本科优秀数学本科毕业论文
数学与应用数学毕业论文——正交矩阵及其应用
本科生毕业设计(论文)正交矩阵及其应用学院:专业:数学与应用数学学号:学生姓名:指导教师:二〇一一年六月摘要如果n阶实矩阵A满足,那么称A为正交矩阵.正交矩阵是由内积引出的.本文例举了正交矩阵在线性代数、化学和物理中的三个应用.在线性代数中,求标准正交基一般用Schimidt正交化方法.本文论证了一种特殊的正交矩阵——初等旋转矩阵——也可以求任一向量空间的标准正交基,并通过实例说明此方法的应用.在化学上,原子轨道的杂化,实际是由一组相互正交的单位基向量,通过线性变换转化为另一组相互正交的单位基向量.而线性代数中由一组标准正交基到另一组标准正交基的过渡矩阵是正交矩阵,因此可以利用正交矩阵的性质求原子轨道的杂化轨道式.在物理上,任一刚体运动都对应一个正交矩阵,本文证明了曲线作刚体运动时曲率和挠率是两个不变量.关键词:正交矩阵;初等旋转矩阵;标准正交基;原子轨道的杂化;曲率;挠率AbstractOrthogonal matrices and its applicationsIf a-dimensional real matrixsatisfies,we call it orthogonal matrix. Orthogonal matrix is extracted by inner product.This paper enumerats the applications of orthogonal matrix inlinear algebra, chemistry, and physics. Schimidt method is always used to find the standard orthogonal basis in linear algebra. A special kind of orthogonal matrix, namely elementary rotational matrix, is established to find the standard orthogonal basis in this paper. The orbital atom heterozygous is actually made by a team of mutually orthogonal unit basis vector, through linear transformation into another group of mutually orthogonal unit basis in linear algebra. Thetransition matrix of a group of standard orgthogonal basis to another group of standard orthogonal basis is an orthogonal matrix. Therefore, properties of orthogonal basis can be used to find the orbital atom heterozygous. In physics, any rigid motion corresponds with anorthogonal matrix. The curvature and torsion rate are proved to be two invariants when a curve is in rigid motion.Keywords:Orthogonal matrix; Elementary rotation matrix; Standard orthogonal basis; The orbital atom heterozygous; Curvature;Torsion rate目录1.引言 12.正交矩阵的基本知识 32.1正交矩阵的定义与判定 32.2 正交矩阵的性质 33.正交矩阵的应用 53.1 正交矩阵在线性代数中的应用 53.2正交矩阵在化学中的应用 113.3正交矩阵在物理学中的应用 14参考文献 18致谢 19正交矩阵及其应用姓名:学号:班级:1.引言因为行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论.矩阵也是由数排成行和列的数表,可以行数和烈数相等也可以不等.矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法.利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,就都可以得到彻底的解决.矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具.“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个述语.而实际上,矩阵这个课题在诞生之前就已经发展的很好了.从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的.在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反.凯莱先把矩阵作为一个独立的数学概念提出来,同研究线性变换下的不变量相结合,首先引进矩阵以简化记号并发表了关于这个题目的一系列文章.1858年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了关于矩阵的理论.文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念,指出了矩阵加法的可交换性与可结合性.另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩阵的一些基本结果.凯莱出生于一个古老而有才能的英国家庭,剑桥大学三一学院大学毕业后留校讲授数学,三年后他转从律师职业,工作卓有成效,并利用业余时间研究数学,发表了大量的数学论文.1855年,埃米特(C.Hermite,1822~1901)证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等.后来,克莱伯施(A.Clebsch,1831.1872)、布克海姆(A.Buchheim)等证明了对称矩阵的特征根性质.泰伯(H.Taber)引入矩阵的迹的概念并给出了一些有关的结论.在矩阵论的发展史上,弗罗伯纽斯(G.Frobenius,1849~1917)的贡献是不可磨灭的.他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质.1854年,约当研究了矩阵化为标准型的问题.1892年,梅茨勒(H.Metzler)引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式.傅立叶、西尔和庞加莱的著作中还讨论了无限阶矩阵问题,这主要是适用方程发展的需要而开始的.矩阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论.而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论.矩阵的应用是多方面的,不仅在数学领域里,而且在化学、力学、物理、科技等方面都十分广泛的应用.本文主要介绍正交矩阵与其应用.我们把阶实数矩阵满足,称为正交矩阵.尽管我们在这里只考虑实数矩阵,但这个定义可用于其元素来自任何域的矩阵.正交矩阵是由内积自然引出的,要看出其与内积的联系,考虑在维实数内积空间中的关于正交基写出的向量.的长度的平方是.如果矩阵形式为的线性变换保持了向量长度,所以有限维线性等距同构,比如旋转、反射和它们的组合,都产生正交矩阵.本文例举了正交矩阵在线性代数、化学和物理中的三大应用.其中,在线性代数中,求标准正交基除了用Schimidt正交化方法外,本文论证了正交矩阵的其中一种矩阵...初等旋转矩阵也可以求任一矩阵的标准正交基,此法用实例与Schimidt 正交化方法对比;在化学上,根据原子轨道的杂化理论,杂化的原子都有其轨道杂化式,对于形成对阵的原子轨道杂化,利用正交矩阵的性质可以求解该原子杂化轨道的杂化轨道式;在物理上,任一刚体运动都对应一个正交矩阵, 三维空间一条曲线经过刚体运动,其曲率和挠率是不变的,本文考察了曲线做刚体运动时的不变量——曲率和挠率.2.正交矩阵的基本知识本节中在没有特别说明的情况下,都表示为正交矩阵,记矩阵的秩为,与为矩阵的第列与第列,表示矩阵的第行.表示行列式的值即=.2.1正交矩阵的定义与判定定义2.1.1[3]阶实数矩阵满足(或,或),则称为正交矩阵.判定2.1.2 矩阵是正交矩阵;判定2.1.3 矩阵是正交矩阵;判定2.1.4 矩阵是正交矩阵;备注:判定一个是方阵是否为正交矩阵往往用定义,即(或,或),也可以验证的行向量或列向量是否是两两正交的单位向量.当已知的正交矩阵求证其他的结论时,要用正交矩阵的定义及有关性质2.2 正交矩阵的性质若是正交矩阵,则有以下性质([3]):性质2.2.5,则可逆,且其逆也为正交矩阵.证明显然.所以也是正交矩阵.性质2.2.6,,也是正交矩阵, 即有:(1)当时,, 即;(2)当时,, 即证明若是正交矩阵,, 由性质2.2.5,为正交矩阵.因为,所以,当时,, 即;当时., 即.从而为正交矩阵.性质2.2.7是正交矩阵.证明因为,所以.因此,也是正交矩阵性质2.2.8是正交矩阵的充分必要条件是.证明必要性若是正交矩阵,则另一方面,一方面,于是,,;充分性因为是正交矩阵,若,显然也是正交矩阵.性质2.2.9 若也是正交矩阵, 则,,,都为正交矩阵.证明由可知,故为正交矩阵.同理推知,,,均为正交矩阵.正交矩阵的性质主要有以上几点, 还有例如它的特征值的模为1, 且属于不同特征值的特征向量相互正交; 如果是它的特征值, 那么也是它的特征值, 另外正交矩阵可以对角化, 即存在复可逆矩阵, 使,其中为的全部特征值, 即. 这些性质证明略.3.正交矩阵的应用3.1 正交矩阵在线性代数中的应用在线性代数中我们通常用施密特方法求标准正交基,现在可以用正交矩阵中的一种殊矩阵求标准正交基---初等旋转矩阵即Givens矩阵.定义3.1[1] 设向量则称阶矩阵为向量下的Givens矩阵或初等旋转矩阵,也可记作.下面给出Givens矩阵的三个性质[2],[10]性质3.1.1 Givens矩阵是正交矩阵.证明由,则,故是正交矩阵.性质3.1.2 设,则有.证明由的定义知,,且,即右乘向量,只改变向量第和第个元素,其他元素不变.性质3.1.3 任意矩阵右乘,只改变的第列和列元素; 任意矩阵左乘,只改变的第行和行元素.证明由性质3.1.2和矩阵乘法易得结论.引理3.1.4[2] 任何阶实非奇异矩阵 ,可通过左连乘初等旋转矩阵化为上三角矩阵, 且其对角线元素除最后一个外都是正的.定理3.1.5[10] 设是阶正交矩阵若, 则可表示成若干个初等旋转矩阵的乘积, 即;若, 则可以表示成若干个初等旋转矩阵的乘积再右乘以矩阵, 即, 其中是初等旋转矩阵.().证明由于是阶正交矩阵,根据引理3.1.4知存在初等旋转矩阵,使(这里是阶上三角阵),而且的主对角线上的元素除最后一个外都是正的,于是(3-11)注意到是正交矩阵,由(3-11)式得,,即(3-12)设=,其中,,则=.由上式得所以, (3-13)即,当时,;当时,.记,注意到是初等旋转矩阵,故定理1结论成立.引理3.1.6[1] 设其中是阶正交矩阵,是阶上三角阵,是零矩阵.定理3.1.7[10] 设,则可以通过左连乘初等旋转矩阵,把变为的形式,其中是阶上三角阵,是矩阵.证明由引理3.1.6知,其中是阶正交矩阵,是阶上三角阵.又根据定理1知:,则是初等旋转矩阵.(I)当时,;(II)当时,,则.显然,是阶上三角阵,当时,与除最后一行对应元素绝对相等、符号相反外,其余元素对应相等.当时时,.综上,知本定理的结论成立.设,,,是欧氏空间的子空间的一组基,记是秩为的的矩阵.若满足定理2的条件,则存在初等旋转矩阵,使(3-14)且所以(3-15)由(3-14)(3-15)两式知,对、做同样的旋转变换,在把化为的同时,就将化成了,而的前个列向量属于子空间.综上所述可得化欧氏空间的子空间的一组基为一组标准正交基的方法:(1)由已知基为列向量构成矩阵;(2)对矩阵施行初等旋转变换,化为,同时就被化为正交矩阵,这里是阶上三角阵;(3)取的前个列向量便可得的一组标准正交基.显然,上述方法是求子空间的一组标准正交基的另一种方法.下面,我们通过实例对比Schimidt正交化求标准正交基.例求以向量,,为基的向量空间的一组标准正交基.解方法一用Schimidt正交化把它们正交化:,,再把每个向量单位化,得,,.即,,,就是由,得到的的一组标准正交基.方法二(利用连乘初等旋转矩阵)设矩阵,对分块矩阵依次左乘,,,=,=,=,得=,则,,取,,.那么就是由,得到的的一组标准正交基.对比两者的解法,用Schimidt正交化把它们正交化需要的是记公式,若向量的维数比较多的,计算比较麻烦,而用初等旋转矩阵则可根据向量组成的矩阵的特点来求其标准正交基.3.2正交矩阵在化学中的应用原子轨道的杂化是在一个原子中不同原子轨道的线性组合.在结构化学原子轨道杂化理论中,原子中能级相近的几个原子轨道可以相互混合,从而产生新的原子轨道.杂化过程的数学表达式为,为新的杂化轨道,为参加杂化的旧轨道,为第个杂化轨道中的第个参加杂化轨道的组合系数[4].在杂化过程中,轨道数是守恒的,并且杂化轨道理论有三条基本原则[5]:(1)杂化轨道的归一性.杂化轨道满足;(2)杂化轨道的正交性.;(3)单位轨道贡献.每个参加杂化的单位轨道,在所有的新杂化轨道中该轨道成分之和必须为一个单位,即=1.由杂化轨道原理,原子轨道的杂化,实际是由一组相互正交的单位基向量,通过线性变换转化成为另一组相互正交的单位基向量.在线性代数中由一组标准正交基到另一组标准正交基的过渡矩阵是正交矩阵,那么原子轨道的杂化,就可以转化为求出正交矩阵,作线性变换的过程.(A)杂化轨道.以甲烷分子的结构为例,激发态碳原子的电子组态为,这样在形成分子时,激发态碳原子的一个2原子轨道和3个原子轨道进行杂化形成4个等同的杂化轨道.设在激发态碳原子中四个能量相近的原子轨道,,,是一组相互正交的基向量,再通过线性变换将它们转化成另一组相互正交的基向量,,,,那么线性变换系数矩阵A必为正交矩阵,即=.A为正交矩阵,分别是,,,在四个坐标轴的分量.在等性杂化中,四个基向量,,,在四个坐标轴上的分量是相等的,即由四个能量相近的原子轨道,,,进行杂化时形成四个等同的杂化轨道,在四个杂化轨道上,原子轨道和成份完全相同.根据这些理论,我们来求正交矩阵A.因为A 是正交矩阵,由定义可得,即,所以,得=(取正值).又因为是等性杂化轨道.有,=1,所以=(取正值).即得到.又因,,,取符合条件的,,.同理,,即,,得,,取,.又,,得,,.所以,.可以写出四个杂化轨道的杂化轨道式为,,.(B)杂化轨道一个和一个原子轨道杂化形成两个杂化轨道.同样,线性变换的系数矩阵是正交矩阵.根据等性杂化理论有,,,于是,,(取正值).又,,故,,即,.所以杂化轨道式为.3.3正交矩阵在物理学中的应用任意刚体运动都对应一个正交矩阵, 三维空间一条曲线经过刚体运动, 其曲率和挠率是不变的, 称它们为运动不变量.首先我们来简单认识曲率和挠率.曲线的曲率就是针对曲线上某个点的切线方向角对弧长的转动率,通过微分来定义,表明曲线偏离直线的程度.曲率越大,表示曲线的弯曲程度越大.(为角变量,为弧长)趋向于0的时候,定义就是曲率.即.而挠率,它的绝对值度量了曲线上邻近两点的次法向量之间的夹角对弧长的变化率.平面曲线是挠率恒为零的曲线.空间曲线如不是落在一平面上,则称为挠曲线,又由于挠率体现了密切平面的扭转状况,通常说它表示了曲线的扭曲程度.曲线在某点的挠率记为,=.下面, 我们来考察曲线作刚体运动时的不变量[6],[9].设曲线与曲线只差一个运动, 从曲线到曲线的变换为(3-21)其中,是三阶正交矩阵,是常数.对(3-21)两边求阶导数,得.从而有. (3-22)因为是正交矩阵, 所以也有. (3-23) 另一方面, 由一阶, 二阶, 三阶导数, 可作成矩阵.两边取行列式, 由,得.现在取可类似地讨论.因为, (3-24), (3-25)(3-22)代入(3-24)的右边,得=++. (3-26)因(3-24)与(3-25)右边相等, 有(3-25)右边与(3-26)式右边相等,得,,.由正交矩阵的性质2.2.6知,且由,将上面三式左右分别平方相加,=++=.写成矢量函数, 即得于是我们可推得,.这里的分别是曲线的曲率与挠率.参考文献:[1] 陈景良,陈向晖.《特殊矩阵》.第一版.清华大学出版社,2001:353-360[2] 程云鹏.《矩阵论》.第二版.西北工业大学出版社,1999:94.99,196-215[3] 王萼芳,石生明.《高等代数》.第三版.北京:高等教育出版设,2007:162-392[4] 周公度,段连运.《机构化学基础》.第4版.北京大学出版社,2009:79-187[4] 王立东主编《数学》.第一版.大连理工大学出版社,2008:63-74[5] 赵成大等《物质结构》.人民教育出版社. 1982:219-226[6] 强元棨,程嫁夫.《力学》上册.第一版.中国科学技术大学出版社:2005:332-53[7] 张焕玲等《一种求欧氏空间子空间的标准正交基的新方法》山东大学.1996.3.9卷(1)期:14-16[8] 刘钊南.《正交矩阵的作用》.湘潭师范学院学报.1987.11.16: 3[9] 陈少白.《空间曲线的刚体运动基不变量》. 武汉科技大学学报.2003.12.26卷(4)期:424-426[10] 刘国志.《欧氏空间子空间的标准正交基的全新方法—Givens变换法》.抚顺石油学院学报.1996.3.16卷(1)期:78-81致谢感谢父母,给了我生命,也让我懂得这世上什么是真情!当我们遇到困难的时候,会倾注所有一切来帮助我们的人是父母;当我们受到委屈的时候,能耐心听我们哭诉的人是父母.当我们犯错误时,能够毫不犹豫地原谅我们的人是父母;当我们取得成功的时候,会衷心为我们庆祝与我们分享成功的喜悦的,仍然是父母;而现在我们远在外地学习,依然牵挂着我们还是父母.感谢父母给予我爱,是您们让我感到骄傲与自豪!感谢老师,授予我知识!大学四年,不少老师给予我无微不至的关怀,这将成为我人生中难以忘怀的回忆.我不仅从您们身上学到许多专业知识,更多的是学到了为人处世的道理.在和您们的交流中,我对我的未来有了更好的规划.您们是我人生的航标,让我在迷茫时找到前进的方向;您们是我精神上的支柱,让我在困难时重新振作.大学四年,如果没有您们的博学知识,没有您们的倾注爱心,没有您们的谆谆善诱,我将不可能收获那么多.假如我能搏击蓝天,那是您们给了我腾飞的翅膀;假如我是击浪的勇士,那是您们给了我弄潮的力量;假如我是不灭的火炬,那是您们给了我青春的光亮!感谢帮助过我、教导过我的老师们,是您们,让我懂得给予与付出才是最重要的,是您们,让我明白做人就要不断进取,迎难而上,力争上游!本毕业论文是在我的导师XX的亲切关怀和悉心指导下完成的,她给我的论文提出了不少宝贵的意见;她严肃的科学态度,严谨的治学精神,精益求精的工作作风,深深地感染和激励着我.从课题的选择到项目的最终完成,XX老师都始终给予我细心的指导和不懈的支持,在此谨向XX老师致以诚挚的谢意和崇高的敬意.。
大学数学论文(5篇)
大学数学论文(5篇)高校数学论文(5篇)高校数学论文范文第1篇参与全国高校生数学竞赛除了上述的必要条件之外,还需具备四个充分条件:如何稳固参与预赛的人数、制定合理有效的培训内容、师资队伍的建设以及经费来源等。
首先,如何有效地组织高校生参与竞赛,可谓是四个条件中最重要的一项,也是下一节笔者所讨论的重点;另外,作为数学竞赛的主要内容:《高等数学》是工科类同学必修的基础理论课,《数学分析》、《高等代数》、《解析几何》等课程是数学专业的专业基础课。
这些是数学竞赛得以顺当开展的基础。
第三,调动部分高校专任的数学老师组成竞赛培训团队也是一项重要的环节,笔者将会在第三节做具体的讨论。
最终是竞赛活动经费,笔者认为可以从以下三个方面获得:第一方面,每所高校都会有专项的创新活经费,可以从今项经费中申请一部分;其次方面,各赛区的主办方会拔给每个学校一些经费;第三方面,适当地向参与培训的同学收取(或变相地收取)一部分。
这些经费主要用于:参与竞赛的同学报名费、培训老师的课时费和同学竞赛时的考试相关费用等。
基于上述分析,在一般高校开展数学竞赛培训以及组织同学参与全国高校生数学竞赛是完全可行的并具有实际意义的。
2一般高校同学现状分析为了吸引、鼓舞更多的同学参加数学竞赛活动,必需先了解现在一般高校本科生的生源现状及其学习状态。
不得不承认,全国高校自扩招以来,一般高校高校生的质量普遍下降。
主要缘由有两个:一是高校的教育已由精英式转为大众式;二是随着扩招的进行,大多数优质生源进入了985或211这样的重点高校,这样就导致一般高校中的优质生源比例相对削减。
限于优质生源比例小的问题,再加上数学理论繁杂与浅显,学习起来困难重重,多数同学在学习数学时会产生犯难心情从而心生畏惧。
还有小部分的同学在进校时数学基础就比较差,(或由此产生的)学习数学的乐观性很低。
还有一部分同学认为数学无实际用途,从主观上学习数学的爱好消极。
基于以上几点缘由加上一些来自一般高校教学条件的限制,许多高校生的实际数学水平较低,所引发的直接结果就是学习成果下降、考试分数偏低、补考人数增多,更有甚者一些同学由于数学不及格而无法毕业。
(完整版)数学本科毕业论文1
定积分中的几何直观方法与不等式的证明摘要:一些高指数的不等式,如果借助算术—几何均值不等式或者通过分解因式再进行放缩的话,一般都要分与进行讨论证明,往往证明起来很麻烦,若借助数学分析中的定积分来进行证明的话,会大大简化其证明工序,也很简单,灵活的选取合适的初等函数进行定积分,再求和会得到意想不到的效果。
关键词:高指数;不等式;算术—几何均值;定积分;数列1引言文 [1] 中给出了一个不等式:n 2( n 11)i 1 1()(1)2 n 1i田寅生对( 1)进行了指数推广,其结果是命题 1【2】设且,,,则有1 1 p1] n 1 1 1 p 1[( n 1)1 k p 1n 11 p k p 1 p(2)文 [2] 的证明方法是借助于算术—几何均值不等式,分与进行讨论证明,读者不难看出,不仅过程繁琐,而且对其证明思路难以把握。
文 [3] 中利用微分中值定理给出了它的另一种证法。
文 [ 4] 借助定积分的方法,给出了一种很自然的证明【4 】:命题 1的证明 【4 】 当,时,对于,有,即,两边取积分,得k 1 1p dxk 1 1k 1 1k(k 1) kx p dxkk p dx ,(3)即得1 1 [( k 1)1 p k 1 p ]1 (k 1) p1 pk p(4)对( 3)两边分别求和,即得11 pn 11 1 p1 [( n1)1]1 kp1 n11 pkp1 p(5)命题 1得证。
该证明方法简单自然,几何意义直观。
不等式(3)的几何意义是:如图 1,以为边的曲边梯形的面积介于两个矩形的面积之间,根据定积分的几何意义,即知上面不等式中三部分分别代表了它们的面积。
(图 1)在文 [5] 中,又把( 1)式推广为:命题 2【5】已知为等差数列且,公差,则2( a n 1n2( a n1 a 1 )a ia 1 )di 1da 1(6)其证明方法与文 [1] 本质上是一样的。
本文将借鉴 [ 4] 中方法,即利用定积分的几何直观方法,把有关结果作进一步的推广。
本科数学专业毕业论文
本科数学专业毕业论文和中学数学相比较,大学数学内容多,抽象性和理论性强,很多学生对于大学数学的学习不能适应。
下面是店铺为大家整理的本科数学专业毕业论文,供大家参考。
本科数学专业毕业论文范文一:大学数学数学文化渗透思考摘要:大学教育中非常重要的一门基础学科就是数学,学好数学有利于大学生培养逻辑思维能力,提高创新意识。
在大学数学教学中渗透数学文化,能够让大学生对于数学知识有更加深刻的理解,激发大学生探究数学知识的兴趣,在学习中发现数学的乐趣,养成用严谨的态度看待周边的事物,为大学生今后步入社会做好准备。
关键词:大学数学;教学;渗透;数学文化一、数学文化的具体含义数学文化是指数学的思想、精神、观点、语言以及它们的形成和发展,还包含了数学家、数学史、数学教育和数学发展中的数学与社会的联系,数学与各种文化的关系等。
我国数学文化最早在孙小礼和邓东皋等人共同编写的《数学与文化》中被提及,这本书浓缩了许多数学名家的相关理论学说,记录了从自然辩证法角度对数学文化的思考。
数学不单单是一种符号或者是一种真理,其内涵包含了用数学的观点来观察周边的现实,构造数学模型,学习数学语言、图表和符合的表示,进行数学的沟通。
数学文化可以在具体的数学理念和数学思想、数学方法中揭示内涵。
数学从本质上与文学的思考方式是共通的,数学文化中的逻辑思维、形象思维、抽象思维等在文学思考方式中也有体现。
但是数学文化与其他文化相比较,也有其本身的独特性。
数学在历史发展的长河中不断改变和融合,现在已经成为世界上的一种通用语言,不再受到不同国家文化、语言的束缚,受到了各国人民的推崇和发展,数学文化利用科学的方式对人类生活中的其他文化的本质进行了深刻的揭示,是其他文化发展的基础。
二、教学中渗透数学文化的意义大学数学中综合了物理、计算机、电子等知识,教学课程包含了高等数学、线性代数、概率论与数理统计等,大学开展数学课程符合时代的发展潮流。
在大学数学教学中渗透数学文化,能够使学生在对数学进行系统化的学习之前,充分理解数学文化的内涵,发现数学文化与其他各种文化间的紧密联系,使大学生能够在数学教学的学习中提高数学学习能力,发展独立发现问题和解决问题的能力,开发大脑的潜能,树立正确的数学学习观念,通过学生深入了解数学的内容,从不同的角度对数学人文、科学方面等知识进行分析和理解。
数学类本科毕业论文
数学类本科毕业论文通过学习培养学生抽象概括问题的能力、逻辑推理能力、空间想象能力、运算能力,提高学生在数学方面的素质和修养,培养学生综合运用所学知识分析问题、解决问题的能力。
下文是店铺为大家搜集整理的关于数学类本科毕业论文的内容,欢迎大家阅读参考!数学类本科毕业论文篇1浅谈游戏化教学在小学数学教学中的应用随着《新课程标准》改革的不断深入,传统的教学方式逐渐被淘汰,各种新型教学方法不断脱颖而出。
就小学数学教学而言,游戏化教学已经成为常用的新型教学模式,它通过游戏的方式,把学生带入具体的活动中,从而潜移默化地教会学生数学知识。
相较于传统枯燥的教学方式,游戏化教学能有效提高小学数学课堂的教学质量和学生的学习效率。
一、游戏化教学的优势及意义1.游戏化教学的优势游戏化教学改变了传统的课堂教学模式,更加符合小学生喜欢接受新东西的年龄特点。
玩是小学生的天性,要想让小学生学到更多的东西,使用强硬的手段、施加压力反而会适得其反,而如果在游戏过程中让学生去接受新的知识,则有利于激发学生的学习兴趣,调动学生的学习积极性。
所以,在小学数学课堂教学过程中运用游戏化教学,能有效激活学生的思维,提高学生的学习效率。
传统的教学模式是把学生培养成一个听话、爱学习的好学生,从而得到教师和家长的喜爱。
在这种教育的影响下,学生变得听话了,但是思维却逐渐变得僵硬、死板,缺乏思考和创新能力,这些都是传统教育的弊端。
游戏化教学突破了传统教学的桎梏,注重培养学生的创新思维和能力,倡导学生在快乐中学习知识。
这种全新的教学理念更加符合当今社会对人才的需要,为培养社会所需的人才奠定了良好的基础。
2.游戏化教学的意义游戏化教学激发了学生学习数学的兴趣,在游戏中,每位学生都是主角。
通过游戏赢得胜利,赢得教师和同学们的掌声与赞美、赢得最好的名次,激发了学生数学学习的兴趣,帮助学生树立了正确的竞争意识。
在游戏化教学模式中,学生可以充分发挥想象力,自己创造游戏,从而培养学生的创新意识,提高创新能力。
数学本科毕业论文范例数学系本科毕业论文
数学本科毕业论文范例数学系本科毕业论文数学本科毕业论文范例篇1试谈小学数学口算教学的有效策略口算,即在不借助任何计算工具的前提下,单纯依靠个体思维以及个体语言活动就能顺利计算出某道题结果的一种计算方法。
口算教学是目前数学教学中应用较为广泛的一种,在小学数学中渗透并推广口算教学是新课改的要求,具有重要意义。
新课改明确规定小学数学教师应特别注重对学生估算、口算能力的培养,通过口算、估算锻炼学生思维,提升学生的数学综合能力。
但是纵观当下小学数学教学,口算教学并不乐观,学生的口算能力逐渐下降,故优化口算教学势在必行。
一、有意识激发小学生数学口算的兴趣小学生独特的生理和心理特征使其对外界的事物充满好奇,但兴趣来得快,去得也快,故如何激发和保持兴趣是教师应关注的话题。
一开始小学生可能会对口算感兴趣,并能在教师的引导下愉快地口算,但久而久之,兴趣会逐渐减退,甚至消磨殆尽。
鉴于此,数学教师应多途径、有意识地激发与保持小学生的口算兴趣。
当然,兴趣的激发离不开灵活多变的教学方式与丰富多彩的教学内容。
第一,教师可利用多媒体创设趣味情景,激发学生口算兴趣。
第二,可以将趣味故事融入口算教学。
第三,可以通过开展情景游戏或者进行小竞赛激发学生兴趣。
例如,在苏教版三年级数学上册《两、三位数乘一位数》的教学中,为了唤起学生口算的兴趣,教师可以为学生编制小故事:小熊和妈妈踏春旅游途中意外地被一道五彩门所困,看门精灵说如果小熊可以口算出“18某6”便可以放行,你能帮助小熊吗这样的故事能充分激发学生的兴趣,激励其迎接挑战。
再如,教师可以让小组成员进行口算大赛,题目为“125某4=111某8=269某3=”可以将全班学生分为四个小组,并挑选四个小组成员代表在黑板上进行口算比赛,看看哪个小组成员可以又快又准确地口算出答案。
二、口算教学要实现与生活实践的融合口算可锻炼学生思维。
小学生思维较为活跃,通过口算可以使其充分利用活跃的思维进行学习、思考,为日后开展高难度的数学思维活动奠定基础。
数学系优秀毕业论文(通用12篇)
数学系优秀毕业论文(通用12篇)数学系优秀毕业论文(通用12篇)难忘的大学生活将要结束,同学们毕业前都要通过最后的毕业论文,毕业论文是一种有计划的检验学生学习成果的形式,那么问题来了,毕业论文应该怎么写?下面是小编精心整理的数学系优秀毕业论文(通用12篇),欢迎大家分享。
数学系优秀毕业论文篇1摘要:《数学课程标准》指出:数学的知识、思想和方法必须由学生在现实的数学实践活动中理解和发展,而不是单纯地依靠教师的讲解去获得。
因此,教师要以学生的生活和现实问题为载体和背景,以学生的直接体验和生活信息为主要内容,把教科书中的数学知识巧妙而灵动地转化为数学活动。
关键词:应用数学;走进生活;数学活动《义务教育数学课程标准》指出:数学的知识、思想和方法必须由学生在现实的数学实践活动中理解和发展,而不是单纯地依靠教师的讲解去获得。
因此,教师要以学生的生活和现实问题为载体和背景,以学生的直接体验和生活信息为主要内容,把教科书中的数学知识巧妙而灵动地转化为数学活动。
引领学生通过自主探究、合作交流等实践活动,发现、理解、掌握数学知识,并在运用所学知识解决实际问题的过程中形成技能,提升能力。
下面结合自己的教学实践,谈几点粗浅做法与思考。
一、走进生活,应用有价值的数学知识数学来源于生活,离开了生活,数学将是一片死海,没有生活的数学是没有魅力的。
同样,生活离开了数学,那将是一个无法想象的世界。
因此,在教学中,应从学生的生活经验和已有知识出发,巧妙创设真实的生活场境,提供大量的数学信息。
这样,既让学生感受到了数学与生活的密切联系,又彰显了数学鲜活的生命力,促使学生萌生主动运用数学解决实际问题的意识。
(一)课前调查,萌发应用意识教师要善于把日常生活中遇到的问题呈现在学生面前,引领学生用数学的眼光观察生活,为数学知识的学习收集素材,让学生在生活的每个角落都感受到数学的存在,切实体会到数学渗透在我们生活的方方面面,促使学生自觉地将数学与生活联系起来,萌发应用意识。
2023最新-大学数学论文的范文 大学数学毕业论文优秀6篇
大学数学论文的范文大学数学毕业论文优秀6篇最新大学数学论文的篇一本学期是初中学习的关键时期,学生成绩差距较大,教学任务非常艰巨。
因此,要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际,把握好重点、难点,努力把本学期的任务完成。
初三毕业班总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。
下面结合本届初三数学的实际情况,特制定本复习计划一、第一轮复习(3月10号——4月10号)第一轮复习的形式第一轮复习的目的是要“过三关”:(1)过记忆关。
必须做到记牢记准所有的公式、定理等,没有准确无误的记忆,就不可能有好的结果。
(2)过基本方法关。
如,待定系数法求二次函数解析式。
(3)过基本技能关。
如,给你一个题,你找到了它的解题方法,也就是知道了用什么办法,这时就说具备了解这个题的技能。
基本宗旨:知识系统化,练习专题化,专题规律化。
在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构,可将代数部分分为六个单元:实数、代数式、方程、不等式、函数、统计与概率等;将几何部分分为六个单元:相交线和平行线、三角形、四边形、相似三角形、解直角三角形、圆等。
复习完每个单元进行一次单元测试,重视补缺工作。
第一轮复习应该注意的几个问题:(1)必须扎扎实实地夯实基矗今年中考试题按难:中:易=1:2:7的比例,基础分占总分(120分)的70%,因此使每个学生对初中数学知识都能达到“理解”和“掌握”的要求,在应用基础知识时能做到熟练、正确和迅速。
(2)中考有些基础题是课本上的原题或改造,必须深钻教材,绝不能脱离课本。
(3)不搞题海战术,精讲精练,举一反三、触类旁通。
“大练习量”是相对而言的,它不是盲目的大,也不是盲目的练。
而是有针对性的、典型性、层次性、切中要害的强化练习。
(4)注意气候。
第一轮复习是冬、春两季,大家都知道,冬春季是学习的黄金季节,五月份之后,天气酷热,会一定程度影响学习。
数学系本科毕业论文范文
数学系本科毕业论文范文标题:线性代数在图像处理中的应用摘要:本文主要探讨线性代数在图像处理中的应用。
首先介绍了线性代数的基本概念和相关知识,然后通过实际案例分析了线性代数在图像处理中的具体应用。
通过矩阵运算、线性变换、特征值分解等方法,可以实现图像的平移、旋转、缩放等操作,进而达到图像增强、图像恢复和图像压缩等目的。
本文通过具体案例和实验结果,验证了线性代数在图像处理中的重要性和有效性。
关键词:线性代数,图像处理,矩阵运算,线性变换,特征值分解第一部分:引言在现代社会中,图像处理技术得到了广泛的应用和发展。
图像处理是利用计算机科学和数学等相关知识对图像进行处理和分析的一种技术方法。
而线性代数作为一门重要的数学学科,具有广泛的应用范围和强大的计算能力。
本文旨在研究线性代数在图像处理中的应用,通过具体实例,探讨线性代数如何在图像处理中发挥作用。
第二部分:线性代数基本概念和相关知识2.1矩阵和向量的表示矩阵是线性代数的基本工具之一,它是由数行数列排列成的矩形阵列。
向量则是矩阵的特殊形式,由数行或数列排列而成。
矩阵和向量的表示形式以及行列运算规则是线性代数的基础。
2.2线性变换线性变换是指从一个向量空间到另一个向量空间的一种映射关系。
线性变换具有保持加法运算和数量乘法运算的性质,可以用矩阵来表示和描述。
2.3特征值和特征向量特征值和特征向量在线性代数中起到了重要作用。
特征值是一个数,特征向量是对应于这个数的非零向量。
特征值和特征向量可以用来描述线性变换对向量空间的影响。
第三部分:线性代数在图像处理中的应用3.1图像平移对图像进行平移操作,可以实现图像在平面上的移动。
通过矩阵的加法和乘法运算,可以将图像的每个像素点按照指定的平移量进行调整,从而实现图像平移的效果。
3.2图像旋转图像旋转是指将图像按照指定角度进行旋转的操作。
通过线性变换的知识,可以利用旋转矩阵将图像进行旋转变换,使图像绕其中一点或绕图像中心旋转。
数学本科毕业论文
数学本科毕业论文数学本科毕业论文(精选15篇)数学本科毕业论文篇1一、研究背景20xx年4月出版了《普通高中数学课程标准(实验)》,根据新标准对数学本质的论述,“数学是研究空间形式和数量关系的科学,是刻画自然规律和社会规律的科学语言和有效工具。
”与这种现代理念相对应,在课程设置上,新标准将数学探究与建模列为与必修、选修课并置的部分,着重强调教学活动之外的数学探究与建模思想培养。
因此,可以说《普通高中数学课程标准》是我国中学数学应用与建模发展的一个重要里程碑,它标志着我国高中数学教育正式走向基础性与实用性相结合的现代路线。
二、数学探究与建模的课程设计根据新标准的指导精神以及高中数学教学的总体规划,本文认为高中数学探究与建模的课程设计必须符合以下几个原则:1、实用性原则作为刻画自然规律和社会规律的科学语言和有效工具,数学探究与建模课程设计必须以实用性为基本原则。
这里实用性包括两个方面的含义:其一是以日常生活中的数学问题为题材进行课程设计,勿庸质疑,这是实用性原则的最核心体现;其二是保持高中数学的承续作用,为学生未来的工作和学习提供数学探究和建模的初步训练,这要求课程设计的题材选取必须与高等教学体系和职业需求体系保持一致。
如果说,第一层含义体现了数学应用的广泛性和开放性,那么第二层含义则更多体现了数学应用的针对性。
2、适用性原则适用性原则体现的是数学训练的进阶过程,它要求高中数学探究与建模课程必须适应整个高中数学课程体系的总体规划和学生的学习能力。
首先,题材的选取不能过于专业,它必须以高中生的知识水平和知识搜寻能力为界进行设计。
这一点保证了数学探究与建模的可操作性,不至于沦为绚丽的空中楼阁或者“艰深”的天幕。
再者,题材的选取也不宜过于平淡,正如课程的名称所示,该课程设计必须注重学生学习过程中的探索性。
素质教育的一个核心思想是培养学生的探索精神和创新意识,适用性必须包容这样的指导精神,即学习的过程性和探索性。
数学系本科生毕业论文
数学系本科生毕业论文数学是一切学科的基础,促进了其他学科的发展。
下文是店铺为大家搜集整理的关于数学系本科生毕业论文的内容,欢迎大家阅读参考! 数学系本科生毕业论文篇1浅谈培养数学意识发展思维能力“数学是思维的体操”,是人类生产生活的重要工具。
在数学教学过程中,不仅要教会学生如何学习,而且要有目的、有计划地培养学生的思维能力,积极探寻开展思维训练的方法与途径。
这有利于培养学生良好的数学思维品质,使学生养成积极钻研的学习习惯,促进学生思维发展,有效提高数学教学质量,切实提升学生的思维能力和数学素质。
那么,在平时的数学教学中,该如何有意识地培养学生的数学思维呢?一、培养求异意识,发展思维的创新性教师可以从学生原有生活经验入手,引导学生多讨论、多交流,不断发展学生的求异思维意识。
在数学教学过程中,数学教师要善于发现教材的特点,从“疑”入手,鼓励学生进行开放性思考,不断发展学生的求异能力,让学生多掌握一些解题方法。
正所谓“没有大胆的猜测就没有伟大的发现”,只有大胆放手,拒绝束缚,才可能会有伟大的发现。
例如,学习“圆的认识”这一内容时,为了使学生体验到圆与日常生活的密切相关,感悟数学知识的魅力,进一步培养学生初步学会用数学知识解释、解决生活中的实际问题的能力,教师设计了生活化的开放性问题。
教学片段如下。
师:如果让你画出一个圆,你会使用什么方法?生:圆规。
师:除了圆规,还能通过什么途径?生1:硬币。
生2:茶杯的底部。
生3:学具盒里的圆片。
……在上述教学过程中,教师用“还能通过什么途径”设计了开放性的提问,引导学生能够与众不同地去思考和观察问题,让学生认识到生活中各种各样的圆的应用,也有效激发了学生的求异意识。
这样不仅大大丰富了课堂教学内容,也能有效发展学生思维的独创性,提高学习效率。
二、提升变通意识,发展思维的灵活性变通,是激活学生思维、培养创新意识的有效途径。
在平时的解题教学中,教师要逐渐引导学生学会摆脱思维定式,不受固定模式的制约。
数学系本科论文
数学系本科论文数学是人们生活、劳动和学习必不可少的工具,数学概念是进行数学推理、判断、证明的依据,是建立数学定理、法则、公式的基础。
下文是店铺为大家搜集整理的关于数学系本科论文的内容,欢迎大家阅读参考!数学系本科论文篇1浅谈激发学生高等数学学习的主动性的策略高等数学是高等院校工科专业开设的一门必修课。
它对学生的后续学习以及培养学生的逻辑思维、应用和创新能力等起着重要作用。
学习的主动性是影响知识、技能掌握和智能发展的一个重要因素,是学生学习的内动力。
笔者认为要想提高高等数学的教学效率,首要任务是在教学中激励、唤醒、调动学生的内动力。
为此,笔者结合自己的教学经验从三个方面提出了自己的看法。
1 让学生树立正确的“数学观”人的思想是万物之因。
要想帮助学生培养良好的数学学习习惯,首先应帮助他们树立正确的“数学观”。
1.1 数学是有用而重要的由于现在社会的“实用主义”之风大肆流行,许多学生认为数学太抽象,离现实生活太远,没有多大用处[1]。
数学是自然学科中应用性最强的学科之一,在生活中随处可见。
教师课上可以举一些生活中常见的问题,比如十字路口红绿灯时间的分配和保险公司期望利润应向顾客收取的保险费问题等。
为了让不同专业的学生更深刻地体会到高等数学在专业学习中的重要性,高数教师应定期邀请相关专业教师以讲座的形式从更专业的角度来展示数学在该专业中的应用。
1.2 数学是简单而美妙的中学的数学教学注重解题技巧的训练,学生觉得学数学就是套公式解题,对基础知识的掌握不够重视。
应该让学生重新认识数学的美和价值所在。
数学的价值在于它可以用来解决实际问题,而不只是求解数学题目。
学生除了要学习解题方法更重要的是要训练“发现问题-分析问题-解决问题”的数学思维。
数学的美真正体现在对于困难和复杂的实际问题可以用一个简单而漂亮的式子来回答。
这种简约美一直是吸引数学爱好者去研究数学的主要动力。
2 采用翻转探究式教学由于高等数学内容多且时间紧,所以在教学中,满堂灌的现象仍很突出,这样的教学方式让学生有一种被动的全盘接受地感觉,学习的兴趣和积极性就会受到很大地冲击。
本科生数学毕业论文
本科生数学毕业论文学科教学是创新教育的载体,作为人类文化发展的一个重要标志的数学,它与创新教育的关系如何?下面是店铺为大家整理的本科生数学毕业论文,供大家参考。
本科生数学毕业论文篇一摘要:科学技术的日新月异,多媒体技术和网络早已步入课堂,为教学增添了新的活力,彻底改变了“粉笔”+“黑板”的教学,融生动逼真的动画,清晰的文字注解和悦耳的声音于一体,引领学生进入一个图、文、声、像并茂的空间,优化课堂教学。
多媒体技术与以往教学方式有机结合,提高教学效率,化一些抽象的、不易理解的知识变为熟悉的、具体的知识,营造情境、开辟思维空间,激发兴趣,让学生喜欢数学,热爱数学。
关键词:多媒体技术;初中数学教学;运用一、多媒体技术在教学中的作用多媒体技术的特征是实时性、直观性和交互性,它体现现代教育技术的主要特点,传统教学手段无法比拟。
以抽象性为主的初中数学,涵盖了抽象的、枯燥的、难以理解的知识。
很久以来,许多教师积累不少传统教学的一些直观、形象的解决方法,然而,没有从根本上处理这些抽象的内容,让学生理解。
多媒体技术辅助教学,促使课堂教学的内容反复显现,提供直观形象的学习资料及技巧、技能训练的典型习题,画图、演算、证明示范,营造一种新颖的教学情境,变“动态”为“静态”,“连续”为“定格”,让“微观”表现“宏观”,“抽象”呈现“具体”,以学生发展为中心,激发学生学习欲望,帮助学生建立数学结构,更好地观察数学现象,分析探索数学过程,优化课堂教学,提高教学效率,因此,帮助解决传统教学中难以解决的问题,教师教得轻松,学生学得愉快,一举两得,实现教学的最优化。
二、多媒体技术在教学中的应用第一,营造情境,激发欲望。
多媒体技术辅助教学集声、光、色、形于一体,以图像的翻滚、闪烁、定格、色彩变化及声响效果给学生新异的刺激,提供直观、多彩、生动的形象,多种感官同时接受,调动学生学习的积极性。
例如教学“轴对称图形”一课,多媒体技术以鲜艳色彩、优美图案,直观形象地再现诸多实例,学生仿佛身临其境,课件演示三幅图:一架飞机、一个等腰三角形、人民大会堂,一一闪现,红线显现对称轴,学生观赏,图像模拟逼真,活跃氛围,营造意境,激起学生学习兴趣,满足求知欲,调动学生参与意识。
本科数学系毕业论文
本科数学系毕业论⽂ 随着⾼等教育越来越强调素质教育,⼤学数学的教育⼯作也应该符合时代发展的需求,对⼤学数学教学⼯作重新认识和定位。
下⾯是店铺为⼤家整理的本科数学系毕业论⽂,供⼤家参考。
本科数学系毕业论⽂范⽂⼀:数学建模⼼理学思想研究 摘要:数学建模即为解决现实⽣活中的实际问题⽽建⽴的数学模型,它是数学与现实世界的纽带。
结合教学案例,利⽤认知⼼理学知识,提出促进学⽣建⽴良好数学认知结构以及数学学习观的原则和⽅法,帮助学⽣由知识型向能⼒型转变,推进素质教育发展。
关键词:认知⼼理学;思想;数学建模;认知结构;学习观 认知⼼理学(CognitivePsychology)兴起于20世纪60年代,是以信息加⼯理论为核⼼,研究⼈的⼼智活动为机制的⼼理学,⼜被称为信息加⼯⼼理学。
它是认知科学和⼼理学的⼀个重要分⽀,它对⼀切认知或认知过程进⾏研究,包括感知觉、注意、记忆、思维和⾔语等[1]。
当代认知⼼理学主要⽤来探究新知识的识记、保持、再认或再现的信息加⼯过程中关于学习的认识观。
⽽这⼀认识观在学习中体现较突出的即为数学建模,它是通过信息加⼯理论对现实问题运⽤数学思想加以简化和假设⽽得到的数学结构。
本⽂通过构建数学模型将“认知⼼理学”的思想融⼊现实问题的处理,结合教学案例,并提出建⽴良好数学认知结构以及数学学习观的原则和⽅法,进⼀步证实认知⼼理学思想在数学建模中的重要性。
⼀、案例分析 2011年微软公司在招聘毕业⼤学⽣时,给⾯试⼈员出了这样⼀道题:假如有800个形状、⼤⼩相同的球,其中有⼀个球⽐其他球重,给你⼀个天平,请问你可以⾄少⽤⼏次就可以保证找出这个较重的球?⾯试者中不乏名牌⼤学的本科、硕⼠甚⾄博⼠,可竟⽆⼀⼈能在有限的时间内回答上来。
其实,后来他们知道这只是⼀道⼩学六年级“找次品”题⽬的变形。
(⼀)问题转化,认知策略 我们知道,要从800个球中找到较重的⼀个球这⼀问题如果直接运⽤推理思想应该会很困难,如果我们运⽤“使复杂问题简单化”这⼀认知策略,问题就会变得具体可⾏。
数学 本科毕业论文
数学本科毕业论文数学本科毕业论文数学是一门古老而又神秘的学科,它以逻辑严密的推理和抽象的思维方式闻名于世。
在大学期间,我对数学产生了浓厚的兴趣,并决定以数学为主修专业。
如今,我即将迎来本科毕业,我想借此机会,撰写一篇关于数学的毕业论文,探讨数学的一些重要概念和应用。
首先,我将介绍数学的基础概念和原理。
数学是一门建立在逻辑基础上的学科,它的核心是数和形式化推理。
数学中最基本的概念是数,它可以用来描述数量和度量。
在数学中,我们可以用各种不同的符号和表示方法来表示数,如整数、分数、小数等。
通过数的运算,我们可以进行加减乘除等基本运算,以及更高级的代数和几何运算。
接下来,我将探讨数学在现实生活中的应用。
数学在各个领域都有着广泛的应用,如物理学、工程学、经济学等。
在物理学中,数学被用来描述和解释自然界中的各种现象,如力学、电磁学、量子力学等。
在工程学中,数学被用来设计和分析各种工程结构和系统,如建筑物、桥梁、电路等。
在经济学中,数学被用来建立和解决各种经济模型和问题,如供求关系、投资决策等。
数学在现实生活中的应用无处不在,它为我们提供了解决问题和优化决策的工具。
此外,我还将研究数学的发展历程和重要的数学家。
数学的发展可以追溯到古代文明,如古埃及、古希腊等。
在古希腊,数学家毕达哥拉斯提出了著名的毕达哥拉斯定理,开创了几何学的发展。
在中世纪,数学家费马提出了费马大定理,引发了数论的研究热潮。
在现代,数学家高斯、欧拉、黎曼等人的贡献使得数学发展到了一个新的高度。
他们的研究成果不仅推动了数学的发展,也对其他学科产生了深远的影响。
最后,我将探讨数学在教育中的重要性。
数学作为一门学科,不仅具有自身的研究价值,还在教育中扮演着重要的角色。
数学教育可以培养学生的逻辑思维能力、问题解决能力和创新能力。
通过数学的学习,学生可以培养对抽象思维的理解和运用能力,提高他们的数学素养和综合能力。
数学的学习还可以培养学生的耐心和毅力,因为数学问题往往需要反复推敲和思考才能得到解答。
本科数学教学毕业论文
本科数学教学毕业论文数学本身具有严密的逻辑性、高度抽象性和应用上的广泛性。
下面是店铺为大家整理的本科数学教学毕业论文,供大家参考。
本科数学教学毕业论文篇一摘要:随着现在科技的发展,数学教学方式也在某一程度上发生着改变。
从以前的老师板书教学,到现在的多媒体教学,无不在诠释着一个观念,那就是数学教学的重要性。
以前的数学教学方式已经不能满足新的教学质量。
然而,我们现在使用多媒体技术可以大大地提高数学教学质量和效率。
多媒体教学在一定程度上能激发学生的积极性和兴趣。
它可以使学生能够更直观地了解书本知识,也能使课堂变得趣味化。
本文主要研究初中数学教学中多媒体资源的应用。
关键词:数学教学方式;多媒体教学;教学质量随着新课程的改革,老师在教学方面的形式也随之改变着。
数学在众多学科中既是最基础的一门学科,也是一门最重要的学科。
所以,学好数学很重要。
由于数学具有很强的抽象性,大部分的学生不喜欢数学,然而使用多媒体教学,不仅可以增加学生对数学的兴趣,还可以把数学知识很直观的呈现在学生面前,增加学生对知识的理解性。
因此,在数学课堂上使用多媒体资源,可以极大地提高教学质量,多媒体教学也会慢慢出现到每一节数学课堂上。
一、使用多媒体资源在初中数学教学中的作用在新课改之后,都要求上课要以学生为中心,特别是对于初中老师,要时常注意学生的心理变化,并且还要不断的改变以前的传统教学方法。
在使用多媒体教学中,可以把一些较为抽象的知识转变为比较直观的知识,使学生更容易理解书本知识。
这样就不会使大部分的学生厌倦数学,不仅培养了学生的兴趣,也培养了学生的思维能力,也实现了课改的要求。
(一)培养兴趣使用多媒体资源,不仅改变了以前的老观念,还把以前枯燥的数学课堂气氛变得活跃了。
我们都知道,数学有很多抽象的知识,在以前老师只能用嘴给我们讲出来让我们去想象,而使用了多媒体教学,它可以把那些抽象的东西直接放映出来,让我们看的更直观,这不仅能够提高我们对数学的兴趣,也能让我们更深刻地理解课本知识。
数学本科论文
数学本科论文数学是人们生活、劳动和学习必不可少的工具,各方面都离不开数学,数学有着极其重要的科学与社会地位。
下文是店铺为大家搜集整理的关于数学本科论文的内容,欢迎大家阅读参考!数学本科论文篇1浅析溜井放矿量与磨损量计算式的数模摘要:在溜井放矿过程中,井筒井壁会随着井筒内矿石移动而同时产生磨损,这种磨损缓慢、渐进式连续发生的,均匀的向四周发展扩大。
提出了连续式的积分方程,推导出溜井井筒的磨损量与放矿量之间关系的数学模型。
用德兴铜矿的相关数据进行了计算,计算结果表明,该数学模型所提供的计算数据与实际井筒磨损情况接近,可为矿山规划、溜井设计与生产管理提供可靠的依据。
关键词:溜井放矿;放矿量;磨损量;数学模型在溜井放矿过程中,井筒必然产生磨损。
若管控不严,措施不当,会引起井筒破坏,影响生产,威胁安全,严重时井筒报废。
研究溜井放矿时的井筒磨损规律,减缓井筒磨损速度,延长服务年限,增加井筒通过矿量,是一个重要的研究课题。
本文就溜井放矿时井筒磨损规律进行探讨。
1、溜井放矿时井筒磨损人们在长期观察中发现,溜井在放矿过程中,井筒的井壁磨损呈现:贮矿段井筒磨损速度较小且均匀,井壁光滑[1];矿石对井壁的磨损轻微,溜井周边面磨损是均匀的[2];贮矿段溜井磨损均匀,上下磨损速度非常接近[3];全溜井的井壁光滑、完整,磨损轻微[4]。
根据以上的观察描述,溜井放矿的井筒磨损规律是:在放矿过程中,贮矿段的溜井井筒是以其中心线为中心,向四周磨损扩大是均匀的、相等的。
2、溜井磨损的计算式2.1、多项式的计算式根据上述井筒磨损规律,按照井筒磨损速度的计算公式U=r-r0Q(其中,U为井筒磨损速度,m/万t;r为经放矿磨损后的井筒半径,m;r0为初始的井筒半径,m;Q为放出的矿石量,万t),采用多项式推导出的溜井放矿量与井筒磨损量之间的计算公式为[5]:为溜井井筒初始直径,m溜井放矿的井筒磨损量与放矿量之间的关系是一个相互渐进且连续的过程。
数学与应用数学本科毕业论文
数学与应用数学本科毕业论文数学与应用数学本科毕业论文随着科技的不断发展,数学在现代社会中的应用越来越广泛。
作为一门基础学科,数学为其他学科的研究提供了理论基础和方法论。
在数学专业的本科学习中,毕业论文是对学生综合能力的一次全面考察,也是对所学知识的应用与拓展。
本文将探讨数学与应用数学本科毕业论文的主题选择、研究方法和写作技巧。
一、主题选择数学与应用数学本科毕业论文的主题选择应该紧密结合实际应用,既要有一定的理论深度,又要有实际问题的解决方法。
可以从以下几个方面考虑:1. 数学模型与应用数学模型是将实际问题抽象化的数学描述,通过数学方法求解,得到问题的解决方案。
可以选择某个实际问题,通过建立数学模型,研究其解的存在性、唯一性、稳定性等性质。
例如,可以研究交通流量模型、生态系统模型、金融风险模型等。
2. 数学算法与计算方法数学算法是解决数学问题的具体步骤和方法,计算方法是利用数学算法解决实际问题的过程。
可以选择某个数学算法或计算方法进行研究,分析其优缺点、适用范围和改进方法。
例如,可以研究最优化算法、数值解法、数据挖掘算法等。
3. 数学与其他学科的交叉应用数学与其他学科的交叉应用是数学发展的重要方向之一。
可以选择某个学科领域,通过数学方法解决其相关问题。
例如,可以研究医学图像处理中的数学模型、物理学中的微分方程求解、经济学中的统计分析等。
二、研究方法数学与应用数学本科毕业论文的研究方法可以分为理论分析和实证研究两种。
1. 理论分析理论分析是通过推理和证明来研究问题的方法。
可以选择某个数学理论或方法,进行深入的推导和证明,分析其性质和应用。
例如,可以选择微分方程的解析解求解方法,通过推导和证明得到其解的形式和性质。
2. 实证研究实证研究是通过实际数据和实验来验证理论和方法的有效性和适用性。
可以选择某个实际问题,收集相关数据,进行统计分析和建模,验证数学方法的可行性和准确性。
例如,可以选择金融市场的波动性研究,通过收集股票价格数据,进行波动性分析和建模。
数学与应用数学本科毕业论文
仿真算法设计与实现
01
数值计算方法
运用数值计算技术,如插值、拟 合、数值积分等,对模型进行求
解。
03
智能优化算法
借鉴自然现象和生物行为,设计 智能优化算法,如遗传算法、蚁 群算法等,用于求解优化问题。
02
蒙特卡罗方法
基于概率统计理论,通过随机抽 样模拟系统行为,适用于复杂系
统仿真。
04
并行计算技术
数学与应用数学本科毕业论 文
2024-01-09
目录
• 引言 • 数学与应用数学基础理论 • 应用数学领域研究 • 数学建模与仿真分析 • 数学与应用数学前沿研究 • 结论与展望
01
引言
研究背景和意义
数学与应用数学的发展
简要介绍数学与应用数学的历史发展 、主要分支以及在各个领域的应用情 况。
研究的重要性
研究平面上的点、直线和二次曲线的 性质,包括坐标法、向量法和解析法 等。
研究在射影变换下图形的不变性质和 变化规律,包括射影平面、射影空间 和射影变换等。
空间解析几何
研究三维空间中的点、直线和平面的 性质,包括空间向量的运算、空间直 角坐标系和空间曲线与曲面等。
概率论与数理统计
1 2 3
概率论基础
数学与应用数学的发展需要广泛的学术交流与合作。未来可以积极参加学术会议、研讨会等活动,与同 行专家进行深入交流和讨论,共同推动数学与应用数学的进步和发展。
感谢您的观看
THANKS
研究线性规划问题的理论、算法及其在经济管理、交通运输等领域 的应用。
非线性规划
研究非线性规划问题的求解方法,如梯度法、牛顿法等,并探讨其 在机器学习、人工智能等领域的应用。
组合优化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
***大学2014 届本科毕业论文论文题目:行列式的计算及应用学生姓名:***所在院系:数学科学学院所学专业:数学与应用数学(金融方向)导师姓名:***完成时间:***年***月***日1 / 28行列式的计算及应用摘要在高等代数这门课程里,行列式是最基本而又重要的内容之一,同时也是数学研究中的重要的工具之一,在线性代数、数学分析、解析几何等众多课程理论中以及实际问题中许也发挥着重要作用,了解如何计算和应用行列式显得尤为重要。
本文首先阐述行列式的基本理论,在此研究的基础上介绍了降阶法,归纳法,化三角形法等几种常见的且有一定技巧的解行列式的方法,并列举了相关的例子,更直观地了解解行列式方法的精髓。
另外,本文又介绍了行列式在解析几何、代数及其他课程当中的应用,进一步加深了对行列式的理解。
最后本文又列举实例阐述行列式在实际当中的应用,实现了行列式的理论与实际相结合。
研究行列式的计算方法及其应用可以提高对行列式的认识,有利于把行列式的研究推向深入。
通过这一系列的方法可以进一步提升对行列式的认识,为以后学习奠定了基础。
关键词:行列式,因式分解,化三角形法, 归纳法,加边法,Matlab软件Determinant calculation and applicationAbstractThis course in advanced algebra, the determinant is one of the most basic and important content, while many math curriculum theory is one of the important research tools, linear algebra, mathematical analysis, analytic geometry, etc. as well as practical problems also plays an important role in understanding how to calculate and apply the determinant is particularly important.This paper first describes the basic theory of determinants, based on this study describes the reduction method, induction techniques and a certain common determinant of several methods of solution method, the method of the triangle, and cited relevant examples, more intuitive understanding of the essence of the solution determinant method. In addition, this paper describes the determinant in analytic geometry, algebra and other courses which further deepened the understanding of the determinants. Finally, they provide examples described determinant application in practice to achieve a theoretical and practical determinant combined. Research determinant calculation method and its application can improve the understanding of the determinant, is conducive to deepen the study of determinants. You can further enhance the understanding of the determinants through this series of methods, laid the foundation for future learning.Keywords: determinants, factorization of a triangle, induction, plus side method, Matlab software3 / 28目录1. 行列式的定义及性质 (1)1.1 行列式的定义 (1)1.1.1 排列 (1)1.1.2 定义 (1)1.2 行列式的相关性质 (1)2. 行列式的计算方法 (5)2.1 几种特殊行列式的结果 (5)2.1.1 三角行列式 (5)2.1.2 对角行列式 (5)2.2 定义法 (5)2.3 利用行列式的性质计算 (5)2.4 降阶法 (6)2.5 归纳法 (7)2.6 递推法 (8)2.7 拆项法 (9)2.8 用范德蒙德行列式计算 (10)2.9 化三角形法 (10)2.10 加边法 (11)2.11 拉普拉斯定理的运用 (12)2.12 行列式计算的Matlab实验 (13)3. 行列式的应用 (15)3.1 行列式应用在解析几何中 (15)3.2 用行列式表示的三角形面积 (16)3.3 应用行列式分解因式 (16)3.4 利用行列式解代数不等式 (17)3.5 利用行列式来证明拉格朗日中值定理 (17)3.6 行列式在实际中的应用 (18)总结 (20)参考文献 (21)附录1 (22)附录2 (22)附录3 (23)谢辞 (24)1 / 281. 行列式的定义及性质 1.1 行列式的定义1.1.1 排列[1]在任意一个排列中,若前面的数大于后面的数,则它们就叫做一个逆序,在任意一个排列中,逆序的总数就叫做这个排列的逆序数.1.1.2 定义[1]n 阶行列式nnn n n na a a a a a a a a D212222111211=就相当于全部不同行、列的n 个元素的乘积nnj j j a a a 2121 (1-1-1)的代数和,这里n j j j 21是n ,,2,1 的一个排列,每一项(1-1-1)都按下列规则带有符号:当n j j j 21是偶排列时,(1-1-1)是正值,当n j j j 21是奇排列时,(1-1-1)是负值.这一定义可以表述为n nn nj j j j j j j j j nnn n nna a a a a a a a a a a a D21212121)(212222111211)1(∑-==τ, (1-1-2)这里∑nj j j 21表示对所有n 级排列求和.由于行列指标的地位是对称的,所以为了决定每一项的符号,我们也可以把每一项按照列指标排起来,所以定义又可以表述为n i i i i i i i i i nn n n nnn n a a a a a a a a a a a a D21)(212222111211212121)1(∑-==τ. (1-1-3)1.2 行列式的相关性质记 nnn n n na a a a a a a a a D 212222111211=,nnn nn n a a a a a aa a a D 212221212111'=,则行列式'D 叫做行列式D 的转置行列式.性质1 行列式和它的转置行列式是相等的[2]. 即D D ='. 证明:记D 中的一般项n 个元素的乘积是,2121n nj j j a a a它处于D 的不同行和不同列,所以它也处于'D 的不同行和不同列,在'D 中应是,2121n j j j n a a a所以它也是'D 中的一项.反之, 'D 的每一项也是D 的一项,即D 和'D 有相同的项.再由上面(1-2)和(1-3)可知这两项的符号也相同,所以D D ='.性质2 nnn n in i i nnn n n in i i n a a a a a a a a a k a a a ka ka ka a a a212111211212111211=. 证明:inin i i i i nnn n in i i n A ka A ka A ka a a a ka ka ka a a a +++=2211212111211.)(2121112112211nnn n in i i nin in i i i i a a a a a a a a a k A a A a A a k =+++=性质3 如果行列式的某行(列)的元素都为两个数之和[2],如nnn n nn n a a a c b c b c b a a a D 21221111211+++=,3 / 28那么行列式D 就等于下列两个行列式的和:.212111211212111211nnn n n n nn n n n n a a a c c c a a a a a a b b b a a a D +=可以参照性质2的证明得出结论.性质4 对换行列式中任意两行的位置,行列式值相反.即若设,21212111211nnn n kn k k in i i na a a a a a a a a a a a D=,212121112111nnn n in i i kn k k na a a a a a a a a a a a D =则.1D D -=证明:记D 中的一般项中的n 个元素的乘积是.2121n k i nj kj ij j j a a a a a它在D 中处于不同行、不同列,因而在1D 中也处于不同行、不同的列,所以它也是1D 的一项.反之,1D 中的每一项也是D 中的一项,所以D 和1D 有相同的项,且对应的项绝对值相同.现在看该项的符号:它在D 中的符号为.)1()(21n k i j j j j j τ-由于1D 是由交换D 的i 、k 两行而得到的,所以行标的n 级排列n k i 12变为n 级排列n k i 12,而列标的n 级排列并没有发生变化.因此D 和1D 中每一对相应的项绝对值相等,符号相反,即.1D D -=性质5 如果行列式中任有两行元素完全相同,那么行列式为零.证明:设该行列式为D ,交换D 相同的那两行,由性质4可得D D -=,故.0=D性质6 如若行列式中任有两行或者两列元素相互对应成比例,则行列式为零.证明:设n 阶行列式中第i 行的各个元素为第j 行的对应元素的k 倍,由性质2,可以把k 提到行列式外,然后相乘.则剩下的行列式的第i 行与第j 行两行相同,再由性质5,最后得到行列式为零.性质7 把任意一行的倍数加到另一行,行列式的值不改变.nnn n knk k knin k i k i na a a a a a ca a ca a ca a a a a2121221111211+++nnn n kn k k kn k k nnnn n kn k k in i i n a a a a a a ca ca ca a a a a a a a a a a a a a a a2121211121121212111211+=nnn n kn k k in i i n a a a a a a a a a a a a 21212111211=.5 / 282. 行列式的计算方法2.1 几种特殊行列式的结果2.1.1 三角行列式nn nn nna a a a a a a a a 221122*********=(上三角行列式).nn nnn n a a a a a a a a a2211212221110=(下三角行列式). 2.1.2 对角行列式nn nna a a a a a22112211000=. 2.2 定义法例1 用定义法证明.000000002121215432154321=e e d d c c b b b b b a a a a a 证明:行列式的一般项可表成.5432154321j j j j j a a a a a 列标543,,j j j 只能在5,4,3,2,1中取不同的值,故543,,j j j 三个下标中至少有一个要取5,4,3中的一个数,则任意一项里至少有一个0为因子,故任一项必为零,即原行列式的值为零.2.3 利用行列式的性质计算例2 一个n 阶行列式ij n a D =的元素都满足n j i a a ji ij ,,2,1,, =-=, 那么n D 叫做反对称行列式,证明:奇数阶的反对称行列式的值等于0.证明:由ji ij a a -=知ii ii a a -=,即n i a ii ,,2,1,0 ==所以行列式n D 可写为0000321323132231211312 nn nn nn n a a a a a a a a a a a a D ------=,再由行列式的性质2,'A A =得到0000000321323132231211312321323132231211312nnnnn n n nnn nn n a a a a a a a a a a a a a a a a a a a a a a a a D ------=------=n n nn n n nn n D a a a a a a a a a a a a )1(0000)1(321323132231211312-=-------= ,当n 为奇数时,得n n D D -=,因而得到0=n D .2.4 降阶法例3 计算)2(≥n n 级行列式xy y x y x y xd 000000000000=. 解:按第一列展开得到原式阶阶)1(1)1(000000000)1(0000000000000-+--⨯+=n n n y xy y x y y x yx y x y x x1)1(1)1(-+-⨯⨯-+⨯=n n n y y x x)2()1()1(≥-+=+n y x n n n .7 / 282.5 归纳法形如行列式113121122322213211111----=n nn n n n n n a a a a a a a a a a a a D叫做n 阶范德蒙(Vandermonde )行列式.下面证明,对每一个)2(≥n n ,n 阶范德蒙行列式就等于n a a a ,,,21 这n 个数的所有可能的差)1(n i j a a j i ≤<≤-的乘积.用数学归纳法证明范德蒙德行列式 我们对n 作归纳法. (1)当2=n 时,122111a a a a -=,结果是对的.(2)设对于1-n 级的范德蒙行列式,结论是成立的,先来看n 级的情况.在113121122322213211111----=n nn n n n n n a a a a a a a a a a a a D中,第n 行减第1-n 行的1a 倍,第1-n 行减第2-n 行的1a 倍,即由下而上逐次地从每一行减它上一行的1a 倍,得到n D 21123113221121231232122113120001111---------------=n nn n n n n n n n n a a a a a a a a a a a a a a a a a a a a a a a a2112311322112123123212211312---------------=n nn n n n n n nn n a a a a a a a a a a a a a a a a a a a a a a a a22322223223211312111)())((------=n nn n n n n a a a a a a a a a a a a a a a. 最后面这个行列式是1-n 级范德蒙德行列式,再由归纳法假设,它的值就是)1(n i j a a j i ≤<≤-;而所有带有1a 的差即为上式最后等式行列式的前面.所以,结论对n 级范德蒙德行列式也是成立的.由数学归纳法,证明了结论.用连乘号,这个结果可以简写为∏≤<≤-----==ni j j i n nn n n nn n a a a a a a a a a a a a a a D 1113121122322213211111)( . (2-5-1) 2.6 递推法给定一个递推关系式,再给定某一个较低阶初始行列式的值,就可递推求得所给n 阶行列式的值,运用这种方法计算的方法就叫做递推法。