天体运动经典题型
必修二专题复习天体运动经典好题
必修二专题复习 天体运动经典好题一.选择题1.环绕地球在圆形轨道上运行的人造地球卫星,其周期可能是( )A .60分钟B .80分钟C .180分钟D .25小时2.地球同步卫星距地面高度为h ,地球表面的重力加速度为g ,地球半径为R,地球自转的角速度为ω,那么下列表达式表示同步卫星绕地球转动的线速度的是( )A.ω)(h R v +=B.)/(h R Rg v +=C.)/(h R g R v +=D.32ωg R v =3.组成星球的物质是靠引力吸引在一起的,这样的星球有一个最大的自转速率.如果超过了该速率,星球的万有引力将不足以维持其赤道附近的物体做圆周运动.由此能得到半径为R 、密度为ρ、质量为M 且均匀分布的星球的最小自转周期T .下列表达式中正确的是( )A .T =2πGM R 3B .T =2πGMR 33 C .T =ρπG D .T =ρπG 3 4.地球表面重力加速度g 地、地球的半径R 地,地球的质量M 地,某飞船飞到火星上测得火星表面的重力加速度g 火、火星的半径R 火、由此可得火星的质量为( ) A. 地地地火火M R g R g 22 B. 地火火地地M R g R g 22 C. 地地地火火M R g R g 22 D. 地地地火火M R g R g 5.我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G .由此可求出S 1的质量为( )A .2122)(4GT r r r -π B .22124GT r π C .2224GT r π D .21224GT r r π6.“嫦娥一号”是我国的首颗绕月人造卫星,以中国古代神话人物嫦娥命名,于北京时间2007年10月24日18时05分在西昌卫星发射中心用长征三号甲运载火箭将其成功送入太空,它的发射成功,标志着我国实施绕月探测工程迈出重要一步。
天体运动经典大题
天体运动1.人类对宇宙的探索是无止境的。
随着科学技术的发展,人类可以运送宇航员到遥远的星球去探索宇宙奥秘。
假设宇航员到达了一个遥远的星球,此星球上没有任何气体。
此前,宇航员乘坐的飞船绕该星球表面运行的周期为T ,着陆后宇航员在该星球表面附近从h 高处以初速度0v 水平抛出一个小球,测出小球的水平射程为L ,已知万有引力常量为G 。
(1)求该星球的密度;(2)若在该星球表面发射一颗卫星,那么发射速度至少为多大?2.一组宇航员乘坐太空穿梭机,去修理位于离地球表面m h 5100.6⨯=的圆形轨道上的哈勃太空望远镜H 。
机组人员使穿梭机s 进入与H 相同的轨道并关闭助推火箭,而望远镜则在穿梭机前方数千米处,如图所示。
设G 为引力常量,M 为地球质量(已知地球半径为m R 6104.6⨯=,地球表面重力加速度取2/8.9s m )。
(1) 在穿梭机内,一质量为kg m 70=的太空人站在台秤上视重是多少?(2) 计算轨道上的重力加速度及穿梭机在轨道上的速率。
(3) 穿梭机需首先进入半径较小的轨道,才有较大的角速度以超前望远镜。
试判断穿梭机要进入较低轨道时应增加还是减小其原有速率,说明理由。
3.若宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图9所示. 为了安全,返回舱与轨道舱对接时,必须具有相同的速度. 已知:该过程宇航员乘坐的返回舱至少需要获得的总能量为E(可看作是返回舱的初动能),返回舱与人的总质量为m,火星表面重力加速度为g,火星半径为R,轨道舱到火星中心的距离为r,不计火星表面大气对返回舱的阻力和火星自转的影响. 问:(1)返回舱与轨道舱对接时,返回舱与人共具有的动能为多少?(2)返回舱在返回过程中,返回舱与人共需要克服火星引力做多少功?4、我国发射的“嫦娥一号”卫星发射后首先进入绕地球运行的“停泊轨道”,通过加速再进入椭圆“过渡轨道”,该轨道离地心最近距离为L1,最远距离为L2,卫星快要到达月球时,依靠火箭的反向助推器减速,被月球引力“俘获”后,成为环月球卫星,最终在离月心距离L3的“绕月轨道”上飞行.已知地球半径为R,月球半径为r,地球表面重力加速度为g,月球表面的重力加速度为g/6,求:(1)卫星在“停泊轨道”上运行的线速度;(2)卫星在“绕月轨道”上运行的线速度.卫星L3停泊轨道过渡轨道L1绕月轨道L25.科学家在地球轨道外侧发现了一颗绕太阳运行的小行星,经过观测该小行星每隔t 时间与地球相遇一次,已知地球绕太阳公转半径是R ,周期是T ,设地球和小行星都是圆轨道,求小行星与地球的最近距离。
天体运动经典例题含答案
1.人造地球卫星做半径为r ,线速度大小为v 的匀速圆周运动。
当其角速度变为原来的24倍后,运动半径为_________,线速度大小为_________。
【解析】由22Mm Gm r rω=可知,角速度变为原来的24倍后,半径变为2r ,由v r ω=可知,角速度变为原来的24倍后,线速度大小为22v 。
【答案】2r ,22v 2.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为0N,已知引力常量为G,则这颗行星的质量为A .2GNmv B.4GNmvC .2GmNv D.4GmNv【解析】卫星在行星表面附近做匀速圆周运动,万有引力提供向心力,根据牛顿第二定律有R v m M G 2/2/R m =,宇航员在行星表面用弹簧测力计测得质量为m 的物体的重为N ,则 N M G =2Rm ,解得M=GN4mv ,B 项正确。
【答案】B3.如图所示,在火星与木星轨道之间有一小行星带。
假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动。
下列说法正确的是 A.太阳对小行星的引力相同B.各小行星绕太阳运动的周期小于一年C.小行星带内侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于 地球公转的线速度值【答案】C 【解析】根据行星运行模型,离地越远,线速度越小,周期越大,角速度越小,向心加速度等于万有引力加速度,越远越小,各小行星所受万有引力大小与其质量相关,所以只有C 项对。
4.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原处;若他在某星球表面以相同的速度竖直上抛同一小球,需经过时间5t 小球落回原处.(取地球表面重力加速度g=10 m/s 2,空气阻力不计)(1)求该星球表面附近的重力加速度g ′.(2)已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,求该星球的质量与地球质量之比M 星∶M 地.答案 (1)2 m/s2 (2)1∶80解析 (1)在地球表面竖直上抛小球时,有t =g 02v ,在某星球表面竖直上抛小球时,有5t ='20g v所以g ′=g51=2 m/s2(2)由G801)41(51',,22222=⨯====地星地星所以得gR R g M M G gR M mg R Mm 5.关于卡文迪许扭秤实验对物理学的贡献,下列说法中正确的是 ( )A .发现了万有引力的存在B .解决了微小力的测定问题C .开创了用实验研究物理的科学方法D .验证了万有引力定律的正确性6.假设地球是一半径为R.质量分布均匀的球体。
高中物理关于天体运动专题例题+练习
3.已知地球的同步卫星的轨道半径约为地球半径的6.0倍,根据你知道的常识,可以估算出地球到月球的距离,这个距离最接近( ) A .地球半径的40倍 B .地球半径的60倍 C .地球半径的80倍 D .地球半径的100倍10据报道,我国数据中继卫星“天链一号01星”于2008年4月25日在西昌卫星发射中心发射升空,经过4次变轨控制后,于5月1日成功定点在东经77°赤道上空的同步轨道.关于成功定点后的“天链一号01星”,下列说法正确的是A.运行速度大于7.9 km/sB.离地面高度一定,相对地面静止C.绕地球运行的角速度比月球绕地球运行的角速度大D.向心加速度与静止在赤道上物体的向心加速度大小相等4.宇航员在月球表面完成下面实验:在一固定的竖直光滑圆弧轨道内部的最低点,静止一质量为m 的小球(可视为质点),如图所示,当给小球水平初速度υ0时,刚好能使小球在竖直平面内做完整的圆周运动。
已知圆弧轨道半径为r ,月球的半径为R ,万有引力常量为G 。
若在月球表面上发射一颗环月卫星,所需最小发射速度为( ) A .Rr r550υB .Rr r520υC .Rr r50υD .Rr r5520υ3.(6分)(红河州模拟)“神舟”五号载人飞船在绕地球飞行的第五圈进行变轨,由原来的椭圆轨道变为距地面高度为h 的圆形轨道.已知飞船的质量为m ,地球半径为R ,地面处的重力加速度为g .则飞船在上述圆轨道上运行的动能E k ( ) A . 等于mg (R+h ) B . 小于mg (R+h ) C . 大于mg (R+h ) D . 等于mgh7(沈阳质量检测 ).为了探测x 星球,总质量为1m 的探测飞船载着登陆舱在以该星球中心为圆心的圆轨道上运动,轨道半径为1r ,运动周期为1T 。
随后质量为2m 的登陆舱脱离飞船,变 轨到离星球更近的半径为2r 的圆轨道上运动,则A .x 星球表面的重力加速度211214T r g π= B .x 星球的质量213124GT r M π= C .登陆舱在1r 与2r 轨道上运动时的速度大小之比122121r m r m v v = D .登陆舱在半径为2r 轨道上做圆周运动的周期131322T r r T = 答案:BD5. (北京房山期末) GPS 导航系统可以为陆、海、空三大领域提供实时、全天候和全球性的导航服务,它是由周期约为12h 的卫星群组成。
高中物理天体运动 6大题型总结归纳试题练习
天体运动题型一:开普勒三定律的应用题型二:万有引力应用之质量、密度、重力加速度等的计算题型三:多星问题(双星和三星)题型四:追击问题题型五:宇宙速度例1:(2018夹角)A.(1-1、(2016A.B.C.D.2.(2018·河北省石家庄市模拟)地球和木星绕太阳的运动可近似看成是同一平面内的同方向绕行的匀速圆周运动,已知木星的轨道半径约为地球轨道半径的5.2倍,估算木星与地球距离最近的相邻两次时间间隔约为()A.1年 B.1.1年 C.1.5年 D.2年[练习提升]1、(2019•全国Ⅱ卷•T1)2019年1月,我国嫦娥四号探测器成功在月球背面软着陆,在探测器“奔向”月球的过程中,用h表示探测器与地球表面的距离,F表示它所受的地球引力,能够描F随h变化关系的图像是( )A. B. C. D.2、(2018•济宁一模)对于环绕地球做圆周运动的卫星说,它们绕地球做圆周运动的周期会随着轨道半径的变化而变化,某同学根据测得的不同卫星做圆周运动的半径r 与周期T 关系作出如图所示图象,则可求A .B .C .D .例1:,则有:r 金r 地=k ;C 正确,ABD1、答案:B【解析】开普勒在天文观测数据的基础上,总结出了开普勒天体运动三定律,找出了行星运动的规律,而牛顿发现了万有引力定律,ACD 错误,B 正确。
2.答案:B【解析】地球、木星都绕太阳运动,所以根据开普勒第三定律可得3322=RRT T木地地木,即1=11.9 T木地年,设经时间t两星又一次距离最近,根据tθω=,则两星转过1.1t=年,B正确。
1、答案:D2、答案:B【分析】根据万有引力提供向心力,得到轨道半径与周期的函数关系,再结合图象计算斜率,从而可以计算出地球的质量.【解答】解:由万有引力提供向心力有:,得:,由图可知:,所以地球的质量为:,故B正确、ACD错误。
例1:(2019P由上用完全相同的弹簧,改用物体Q完成同样的过程,其a–x关系如图中虚线所示,假设两星球均为质量均匀分布的球体。
天体运动试题及答案
天体运动试题及答案1. 请简述开普勒第一定律的内容。
答案:开普勒第一定律,也称为椭圆定律,指出所有行星围绕太阳运动的轨道都是椭圆形状,太阳位于椭圆的一个焦点上。
2. 根据开普勒第三定律,行星公转周期与其轨道半长轴的关系是怎样的?答案:开普勒第三定律,也称为调和定律,表明所有行星绕太阳公转周期的平方与它们轨道半长轴的立方成正比。
3. 描述牛顿万有引力定律的主要内容。
答案:牛顿万有引力定律指出,宇宙中任何两个物体之间都存在引力,其大小与两物体的质量的乘积成正比,与它们之间的距离的平方成反比。
4. 请解释什么是地球的公转和自转。
答案:地球的公转是指地球围绕太阳的运动,周期大约为一年。
地球的自转是指地球围绕自己的轴线旋转,周期大约为一天。
5. 简述潮汐现象是如何产生的。
答案:潮汐现象是由于地球、月球和太阳的引力作用,导致地球上的海水周期性地涨落。
6. 为什么我们通常看不到月球的背面?答案:月球的自转周期与公转周期相同,这种现象称为潮汐锁定,因此我们总是看到月球的同一面。
7. 描述地球在太阳系中的位置。
答案:地球是太阳系中的第三颗行星,位于金星和火星之间。
8. 请解释什么是日食和月食。
答案:日食是指月球位于地球和太阳之间,遮挡住太阳的现象;月食是指地球位于太阳和月球之间,地球的阴影遮挡住月球的现象。
9. 简述恒星和行星的区别。
答案:恒星是能够通过核聚变产生能量的天体,而行星是围绕恒星运行的较小天体,不能产生能量。
10. 请解释什么是黑洞。
答案:黑洞是一种天体,其质量极大,引力极强,以至于连光都无法逃逸,因此无法直接观测到。
高考天体运动经典
曲线运动2——万有引力与航天:开普勒三大定律1、(单选)关于行星运动的规律,下列说法符合史实的是( )A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律【答案】B 【解析】开普勒在天文观测数据的基础上,总结出了行星运动的规律,牛顿在开普勒研究基础上结合自己发现的牛顿运动定律,发现了万有引力定律,指出了行星按照这些规律运动的原因,选项B正确.2、(单选)为了探测引力波,“天琴计划”预计发射地球卫星P,其轨道半径约为地球半径的16倍;另一地球卫星Q的轨道半径约为地球半径的4倍。
P与Q的周期之比约为()A. 2:1B. 4:1C. 8:1D. 16:1【来源】2018年全国普通高等学校招生统一考试物理(全国III卷)【答案】C3、(多选)如图,海王星绕太阳沿椭圆轨道运动,P为近日点,Q为远日点,M、N为轨道短轴的两个端点,运行的周期为T。
若只考虑海王星和太阳之间的相互作用,则海王星在从P经过M、Q到N的运动过程中()A.从P到M所用的时间等于0/4TB.从Q到N阶段,机械能逐渐变大C.从P到Q阶段,速率逐渐变小D.从M到N阶段,万有引力对它先做负功后做正功【答案】CD4、(单选)2015年12月10日,我国成功将中星1C卫星发射升空,卫星顺利进入预定转移轨道。
如图所示为该卫星沿椭圆轨道绕地球运动的示意图,已知地球半径为R,地球表面重力加速度g,卫星远地点P距地心O的距离为3R,则()A. 卫星在远地点的速度大于B. 卫星经过远地点时的速度最大C. 卫星经过远地点时的加速度小于D. 卫星经过远地点时加速,卫星可能再次经过远地点【答案】 D曲线运动2——万有引力与航天:万有引力的应用1、(单选)若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2∶7.已知该行星质量约为地球的7倍,地球的半径为R.由此可知,该行星的半径约为( )A.12R B.72R C.2R D.72R①/②得r=2R因此A、B、D错,C对.2、(单选)据报道,科学家们在距离地球20万光年外发现了首颗系外“宜居”行星.假设该行星质量约为地球质量的6.4倍,半径约为地球半径的2倍.那么,一个在地球表面能举起64 kg物体的人在这个行星表面能举起的物体的质量约为多少(地球表面重力加速度g=10 m/s2)( )A.40 kg B.50 kg C.60 kg D.30 kg解析:根据万有引力等于重力G Mm R 2=mg 得g =GM R2,因为行星质量约为地球质量的6.4倍,其半径是地球半径的2倍,则行星表面重力加速度是地球表面重力加速度的1.6倍,而人的举力认为是不变的,则人在行星表面所举起的重物质量为m =m 01.6=641.6kg =40 kg ,故A 正确.答案:A 3、(多选)宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t 小球落回原地.若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处.已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,地球表面重力加速度为g ,设该星球表面附近的重力加速度为g ′,空气阻力不计.则( )A .g ′∶g =1∶5B .g ′∶g =5∶2C .M 星∶M 地=1∶20D .M 星∶M 地=1∶80解析:由速度对称性知竖直上抛的小球在空中运动时间t =2v 0g ,因此得g ′g =t 5t =15,A 正确,B 错误;由G Mm R2=mg 得M =gR 2G ,因而M 星M 地=g ′R 2星gR 2地=15×(14)2=180,C 错误,D 正确.答案:AD4、(单选)已知地球赤道处的重力加速度为g ,物体在赤道上随地球自转的向心加速度为a 。
天体运动习题及答案
天体运动习题及答案1.假设某行星绕太阳运转的轨道半径为r,周期为T,引力常量为G,则可求得太阳的质量。
根据牛顿第二定律和万有引力定律,行星受到的向心力为F=GMm/r^2,其中M为太阳质量,m为行星质量。
又因为行星做匀速圆周运动,所以F=ma=m4π^2r/T^2.将两个式子相等,解得M=4π^2r^3/GT^2.2.该星球的质量将是地球质量的64倍。
根据牛顿万有引力定律,重力加速度与质量成正比,与距离平方成反比。
设该星球质量为M,半径为r,则重力加速度为GM/r^2.又因为重力加速度是地球的4倍,所以GM/r^2=4GM/R^2,解得M=64M。
3.正确选项为AB。
根据牛顿万有引力定律,行星表面重力加速度与行星质量和半径成正比。
因为火星质量是地球质量的十分之一,直径是地球的一半,所以表面重力加速度是地球的约三成。
行星公转周期与轨道半径的三次方成正比,所以火星公转周期比地球长。
4.该行星的平均密度为3πGT^2/4.根据牛顿万有引力定律,宇宙飞船做匀速圆周运动的向心力为F=mv^2/r=GMm/r^2,其中m为行星质量,v为宇宙飞船的速度。
又因为周期T=2πr/v,所以可以解得m=4π^2r^3/GT^2.将行星质量代入密度公式ρ=m/V,其中V为行星体积,代入球体积公式V=4/3πr^3,解得密度为3πGT^2/4.5.能够计算出火星的密度和火星表面的重力加速度。
根据开普勒第三定律,T^2/r^3=4π^2/GM,其中M为火星质量。
又因为探测器在不同高度的轨道上运动,所以可以利用万有引力定律计算出火星的质量和表面重力加速度。
6.正确选项为D。
根据牛顿第二定律和万有引力定律,物体做匀速圆周运动的向心力为F=mv^2/r=GMm/r^2,其中m为物体质量,v为物体速度。
同步卫星和近地卫星的运动速度和周期可以利用牛顿第二定律和开普勒第三定律计算得出。
7.确信卫星与“神舟七号”的线速度大小之比为1∶2.根据牛顿第二定律和万有引力定律,物体做匀速圆周运动的向心力为F=mv^2/r=GMm/r^2,其中m为物体质量,v为物体速度。
高三一轮专题复习:天体运动题型归纳
天体运动题型归纳题型一:天体的自转【例题1】一物体静置在平均密度为ρ的球形天体表面的赤道上。
已知万有引力常量为G ,若由于天体自转使物体对天体表面压力怡好为零,则天体自转周期为( )A .124π3G ρ⎛⎫ ⎪⎝⎭B .1234πG ρ⎛⎫ ⎪⎝⎭C .12πG ρ⎛⎫ ⎪⎝⎭D .123πG ρ⎛⎫ ⎪⎝⎭解析:在赤道上22R m mg RMmGω+=① 根据题目天体表面压力怡好为零而重力等于压力则①式变为 22R m RMmGω=②又 ②③④得:23GT πρ= ④即21)3(ρπG T =选D 练习1、已知一质量为m 的物体静止在北极与赤道对地面的压力差为ΔN ,假设地球是质量分布均匀的球体,半径为R 。
则地球的自转周期为( )A. 2T =B.2T =C.R N m T ∆=π2D.N m RT ∆=π22、假设地球可视为质量均匀分布的球体,已知地球表面的重力加速度在两极的大小为g 0,在赤道的大小为g ;地球自转的周期为T ,引力常数为G ,则地球的密度为:A.0203g g g GT π B. 0203g g g GT π C. 23GT π D. 023g g GTπρ 题型二:近地问题+绕行问题【例题1】若宇航员在月球表面附近高h 处以初速度0v 水平抛出一个小球,测出小球的水平射程为L 。
已知月球半径为R ,引力常量为G 。
则下列说法正确的是A .月球表面的重力加速度g 月=h v 20L2B .月球的质量m 月=hR 2v 20GL 2 C .月球的第一宇宙速度v =v 0L2h D .月球的平均密度ρ=3h v 202πGL 2R解析 根据平抛运动规律,L =v 0t ,h =12g 月t 2,联立解得g 月=2h v 20L 2;由mg 月=G mm 月R 2,解得m 月=2hR 2v 20GT 2;由mg 月=m v 2R ,解得v =v 0L 2hR ;月球的平均密度ρ=m 月43πR 3=3h v 202πGL 2R。
天体运动测试题及答案解析
天体运动测试题及答案解析一、单项选择题1. 以下关于天体运动的描述,错误的是:A. 行星围绕恒星运动B. 恒星围绕行星运动C. 卫星围绕行星运动D. 行星围绕太阳运动答案:B解析:在天体运动中,行星是围绕恒星运动的,恒星是宇宙中发光的天体,不会围绕行星运动。
2. 太阳系中,以下哪个行星的自转周期与公转周期相同?A. 水星B. 金星C. 地球D. 火星答案:B解析:金星是太阳系中唯一一个自转周期与公转周期相同的行星,这意味着金星上的一天与一年时间相同。
3. 以下哪个天体不属于太阳系?A. 地球B. 月球C. 火星D. 比邻星答案:D解析:比邻星是距离太阳系最近的恒星,不属于太阳系。
二、多项选择题1. 以下哪些因素会影响天体运动的轨道?A. 万有引力B. 离心力C. 向心力D. 科里奥利力答案:A, C解析:万有引力是天体运动轨道的主要影响因素,向心力是维持天体轨道运动所需的力。
离心力是向心力的反作用力,但在天体运动中通常不单独考虑。
科里奥利力主要影响地球表面物体的运动,对天体轨道的影响较小。
2. 以下哪些是太阳系内的天体?A. 太阳B. 地球C. 月球D. 仙女座星系答案:A, B, C解析:太阳、地球和月球都是太阳系内的天体。
仙女座星系是一个星系,不属于太阳系。
三、填空题1. 太阳系中,行星按照离太阳的距离从近到远依次是:水星、金星、地球、火星、木星、土星、天王星和________。
答案:海王星解析:海王星是太阳系中离太阳最远的行星。
2. 地球的自转周期是________小时,公转周期是________年。
答案:24小时,1年解析:地球自转一周的时间是24小时,公转一周的时间是一年。
四、简答题1. 简述开普勒三定律的内容。
答案:开普勒三定律是描述行星运动的三个基本定律,具体内容如下:第一定律(椭圆定律):行星围绕太阳运动的轨道是一个椭圆,太阳位于椭圆的一个焦点上。
第二定律(面积定律):连接行星和太阳的线段在相等的时间间隔内扫过的面积相等。
天体运动典型例题
题型一、填补法思想例1.如图7-3-1所示,在一个半径为R、质量为M的均匀球体中,紧贴球的边缘挖去一个半径为R/2的球形空穴后,剩余的阴影部分对位于球心和空穴中心连线上、与球心相距d的质点m的引力是多大?练1、如图,P、Q为某地区水平地面上的两点,在P点正下方一球形区域内储藏有石油,假定区域周围岩石均匀分布,密度为ρ;石油密度远小于ρ,可将上述球形区域视为空腔.如果没有这一空腔,则该地区重力加速度(正常值)沿竖直方向;当存在空腔时,该地区重力加速度的大小和方向会与正常情况有微小偏高.重力加速度在原竖直方向(即PO方向)上的投影相对于正常值的偏离叫做“重力加速度反常”.为了探寻石油区域的位置和石油储量,常利用P点附近重力加速度反常现象.已知引力常数为G.(1)设球形空腔体积为V,球心深度为d(远小于地球半径),PQ=x,求空腔所引起的Q点处的重力加速度反常.(2)若在水平地面上半径L的范围内发现:重力加速度反常值在g与kg(k>1)之间变化,且重力加速度反常的最大值出现在半为L的范围的中心,如果这种反常是由于地下存在某一球形空腔造成的,试求此球形空腔球心的深度和空腔的体积.题型二、天体质量和密度的计算2、已知月球半径为R,飞船在距月球表面高度为R的圆轨道上飞行,周期为T.万有引力常量为G,下列说法正确的是( )A.月球第一宇宙速度为B.月球表面重力加速度为C.月球密度为D.月球质量为练2、据报道在太阳系之外发现了一颗可能适合人类居住的类地行星,天文学观察发现绕行星做圆周运动的卫星的轨道半径为月球绕地球做圆周运动半径的p 倍,周期为月球绕地球做圆周运动周期的q倍.已知地球半径为R,表面重力加速度为g.万有引力常量为G,则行星的质量为A.B.C.D.练3、为了测量某行星的质量和半径,宇航员记录了登陆舱在该行星表面做圆周运动的周期T,登陆舱在行星表面着陆后,用弹簧称称量一个质量为m的砝码读数为N。
已知引力常量为G。
天体运动题型精选11
1.一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v,假设宇航员站在该行星表面上用弹簧测力计测量一质量为m的物体重力,弹簧测力计的示数为N。
已知引力常量为G,则这颗行星的质量为AA.B. C. D.2.假设地球是一半径为R、质量分布均匀的球体.一矿井深度为d.已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为?3.一行星绕恒星做圆周运动,由天文观测可得,其运动周期为T,速度为v,引力常量为G,则下列说法正确的是acdA.恒星的质量为 B.恒星的质量为C.行星运动的轨道半径为 D.行星运动的加速度为4.一物体静置在平均密度为的球形天体表面的赤道上。
已知万有引力常量为G,若由于天体自转使物体对天体表面压力恰好为零,则天体自转周期为dA. B. C. D.5.为了探测某星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r1的圆轨道上运动,周期为T1,总质量为m1,随后登陆舱脱离飞船,变轨到离星球更近的半径为r2的圆轨道上运动,登陆舱的质量为m2,则( d )A.该星球的质量为B.该星球表面的重力加速度为C.登陆舱在与轨道上运动是的速度大小之比为D.登陆舱在半径为轨道上做圆周运动的周期为6.某行星和地球绕太阳公转的轨道均可视为圆。
每过N 年,该行星会运行到日地连线的延长线上,如题21图所示。
该行星与地球的公转半径比为 bA . B. C . D.7.宇宙飞船以周期为T 绕地地球作圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示。
已知地球的半径为R ,地球质量为M ,引力常量为G ,地球处置周期为T 0,太阳光可看作平行光,宇航员在A 点测出的张角为,则adA .飞船绕地球运动的线速度为B .一天内飞船经历“日全食”的次数为T /T 0C .飞船每次“日全食”过程的时间为D .飞船周期为T =8.已知地球同步卫星离地面的高度约为地球半径的6倍,若某行星的平均密度为地球平均密度的一半,它的同步卫星距其表面的高度是其半径的2.5倍,则该行星的自转周期为多少小时? 129.我国发射的“北斗系列”卫星中,同步卫星到地心距离为r ,运行速率为v 1,向心加速度为a 1;在地球赤道上的观测站的向心加速度为a 2,近地卫星做圆周运动的速率为v 2,向心加速度为a 3,地球的半径为R ,则下列比值正确的是( )A.a 2a 3=r R B.a 1a 2=r 2R 2 C.a 1a 2=R 2r2 D.a 1a 3=R 2r2 答案:D10.已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G .有关同步卫星,下列表述正确的是( )A .卫星距地面的高度为 3GMT 24π2B .卫星的运行速度小于第一宇宙速度C .卫星运行时受到的向心力大小为G Mm R 2D .卫星运行的向心加速度小于地球表面的重力加速度答案:BD11.1990年5月,紫金山天文台将他们发现的第2 752号小行星命名为吴健雄星,该小行星的半径为16 km ,若将此小行星和地球均看成质量分布均匀的球体,小行星的密度与地球相同.已知地球半径R =6 400 km ,地球表面重力加速度为g ,这个小行星表面的重力加速度为( )A .400gB.1400g C .20gD.120g 答案:B12.已知万有引力常量G ,那么在下列给出的各种情景中,能根据测量的数据求出月球密度的是( )A .在月球表面使一个小球做自由落体运动,测出落下的高度H 和时间tB .发射一颗贴近月球表面绕月球做圆周运动的飞船,测出飞船运行的周期TC .观察月球绕地球的圆周运动,测出月球的直径D 和月球绕地球运行的周期TD .发射一颗绕月球做圆周运动的卫星,测出卫星离月球表面的高度H 和卫星的周期T 答案:B13.据媒体报道,“嫦娥一号”卫星环月工作轨道为圆轨道,轨道高度200 km ,运行周期127分钟.若还知道引力常量和月球平均半径,仅利用以上条件不能求出的是( )A .月球表面的重力加速度B .月球对卫星的吸引力C .卫星绕月运行的速度D .卫星绕月运行的加速度答案:B14.1798年英国物理学家卡文迪许测出万有引力常理G ,因此卡文迪许被人们称为能称出地球质量的人.若已知万有引力常量为G ,地球表面处的重力加速度为g ,地球半径为R ,地球上一个昼夜的时间为T 1(地球自转周期),一年的时间为T 2(地球公转的周期),地球中心到月球中心的距离为L 1,地球中心到太阳中心的距离为L 2.你能计算出( )A .地球的质量m 地=gR 2GB .太阳的质量m 太=4π2L 32GT 22C .月球的质量m 月=4π2L 31GT 21D .可求月球、地球及太阳的密度答案:AB15如图,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间的距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧.引力常数为G .(1)求两星球做圆周运动的周期;(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为T 1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T 2.已知地球和月球的质量分别为5.98×1024kg 和7.35×1022kg.求T 2与T 1两者平方之比.(结果保留3位小数)16.如图所示,火箭内平台上放有测试仪器,火箭从地面起动后,以加速度g 2竖直向上匀加速运动,升到某一高度时,测试仪对平台的压力为起动前压力的1718.已知地球半径为R ,求火箭此时离地面的高度.(g 为地面附近的重力加速度)17.假设将质量为m 的铅球放在地心O 处,然后再假设在地球内部的A 片挖去一个质量为m 的小球体,如图所示,则铅球受到的万有引力大小约为________,方向________设地球为一个质量均匀分布的标准球体,地球半径为R ,地心O 点到A 点的距离OA =R 2. 18.如图所示,有A 、B 两个行星绕同一恒星O 沿不同轨道做圆周运动,旋转方向相同.A 行星的周期为T 1,B 行星的周期为T 2,在某一时刻两行星第一次相遇(即两行星距离最近),则(bd )A .经过时间t =T 1+T 2两行星将第二次相遇B .经过时间t =T 1·T 2T 2-T 1,两行星将第二次相遇 C .经过时间t ′=T 1+T 22,两行星第一次相距最远 D .经过时间t ′=T 1·T 22(T 2-T 1),两行星第一次相距最远19.在“勇气1号”火星探测器着陆的最后阶段,探测器降落到火星表面上,再经过多次弹跳才停下来.假设探测器第一次落到火星表面弹起后,到达最高点时高度为h ,速度方向是水平的,速度大小为v 0.求它第二次落到火星表面时速度的大小,计算时不计火星大气阻力.已知火星的一个卫星的圆轨道的半径为r ,周期为T .火星可视为半径为r 0的均匀球体.。
物理试题天体运动及答案
物理试题天体运动及答案一、选择题(每题2分,共10分)1. 以下哪项不是开普勒描述的行星运动定律?A. 行星沿椭圆轨道绕太阳运动B. 行星绕太阳运动的角速度是恒定的C. 行星绕太阳运动的周期的平方与轨道半长轴的立方成正比D. 行星与太阳的连线在相等时间内扫过的面积相等2. 根据牛顿的万有引力定律,两个物体之间的引力大小与它们的质量的乘积成正比,与它们之间的距离的平方成反比。
以下哪个选项正确描述了这一定律?A. 引力与两物体质量的乘积成正比,与距离的平方成正比B. 引力与两物体质量的乘积成反比,与距离的平方成反比C. 引力与两物体质量的乘积成正比,与距离的平方成反比D. 引力与两物体质量的乘积成反比,与距离的平方成正比3. 地球的自转周期大约是24小时,这导致了什么现象?A. 季节变化B. 潮汐现象C. 昼夜交替D. 地球的公转4. 月球绕地球公转的周期大约是27.3天,这与地球自转周期的不同步导致了什么现象?A. 季节变化B. 潮汐现象C. 月食D. 日食5. 根据牛顿的第二定律,以下哪个选项正确描述了力与加速度的关系?A. 力与加速度成正比B. 力与加速度成反比C. 力与加速度成正比,与质量成反比D. 力与加速度成反比,与质量成正比二、填空题(每题2分,共10分)1. 地球绕太阳公转的轨道近似为_________。
2. 根据开普勒第三定律,行星绕太阳运动的周期的平方与轨道半长轴的立方成正比,这个定律也被称为_________定律。
3. 牛顿的万有引力定律公式为_________,其中G是引力常数,m1和m2是两个物体的质量,r是它们之间的距离。
4. 地球的自转轴与公转轨道平面的夹角称为_________,其大小约为23.5°。
5. 潮汐现象是由于_________和_________之间的引力作用造成的。
三、简答题(每题5分,共10分)1. 简述牛顿的万有引力定律及其在天体运动中的应用。
物理天体运动试题及答案
物理天体运动试题及答案一、选择题1. 以下哪项是描述天体运动的物理定律?A. 牛顿第一定律B. 牛顿第二定律C. 牛顿第三定律D. 牛顿万有引力定律答案:D2. 地球绕太阳公转的周期大约是:A. 24小时B. 365天C. 1年D. 12个月答案:B3. 以下哪项不是开普勒行星运动定律的内容?A. 行星沿椭圆轨道绕太阳运动B. 行星公转周期的平方与轨道半长轴的立方成正比C. 行星公转速度与轨道半径成反比D. 行星公转速度与轨道半径成正比答案:D二、填空题4. 地球的自转周期是____小时。
答案:245. 地球绕太阳公转的轨道形状是____。
答案:椭圆三、简答题6. 简述牛顿万有引力定律的主要内容。
答案:牛顿万有引力定律指出,任何两个物体之间都存在引力,其大小与两物体质量的乘积成正比,与两物体间距离的平方成反比。
7. 描述一下地球的自转和公转对我们的生活有什么影响。
答案:地球的自转导致了昼夜交替和时间的差异,而地球的公转则导致了季节的变化和太阳高度角的变化。
四、计算题8. 已知地球质量为5.97×10^24千克,月球质量为7.34×10^22千克,地月平均距离为3.84×10^8米。
根据万有引力定律,计算地月之间的引力大小。
答案:根据万有引力定律,F = G * (m1 * m2) / r^2,其中G为万有引力常数,取值6.674×10^-11 N(m/kg)^2。
代入数值计算得:F = 6.674×10^-11 * (5.97×10^24 * 7.34×10^22) /(3.84×10^8)^2F ≈ 2×10^20 N五、论述题9. 论述开普勒行星运动定律对天文学和物理学的影响。
答案:开普勒行星运动定律揭示了行星运动的规律,不仅为天文学提供了精确的行星位置预测方法,也为牛顿后来提出万有引力定律奠定了基础。
天体运动典型题
问题1:会讨论重力加速度g随离地面高度h的变化情况。
例1、设地球表面的重力加速度为g,物体在距地心4R(R是地球半径)处,由于地球的引力作用而产生的重力加速度g,,则g/g,为A、1;B、1/9;C、1/4;D、1/16。
问题2:会用万有引力定律求天体的质量。
通过观天体卫星运动的周期T和轨道半径r或天体表面的重力加速度g和天体的半径R,就可以求出天体的质量M。
例2、已知地球绕太阳公转的轨道半径r=1.49⨯1011m, 公转的周期T=3.16⨯107s,求太阳的质量M。
例3、(抛体运动与万有引力)宇航员在一星球表面上的某高处,沿水平方向抛出一小球。
经过时间t,小球落到星球表面,测得抛出点与落地点之间的距离为L。
若抛出时初速度增大到2倍,则抛出点与落地点之间的距离为3L。
已知两落地点在同一水平面上,该星球的半径为R,万有引力常数为G。
求该星球的质量M。
问题3:会用万有引力定律求卫星的高度。
通过观测卫星的周期T和行星表面的重力加速度g及行星的半径R可以求出卫星的高度。
例4、已知地球半径约为R=6.4⨯106m,又知月球绕地球的运动可近似看作匀速圆周运动,则可估算出月球到地球的距离约m.(结果只保留一位有效数字)。
问题4:会用万有引力定律计算天体的平均密度。
通过观测天体表面运动卫星的周期T,,就可以求出天体的密度ρ。
例5、如果某行星有一颗卫星沿非常靠近此恒星的表面做匀速圆周运动的周期为T,则可估算此恒星的密度为多少?例6、一均匀球体以角速度ω绕自己的对称轴自转,若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是多少?问题5:会用万有引力定律推导恒量关系式。
例7、行星的平均密度是ρ,靠近行星表面的卫星运转周期是T,试证明:ρT2是一个常量,即对任何行星都相同。
例8、设卫星做圆周运动的轨道半径为r,运动周期为T,试证明:23Tr是一个常数,即对于同一天体的所有卫星来说,23Tr均相等。
问题6. 宇宙空间站上的“完全失重”问题例9. 假定宇宙空间站绕地球做匀速圆周运动,则在空间站上,下列实验不能做成的是:A、天平称物体的质量B、用弹簧秤测物体的重量C、用测力计测力D、用水银气压计测飞船上密闭仓内的气体压强E、用单摆测定重力加速度F、用打点计时器验证机械能守恒定律问题7. “双星”“三星”问题例10. 天文学中把两颗距离比较近,又与其它星体距离比较远的星体叫做双星,双星的间距是一定的。
高中物理天体运动六大题型整理(有题有答案有解析)
天体运动题型整理天体运动六大题型:1、开普勒定律2、赤道和两极3、万有引力和牛顿运动结合4、求质量和密度5、双星/多星问题6、宇宙速度和卫星变轨一、开普勒定律1.(2018·甘肃省西北师范大学附属中学模拟)若金星和地球的公转轨道均视为圆形,且在同一平面内,如图所示。
在地球上观测,发现金星与太阳可呈现的视角(太阳与金星均视为质点,它们与眼睛连线的夹角)有最大值,最大视角的正弦值为k,则金星的公转周期为A.(1-k2)年B.(1-k2)年C.年D.k3年1.C【解析】金星与太阳的最大视角出现的情况是地球上的人的视线看金星时,视线与金星的轨道相切,如图所示。
θ为最大视角,由图可知:sinθ=;根据题意,最大正弦值为k,则有:;根据开普勒第三定律有:;联立以上几式得:;解得:年,C正确,ABD错误;故选C。
2.(2018·河北省石家庄市模拟)地球和木星绕太阳的运动可近似看成是同一平面内的同方向绕行的匀速圆周运动,已知木星的轨道半径约为地球轨道半径的5.2倍,估算木星与地球距离最近的相邻两次时间间隔约为 A .1年 B .1.1年 C .1.5年 D .2年2.B 【解析】地球、木星都绕太阳运动,所以根据开普勒第三定律可得3322=R R T T 木地地木,即333== 5.21=11.9R T T R ⨯木木地地年,设经时间t 两星又一次距离最近,根据t θω=,则两星转过的角度之差2π2π2πt T T θ⎛⎫∆=-= ⎪ ⎪⎝⎭地木,解得 1.1t =年,B 正确。
3.(2018·江西省浮梁一中模拟)如图所示,由中山大学发起的空间引力波探测工程“天琴计划”于2015年启动,拟采用三颗全同的卫星(SC1、SC2、SC3)构成一个边长约为地球半径27倍的等边三角形阵列,地球恰好处于三角形中心,卫星将在以地球为中心、高度约10万公里的轨道上运行,对一个周期仅有5.4分钟的超紧凑双白矮星系统RX10 806.3+1 527产生的引力波进行探测,若地球近地卫星的运行周期为T 0,则三颗全同卫星的运行周期最接近A .6T 0B .30T 0C .60T 0D .140T 03.C 【解析】由几何关系可知,等边三角形的几何中心到各顶点的距离等于边长的,所以卫星的轨道半径与地球半径的关系,由开普勒第三定律的推广形式,可知地球近地卫星与这三颗卫星的周期关系,所以,C 最为接近,C正确。
高中物理天体运动经典习题
第三讲知识点梳理一、开普勒三大定律1、第一:2、第二:3、第三:二、万有引力定律三、万有引力和重力的关系四、解决天体问题的两条主线1、万有引力等于重力2、万有引力提供向心力五、“开三”推导及比例问题速算1、开普勒第三定律的推导2、比例问题速算六、三大宇宙速度1、第一宇宙速度2、第二宇宙速度3、第三宇宙速度七、卫星问题1、近地卫星2、同步卫星(六一定)3、赤道表面物体、近地卫星和同步卫星向心加速度大小比较八、卫星的对接及对接1、卫星对接2、卫星变轨九、双星问题经典习题练习一、选择题1、关于行星运动的规律,下列说法符合史实的是()A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律2、理论和实践证明,开普勒定律不仅适用于太阳系中的天体运动,而且对一切天体(包括卫星绕行星的运动)都适用。
下面对于开普勒第三定律的公式,下列说法正确的是:()A.公式只适用于轨道是椭圆的运动B.式中的K值,对于所有行星(或卫星)都相等C.式中的K值,只与中心天体有关,与绕中心天体旋转的行星(或卫星)无关D.若已知月球与地球之间的距离,根据公式可求出地球与太阳之间的距离3、如图所示,椭圆为某行星绕太阳运动的轨道,A、B分别为行星的近日点和远日点,行星经过这两点时的速率分别为v A和v B;阴影部分为行星与太阳的连线在相等时间内扫过的面积,分别用S A和S B表示.根据开普勒第二定律可知()A.v A>v BB.v A<v BC.S A>S BD.S A<S B4、如图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是()A.太阳对小行星的引力相同B.各小行星绕太阳运动的周期小于一年C.小行星带内侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值5、如图,a、b两颗人造地球卫星分别在如图所示的两个不同的轨道上运行,下列说法中正确的是()A.a卫星的运行速度比第一宇宙速度大B.b卫星的运行速度较小C.b卫星受到的向心力较大6、探测器绕月球做匀速圆周运动,变轨后在周期较大的轨道上仍做匀速圆周运动,则变轨后与变轨前相比()A.轨道半径变小B.向心加速度变小C.线速度变大D.角速度变大7、天宫一号是中国第一个目标飞行器,已于2011年9月29日21时16分3秒在酒泉卫星发射中心发射成功,它的发射标志着中国迈入中国航天“三步走”战略的第二步第二阶段.21时25分,天宫一号进入近地点约200公里,远地点约346.9公里,轨道倾角为42.75度,周期为5382秒的运行轨道.由此可知()A.天宫一号在该轨道上的运行周期比同步卫星的运行周期长B.天宫一号在该轨道上任意一点的运行速率比同步卫星的运行速率小C.天宫一号在该轨道上任意一点的运行加速度比同步卫星的运行加速度小D.天宫一号在该轨道上远地点距地面的高度比同步卫星轨道距地面的高度小8、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A.1:81 B.1:27 C.1:9 D.1:39、宇航员在地球表面,以一定初速度竖直上抛一小球,测得小球从抛出到返回的时间为t;若他在某星球表面以相同的初速度竖直上抛同一小球,小球从抛出到返回时间为25t。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.(湖北省百所重点中学2008 届联考)2007 年3 月26 日,中俄共同签署了《 中国国家航天局和俄罗斯联邦航天局关于联合探测火星一火卫一合作的协议》,双方确定于2008年联合对火星及其卫星“火卫一”进行探测。
“火卫一”就在火星赤道正上方运行,与火星中心的距离为9450km .绕火星1周需7h39min ,若其绕行轨道可简化为圆形轨道,则由以上信息不能确定的是 AA .火卫一的质量B .火星的质量C .火卫一的绕行速度D .火卫一的向心加速度5.(湖北省武汉市部分学校2008届新高三起点调研)质量为m 的卫星围绕地球做匀速圆周运动,轨道半径是地球半径的2倍。
已知地球半径为R ,地球表面的重力加速度为g 。
卫星的动能是( )AA .41mgRB .21mgR C .mgR D .2 mgR 10.(湖北省八校2008届第一次联考)地球质量大约是月球质量的81倍,一个飞行器在地球与月球之间,当地球对它的引力和月球对它的引力大小相等时,这飞行器距月球球心的距离与月球球心距地球球心之间的距离之比为 CA .1∶9B .9∶1C .1∶10D .10∶111.(湖北省八校2008届第二次联考)某同学设想驾驶一辆由火箭作动力的陆地太空两用汽车,沿赤道行驶并且汽车相对于地球速度可以任意增加,不计空气阻力,当汽车速度增加到某一值时,汽车将离开地球成为绕地球做圆周运动的“航天汽车”,对此下列说法正确的是(R =6400km, g =10m/s 2)A .汽车在地面上速度增加时,它对地面的压力增大BB .当汽车离开地球的瞬间速度达到28800km/hC .此“航天汽车”环绕地球做圆周运动的最小周期为1hD .在此“航天汽车”上弹簧测力计无法测量力的大小21、(湖北省部分重点中学十一月联考)2007年10月24日,我国发射的“嫦娥一号”探月卫星简化后的路线示意图如图所示,卫星由地面发射后经过发射轨道进入停泊轨道,然后在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道,卫星开始对月球进行探测。
已知地球与月球的质量之比为a ,卫星的停泊轨道与工作轨道的半径之比为b ,卫星在停泊轨道和工作轨道上均可视为做匀速圆周运动,则卫星( ) ADA 、在停泊轨道和工作轨道运行的速度之比为abB 、在停泊轨道和工作轨道运行的周期之比为baC 、在停泊轨道运行的速度大于地球的第一宇宙速度D 、从停泊轨道进入到地月转移轨道,卫星必须加速24.(湖北部分重点中学2008届理综第一次联考)某同学设想驾驶一辆由火箭作为动和的陆地太空两用汽车在赤道沿地球自转方向行驶,汽车的行驶速度可以任意增加,当汽车的速度增加到某值v (相对地面)时,汽车与地面分离成为绕地心做圆周运动的“航天汽车”,对此下列说法正确的是(不计空气阻力,取地球的半径R=6400km,g=10m/s2)()D A.汽车在地面上速度增加时,它对地面的压力增大B.在此“航天汽车”上弹簧测力计无法测量力的大小C.汽车离开地面时v值大小为8.0km/sD.“航天汽车”绕地心做圆周运动的线速度大小为8.0km/s28、(湖北省2007-2008年部分学校联考)据报道,美国航天局已计划建造一座通向太空的升降机,传说中的通天塔即将成为现实。
据航天局专家称:这座升降机的主体是一根长长的管道,一端系在位于太空的一个巨大的人造卫星上,另一端一直垂到地面并固定在地面上。
已知地球到月球的距离约为地球半径的60倍,由此可以估算,该管道的长度至少为(已知地球半径为6400km)()CA.360kmB.3600kmC.36000kmD.360000km、(赤峰市08届四月份全市统考)“嫦娥1号”绕月卫星于2007年10月24日在西昌卫星发射中心发射升空,飞行38万公里后到达月球上空200公里处绕月球旋转.中国航天中心计“嫦划在2009年底前后发射“嫦娥2号”绕月卫星.“嫦娥2号”卫星绕月飞行高度为100公里.娥2号”卫星绕月飞行与“嫦娥1号”卫星绕月飞行相比,下列正确的是:ACA.周期变小,线速度变大.B.周期变大,加速度变大.C.角速度变大,线速度变大.D.线速度变大,加速度变小.、(华师一附中五月第二次压轴考试)如图所示,a、b、c是在地球大气层外的圆形轨道上运行的三颗人造卫星,下列说法中正确的是DA.b、c的线速度大小相等,且大于a的线速度地球B.b、c的向心加速度大小相等,且大于a的向心加速度C.c加速可追上同一轨道上的b,b减速可等候同一轨道上的cD.由于某种原因,a的轨道半径缓慢减小,a的线速度将变大、(湖北省部分重点2008年4月联考)2007年4月24日,欧洲科学家宣布在太阳之外发现了一颗可能适合人类居住的类地行星Gliese581c。
这颗围绕红矮星Gliese581运行的星球有类似地球的温度,表面可能有液态水存在,距离地球约为20光年,直径约为地球的1.5倍,质量约为地球的5倍,绕红矮星Gliese581运行的周期约为13天。
假设有一艘宇宙飞船飞临该星球表面附近轨道,下列说法正确是()BCA.飞船在Gliese581c表面附近运行的周期约为13天B.飞船在Gliese581c表面附近运行时的速度大于7.9km/sC.人在Gliese581c上所受重力比在地球上所受重力大D.Gliese581c的平均密度比地球平均密度小7、(赤峰市2008届高三第三次统一考试)“嫦娥一号”是我国月球探测“绕、落、回”三期工程的第一阶段,也就是“绕”。
我国于2007年10月24日发射了第一颗环月卫星。
在发射过裎中为了防止卫星偏离轨道,探测器先在近地轨道绕地球3周,再经长途跋涉进入月球的近月轨道绕月飞行,已知月球表面的重力加速度为地球表面重力加速度的1/6,月球半径约为地球半径的1/3,则以下说法中正确的是BCA.绕月球做圆周运动的周期较小B .探测器在月球表面附近运行时的速度小于7.9km/sC .探测器在月球表面附近所受月球的万有引力小于在地球表面所受地球的万有引力D .绕月球做圆周运动的向心加速度较大9、(孝感市2008第二次统一考试)同步卫星是指相对于地面不动的人造地球卫星,则( )DA.它可以在地面上任一点的正上方,且离地心的距离可按需要选择不同值B.它可以在地面上任一点的正上方,但离地心的距离是一定的C.它只能在赤道的正上方,但离地心的距离可按需要选择不同值D.它只能在赤道的正上方,且离地心的距离是一定的11、(2008年3月湖北省襄樊市统一调研)“黑洞”是近代引力理论所预言的宇宙中的一种特殊天体,研究认为,黑洞可能是由于超中子星发生塌缩而形成的。
欧洲航天局由卫星观测发现银河系中心存在一个超大型黑洞并将它命名为:MCG6-30-15r ,假设银河系中心仅此一个黑洞。
已知太阳系绕银河系中心做匀速圆周运动,则根据下列哪一组数据可以估算出该黑洞的质量BA .太阳的质量和运行速度B .太阳绕黑洞公转的周期和太阳到“MCG6-30-15r ”的距离C .太阳质量和太阳到“MCG6-30-15r ”的距离D .太阳运行速度和“MCG6-30-15r ”的半径12、(宜昌市2008届高三年级第二次调研)我国的“嫦娥一号”于2007年10 月24 日18 日05 分成功放射,经过15天的长途跋涉,最终成功在距月球表面200 公里的圆周轨道上稳定的运行.若已知月球质量为M ,半径为R ,万有引力常量为G ,以下畅想可能正确的是 ACDA .在月球表面以初速度叭竖直上抛一个物体,物体上升的最大高度为220R V 2GMB.在月球上发射一颗绕它运行的卫星的最小周期为R2GM C.GMR D.“嫦娥一号”在绕月球稳定圆周运动时,船内仪器处于完全失重状态17、(湖北省部分重点高中2008年三月质检)关于万有引力定律和库仑定律都满足平方反比定律,因此引力场和电场之间有许多相似的性质,在处理有关问题时可以将它们进行类比.例如电场中反映各点电场强弱的物理量是电场强度,其定义式为q FE =.在引力场中可以有一个类似的物理量用来反映各点引力场的强弱.设地球质量为M ,半径为R ,地球表面处重力加速度为g ,引力常量为G .如果一个质量为m 的物体位于距地心2R 处的某点,则下列表达式中能反映该点引力场强弱的是:( ) ADA .2)2(R M GB .2)2(R m GC .2)2(R MmG D .4g 25、(湖北省十六校大联考)如图所示,同步卫星离地心的距离为r ,运行速率为v 1,加速度为a 1;地球赤道上的物体随地球自转的向心加速度为a 2,第一宇宙速率为v 2,地球的半径为R,则下列比值正确的 D A.21a a =R r B. 21a a =2⎪⎭⎫ ⎝⎛r RC. 21v v =R rD. 21v v =r R27、(湖北省“三校联合体”2008届2月联考)太阳系八大行星绕太阳运动的轨道可粗略地认为是圆,各行星的半径、日星距离和质量如下表所示:行星名称水星 金星 地球 火星 木星 土星 天王星 海王星 星球半径/×106m2.44 6.05 6.383.40 71.49 60.27 25.56 24.75 日星距离/×1011m 0.58 1.081.502.28 7.78 14.29 28.71 45.04 星球质量/×1024kg 0.334.87 6.00 0.64 1900 569 86.8 102 由表中所列数据可以估算海王星公转的周期最接近于: BA .1050年B .165年C .35年D .15年、(宜宾市2008级第二次诊断)一个物体在地球表面重25N ,它在以4m/s 2的加速度加速上升的火箭中的视重为11N ,则此时火箭离地球表面的距离为地球半径R 的(在地球表面210/g m s ) CA .2倍B .3倍C .4倍D .一半、(湖北省天门中学、枝江中学广华中学、随州一中五月四校联考)日落4h 时位于地球赤道上的人,在其头顶上方可观察到一颗人造地球卫星飞行.设地球半径为R ,下表列出卫星在不同轨道上的飞行速度v 的大小:轨道半径rR1.5R 2R2.5R 3R v(km/s) 7.9 6.5 5.6 5.O 4.6 已知太阳光直射赤道,不考虑大气对光的折射,则这颗卫星飞行速度大小v 一定满足DA .5.6km/s ≤v <7.9km/sB .4.6km/s ≤v <6.5km/sC .v=5.6km/sD .≤5.6km/s、(天门市2008年高考第二轮模拟)如图所示,a 、b 、c 是环绕地球在圆形轨道上运行的3颗人造卫星,它们的质量关系是m a = m b < m c ,则( )DA .b 、c 的线速度大小相等,且大于a 的线速度B .b 、c 的周期相等,且小于a 的周期C .b 、c 的向心加速度大小相等,且大于a 的向心加速度D .b 所需要的向心力最小、(湖北省“四校联合体”2008届第一次联考)2007年10月24日,我国发射的“嫦娥一号”探月卫星简化后的路线示意图如图所示,卫星由地面发射后经过发射轨道进入停泊轨道,然后在停泊轨道经过调速后进入地月转移轨道,再次调速后进入工作轨道,卫星开始对月球进行探测。