圆周运动的典型题型分类训练
6.1 圆周运动 习题—2020-2021学年人教版(2019)高中物理必修第二册
一、圆周运动分题型练习同轴转动1.汽车后备箱盖一般都有可伸缩的液压杆,如图甲所示,图乙为简易侧视示意图,液压杆上端固定于后盖上A点,下端固定于箱内O′点,B也为后盖上一点,后盖可绕过O点的固定铰链转动,在合上后备箱的过程中()甲乙A.A点相对于O′点做圆周运动B.B点相对于O′点做圆周运动C.A与B相对于O点线速度大小相同D.A与B相对于O点角速度大小相同2.如图所示是一个玩具陀螺.a、b和c是陀螺外表面上的三个点.当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是()A.a、b和c三点的线速度大小相等B.a、b和c三点的角速度相等C.a、b的角速度比c的大D.c的线速度比a、b的大3.(多选)甲、乙两个做匀速圆周运动的质点,它们的角速度之比为3∶1,线速度之比为2∶3,那么下列说法中正确的是()A.它们的半径之比为2∶9B.B.它们的半径之比为1∶2C.它们的周期之比为2∶3D.D.它们的周期之比为1∶34.如图所示,两个小球固定在一根长为l的杆的两端,绕杆上的O点做圆周运动。
当小球A的速度为v A时,小球B的速度为v B,则轴心O到小球A的距离是()A.v A(v A+v B)l B.vAlvA+v BC.vA+v B lvAD.vA+v B lvB5.如图所示,一偏心轮绕垂直纸面的轴O匀速转动,a和b是轮边缘上的两个点,则偏心轮转动过程中a、b两点()A.角速度大小相同B.线速度大小相同C.周期大小不同D.转速大小不同6.如图所示,圆环以直径AB为轴匀速转动,已知其半径R=0.5 m,转动周期T=4 s,求环上P点和Q点的角速度和线速度总结:同轴转动的各点角速度、转速、周期相等,线速度与半径成正比。
传动装置7.(多选)-如图所示为某一皮带传动装置。
主动轮的半径为r1,从动轮的半径为r2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑.下列说法正确的是( )A.从动轮做顺时针转动B.从动轮做逆时针转动C.从动轮的转速为r 1 r 2 nD.从动轮的转速为r2r1n8.如图所示为锥形齿轮的传动示意图,大齿轮带动小齿轮转动,大、小齿轮的角速度大小分别为ω1、ω2,两齿轮边缘处的线速度大小分别为v1、v2,则() A.ω1<ω2,v1=v2B.ω1>ω2,v1=v2C.ω1=ω2,v1>v2D.ω1=ω2,v1<v29.(多选)变速自行车靠变换齿轮组合来改变行驶速度,如图是某一变速车齿轮转动结构示意图,图中A轮有48齿,B轮有42齿,C轮有18齿,D轮有12齿,则() A.该车可变换两种不同挡位B.该车可变换四种不同挡位C.当A轮与D轮组合时,两轮的角速度之比ωA∶ωD=1∶4D.当A轮与D轮组合时,两轮角速度之比ωA∶ωD=4∶110.在如图所示的传动装置中,B、C两轮固定在—起绕同—转轴转动。
高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)及解析
高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,竖直圆形轨道固定在木板B 上,木板B 固定在水平地面上,一个质量为3m 小球A 静止在木板B 上圆形轨道的左侧.一质量为m 的子弹以速度v 0水平射入小球并停留在其中,小球向右运动进入圆形轨道后,会在圆形轨道内侧做圆周运动.圆形轨道半径为R ,木板B 和圆形轨道总质量为12m ,重力加速度为g ,不计小球与圆形轨道和木板间的摩擦阻力.求:(1)子弹射入小球的过程中产生的内能;(2)当小球运动到圆形轨道的最低点时,木板对水平面的压力;(3)为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,求子弹速度的范围.【答案】(1)2038mv (2) 2164mv mg R+(3)042v gR ≤或04582gR v gR ≤≤【解析】本题考察完全非弹性碰撞、机械能与曲线运动相结合的问题. (1)子弹射入小球的过程,由动量守恒定律得:01(3)mv m m v =+ 由能量守恒定律得:220111422Q mv mv =-⨯ 代入数值解得:2038Q mv =(2)当小球运动到圆形轨道的最低点时,以小球为研究对象,由牛顿第二定律和向心力公式得211(3)(3)m m v F m m g R+-+=以木板为对象受力分析得2112F mg F =+ 根据牛顿第三定律得木板对水平的压力大小为F 2木板对水平面的压力的大小202164mv F mg R=+(3)小球不脱离圆形轨有两种可能性:①若小球滑行的高度不超过圆形轨道半径R由机械能守恒定律得:()()211332m m v m m gR +≤+解得:042v gR ≤②若小球能通过圆形轨道的最高点小球能通过最高点有:22(3)(3)m m v m m g R++≤由机械能守恒定律得:221211(3)2(3)(3)22m m v m m gR m m v +=+++ 代入数值解得:045v gR ≥要使木板不会在竖直方向上跳起,木板对球的压力:312F mg ≤在最高点有:233(3)(3)m m v F m m g R+++=由机械能守恒定律得:221311(3)2(3)(3)22m m v m m gR m m v +=+++ 解得:082v gR ≤综上所述为保证小球不脱离圆形轨道,且木板不会在竖直方向上跳起,子弹速度的范围是042v gR ≤或04582gR v gR ≤≤2.如图所示,在竖直平面内有一绝缘“⊂”型杆放在水平向右的匀强电场中,其中AB 、CD 水平且足够长,光滑半圆半径为R ,质量为m 、电量为+q 的带电小球穿在杆上,从距B 点x=5.75R 处以某初速v 0开始向左运动.已知小球运动中电量不变,小球与AB 、CD 间动摩擦因数分别为μ1=0.25、μ2=0.80,电场力Eq=3mg/4,重力加速度为g ,sin37°=0.6,cos37°=0.8.求:(1)若小球初速度v 0gR B 点时受到的支持力为多大; (2)小球初速度v 0满足什么条件可以运动过C 点;(3)若小球初速度gR x=4R ,则小球在杆上静止时通过的路程为多大.【答案】(1)5.5mg (2)04v gR >3)()44R π+ 【解析】 【分析】 【详解】(1)加速到B 点:221011-22mgx qEx mv mv μ-=- 在B 点:2v N mg m R-=解得N=5.5mg(2)在物理最高点F :tan qE mgα=解得α=370;过F 点的临界条件:v F =0从开始到F 点:2101-(sin )(cos )02mgx qE x R mg R R mv μαα-+-+=- 解得04v gR =可见要过C 点的条件为:04v gR >(3)由于x=4R<5.75R ,从开始到F 点克服摩擦力、克服电场力做功均小于(2)问,到F 点时速度不为零,假设过C 点后前进x 1速度变为零,在CD 杆上由于电场力小于摩擦力,小球速度减为零后不会返回,则:2121101--(-)202mgx mgx qE x x mg R mv μμ--⋅=-1s x R x π=++解得:(44)s R π=+3.如图所示,水平传送带AB 长L=4m ,以v 0=3m/s 的速度顺时针转动,半径为R=0.5m 的光滑半圆轨道BCD 与传动带平滑相接于B 点,将质量为m=1kg 的小滑块轻轻放在传送带的左端.已,知小滑块与传送带之间的动摩擦因数为μ=0.3,取g=10m/s 2,求:(1)滑块滑到B 点时对半圆轨道的压力大小;(2)若要使滑块能滑到半圆轨道的最高点,滑块在传送带最左端的初速度最少为多大. 【答案】(1)28N.(2)7m/s 【解析】 【分析】(1)物块在传送带上先加速运动,后匀速,根据牛顿第二定律求解在B 点时对轨道的压力;(2)滑块到达最高点时的临界条件是重力等于向心力,从而求解到达D 点的临界速度,根据机械能守恒定律求解在B 点的速度;根据牛顿第二定律和运动公式求解A 点的初速度. 【详解】(1)滑块在传送带上运动的加速度为a=μg=3m/s 2;则加速到与传送带共速的时间01v t s a == 运动的距离:211.52x at m ==, 以后物块随传送带匀速运动到B 点,到达B 点时,由牛顿第二定律:2v F mg m R-= 解得F=28N ,即滑块滑到B 点时对半圆轨道的压力大小28N.(2)若要使滑块能滑到半圆轨道的最高点,则在最高点的速度满足:mg=m 2Dv R解得v D =5m/s ; 由B 到D ,由动能定理:2211222B D mv mv mg R =+⋅ 解得v B =5m/s>v 0可见,滑块从左端到右端做减速运动,加速度为a=3m/s 2,根据v B 2=v A 2-2aL 解得v A =7m/s4.游乐场正在设计一个全新的过山车项目,设计模型如图所示,AB 是一段光滑的半径为R 的四分之一圆弧轨道,后接一个竖直光滑圆轨道,从圆轨道滑下后进入一段长度为L 的粗糙水平直轨道BD ,最后滑上半径为R 圆心角060θ=的光滑圆弧轨道DE .现将质量为m 的滑块从A 点静止释放,通过安装在竖直圆轨道最高点C 点处的传感器测出滑块对轨道压力为mg ,求:(1)竖直圆轨道的半径r .(2)滑块在竖直光滑圆弧轨道最低点B 时对轨道的压力.(3)若要求滑块能滑上DE 圆弧轨道并最终停在平直轨道上(不再进入竖直圆轨道),平直轨道BD 的动摩擦因数μ需满足的条件. 【答案】(1)3R (2)7mg (3)2R RL L μ<≤ 【解析】(1) 对滑块,从A 到C 的过程,由机械能守恒可得:21(2)2C mg R r mv -=22Cv mg m r=解得:3R r =; (2) 对滑块,从A 到B 的过程,由机械能守恒可得:212B mgR mv =在B 点,有:2Bv N mg m r-=可得:滑块在B 点受到的支持力 N=7mg ;由牛顿第三定律可得,滑块在B 点对轨道的压力7N N mg '==,方向竖直向下;(3) 若滑块恰好停在D 点,从B 到D 的过程,由动能定理可得:2112B mgL mv μ-=-可得:1R Lμ=若滑块恰好不会从E 点飞出轨道,从B 到E 的过程,由动能定理可得:221(1cos )2B mgL mgR mv μθ---=-可得:22R Lμ=若滑块恰好滑回并停在B 点,对于这个过程,由动能定理可得:231·22B mg L mv μ-=-综上所述,μ需满足的条件:2R R L Lμ<<.5.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R6.如图,1111C D E F 和2222C D E F 是距离为L 的相同光滑导轨,11C D 和11E F 为两段四分之一圆弧,半径分别为18r r =和2.r r =在水平矩形1122D E E D 内有竖直向上的匀强磁场,磁感应强度为.B 导体棒P 、Q 的长度均为L ,质量均为m ,电阻均为R ,其余电阻不计,Q 停在图中位置,现将P 从轨道最高点无初速释放,则()1求导体棒P 进入磁场瞬间,回路中的电流的大小和方向(顺时针或逆时针);()2若P 、Q 不会在轨道上发生碰撞,棒Q 到达12E E 瞬间,恰能脱离轨道飞出,求导体棒P 离开轨道瞬间的速度;()3若P 、Q 不会在轨道上发生碰撞,且两者到达12E E 瞬间,均能脱离轨道飞出,求回路中产生热量的范围. 【答案】(12BL gr方向逆时针(2)3gr (3)3mgr ≤Q ≤4mgr . 【解析】(1)导体棒P 由12C C 下滑到12D D ,根据机械能守恒定律:211 42D D mgr mv v gr ==,求导体棒P 到达12D D 瞬间:D E BLv = 回路中的电流:22BL grE I R ==(2)棒Q 到达12E E 瞬间,恰能脱离轨道飞出,此时对Q :22QQ mv mg v gr r ==设导体棒P 离开轨道瞬间的速度为P v ,根据动量守恒定律:D P Q mv mv mv =+ 代入数据得:3P v gr =(3)由()2若导体棒Q 恰能在到达12E E 瞬间飞离轨道,P 也必能在该处飞离轨道 根据能量守恒,回路中产生的热量22211113222D P Q Q mv mv mv mgr =--= 若导体棒Q 与P 能达到共速v ,则根据动量守恒:()2D mv m m v v gr =+⇒=回路中产生的热量()22211422D Q mv m m v mgr =-+=; 【点睛】根据机械能守恒定律求出求导体棒P 到达12D D 的速度大小,然后根据法拉第电磁感应定律即可求解;恰好脱了轨道的条件是重力提供向心力,两棒作用过程中动量守恒,由此可正确解答;根据题意求出临界条件结合动量守恒和功能关系即可正确求解;本题是电磁感应与电路、磁场、力学、功能关系,临界条件等知识的综合应用,重点考查了功能关系以及动量守恒定律的应用,是考查分析和处理综合题的能力的好题.7.如图所示,竖直平面内固定有一半径R =1m 的14光滑圆轨道AB 和一倾角为45°且高为H =5m 的斜面CD ,二者间通过一水平光滑平台BC 相连,B 点为圆轨道最低点与平台的切点.现将质量为m 的一小球从圆轨道A 点正上方h 处(h 大小可调)由静止释放,巳知重力加速度g =10m/s 2,且小球在点A 时对圆轨道的压力总比在最低点B 时对圆轨道的压力小3mg .(1)若h =0,求小球在B 点的速度大小;(2)若h =0.8m ,求小球落点到C 点的距离;(结果可用根式表示)(3)若在斜面中点竖直立一挡板,使得无论h 为多大,小球不是越不过挡板,就是落在水平地面上,则挡板的最小长度l 为多少? 【答案】(1)25/m s (261m (3)1.25m 【解析】 【分析】 【详解】(1)从释放小球至A 点根据速度与位移关系有22A v gh =在A 点,根据牛顿第二定律21AN v F m R=在B 点,根据牛顿第二定律22BN v F mg m R-=根据题意有213N N F F mg -=故2()B v g R h =+若0h =,则小球在B 点的速度1225m/s v gR ==;(2)小球从B 至C 做匀速直线运动,从C 点滑出后做平抛运动,若恰能落在D 点则水平方向0x t v =竖直方向212y H gt ==又因为斜面倾角为45°,则x y =解得05m/s v =对应的高度00.25m h =若0.80.25h m m =>,小球将落在水平地面上,而小球在B 点的速度26m/s v =小球做平抛运动竖直方向212H gt =得1t s =则水平方向126m x v t ==故小球落地点距C 点的距离s ==;(3)若要求无论h 为多大,小球不是打到挡板上,就是落在水平地面上,临界情况是小球擦着挡板落在D 点,经前面分析可知,此时在B 点的临界速度:35m/s v = 则从C 点至挡板最高点过程中水平方向3''x v t =竖直方向'2122H y l gt =-=' 又2Hx '=解得1.25m l =.点睛:本题研究平抛运动与圆周运动想结合的问题,注意分析题意,找出相应的运动过程,注意方程式与数学知识向结合即可求解.8.过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B 、C 、D 分别是三个圆形轨道的最低点,B 、C 间距与C 、D 间距相等,半径1 2.0m R =、2 1.4m R =.一个质量为 1.0m =kg 的小球(视为质点),从轨道的左侧A 点以012.0m/s v =的初速度沿轨道向右运动,A 、B 间距1 6.0L =m .小球与水平轨道间的动摩擦因数0.2μ=,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠,如果小球恰能通过第二圆形轨道.如果要使小球不能脱离轨道,试求在第三个圆形轨道的设计中,半径3R 应满足的条件.(重力加速度取210m/s g =,计算结果保留小数点后一位数字.)【答案】300.4R m <≤或 31.027.9m R m ≤≤ 【解析】 【分析】 【详解】设小球在第二个圆轨道的最高点的速度为v 2,由题意222v mg m R = ①()22122011222mg L L mgR mv mv μ-+-=- ② 由①②得 12.5L m = ③要保证小球不脱离轨道,可分两种情况进行讨论:I .轨道半径较小时,小球恰能通过第三个圆轨道,设在最高点的速度为v 3,应满足233v mg m R = ④()221330112222mg L L mgR mv mv μ-+-=- ⑤ 由④⑤得30.4R m = ⑥II .轨道半径较大时,小球上升的最大高度为R 3,根据动能定理()213012202mg L L mgR mv μ-+-=- ⑦解得 3 1.0R m = ⑧为了保证圆轨道不重叠,R 3最大值应满足()()2222332R R L R R +=+- ⑨ 解得:R 3=27.9m ⑩综合I 、II ,要使小球不脱离轨道,则第三个圆轨道的半径须满足下面的条件 300.4R m <≤或 31.027.9m R m ≤≤ ⑾【点睛】本题为力学综合题,要注意正确选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小球恰能通过圆形轨道的含义以及要使小球不能脱离轨道的含义.9.如图,半径R =0.4m 的部分光滑圆轨道与水平面相切于B 点,且固定于竖直平面内.在水平面上距B 点s =5m 处的A 点放一质量m =3kg 的小物块,小物块与水平面间动摩擦因数为1=3μ.小物块在与水平面夹角θ=37o 斜向上的拉力F 的作用下由静止向B 点运动,运动到B 点撤去F ,小物块沿圆轨道上滑,且能到圆轨道最高点C .(g 取10m/s 2,sin37o =0.6,cos37o =0.8)求:(1)小物块在B 点的最小速度v B 大小;(2)在(1)情况下小物块在水平面上运动的加速度大小;(3)为使小物块能沿水平面运动并通过圆轨道C 点,则拉力F 的大小范围.【答案】(1)25/B v m s = (2)22/a m s = (3)1650N F N ≤≤(或1650N F N ≤<) 【解析】【详解】(1) 小物块恰能到圆环最高点时,物块与轨道间无弹力.设最高点物块速度为v C ,则2C v mg m R= 解得:2C v gR = 物块从B 到C 运动,只有重力做功,所以其机械能守恒:()2211222B C mv mv mg R =+ 解得:525m/s B v gR ==(2) 根据运动学规律22B v as =,解得222m/s 2B v a s== (3)小物块能沿水平面运动并通过圆轨道C 点,有两种临界情况: ①在F 的作用下,小物块刚好过C 点:物块在水平面上做匀加速运动,对物块在水平面上受力分析如图:则 Fcos N ma θμ-=Fsin N mg θ+=联立解得:16N mg ma F cos sin μθμθ+==+ ②在F 的作用下,小物块受水平地面的支持力恰好为零Fsin mg θ=, 解得:50N =F综上可知,拉力F 的范围为:16N 50N F ≤≤(或16N 50N F ≤<)10.如图所示,在水平轨道右侧固定半径为R 的竖直圆槽形光滑轨道,水平轨道的PQ 段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。
圆周运动经典练习(有答案详解)
《圆周运动》练习题(一)1. A. 线速度不变2. A 和B A. 球A B. 球A C. 球A D. 球A3. 演,如图5A. B. C. D.4.A. B. C. D.5.如图1个质量为应为( )6.(M>m 连在一起。
A.mLgm M )(-μC.MLgm M )(+μ7. 如图3A. A 、B C. 若︒=30θ,则8. A. 木块A B. 木块A C. 木块A D. 木块A9. 如图5所示,质量为m 的小球在竖直平面内的光滑圆轨道上做圆周运动。
圆半径为R ,小球经过A. B.C. D.10. 一辆质量为4t 车对桥面压力的0.0511.和60°,则A 、B12.如图所示,a 、b B r OC =(1)B C ωω:13. 转动时求杆OA 和AB14. 司机开着汽车在一宽阔的马路上匀速行驶突然发现前方有一堵墙,他是刹车好还是转弯好?(设转弯时汽车做匀速圆周运动,最大静摩擦力与滑动摩擦力相等。
)(1(21.解析:2. 解析:图4B A 比较线速度时,选用rv m F 2=分析得r 大,v 一定大,A 答案正确。
比较角速度时,选用r m F 2ω=分析得r 大,ω一定小,B 答案正确。
比较周期时,选用r Tm F 2)2(π=分析得r 大,T 一定大,C 答案不正确。
小球A 和B 受到的支持力N F 都等于αsin mg,D 答案不正确。
点评:①“向心力始终指向圆心”可以帮助我们合理处理物体的受力;② 根据问题讨论需要,解题时要合理选择向心力公式。
3. 解析:甲、乙两人做圆周运动的角速度相同,向心力大小都是弹簧的弹力,则有乙乙甲甲r M r M 22ωω=即乙乙甲甲r M r M =且m r r 9.0=+乙甲,kg M 80=甲,kg M 40=乙解得m r 3.0=甲,m r 6.0=乙由于甲甲r M F 2ω=所以)/(62.03.0802.9s rad r M F =⨯==甲甲ω而r v ω=,r 不同,v 不同。
最新高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)
最新高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.如图所示,水平转盘可绕竖直中心轴转动,盘上放着A 、B 两个物块,转盘中心O 处固定一力传感器,它们之间用细线连接.已知1kg A B m m ==两组线长均为0.25m L =.细线能承受的最大拉力均为8m F N =.A 与转盘间的动摩擦因数为10.5μ=,B 与转盘间的动摩擦因数为20.1μ=,且可认为最大静摩擦力等于滑动摩擦力,两物块和力传感器均视为质点,转盘静止时细线刚好伸直,传感器的读数为零.当转盘以不同的角速度勾速转动时,传感器上就会显示相应的读数F ,g 取210m/s .求:(1)当AB 间细线的拉力为零时,物块B 能随转盘做匀速转动的最大角速度; (2)随着转盘角速度增加,OA 间细线刚好产生张力时转盘的角速度;(3)试通过计算写出传感器读数F 随转盘角速度ω变化的函数关系式,并在图乙的坐标系中作出2F ω-图象.【答案】(1)12/rad s ω= (2)222/rad s ω= (3)2252/m rad s ω=【解析】对于B ,由B 与转盘表面间最大静摩擦力提供向心力,由向心力公式有:2212B B m g m L μω=代入数据计算得出:12/rad s ω=(2)随着转盘角速度增加,OA 间细线中刚好产生张力时,设AB 间细线产生的张力为T ,有:212A A m g T m L μω-=2222B B T m g m L μω+=代入数据计算得出:222/rad s ω= (3)①当2228/rad s ω≤时,0F =②当2228/rad s ω≥,且AB 细线未拉断时,有:21A A F m g T m L μω+-= 222B B T m g m L μω+=8T N ≤所以:2364F ω=-;222228/18/rad s rad s ω≤≤ ③当218ω>时,细线AB 断了,此时A 受到的静摩擦力提供A 所需的向心力,则有:21A A m g m w L μ≥所以:2222218/20/rad s rad s ω<≤时,0F =当22220/rad s ω>时,有21A A F m g m L μω+=8F N ≤所以:2154F ω=-;2222220/52/rad s rad s ω<≤ 若8m F F N ==时,角速度为:22252/m rad s ω=做出2F ω-的图象如图所示;点睛:此题是水平转盘的圆周运动问题,解决本题的关键正确地确定研究对象,搞清向心力的来源,结合临界条件,通过牛顿第二定律进行求解.2.如图所示,轨道ABCD 的AB 段为一半径R =0.2 m 的光滑1/4圆形轨道,BC 段为高为h =5 m 的竖直轨道,CD 段为水平轨道.一质量为0.2 kg 的小球从A 点由静止开始下滑,到达B 点时速度的大小为2 m /s ,离开B 点做平抛运动(g =10 m /s 2),求:(1)小球离开B 点后,在CD 轨道上的落地点到C 点的水平距离; (2)小球到达B 点时对圆形轨道的压力大小;(3)如果在BCD 轨道上放置一个倾角θ=45°的斜面(如图中虚线所示),那么小球离开B 点后能否落到斜面上?如果能,求它第一次落在斜面上的位置距离B 点有多远.如果不能,请说明理由.【答案】(1)2 m (2)6 N (3)能落到斜面上,第一次落在斜面上的位置距离B 点1.13 m 【解析】①.小球离开B 点后做平抛运动,212h gt =B x v t =解得:2m x =所以小球在CD 轨道上的落地点到C 的水平距离为2m ②.在圆弧轨道的最低点B ,设轨道对其支持力为N由牛二定律可知:2Bv N mg m R-=代入数据,解得3N N =故球到达B 点时对圆形轨道的压力为3N ③.由①可知,小球必然能落到斜面上根据斜面的特点可知,小球平抛运动落到斜面的过程中,其下落竖直位移和水平位移相等212B v t gt ⋅''=,解得:0.4s t '= 则它第一次落在斜面上的位置距B 点的距离为20.82m B S v t ='=.3.一轻质细绳一端系一质量为m =0.05吻的小球儿另一端挂在光滑水平轴O 上,O 到小球的距离为L = 0.1m ,小球跟水平面接触,但无相互作用,在球的两侧等距离处分别固定一个光滑的斜面和一个挡板,如图所示水平距离s=2m ,动摩擦因数为μ=0.25.现有一滑块B ,质量也为m =0.05kg ,从斜面上高度h =5m 处滑下,与 小球发生弹性正碰,与挡板碰撞时不损失机械能.若不计空气阻力,并将滑块和小球都视为质点,(g 取10m/s 2,结果用根号表示),试问:(1)求滑块B 与小球第一次碰前的速度以及碰后的速度. (2)求滑块B 与小球第一次碰后瞬间绳子对小球的拉力.(3)滑块B 与小球碰撞后,小球在竖直平面内做圆周运动,求小球做完整圆周运动的次数.【答案】(1)滑块B 95,碰后的速度为0;(2)滑块B 与小球第一次碰后瞬间绳子对小球的拉力48N ;(3)小球做完整圆周运动的次数为10次。
2024年高考物理一轮复习:圆周运动常考模型(解析版)
1圆周运动常考模型1.目录题型一圆周运动中的运动学分析题型二水平面内的圆周运动类型1 圆锥摆模型类型2 生活中的圆周运动题型三圆周运动中的临界极值问题类型1水平面内圆周运动的临界问题类型2 竖直面内的圆周运动的临界问题类型3 斜面上圆周运动的临界问题题型四圆周运动与图像结合问题类型1 水平面内圆周运动与图像结合问题类型2 竖直面内圆周运动与图像结合题型一:圆周运动中的运动学分析【解题指导】1.对公式v =ωr 的理解当ω一定时,v 与r 成正比.当v 一定时,ω与r 成反比.2.对a n =v 2r=ω2r 的理解在v 一定时,a n 与r 成反比;在ω一定时,a n 与r 成正比.3.常见的传动方式及特点(1)皮带传动:如图甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B .(2)摩擦传动和齿轮传动:如图甲、乙所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B .(3)同轴转动:如图所示,绕同一转轴转动的物体,角速度相同,ωA =ωB ,由v =ωr 知v 与r 成正比.1(2023·浙江·模拟预测)在东北严寒的冬天,人们经常玩一项“泼水成冰”的游戏,具体操作是把一杯开水沿弧线均匀快速地泼向空中。
图甲所示是某人玩“泼水成冰”游戏的瞬间,其示意图如图乙所示。
泼水过程中杯子的运动可看成匀速圆周运动,人的手臂伸直,在0.5s 内带动杯子旋转了210°,人的臂长约为0.6m 。
下列说法正确的是()2A.泼水时杯子的旋转方向为顺时针方向B.P 位置飞出的小水珠初速度沿1方向C.杯子在旋转时的角速度大小为7π6rad/sD.杯子在旋转时的线速度大小约为7π5m/s【答案】D【详解】AB .由图乙中做离心运动的轨迹可知,杯子的旋转方向为逆时针方向,P 位置飞出的小水珠初速度沿2方向,故AB 错误。
C .杯子旋转的角速度为ω=ΔθΔt=76π0.5rad/s =7π3rad/s 故C 错误。
专题09 圆周运动七大常考模型(解析版)
专题09 圆周运动七大常考模型(解析版)2020年高考物理一轮复热点题型归纳与变式演练专题09 圆周运动七大常考模型专题导航】目录题型一水平面内圆盘模型的临界问题在水平面内,圆盘绕自身的对称轴做匀速圆周运动时,当圆盘上一点的速度等于圆盘上任意一点的速度时,该点所在的半径为临界半径。
此时,圆盘上该点所受的向心力最大,达到极限值。
热点题型二竖直面内圆周运动的临界极值问题在竖直面内,圆周运动的临界问题与水平面内的类似,但由于竖直面内的向心力方向不再垂直于重力方向,因此需要通过分解向心力和重力的合力来求解临界速度和临界半径。
球-绳模型或单轨道模型球-绳模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的竖直圆周做匀速圆周运动的模型。
单轨道模型则是一个质量为m 的小球沿着一个半径为R的水平圆周滑行的模型。
这两个模型的分析方法类似,都需要通过分解合力来求解运动的参数。
球-杆模型或双轨道模型球-杆模型指的是一个质量为m的小球沿着一个质量忽略不计的细杆滚动的模型。
双轨道模型则是一个质量为m的小球沿着两个半径分别为R1和R2的圆轨道滚动的模型。
这两个模型的分析方法也类似,都需要通过分解合力来求解运动的参数。
热点题型三斜面上圆周运动的临界问题在斜面上,圆周运动的临界问题与水平面内的类似,但由于斜面的存在,需要通过分解合力来求解临界速度和临界半径。
热点题型四圆周运动的动力学问题圆周运动的动力学问题主要涉及到角加速度、角速度和角位移等参数的计算。
在这类问题中,需要利用牛顿第二定律和角动量守恒定律等物理定律来分析运动状态。
圆锥摆模型圆锥摆模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的圆锥面做匀速圆周运动的模型。
在分析这种模型时,需要考虑到向心力和重力的合力方向与竖直方向的夹角,以及圆锥面的倾角等因素。
车辆转弯模型车辆转弯模型主要涉及到车辆在转弯时所受的向心力和摩擦力等因素。
专题08圆周运动(解析版)-三年(2022-2024)高考物理真题分类汇编(全国通用)
圆周运动专题08考点01水平面内圆周运动1.(2024高考辽宁卷)“指尖转球”是花式篮球表演中常见的技巧。
如图,当篮球在指尖上绕轴转动时,球面上P、Q两点做圆周运动的()A.半径相等B.线速度大小相等C.向心加速度大小相等D.角速度大小相等【答案】D 【解析】由题意可知,球面上P 、Q 两点转动时属于同轴转动,故角速度大小相等,故D 正确;由图可知,球面上P 、Q 两点做圆周运动的半径的关系为P Q r r <,故A 错误;根据v r ω=可知,球面上P 、Q 两点做圆周运动的线速度的关系为P Q v v <,故B 错误;根据2n a r ω=可知,球面上P 、Q 两点做圆周运动的向心加速度的关系为P Q a a <,故C 错误。
2.(2024年高考江苏卷第8题)生产陶瓷的工作台匀速转动,台面面上掉有陶屑,陶屑与桌面间的动摩擦因数处处相同(台面足够大),则A.离轴OO’越远的陶屑质量越大B.离轴OO’越近的陶屑质量越大C.只有平台边缘有陶屑D..离轴最远的陶屑距离不超过某一值R 【参考答案】D【名师解析】由μmg=mRω2,解得离轴最远的陶屑距离不超过某一值R=μg/ω2,D 正确。
3.(2024年高考江苏卷)如图所示,细绳穿过竖直的管子拴住一个小球,让小球在A 高度处做水平面内的匀速圆周运动,现用力将细绳缓慢下拉,使小球在B 高度处做水平面内的匀速圆周运动,不计一切摩擦,则()A .线速度v A >v BB.角速度ωA <ωBC.向心加速度a A <a BD.向心力F A >F B 【答案】AD 【解析】设绳子与竖直方向的夹角为θ,对小球受力分析有F n =mg tan θ=ma由题图可看出小球从A 高度到B 高度θ增大,则由F n =mg tan θ=ma 可知a B >a A ,F B >F A 故C 错误,D 正确;再根据题图可看出,A 、B 位置在同一竖线上,则A 、B 位置的半径相同,则根据22n v F m m rrω==可得v A >v B ,ωA >ωB 故A 正确,B 错误。
圆周运动经典题型分类练习题
圆周运动经典题型分类练习题1.关于匀速圆周运动,正确的说法是:B.由于速度大小不变,故它属于匀速运动。
在匀速圆周运动中,速度大小不变,但方向不断改变,因此是一种加速运动。
2.质点做匀速圆周运动时,正确的说法是:B.角速度越大,周期一定越小。
角速度是描述角度变化率的物理量,周期是指运动一周所需的时间,二者成正比关系。
3.关于匀速圆周运动的角速度与线速度,正确的说法是:C.线速度一定,角速度与半径成反比。
线速度是指质点在圆周上运动的速度,与半径成正比,而角速度是指质点在圆周上运动的角度变化率,与半径成反比。
4.关于圆周运动,正确的说法是:B.做匀速圆周运动的物体,其加速度可能不指向圆心。
加速度是速度变化率,而匀速圆周运动中速度大小不变,加速度只改变速度方向,不一定指向圆心。
5.关于匀速圆周运动,正确的说法是:A.匀速圆周运动就是匀速运动。
匀速圆周运动中,速度大小不变,因此也属于匀速运动。
6.关于向心力,正确的说法是:A.物体受到向心力的作用才可能做圆周运动。
向心力是指指向圆心的合力,是使物体做圆周运动的关键。
7.关于向心力,正确的说法是:A、物体受到向心力的作用才可能做匀速圆周运动。
向心力是指向圆心的力,是根据作用效果命名的。
8.正确的说法是:B.因为物体有向心力存在,所以才迫使物体不断改变运动速度方向而做圆周运动。
向心力是使物体做圆周运动的原因,而不是结果。
9.物体在水平面内做匀速圆周运动,半径为R,线速度为V,向心力为F。
如果增大垂直于线速度的力F的量值,那么物体的轨道会发生以下哪种变化?A。
向圆周内偏移 B。
向圆周外偏移 C。
线速度增大,保持原来的运动轨道 D。
线速度减小,保持原来的运动轨道。
10.下列关于向心加速度的说法中,正确的是()A。
向心加速度的方向始终与速度的方向垂直 B。
向心加速度的方向保持不变 C。
在匀速圆周运动中,向心加速度是恒定的 D。
在匀速圆周运动中,向心加速度的大小不断变化。
高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析
高中物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】(1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】(1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s水平分速度v x =v y tan450=10m/s则B 点与C 点的水平距离为:x=v x t=10m (2)根据牛顿运动定律,在B 点N B +mg=m 2v R解得 N B =50N根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上 【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.2.如图所示,一滑板放置在光滑的水平地面上,右侧紧贴竖直墙壁,滑板由圆心为O 、半径为R 的四分之一光滑圆弧轨道和水平轨道两部分组成,且两轨道在B 点平滑连接,整个系统处于同一竖直平面内.现有一可视为质点的小物块从A 点正上方P 点处由静止释放,落到A 点的瞬间垂直于轨道方向的分速度立即变为零,之后沿圆弧轨道AB 继续下滑,最终小物块恰好滑至轨道末端C 点处.已知滑板的质量是小物块质量的3倍,小物块滑至B 点时对轨道的压力为其重力的3倍,OA 与竖直方向的夹角为θ=60°,小物块与水平轨道间的动摩擦因数为μ=0.3,重力加速度g 取102/m s ,不考虑空气阻力作用,求:(1)水平轨道BC 的长度L ; (2)P 点到A 点的距离h . 【答案】(1)2.5R (2)23R 【解析】 【分析】(1)物块从A 到B 的过程中滑板静止不动,先根据物块在B 点的受力情况求解B 点的速度;滑块向左滑动时,滑板向左也滑动,根据动量守恒和能量关系列式可求解水平部分的长度;(2)从P 到A 列出能量关系;在A 点沿轨道切向方向和垂直轨道方向分解速度;根据机械能守恒列出从A 到B 的方程;联立求解h . 【详解】(1)在B 点时,由牛顿第二定律:2BB v N mg m R-=,其中N B =3mg ;解得2B v gR =从B 点向C 点滑动的过程中,系统的动量守恒,则(3)B mv m m v =+; 由能量关系可知:2211(3)22B mgL mv m m v μ=-+ 联立解得:L=2.5R ;(2)从P 到A 点,由机械能守恒:mgh=12mv A 2; 在A 点:01sin 60A A v v =,从A 点到B 点:202111(1cos60)22A B mv mgR mv +-= 联立解得h=23R3.如图所示,AB 为倾角37θ=︒的斜面轨道,BP 为半径R =1m 的竖直光滑圆弧轨道,O为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为μ=0.25,现有一质量m =2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍,sin370.6,37cos 0.8︒︒==,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ; (2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m . 【答案】(1)5m/s P v = (2)v C =9m/s (3)6m/s m v = 【解析】 【详解】(1)在P 点,根据牛顿第二定律:2PP v mg N m R+=解得: 2.55m/s P v gR ==(2)由几何关系可知BP 间的高度差(1cos37)BP h R =+︒物块C 至P 过程中,根据动能定理:2211sin 37cos37=22BP P C mgL mgh mgL mv mv μ-︒--︒-联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点, 物块C 至E 过程中根据动能定理:21cos37sin 37sin 53=02m mgL mgL mgR mv μ-︒-︒-︒-解得:6m/s m v =4.如图所示,光滑轨道槽ABCD 与粗糙轨道槽GH 通过光滑圆轨道EF 平滑连接(D 、G 处在同一高度),组成一套完整的轨道,整个装置位于竖直平面内。
高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)含解析
高考物理生活中的圆周运动解题技巧及经典题型及练习题( 含答案 ) 含分析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的1倍.地球表面的重力加快度2为 g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为 L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加快度?(2)细线刚被拉断时,小球抛出的速度多大?(3)细线所能蒙受的最大拉力?【答案】(1)1(2)s 2 g0(3)T1s2g星 = g v0[1] mg 04H L40 42(H L)L【分析】【剖析】【详解】(1)由万有引力等于向心力可知G Mm m v2R2R G Mm mgR2v2可得gR则 g星=1g0 4(2)由平抛运动的规律: H L 1g星t 22s v0t解得 v s2g004H L2(3)由牛顿定律,在最低点时:T mg星= mvL解得:T11s2mg042( H L )L【点睛】此题考察了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的根源是解决此题的重点.2.有一水平搁置的圆盘,上边放一劲度系数为k 的弹簧,如下图,弹簧的一端固定于轴O 上,另一端系一质量为m 的物体 A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω0多大时,物体 A 开始滑动?(2)当转速迟缓增大到 2 ω0时, A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少?【答案】( 1)g3mgl ( 2)4 mgl kl【分析】【剖析】(1)物体 A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力供给向心力;当圆盘转速较大时,弹力与摩擦力的协力供给向心力.物体 A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力供给向心力,依据牛顿第二定律求解角速度ω0.(2)当角速度达到 2 ω0时,由弹力与摩擦力的协力供给向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力供给向心力,当圆盘转速较大时,弹力与静摩擦力的协力供给向心力.(1)当圆盘转速为 n0时, A 马上开始滑动,此时它所受的最大静摩擦力供给向心力,则有:μmg= mlω02,解得:ω0g .=l即当ω0g时物体 A 开始滑动.=l(2)当圆盘转速达到 2 ω0时,物体遇到的最大静摩擦力已不足以供给向心力,需要弹簧的弹力来增补,即:μmg +k△x= mrω12,r=l+△x解得: Vx=3 mglkl 4 mg【点睛】当物体相关于接触物体刚要滑动时,静摩擦力达到最大,这是常常用到的临界条件.此题重点是剖析物体的受力状况.3.如下图,高为L 的倾斜直轨道AB、 CD 与水平面的夹角均为53°,分别与竖直平面内的圆滑圆弧轨道相切于B、D 两点,圆弧的半径也为L 。
高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)及解析
高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)及解析一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.如图,光滑轨道abcd 固定在竖直平面内,ab 水平,bcd 为半圆,在b 处与ab 相切.在直轨道ab 上放着质量分别为m A =2kg 、m B =1kg 的物块A 、B (均可视为质点),用轻质细绳将A 、B 连接在一起,且A 、B 间夹着一根被压缩的轻质弹簧(未被拴接),其弹性势能E p =12J .轨道左侧的光滑水平地面上停着一质量M =2kg 、长L =0.5m 的小车,小车上表面与ab 等高.现将细绳剪断,之后A 向左滑上小车,B 向右滑动且恰好能冲到圆弧轨道的最高点d 处.已知A 与小车之间的动摩擦因数µ满足0.1≤µ≤0.3,g 取10m /s 2,求(1)A 、B 离开弹簧瞬间的速率v A 、v B ; (2)圆弧轨道的半径R ;(3)A 在小车上滑动过程中产生的热量Q (计算结果可含有µ).【答案】(1)4m/s (2)0.32m(3) 当满足0.1≤μ<0.2时,Q 1=10μ ;当满足0.2≤μ≤0.3时,22111()22A A m v m M v -+ 【解析】 【分析】(1)弹簧恢复到自然长度时,根据动量守恒定律和能量守恒定律求解两物体的速度; (2)根据能量守恒定律和牛顿第二定律结合求解圆弧轨道的半径R ;(3)根据动量守恒定律和能量关系求解恰好能共速的临界摩擦力因数的值,然后讨论求解热量Q. 【详解】(1)设弹簧恢复到自然长度时A 、B 的速度分别为v A 、v B , 由动量守恒定律:0=A A B B m v m v - 由能量关系:2211=22P A A B B E m v m v -解得v A =2m/s ;v B =4m/s(2)设B 经过d 点时速度为v d ,在d 点:2dB B v m g m R=由机械能守恒定律:22d 11=222B B B B m v m v m g R +⋅ 解得R=0.32m(3)设μ=μ1时A 恰好能滑到小车左端,其共同速度为v,由动量守恒定律:=()A A A m v m M v +由能量关系:()2211122A A A A m gL m v m M v μ=-+ 解得μ1=0.2 讨论:(ⅰ)当满足0.1≤μ<0.2时,A 和小车不共速,A 将从小车左端滑落,产生的热量为110A Q m gL μμ== (J )(ⅱ)当满足0.2≤μ≤0.3时,A 和小车能共速,产生的热量为()22111122A A Q m v m M v =-+,解得Q 2=2J3.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=-解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J 【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.4.如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3s 后又恰好与倾角为045的斜面垂直相碰.已知半圆形管道的半径为1R m =,小球可看作质点且其质量为1m kg =,210/g m s =,求:(1)小球在斜面上的相碰点C 与B 点的水平距离; (2)小球通过管道上B 点时对管道的压力大小和方向. 【答案】(1)0.9m ;(2)1N 【解析】 【分析】(1)根据平抛运动时间求得在C 点竖直分速度,然后由速度方向求得v ,即可根据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在B 点应用牛顿第二定律求得支持力N B 的大小和方向. 【详解】(1)根据平抛运动的规律,小球在C 点竖直方向的分速度 v y =gt=10m/s水平分速度v x =v y tan450=10m/s则B 点与C 点的水平距离为:x=v x t=10m (2)根据牛顿运动定律,在B 点N B +mg=m 2v R解得 N B =50N根据牛顿第三定律得小球对轨道的作用力大小N , =N B =50N 方向竖直向上【点睛】该题考查竖直平面内的圆周运动与平抛运动,小球恰好垂直与倾角为45°的斜面相碰到是解题的关键,要正确理解它的含义.要注意小球经过B 点时,管道对小球的作用力可能向上,也可能向下,也可能没有,要根据小球的速度来分析.5.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)
高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.已知某半径与地球相等的星球的第一宇宙速度是地球的12倍.地球表面的重力加速度为g .在这个星球上用细线把小球悬挂在墙壁上的钉子O 上,小球绕悬点O 在竖直平面内做圆周运动.小球质量为m ,绳长为L ,悬点距地面高度为H .小球运动至最低点时,绳恰被拉断,小球着地时水平位移为S 求:(1)星球表面的重力加速度?(2)细线刚被拉断时,小球抛出的速度多大? (3)细线所能承受的最大拉力?【答案】(1)01=4g g 星 (2)0024g sv H L=-201[1]42()s T mg H L L =+- 【解析】 【分析】 【详解】(1)由万有引力等于向心力可知22Mm v G m R R =2MmGmg R= 可得2v g R=则014g g 星=(2)由平抛运动的规律:212H L g t -=星 0s v t =解得0024g s v H L=- (3)由牛顿定律,在最低点时:2v T mg m L-星=解得:201142()s T mg H L L ⎡⎤=+⎢⎥-⎣⎦【点睛】本题考查了万有引力定律、圆周运动和平抛运动的综合,联系三个问题的物理量是重力加速度g 0;知道平抛运动在水平方向和竖直方向上的运动规律和圆周运动向心力的来源是解决本题的关键.2.水平面上有一竖直放置长H =1.3m 的杆PO ,一长L =0.9m 的轻细绳两端系在杆上P 、Q 两点,PQ 间距离为d =0.3m ,一质量为m =1.0kg 的小环套在绳上。
杆静止时,小环靠在杆上,细绳方向竖直;当杆绕竖直轴以角速度ω旋转时,如图所示,小环与Q 点等高,细绳恰好被绷断。
重力加速度g =10m /s 2,忽略一切摩擦。
求:(1)杆静止时细绳受到的拉力大小T ; (2)细绳断裂时杆旋转的角速度大小ω; (3)小环着地点与O 点的距离D 。
圆周运动经典题型归纳
圆周运动经典题型归纳一、圆周运动基本物理量与传动装置1.共轴传动一个圆环以竖直直径AB为轴匀速转动,环上M、N两点的角速度之比为MN/MA=1/2,周期之比为2/1,线速度之比为1/2.2.皮带传动在某一皮带传动装置中,主动轮的半径为r1,从动轮的半径为r2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑。
从动轮的转速为n,因为皮带传动中,主动轮和从动轮的线速度相等。
3.齿轮传动如图所示,A、B两个齿轮的齿数分别是z1、z2,各自固定在过O1、O2的轴上,其中过O1的轴与电动机相连接,此轴每分钟转速为n1.求B齿轮的转速n2,A、B两齿轮的半径之比,以及在时间t内,A、B两齿轮转过的角度之比。
4.混合题型在图示的传动装置中,B、C两轮固定在一起绕同一轴转动,A、B两轮用皮带传动,三轮半径关系是rA=rC=2rB。
若皮带不打滑,则A、B、C轮边缘的a、b、c三点的角速度之比ωa:ωb:ωc=1:2:1,线速度之比va:vb:vc=1:2:2.二、向心力来源1.由重力、弹力或摩擦力中某一个力提供洗衣机的甩干桶竖直放置,桶的内径为20厘米,工作被甩的衣物贴在桶壁上,衣物与桶壁的动摩擦因数为μ。
若不使衣物滑落下去,甩干桶的转速至少为sqrt(5gμR),其中g为重力加速度,R为桶的半径。
2.在匀速转动的水平盘上,沿半径方向放着三个物体A、B、C,Ma=Mc=2Mb,他们与盘间的摩擦因数相等。
他们到转轴的距离的关系为Ra<Rb<Rc。
当转盘的转速逐渐增大时,先开始滑动的物体是B,沿半径向外滑动。
3.一质量为m的小球,用长的细线拴住在竖直面内作圆周运动。
当小球恰好能通过最高点时的速度为sqrt(2gh),细线的拉力为mg+mv^2/R,其中g为重力加速度,h为最高点的高度,v为小球在最高点的速度,R为圆周运动的半径。
4.向心力由几个力的合力提供1)由重力和弹力的合力提供半径为R的半球型碗底的光滑内表面,质量为m的小球正以角速度ω,在一水平面内作匀速圆周运动。
圆周运动几种题型(含答案)
人教版八年级地理上册:第四章第一节交通运输第1课时交通运输的选择教案【精品】交通运输是现代社会的重要组成部分,可以说没有交通运输的发展,人们的生活将无法便捷进行。
在不同的地区和国家,交通运输方式各不相同,根据不同的需求和条件,人们选择了多种交通方式。
首先,陆路交通是最为常见和普遍的交通方式之一。
汽车、火车、自行车、摩托车等都属于陆路交通工具。
汽车作为最为常用的交通工具之一,其优点在于灵活、快捷、方便,能够满足人们短距离出行的需求。
火车则适用于长途旅行,其运载能力大,可以同时运送大量的人和货物。
自行车和摩托车则适合于短距离出行,对于拥堵的城市道路也有一定的优势。
陆路交通的发展方便了人们的生活,使得交通更加便捷高效。
其次,水路交通也是世界各地都广泛应用的一种交通方式。
船舶运输是水路交通的主要形式,它可以分为河流运输和海洋运输。
河流运输适用于沿河流行驶的船舶,而海洋运输则是通过海洋进行跨洋航行。
水路交通的优势在于可以搬运大量的货物,能够承载大型设备和重型物资。
此外,水路交通还具有运输成本低、污染少等特点。
水路交通的发展与国际贸易密切相关,可以促进各国间的经济合作与发展。
再者,空运作为一种高效、快捷的交通方式,得到了广泛的应用。
随着现代航空技术的发展,飞机可以飞越大洋,连接遥远的地方。
空运的优势在于速度快、运载量大、适用范围广。
尤其对于远距离、国际间的货物和旅客运输,空运是最佳的选择。
然而,空运的成本相对较高,对于一些普通人来说并不是常用的交通方式。
最后,管道运输作为一种特殊的交通方式,主要用于液体和气体的输送。
石油、天然气、水等都可以通过管道运输进行输送。
相较于其他交通方式,管道运输具有连续性、稳定性和安全性高的特点。
尤其对于液体和气体的长距离运输,管道运输是一种高效且经济的选择。
然而,管道运输的建设和维护成本较高,受到地理条件的限制,不能覆盖所有地区。
综上所述,交通运输的选择是根据不同的需求和条件来确定的。
最新高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)
最新高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,一根长为0.1 m的细线,一端系着一个质量是0.18kg的小球,拉住线的另一端,使球在光滑的水平桌面上做匀速圆周运动,当小球的转速增加到原转速的3倍时,细线断裂,这时测得线的拉力比原来大40 N.求:(1)线断裂的瞬间,线的拉力;(2)这时小球运动的线速度;(3)如果桌面高出地面0.8 m,线断裂后小球沿垂直于桌子边缘的方向水平飞出去落在离桌面的水平距离.【答案】(1)线断裂的瞬间,线的拉力为45N;(2)线断裂时小球运动的线速度为5m/s;(3)落地点离桌面边缘的水平距离2m.【解析】【分析】【详解】(1)小球在光滑桌面上做匀速圆周运动时受三个力作用;重力mg、桌面弹力F N和细线的拉力F,重力mg和弹力F N平衡,线的拉力提供向心力,有:F N=F=mω2R,设原来的角速度为ω0,线上的拉力是F0,加快后的角速度为ω,线断时的拉力是F1,则有:F1:F0=ω2: 2ω=9:1,又F1=F0+40N,所以F0=5N,线断时有:F1=45N.(2)设线断时小球的线速度大小为v,由F1=2vmR,代入数据得:v=5m/s.(3)由平抛运动规律得小球在空中运动的时间为:t 220.810hsg⨯==0.4s,则落地点离桌面的水平距离为:x =vt =5×0.4=2m .3.如图所示,在竖直平面内有一半径为R 的14光滑圆弧轨道AB ,与水平地面相切于B 点。
圆周运动的题型归纳--一中
圆周运动题型总结题型一:圆周运动各物理量的关系1、如图所示,转轴O1上固定有两个半径为R和r的轮,用皮带传动O2轮,O2轮的半径是r ´,若O1每秒转了5转,R=1m,r=r´=0.5m,则(l)大轮转动的角速度多大?(2)图中A、C两点的线速度大小分别是多少?1.答案:31.4rad/s v A=15.7m/s v C=31.4m/s2.如图所示,A、B两轮半径之比为1:3,两轮边缘挤压在一起,在两轮转动中,接触点不存在打滑的现象,则两轮边缘的线速度大小之比等于______。
两轮的转数之比等于______,A轮半径中点与B轮边缘的角速度大小之比等于______。
2.答案:1∶1 、3∶1、3∶13、如图所示,一种向自行车车灯供电的小发电机的上端有一半径r0=1.0cm的摩擦小轮,小轮与自行车车轮的边缘接触.当车轮转动时,因摩擦而带动小轮转动,从而为发电机提供动力.自行车车轮的半径R1=35cm,小齿轮的半径R2=4.0cm,大齿轮的半径R3=10.0cm.求大齿轮的转速n l和摩擦小轮的转速n2之比.(假定摩擦小轮与自行车车轮之间无相对滑动)3.答案:2:1754、图示为一种“滚轮——平盘无级变速器”的示意图,它由固定于主动轴上的平盘和可随从动轴移动的圆柱形滚轮组成.由于摩擦的作用,当平盘转动时,滚轮就会跟随转动.如果滚轮不打滑,那么主动轴转速n1、从动轴转速n2、滚轮半径r以及滚轮中心距离主动轴轴线的距离x之间的关系是( )A.n2=n1xrB.n2=n1rxC.n2=n1x2r2D.n2=n1xr解析:滚轮与平盘接触处的线速度相等,故有:ω1x=ω2r,即2πn1x=2πn2r可得:n2=n1x r .4.答案:A5、如图所示,A 、B 是两个圆盘,它们能绕共同的轴以相同的角速度转动,两盘相距为L.有一颗子弹以一定速度垂直盘面射向A 盘后又穿过B 盘,子弹分别在A 、B 盘上留下的弹孔所在的半径之间的夹角为θ.现测得转轴的转速为n r/min ,求子弹飞行的速度.(设在子弹穿过A 、B 两盘过程中,两盘转动均未超过一周)题型二:圆周运动的应用(圆周运动的动力学问题)1、如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相 等的小 球A 和B ,在各自不同的水平面做匀速圆周运动,以下关系正确的是( B ) A.角速度 ωA >ωB B. 线速度v A >v B C. 向心加速度a A >a B D. 支持力N A >N B 1.答案:B2、如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm 处放置一小物块A ,其质量为m =2kg ,A 与盘面间相互作用的静摩擦力的最大值为其重力的k 倍(k =0.5),试求⑴当圆盘转动的角速度ω=2rad/s 时, 物块与圆盘间的摩擦力大小多大?方向如何?⑵欲使A 与盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(取g=10m/s 2解:(1)f=mr ω2=1.6N …① 方向为指向圆心。
高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析
高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v gR =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min 2x R R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max 2D v gR = 小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max 22x R =故落点与B 点水平距离d 的范围为:()()21221R d R -≤≤-3.如图所示,一轨道由半径2R m =的四分之一竖直圆弧轨道AB 和水平直轨道BC 在B 点平滑连接而成.现有一质量为1m Kg =的小球从A 点正上方2R处的O '点由静止释放,小球经过圆弧上的B 点时,轨道对小球的支持力大小18N F N =,最后从C 点水平飞离轨道,落到水平地面上的P 点.已知B 点与地面间的高度 3.2h m =,小球与BC 段轨道间的动摩擦因数0.2μ=,小球运动过程中可视为质点. (不计空气阻力, g 取10 m/s 2). 求:(1)小球运动至B 点时的速度大小B v(2)小球在圆弧轨道AB 上运动过程中克服摩擦力所做的功f W (3)水平轨道BC 的长度L 多大时,小球落点P 与B 点的水平距最大.【答案】(1)4?/B v m s = (2)22?f W J = (3) 3.36L m = 【解析】试题分析:(1)小球在B 点受到的重力与支持力的合力提供向心力,由此即可求出B 点的速度;(2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;(3)结合平抛运动的公式,即可求出为使小球落点P 与B 点的水平距离最大时BC 段的长度.(1)小球在B 点受到的重力与支持力的合力提供向心力,则有:2BN v F mg m R-=解得:4/B v m s =(2)从O '到B 的过程中重力和阻力做功,由动能定理可得:21022f B R mg R W mv ⎛⎫+-=- ⎪⎝⎭解得:22f W J =(3)由B 到C 的过程中,由动能定理得:221122BC C B mgL mv mv μ-=- 解得:222B C BCv v L gμ-= 从C 点到落地的时间:020.8ht s g== B 到P 的水平距离:2202B CC v v L v t gμ-=+ 代入数据,联立并整理可得:214445C C L v v =-+ 由数学知识可知,当 1.6/C v m s =时,P 到B 的水平距离最大,为:L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.4.一个同学设计了一种玩具的模型如图所示,该模型由足够长的倾斜直轨道AB 与水平直轨道BC 平滑连接于B 点,水平直轨道与圆弧形轨道相切于C 点,圆弧形轨道的半径为R 、直径CD 竖直,BC =4R 。
高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案)及解析
高考物理生活中的圆周运动解题技巧及经典题型及练习题( 含答案 ) 及分析一、高中物理精讲专题测试生活中的圆周运动1.如图,在竖直平面内,一半径为R 的圆滑圆弧轨道ABC 和水平轨道PA 在 A 点相切. BC 为圆弧轨道的直径.3O 为圆心, OA 和 OB 之间的夹角为α, sin α=,一质量为 m5的小球沿水平轨道向右运动,经 A 点沿圆弧轨道经过C点,落至水平轨道;在整个过程中,除遇到重力及轨道作使劲外,小球还向来遇到一水平恒力的作用,已知小球在 C 点所受协力的方向指向圆心,且此时小球对轨道的压力恰巧为零.重力加快度大小为g.求:(1)水平恒力的大小和小球抵达C 点时速度的大小;(2)小球抵达A点时动量的大小;(3)小球从C点落至水平轨道所用的时间.【答案】( 1)5gR (2) m23gR (3) 35R225g【分析】试题剖析本题考察小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动及其有关的知识点,意在考察考生灵巧运用有关知识解决问题的的能力.分析( 1)设水平恒力的大小为F0,小球抵达C点时所受协力的大小为F.由力的合成法例有F0tan①mgF 2(mg )2F02②设小球抵达 C 点时的速度大小为v,由牛顿第二定律得v2F m③R由①②③式和题给数据得F03mg ④4v5gR ⑤2(2)设小球抵达 A 点的速度大小为v1,作CD PA ,交PA于D点,由几何关系得DA R sin⑥CD R(1 cos)⑦由动能定理有mg CD F0DA 1 mv21mv12⑧22由④⑤⑥⑦⑧式和题给数据得,小球在 A 点的动量大小为p mv1m23gR ⑨2(3)小球走开 C 点后在竖直方向上做初速度不为零的匀加快运动,加快度大小为g.设小球在竖直方向的初速度为v ,从 C 点落至水平轨道上所用时间为t .由运动学公式有v t1gt 2CD ⑩2v vsin由⑤⑦⑩式和题给数据得35Rtg5点睛小球在竖直面内的圆周运动是常有经典模型,本题将小球在竖直面内的圆周运动、受力剖析、动量、斜下抛运动有机联合,经典创新.2.如下图,粗拙水平川面与半径为R=0.4m 的粗拙半圆轨道BCD相连结,且在同一竖直平面内, O 是 BCD的圆心, BOD 在同一竖直线上.质量为m=1kg 的小物块在水平恒力F=15N 的作用下,从 A 点由静止开始做匀加快直线运动,当小物块运动到 B 点时撤去 F,小物块沿半圆轨道运动恰巧能经过 D 点,已知 A、 B 间的距离为 3m ,小物块与地面间的动摩擦因数为0.5,重力加快度g 取 10m/s 2.求:(1)小物块运动到 B 点时对圆轨道 B 点的压力大小.(2)小物块走开 D 点后落到地面上的点与 D 点之间的距离【答案】( 1) 160N( 2)0.8 2 m【分析】【详解】(1)小物块在水平面上从 A 运动到 B 过程中,依据动能定理,有:(F-μmg) x AB1mv B2=-02在 B 点,以物块为研究对象,依据牛顿第二定律得:N mg m v B2R联立解得小物块运动到B 点时轨道对物块的支持力为: N=160N由牛顿第三定律可得,小物块运动到 B 点时对圆轨道 B 点的压力大小为: N ′=N=160N (2)因为小物块恰能经过 D 点,因此在 D 点小物块所受的重力等于向心力,即:2 mgmv DR可得: v D =2m/s设小物块落地址距B 点之间的距离为 x ,着落时间为 t ,依据平抛运动的规律有:x=v D t ,2R= 1gt 22解得: x=0.8m则小物块走开 D 点后落到地面上的点与D 点之间的距离l2x 0.8 2m3. 如下图,在水平桌面上离桌面右边沿3.2m 处放着一质量为0.1kg 的小铁球(可看作质点),铁球与水平桌面间的动摩擦因数μ=0.2.现用水平向右推力F=1.0N作用于铁球,作用一段时间后撤去。
高中物理高考物理生活中的圆周运动解题技巧及经典题型及练习题(含答案).docx
高中物理高考物理生活中的圆周运动解题技巧及经典题型及练习题( 含答案 )一、高中物理精讲专题测试生活中的圆周运动1.如图所示,半径R=2.5m 的竖直半圆光滑轨道在 B 点与水平面平滑连接,一个质量m=0.50kg 的小滑块 (可视为质点 )静止在 A 点 .一瞬时冲量使滑块以一定的初速度从 A 点开始运动 ,经 B 点进入圆轨道,沿圆轨道运动到最高点C,并从 C 点水平飞出 ,落在水平面上的 D 点 .经测量 ,D、B 间的距离s1=10m,A、B 间的距离s2=15m,滑块与水平面的动摩擦因数重力加速度.求 :,(1)滑块通过 C 点时的速度大小 ;(2)滑块刚进入圆轨道时 ,在 B 点轨道对滑块的弹力 ;(3)滑块在 A 点受到的瞬时冲量的大小 .【答案】( 1)(2) 45N(3)【解析】【详解】(1)设滑块从 C 点飞出时的速度为v c,从 C 点运动到 D 点时间为t滑块从 C 点飞出后,做平抛运动,竖直方向:2R= gt2水平方向: s1=v c t解得: v c=10m/s(2)设滑块通过 B 点时的速度为v B,根据机械能守恒定律mv B2= mv c2+2mgR解得: v B=10m/s设在 B 点滑块受轨道的压力为解得: N=45NN,根据牛顿第二定律: N-mg=m(3)设滑块从 A 点开始运动时的速度为A2B2- mvA2v,根据动能定理; -μ mgs= mv解得: v A=16.1m/s设滑块在 A 点受到的冲量大小为I,根据动量定理I=mv A解得: I=8.1kg?m/s ;【点睛】本题综合考查动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意分析物体运动的过程,选择正确的物理规律求解.2. 如图所示,一轨道由半径 R 2m 的四分之一竖直圆弧轨道AB 和水平直轨道 BC 在 B 点平滑连接而成.现有一质量为m 1Kg 的小球从 A 点正上方 R处的 O 点由静止释放,小2球经过圆弧上的 B 点时,轨道对小球的支持力大小F N18N ,最后从 C 点水平飞离轨 道,落到水平地面上的 P . B 点与地面间的高度 h3.2m ,小球与 BC段轨道间的动 点 已知 摩擦因数 0.2 ,小球运动过程中可视为质点 . (不计空气阻力,g 取 10 m/s 2). 求:(1)小球运动至 B 点时的速度大小 v B(2)小球在圆弧轨道 AB 上运动过程中克服摩擦力所做的功 W f(3)水平轨道 BC 的长度 L 多大时,小球落点P 与 B 点的水平距最大.【答案】( 1) v B =4?m / s ( 2) W f =22?J (3) L 3.36m【解析】试题分析: ( 1)小球在 B 点受到的重力与支持力的合力提供向心力,由此即可求出 B 点的速度;( 2)根据动能定理即可求出小球在圆弧轨道上克服摩擦力所做的功;( 3)结合平抛运动的公式,即可求出为使小球落点P 与 B 点的水平距离最大时BC 段的长度 .(1)小球在 B 点受到的重力与支持力的合力提供向心力,则有: F Nmg m v B 2R解得: v B 4m / s(2)从 O 到 B 的过程中重力和阻力做功,由动能定理可得:mg RRW f 1 mv B 2 022解得: W f22J(3)由 B 到 C 的过程中,由动能定理得:mgL BC1mv C21mv B 222解得: L BCv B 2v C 22g从 C 点到落地的时间:t 02h0.8sgB 到 P 的水平距离:Lv B2v C22v C t0g代入数据,联立并整理可得:L 41v C24v C45由数学知识可知,当 v C 1.6m / s时, P 到 B 的水平距离最大,为: L=3.36m【点睛】该题结合机械能守恒考查平抛运动以及竖直平面内的圆周运动,解题的关键就是对每一个过程进行受力分析,根据运动性质确定运动的方程,再根据几何关系求出最大值.3.如图所示,物体 A 置于静止在光滑水平面上的平板小车 B 的左端,物体在 A 的上方 O 点用细线悬挂一小球C(可视为质点 ),线长 L= 0.8m .现将小球 C 拉至水平无初速度释放,并在最低点与物体 A 发生水平正碰,碰撞后小球 C 反弹的速度为2m/s.已知 A、 B、 C的质量分别为 m A= 4kg、 m B= 8kg 和 m C=1kg, A、 B 间的动摩擦因数μ= 0.2, A、 C碰撞时间极短,且只碰一次,取重力加速度g= 10m/s 2.(1)求小球 C 与物体 A 碰撞前瞬间受到细线的拉力大小;(2)求 A、 C 碰撞后瞬间 A 的速度大小;(3)若物体 A 未从小车 B 上掉落,小车 B 的最小长度为多少?【答案】 (1)30 N(2)1.5 m/s(3)0.375 m【解析】【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m0gl 1002 2m v代入数据解得: v0= 4m/s ,对小球,由牛顿第二定律得:v02 F﹣m0g=m0l代入数据解得: F=30N(2)小球 C 与 A 碰撞后向左摆动的过程中机械能守恒,得:1mv C2mgh 2所以: v C2gh 2 100.2 2m/s小球与 A 碰撞过程系统动量守恒,以小球的初速度方向为正方向,由动量守恒定律得:m0v0=﹣ m0v c+mv A代入数据解得: v A=1.5m/s(3)物块 A 与木板 B 相互作用过程,系统动量守恒,以A 的速度方向为正方向,由动量守恒定律得: mv A =( m+M )v代入数据解得: v = 0.5m/s1 2 1 2由能量守恒定律得: μmgxmv A2(m+M ) v2代入数据解得: x =0.375m ;4. 如图所示,一质量 M =4kg 的小车静置于光滑水平地面上,左侧用固定在地面上的销钉 挡住。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动基础题1、关于向心力说法中正确的是( )A 、物体由于做圆周运动而产生的力叫向心力;B 、向心力只改变物体运动的方向,不改变物体运动的快慢;C 、做匀速圆周运动的的物体所受向心力是不变的;D 、向心力是除物体所受重力、弹力以及摩擦力以外的一种新的力.2、如图2所示,小物块A 与圆盘保持相对静止,跟着圆盘一起作匀速圆周运动, 则下列关于A 的受力情况说法正确的是 A .受重力、支持力B .受重力、支持力和指向圆心的摩擦力C .受重力、支持力、摩擦力和向心力D .受重力、支持力和与运动方向相同的摩擦力3、甲乙两物体都做匀速圆周运动,其质量之比为1∶2,转动半径之比为1∶2,在相 同时间内甲转过4周,乙转过3周.则它们的向心力之比为( ) A.1∶4 B.2∶3 C.4∶9 D.9∶164、长为L 的细线,拴一质量为m 的小球,小球的一端固定于O 1点,让其在水平面内作匀速圆周运动,形成圆锥摆,如图所示,求摆线与竖直方向成θ时: (1)摆线中的拉力大小(2)小球运动的线速度的大小 (3)小球做匀速圆周运动的周期5、一辆汽车在水平公路上转弯,沿曲线由M 向N 行驶,速度逐渐减小。
下面四图中所画汽车转弯时速度v 的方向和所受合力F 的方向,正确的是哪一图? (6、如图所示的传动装置中,A 、B 两轮同轴转动.A 、B 、C 三轮的半径大小的关系是RA=RC=2RB .当皮带不打滑时,三轮的角速度之比、三轮边缘的线速度大小之比、三轮边缘的向心加速度大小之比分别为多少?图2 M NAMNDMNCMN BF FFFvvvv7、在一个水平转台上放有A 、B 、C 三个物体,它们跟台面间的摩擦因数相同.A 的质量为2m ,B 、C 各为m .A 、B 离转轴均为r ,C 为2r .则( ) A .若A 、B 、C 三物体随转台一起转动未发生滑动,A 、C 的向心加速度比B 大B .若A 、B 、C 三物体随转台一起转动未发生滑动,B 所受的静摩擦力最小 C .当转台转速增加时,C 最先发生滑动D .当转台转速继续增加时,A 比B 先滑动竖直平面内作圆周运动的临界问题 (1)绳模型1、如图6-11-5所示,细线的一端有一个小球,现给小球一初速度,使小球绕细线另一端O 在竖直平面内转动,不计空气阻力,用F 表示球到达最高点时细线对小球的作用力,则F 可能 ( )A .是拉力B .是推力C .等于零D .可能是拉力,可能是推力,也可能等于零2、用细绳拴着质量为m 的物体,在竖直平面内做圆周运动,以下说法正确的是:( )A .物体通过最高点时,绳子对物体的弹力可能为零B .物体通过最高点时,物体的最小速度可能为零C .物体通过最高点时的最小速度为RgD .物体通过最高点时,绳子对物体的弹力方向可能与物体所受重力方向相反3、如图,质量为0.5kg 的小杯里盛有1kg 的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1m ,小杯通过最高点的速度为4m/s ,g取10m/s 2,求:(1) 在最高点时,绳的拉力? (2) 在最高点时水对小杯底的压力?(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少?(2)杆模型 1、长度为L =0.5 m 的轻质细杆OA ,A 端有一质量为m =3.0kg 的小球,AL Om如图所示,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m/s ,g 取10m/s 2,则此时细杆OA 受到( )A.6.0N 的拉力B.6.0N 的压力C.24N 的拉力D.24N 的压力2、如图所示,小球m 在竖直放置的光滑圆形管道内做圆周运动,下列说法中正确的有:A .小球通过最高点的最小速度为B .小球通过最高点的最小速度为零C .小球在水平线ab 以下管道中运动时,外侧管壁对小球一定有作用力D .小球在水平线ab 以上管道中运动时,内侧管壁对小球一定有作用力3、 长度为L =0.50m 的轻质细杆OA ,A 端有一质量为m =3.0kg的小球,如图所示,小球以o 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m/s ,g 取10m/s 2,此时刻细杆OA受到:( )A .6.0N 的拉力B .6.0N 的压力C .24N 的拉力D .24N 的压力4、 一根长为L 的轻质硬杆,两端各固定一质量为m 的小球。
现以杆的中点为轴心,使两小球在竖直平面内匀速转动,其周期gL T π2=。
在如图所示的竖直位置时,杆对两球的作用力是多少?(3)拱桥模型1、如图4-3-1所示,汽车车厢顶部悬挂一个轻质弹簧,弹簧下端拴一个质量为m 的小球,当汽车以某一速率在水平地面上匀速行驶时弹簧长度为L 1;当汽车以同一速度匀速率通过一个桥面为圆弧形凸形桥的最高点时,弹簧长度为L 2,下列答案中正确的是( ) A .L 1=L 2 B .L 1>L 2 C .L 1<L 2 D .前三种情况均有可能2、半径为 R 的光滑半圆球固定在水平面上,顶部有一小物体, 如图所示。
今给小物体一个水平初速度0v Rg =,则小物体将( )o Am LA BOA.沿球面下滑至 M 点B.先沿球面下滑至某点N,然后便离开斜面做斜下抛运动 C.按半径大于 R 的新的圆弧轨道做圆周运动 D.立即离开半圆球做平抛运动3、汽车通过拱桥颗顶点的速度为10 m /s 时,车对桥的压力为车重的34 。
如果使汽车驶至桥顶时对桥恰无压力,则汽车的速度为 ( )A 、15 m /sB 、20 m /sC 、25 m /sD 、30m /s4、质量为800kg 的小汽车驶过一座半径为50m 的圆拱桥,到达桥顶时的速度为5m/s ,求此时汽车对桥的压力。
5、如图所示,用始终与运动方向相同的拉力,使一质量为5kg 的物体以2m/s 的速率运动,轨道的凹凸部分均为半径为50cm 的圆弧,物体与轨道间的动摩擦因数为0.3,求物体通过圆弧的最高点和最低点时的拉力各是多大?(g 取10m/s 2)6、 飞机做俯冲拉起运动时,在最低点附近做半径r =140m 的圆周运动(如图),如果飞行员的质量m =70kg ,飞机经过最低点P 时的速度v =360km/h ,求这时飞行员对座位的压力大小为多少?(g 取10m/s 2)7、如图所示,轻绳下端系一质量为1kg 的小桶,桶底放一质量为0.5kg 的木块。
现在使小桶与木块一起在竖直平面内做半径为R =0.5m 的圆周运动,若小桶通过圆弧最低点的速度为5m/s ,求: (1)木块对桶底的压力;(2)木块所受的合力;(3)绳子所受的拉力?水平面内作圆周运动的临界问题在水平面上做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动的(半径有变化)趋势。
这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力存在时方向朝哪(特别是一些接触力,如静摩擦力、绳的拉力等)。
1、火车转弯做圆周运动,如果外轨和内轨一样高,火车能匀速通过弯道做圆周运动,下列说法中正确的是( ) A.火车通过弯道向心力的来源是外轨的水平弹力,所以外轨容易磨损 B.火车通过弯道向心力的来源是内轨的水平弹力,所以内轨容易磨损 C.火车通过弯道向心力的来源是火车的重力,所以内外轨道均不磨损D.以上三种说法都是错误的2、冰面对溜冰运动员的最大摩擦力为运动员重力的k 倍,在水平冰面上沿半径为R 的圆周滑行的运动员,若依靠摩擦力充当向心力,其安全速度为 ()3、如图所示,物块在水平圆盘上,与圆盘一起绕固定轴飞速转动,下列说法中正确的是( ) A .物块处于平衡状态 B .物块受三个力作用C .在角速度一定时,物块到转轴的距离越远,物块越不容易脱离圆盘D .在物块到转轴距离一定时,物块运动周期越小,越不容易脱离圆盘4、在一个水平转台上放有A 、B 、C 三个物体,它们跟台面间的摩擦因数相同.A 的质量为2m ,B 、C 各为m .A 、B 离转轴均为r ,C 为2r .则( ) A .若A 、B 、C 三物体随转台一起转动未发生滑动,A 、C 的向心加速度比B 大 B .若A 、B 、C 三物体随转台一起转动未发生滑动,B 所受的静摩擦力最小 C .当转台转速增加时,C 最先发生滑动 D .当转台转速继续增加时,A 比B 先滑动5、一圆盘可以绕其竖直轴在图2所示水平面内转动,圆盘半径为R 。
甲、乙物体质量分别是M 和m (M>m ),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为)(R L L <的轻绳连在一起。
若将甲物体放在转轴位置上,甲、乙之间连线刚好沿半径方向被拉直,要使两物体与圆盘间不发生相对滑动,则转盘旋转角速度的最大值不得超过(两物体均看作质点)( )A.mL gm M )(-μ B.C.ML gm M )(+μ D.6h 处,绳长l 大于h ,其转速最大值是( )A .h g π21B .gh πC .l g π21 D .g l π27、如图所示,在水平转台上放有A 、B 两个小物块,它们距离轴心O 分别为r A =0.2m ,r B =0.3m ,它们与台面间相互作用的静摩擦力的最大值为其重力的0.4倍,g 取10 m/s2,(1)当转台转动时,要使两物块都不发生相对于台面的滑动,求转台转动的角速度的范围;(2)要使两物块都对台面发生滑动,求转台转动角速度应满足的条件。
8、如图所示,光滑的水平圆盘中心O 各系一个小球A 和B ,两球质量相等,圆盘上的A 球做半径为r=20cm 的匀速圆周运动,要使B 球保持静止状态,求A 球的角速度ω应是多大B9、如图所示,水平转盘上放有质量为m的物块,当物块到转轴的距离为r时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。
物体和转盘间最大静摩擦力是其下压力的μ倍。
求:⑴当转盘角速度ω1=μg2r时,细绳的拉力T1。
⑵当转盘角速度ω2=3μg2r时,细绳的拉力T2。
10、如图所示,两绳系一质量为m=0.1kg的小球,上面绳长L=2m,两端都拉直时与轴的夹角分别为30°与45°,问球的角速度在什么范围内,两绳始终张紧,当角速度为3 rad/s时,上、下两绳拉力分别为多大?11如图(a)所示,在光滑的圆锥顶用长为L的细线悬挂一质量为m的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.此时绳的张力是多少?若要小球离开锥面,则小球的角速度至少为多少?r oω。