数学是一个基础性的数学课程,其中涉及到了许多重要的数学概念。
我们应该通过认真阅读教材,理解每个概念的含义和特点,建立起数学思维的框架。
2.掌握基本技巧:在学习高等数学时,我们需要掌握一些基本的数学技巧,如函数的求导、极限的计算等。
这些技巧是解决数学问题的基础,我们可以通过多做练习题来熟练掌握。
3.注重实际应用:高等数学的内容不仅仅停留在理论层面,它还有很多实际的应用。
我们应该注重将数学知识与实际问题相结合,提高解决实际问题的能力。
4.参加讨论和学习小组:在学习高等数学时,我们可以参加一些讨论和学习小组,与同学们一起交流和讨论数学问题。
这样可以增加学习的乐趣,也能够从他人的观点和方法中获得启发。
二、大一高等数学学习效果的评价评价大一高等数学的学习效果主要包括两个方面,即知识的掌握和解决问题的能力。
1.知识的掌握:大一高等数学是一门较为复杂的数学课程,对于学生来说有一定的难度。
通过学习和练习,我们应该能够熟练掌握基本的数学知识,并能够运用到实际问题中。
2.解决问题的能力:大一高等数学的学习目标不仅仅是为了掌握一些数学知识,更重要的是培养学生的问题解决能力。
通过学习高等数学,我们应该能够分析和解决各种复杂的数学问题。
三、关于大学数学的进一步学习建议在大一学习高等数学之后,我们可以在大学数学的学习中继续提高自己的数学水平。
以下是一些建议:1.拓展数学领域:大学数学不仅仅包括高等数学,还包括线性代数、概率统计等内容。
我们可以选择一些数学选修课程,进一步拓宽自己的数学知识领域。
2.培养数学建模能力:在大学数学学习中,我们可以参加一些数学建模的竞赛和研究项目,培养自己的数学建模能力。
大学数学教学中融入数学文化的研究论文
大学数学教学中融入数学文化的研究论文大学数学教学中融入数学文化的讨论论文随着时代的不断进展,虽然我国的高等教育水平也在不断地提升,但在我国大学数学教学中,数学文化的渗透一直没有得到重视,这对数学教学的改善和学生学习的提高很不利。
数学文化主要包含:数学家、数学的产生、进展和完善以及它对人类社会的影响。
数学文化是开放的,多元化以及动态的数学本身以及与外界的联系。
有人错误地认为数学文化就是“数学+文化”,认为数学文化是数学外在的附属品。
实际上,数学文化应该是数学作为人们认识和改造时间的一种语言、思维工具,思想方法,制造的物质财富和精神财富的产物。
1 在大学数学教学中融入数学文化教育的必要性1.1 大学数学教学中融入数学文化教育能有效激发学生的学习爱好一方面,目前在大学数学教学的课堂上,老师往往只注重对数学专业知识的讲解,然后再布置大量的习题练习,想通过刷题来提高学生的数学成绩;另一方面,大学数学的内容既抽象又复杂,这使得学生的理解和掌握都非常困难。
这导致很多大学生刚接触数学就失去学习爱好和学习动力,造成学生在课堂上睡觉或玩手机的人比比皆是。
因此,在大学数学教学中若能根据有关教学内容,融入相应的数学文化,则有利于学生对数学专业知识的理解,从而有效地激发学生的学习爱好。
1.2 大学数学教学中融入数学文化教育能培育学生的创新思维能力众所周知,数学是一门逻辑思维能力极强的学科,数学文化对人类创新思维方式具有深刻的影响。
而大学生正处于思维逻辑的培育阶段,大学数学教学中融入数学文化教育对学生思维能力的培育具有培训作用。
学生在学习数学文化的同时就能够逐步拥有数学文化素养。
虽然数学专业知识可能会随着时间的流逝而遗忘,但数学素养对人的影响是长期的。
特别是潜在的思维方式,在学生日后的工作和生活中能发挥及其重要的作用,在工作和生活中会潜移默化地用到,学生是终身受益的。
1.3 大学数学教学中融入数学文化教育有利于提高学生的综合素养数学文化包含的内容很多,比如数学史、数学名家,数学与实际问题的联系等,其中的很多部分都有非常好的教育意义。
大学数学教学论文范文精选 10篇
大学数学教学论文范文精选 10篇1. 数学教学中的启发式教学法本篇论文探讨了数学教学中的启发式教学法对学生研究成绩和兴趣的影响。
通过实施启发式教学法,学生在解决数学问题时能够更深入地理解数学概念,提高解题能力和创新思维。
2. 利用实际案例的数学教学方法本文介绍了一种利用实际案例的数学教学方法,通过将数学应用于真实生活中的问题,增加学生对数学的兴趣和理解。
此方法还可以培养学生的问题解决能力和逻辑思维。
3. 数学课堂中的互动研究策略本篇论文探讨了数学课堂中的互动研究策略对学生研究效果的影响。
通过鼓励学生参与讨论和合作解决问题,教师可以激发学生的研究兴趣和提高研究成绩。
4. 创新技术在数学教学中的应用本文介绍了一些创新技术在数学教学中的应用,包括使用电子白板、数学软件和在线资源。
这些技术能够增加学生对数学的互动性和参与度,并提供更多个性化研究的机会。
5. 探索问题解决方法的数学教学模式本篇论文介绍了一种探索问题解决方法的数学教学模式,通过引导学生思考和独立解决问题,提高他们的解决问题的能力和数学思维能力。
6. 基于社会情境的数学教学理念本文研究了一种基于社会情境的数学教学理念,通过将数学与社会生活结合,增加学生对数学实际应用的认识和兴趣。
7. 数学游戏在教学中的应用本篇论文介绍了数学游戏在教学中的应用,通过游戏的形式培养学生对数学的兴趣和动手能力,提高学生的研究效果。
8. 数学评估方法的研究与应用本文研究了一种数学评估方法,通过不同类型的评估工具和策略,准确评估学生的数学能力和理解程度,为教师提供有效的教学反馈。
9. 数学思维培养的实践研究本篇论文介绍了一种数学思维培养的实践研究,通过在数学教学中注重培养学生的逻辑思维、创新思维和问题解决能力,提高学生的数学素养和综合能力。
10. 多媒体资源在数学教学中的应用本文探讨了多媒体资源在数学教学中的应用,通过使用图像、音频和视频等多媒体形式,增加学生对数学概念的理解和记忆,提高研究效果和教学效果。
大学数学论文3000范文(推荐3篇)
大学数学论文3000范文(推荐3篇) 3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。
数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。
建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。
结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:函数建模类型实际问题一次函数成本、利润、销售收入等二次函数优化问题、用料最省问题、造价最低、利润最大等幂函数、指数函数、对数函数细胞分裂、生物繁殖等三角函数测量、交流量、力学问题等3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。
有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。
所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
随着科技的进步和社会的发展,数学这一基础学科已与其他学科相结合,且应用愈来愈广,已渗透到生产和生活的各个方面。
我国从1992年开始举办大学生数学建模竞赛。
近年来,大学生数学建模竞赛迅猛发展,为高等数学的应用型教学指引了方向,同时也激发了大学生的创新思维,锻炼了大学生的实践能力,受到了社会各界人士的关注和好评。
一、数学建模和大学生数学建模竞赛何为数学建模?有人认为,数学模型即以现实世界为目的而做的抽象、简化的数学结构;也有人认为,数学模型就是将现实事物通过数学语言来转化为常见的数学体系。
事实上,数学建模是运用数学知识从实际课题中抽象、提炼出数学模型的过程,主要方法是通过合理假设、引进自变量、借助各种数学工具实现对现实事物的数字化转变,进而描述或解决实际问题。
那么,受广大高校师生青睐的大学生数学建模竞赛又是什么呢?数学建模竞赛是全国大学生参与规模最大的课外科技活动,从一个侧面反映一个学校学生的综合能力,为学生提供了展示才华的舞台。
大学生数学建模竞赛具有一定的开放性和应用性,同时兼具一定的综合性和挑战性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以可以设该直线方程为
y=tanα*x+b
假设直线与抛物线的交点为A(x0,y0),B(sqrt(h/a),h))(左A,右B)(B点的纵坐标显然等于瓶子的高度h),先利用B点坐标求出直线的截距b,然后联立直线与抛物线方程可以求的A点坐标;
第三步,就是求此时瓶中水的体积,可以将图像分为两部分,
数学不是规律的发现者,因为它不是归纳。数学也不是理论的缔造者,因为它不是假说。但数学确实规律和假说的裁判和主宰者,因为规律和假说都要向数学表明自己的主张,然后等待数学的裁判。如果没有数学的认可,则规律不能起作用,理论也不能解释。(来自数学的文化)
数学是重要的,生活不能离开数学,国防发展与科技进步也不能离开数学。在遥远的古代中国是引领世界的,因为那时的勤劳人民已发现了数学算筹、《九章算术》……这都是历史留下来的论据。一个国家的强大离不开数学的精密计算。21世纪的今天中国已傲然屹立于世界民族之林,为了使国际地位不断提升,我们必须坚定的发展研究数学。
一部分是直线y=y0与抛物线所交部分,第二部分是直线y=y0、直线y=tanα*x+b及抛物线y=ax^2(a>0)相交部分。第一部分体积为V1=∫π*(x^2)dy=∫π*y/ady(积分上下限为0和y0);
第二部分体积为V2=∫π*((sqrt(y/a)-(y-b)/tanα)/2)^2dy(积分上下限为y0和h);因此根据:
作为日语学习者,或许有人说我是不明智的,不爱国的,可我不这么认为,我对我的祖国保持着我深沉的热爱,但文化是跨国界跨空间而存在的,正如数学一样,致使食物国度、学科之分的。数学是我缜密、使我聪明,使我有逻辑性,这推动着我的日语学习,使我的日语学习更加得有条理,使我更容易掌握那些难懂的语法,数学激发了我学习的欲望。因为它使我产生了对知识的强烈渴望,让我不停地去探索,去发现,去积极寻找问题的解决方法。
学了很久的数学了,明卖弄百数学的源远流长于高深莫测,他引领着前进的道路。Hankel,Hermann 说:数学沿着他自己的道路而无拘无束的前进着,这并不是因为他有什么不受法律约束之类的种种许可证,而是因为数学本来就具有一种由其本性பைடு நூலகம்决定的并且与其存在相符合的自由无益的是数学在生活中独特而不可或缺,失去了数学科技水平将倒退。这不是耸人听闻,这是对数学这门使人精密学科的肯定,这是不可置否的。
数学与生活
自从懂事以来,数学就已进入了我们的生活,数学无处不在影响着我们的生活,指引着智慧的方向,陪伴我们度过学习与成长的各个阶段。
数学是一门给人智慧、让人聪明的学科,在数学的世界中,我们可以探索以前所不知道的神秘,在这个过程中我们变得睿智、变得聪明。
由于以前选择了文科,所以到大学才接触到危机分的知识,也开始了对微积分的探索,现在可以说是略知一、二了,在此期间间间的了解到微积分的美好,以及新引力的强大。但学习微积分的过程是困难与艰辛的,与此同时,我也了解到——数学是一种寻求众所周知的公理法思想的方法,这种方法包括明确的表述出将要讨论的概念的含义,以及准确的表述出作为推理基础的公设。具有极其严密的逻辑思维能力的人从这些定义和公设出发,推导出结论。同时数学是一门需要创造性的科学,而数学的这些创造性的动力往往来自于生活。反过来,数学的这些创造性地成果往往又作用于生活的各个方面。例如,商业和金融事务、航海和历法的计算、桥梁、水坝、教堂和供电的建造、作战武器和工事的设计,以及许多人类的需要。与此同时,数学又能对这些问题给出最完满的解决。在我们高速发展的社会中,数学被当作普遍工具的事实更是毋庸置疑的。
V1+V2=V/2=π*h^2/(4a)=∫π*y/ady(积分上下限为0和y0)+∫π*((sqrt(y/a)-(y-b)/tanα)/2)^2dy(积分上下限为y0和h)可以解得所求α值。
这就是数学于生活紧密联系在一起了,如果数学不能和生活紧密联系在一起,那么数学将变得空洞无力。
在我们的日常生活中,微积分确确实实的存在着,只是我们缺少善于发现的精神而已。比如说,我们在养花,而花瓶中水过多了,我们这时就要倒出部分水,这是上活中的公式就产生了,这个问题是:我们要将瓶子倾斜多少度时才能降水倒出一半来?这是微积分就派上用场了。
假设花瓶的纵截面是抛物线
Y=ax^2(a>0)
首先,先算出瓶子直立水满时的体积用一个积分就可以了,结果等于V=πh^2/(2a);
第二步,假设倾斜角为α,正好倒掉了一半的水,重新建立坐标系,令此时瓶的对称轴为y轴,垂直于瓶的对称轴的射线为x轴,然后将坐标系还原为常规正立的图形,此时瓶里水的横截面图像为抛物线和水面所在直线的公共部分,注意此时水面所在直线与x轴的倾角是刚好为题目所提到的倾斜角α(如原图所示,倾斜后的水平面此时与x轴平行,因此水面与瓶的对称轴的夹角为90-α,也即在新建坐标系下,水面所在直线与y轴的夹角也为90-α,因此它与x轴的夹角为α)。