2016年迎春杯网考六年级解析12月18日2015年与知识点总结

合集下载

高年级第3讲数论与数独

高年级第3讲数论与数独

第3讲数论与数独1.(2016年迎春杯复赛高年级组第3题)小明发现今年的年份2016是一个非常好的数,它既是6的倍数,又是8的倍数,还是9的倍数。

那么下一个既是6的倍数,又是8的倍数,还是9的倍数的年份是年。

【答案】20882.100~200之间(包括100和200)中任选两个数组成数对,若这个数对的和能被6整除,则称这个数对为“幸福数对”,则可以选出多少个“幸福数对”?【答案】8343.(2014年迎春杯复赛高年级组第9题)过年了,微信流行“抢红包”,红包分为大红包、中红包、小红包3种,同种红包所含钱数相同,每种红包所含钱数都是整数元.迎迎、新新和年年3人共抢到9个红包,恰好是大、中、小每种3个.迎迎抢到了4个红包,共获得25元;新新抢到了3个红包,也获得了25元;年年只抢到了2个红包,获得了7元.那么,3种红包内所含的3个钱数(单位:元)的乘积是.【答案】724.一个完全平方数和一个质数的乘积介于6000和7000之间,且末两位是98,求这个完全平方数是哪个数的平方?【答案】575.用4~9这6个数字各一次组成一个六位数,使得六位数是667的倍数,那么这个六位数是__________.【答案】9564786.已知a,b,c,d分别是四个互不相同的数字,其中:a能被3整除,ab能被9整除,abc能被5整除,abcd能被11整除,那么这4个数字组成的四位数最大是__________.【答案】95307.老师在黑板上写了一个三位数,然后三名同学对这个三位数做了如下描述:陆仁假:这个数百位是质数,十位和个位合起来是一个两位质数;艾树穴:这个数是9的倍数;丸邮细:这个数有6个因数.已知这三位同学说的都是对的,那么符合条件的三位数有__________个.【答案】68.(2017年迎春杯网考五年级组第11题)在空格里填入数字1-6,使得每行,每列和每个23的宫内数字不重复.相同的颜色的彩线两边数字差相同,不同颜色的彩线两边数字差不同.那么,第三行从左到右前五个数字组成的五位数是__________.【答案】621439. (2015数学花园探秘五年级网考)用下面给出的6块长方形挡板分别遮住图一六宫数独的某一个宫,其中被阴影盖住的格,格内的数字会被挡住,白格内的数字会露出来,请用露出来的数字完成一道六宫数独,使得每行、每列和每个宫数字不重复.问:完成后,最后一行前五个数依次是:__________.图一【答案】2614510. (2015数学花园探秘五年级网考)左图6×6的方格中,每行每列2,0,1,5四个数字各出现一次,空格把每行每列的数字隔成四位数、三位数、两位数或者一位数.右边和下面的数表示该行或列里的几个数之和.0不能作为多位数的首位.(右图是一个1,2,3,0四个数字各出现一次的例子)那么,大正方形两条对角线上所有数字之和是________.135431【答案】1811.(2014年迎春杯网考五年级组第6题)如图,请将数字1至6填入图中的方格中,使得每行、每列以及每个用粗线围起来的区域内都是1至6各出现一次. 那么第三行现在空着的四个方格填入的四个数字按从左至右的顺序组成的四位数是_ _______.【答案】215612.(2015年迎春杯六年级初赛第11题)在空格内填入数字1~6,使得每行每列数字不重复,黑点两边的数是两倍的关系,白点两边的数差为1.那么第四行所填数字从左往右前5位组成的五位数是__________.【答案】21436。

迎春杯六年级复赛试题与解析

迎春杯六年级复赛试题与解析

2014“数学解题能力展示”读者评选活动复赛试题小学六年级(2014年2月6日)一、选择题(每小题8分,共32分)1.算式5258+172014201.42⨯÷-⨯的计算结果是( ). A.15 B .16 C.17 D.182.对于任何自然数,定义!123n n =⨯⨯⨯⨯.那么算式2014!3!-的计算结果的个位数字是( ). A.2 B.4 C.6 D .83.统统在计算有余数的除法时,把被除数472错看成了427,结果商比原来小5,但余数恰好相同,那么这个余数是( ).A .4B .5 C.6 D.74.下图中,正八边形ABCDEFGH 的面积为1,其中有两个正方形ACEG 和PQRS .那么正八边形中阴影部分的面积().H AA.12 B .23 C .35 D .58二、选择题(每题10分,共70分)5.右面竖式成立时的除数与商的和为( ).12642A.589B.653C.723D.7336.甲乙丙三人进行一场特殊的真人C S比赛,规定:第一枪由乙射出,射击甲或者丙,以后的射击过程中,若甲被击中一次,则甲可以有6发子弹射击乙或丙,若乙被击中一次,则乙可以有5发子弹射击甲或丙,若丙被击中一次,则丙可以有4发子弹射击甲或乙,比赛结束后,共有16发子弹没有击中任何人?则甲乙丙三人被击中的次数有( )种不同的情况.A .1 B.2 C.3 D .47.甲乙二人进行下面的游戏.二人先约定一个整数N ,然后由甲开始,轮流把1,2,3,4,5,6,7,8,9这九个数字之一填入下面任一方格中:□□□□□□,每一方格只填入一个数字,形成一个数字可以重复的六位数.若这个六位数能被N 整除,乙胜;否则甲胜.当N 小于15时,使得乙有必胜策略的N 有( ). A.5 B.6 C .7 D.88.在纸上任意写一个自然数,把这张纸旋转180度,数值不变,如0、11、96、888等,我们把这样的数称为“神马数”.在所有五位数中共有( )个不同的“神马数”.A.12B.36C.48 D.609.如图,第(1)个多边形由正三角形“扩展”而来,边数记为3a ,第(2)个多边形由正方形“扩展”而来,边数记为4a ,……,依此类推,由正n 边形“扩展”而来的多边形的边数记为n a (3n ≥ ),则34511112014++++6051n a a a a =,那么n =(). (4)(3)(2)(1)A .2014B .2015 C.2016 D .201710.如右图所示,五边形ABCDEF 面积是2014平方厘米,BC 与CE 垂直于C 点,EF 与CE 垂直于E 点,四边形ABDF 是正方形,:3:2CD DE =.那么,三角形ACE 的面积是 ( )平方厘米.FECB AA.1325 B .1400 C.1475 D .150011.甲乙两车分别从A、B两地同时出发,相向而行,甲车的速度大于乙车.甲行驶了60千米后和乙车在C点相遇.此后甲车继续向前行驶,乙车掉头与甲车同向行驶.那么当甲车到达B地时,甲乙两车最远相距()千米.A.10B.15 C.25 D.30三、选择题(每题12分,共48分)12.在“爸爸去哪儿”的节目中有一个任务,五个参加任务的孩子(天天、石头、Kimi、Cindy、Ange la)需要换爸爸(每个小朋友可以选择除了自己爸爸之外其他四位父亲中的任何一位),那么最终五人有( )种不同的选择结果.A.40 B.44 C.48 D.5213.老师在黑板上从1开始将奇数连续地写下去,写了一长串数后,擦去了其中的两个数,将这些奇数隔成了3串,已知第二串比第一串多1个数,第三串比第二串多1个数,且第三串奇数和为4147,那么被划去的两个奇数的和是().A.188B.178C.168D.15814.从一张大方格纸上剪下5个相连的方格(只有一个公共顶点的两个方格不算相连),要使剪下的图形可折叠为一个无盖的正方体,则共可以剪出()种不同的图形(经过旋转或翻转相同的图形市委同一种).A.8B.9 C.10 D.1115.老师把某个两位数的六个不同约数分别告诉了A F六个聪明诚实的同学.A和B同时说:“我知道这个数是多少了.”C和D同时说:“听了他们两人的话,我也知道这个两位数是多少了.”E:“听了他们的话,我知道我的数一定比F的大.”F:“我拿的数的大小在C和D之间.”那么六个人拿的数之和是( )A.141 B.152 C.171 D.175ﻬ2014“数学解题能力展示”读者评选活动复赛试题小学六年级参考答案部分解析一、选择题(每小题8分,共32分)1.算式5258+172014201.42⨯÷-⨯的计算结果是( ).A.15B.16C.17D.18【考点】计算【难度】☆☆【答案】D【解析】5258+1200 1.4201.41 72014201.42201.410201.42201.488⨯÷+=== -⨯⨯-⨯⨯2.对于任何自然数,定义!123n n=⨯⨯⨯⨯.那么算式2014!3!-的计算结果的个位数字是( ).A.2B.4 C.6D.8【考点】定义新运算【难度】☆☆【答案】B【解析】2014!个位数字是0,3!1236=⨯⨯=,所以2014!3!-个位是4.3.童童在计算有余数的除法时,把被除数472错看成了427,结果商比原来小5,但余数恰好相同,那么这个余数是().A.4 B.5 C.6 D.7【考点】整除同余【难度】☆☆【答案】A【解析】除数=(472427)59-÷=,4724(mod9)≡,所以余数是4.4.下图中,正八边形ABCDEFGH的面积为1,其中有两个正方形ACEG和PQRS.那么正八边形中阴影部分的面积().HAA.12B.23C.35D.58【考点】几何【难度】☆☆☆【答案】A【解析】等积变形.H AAH H A所以刚好各占一半. 二、选择题(每题10分,共70分)5.右面竖式成立时的除数与商的和为().12642A.589 B .653 C .723 D .733 【考点】数字谜 【难度】☆☆☆ 【答案】C【解析】首先根据倒数第三行可以确定0A =,4B =;241ECB A 60D22112611322440854815252824160120再根据顺数第三行最后一位为1可以确定,第一行D 和C 的取值为(1,1)或(3,7)或(9,9)或(7,3),根据尝试只有(1,1)符合题意.再依次进行推理,可得商和除数分别为:142和581.6.甲乙丙三人进行一场特殊的真人CS 比赛,规定:第一枪由乙射出,射击甲或者丙,以后的射击过程中,若甲被击中一次,则甲可以有6发子弹射击乙或丙,若乙被击中一次,则乙可以有5发子弹射击甲或丙,若丙被击中一次,则丙可以有4发子弹射击甲或乙,比赛结束后,共有16发子弹没有击中任何人?则甲乙丙三人被击中的次数有( )种不同的情况.A.1 B .2 C.3 D.4 【考点】不定方程 【难度】☆☆☆ 【答案】B【解析】设甲乙丙分别被击中x 、y 、z 次则三人分别发射6x 、51y +,4z 次[6(51)4]()16x y z x y z +++-++=化简得54315x y z ++=7.甲乙二人进行下面的游戏.二人先约定一个整数N ,然后由甲开始,轮流把1,2,3,4,5,6,7,8,9这九个数字之一填入下面任一方格中:□□□□□□,每一方格只填入一个数字,形成一个数字可以重复的六位数.若这个六位数能被N 整除,乙胜;否则甲胜.当N 小于15时,使得乙有必胜策略的N 有( ). A.5 B .6 C.7 D.8 【考点】数论 【难度】☆☆☆ 【答案】B【解析】若N 是偶数,甲只需第一次在个位填个奇数,乙必败只需考虑N 是奇数.1N =,显然乙必胜.39N =,,乙只需配数字和1-8,2-7,3-6,4-5,9-9即可.5N =,甲在个位填不是5的数,乙必败.71113N =,,,乙只需配成100171113abcabc abc abc =⨯=⨯⨯⨯.8.在纸上任意写一个自然数,把这张纸旋转180度,数值不变,如0、11、96、888等,我们把这样的数称为“神马数”.在所有五位数中共有( )个不同的“神马数”.A.12 B .36 C.48 D .60 【考点】数论 【难度】☆☆☆ 【答案】D【解析】设这个数为ABCBA ,A 位可以填11,88,69,96,4种情况,B 位可以填00,11,88,69,96,5种情况,C位可以填0,1,8,3种情况,453=60⨯⨯(个).9.如图,第(1)个多边形由正三角形“扩展”而来,边数记为3a ,第(2)个多边形由正方形“扩展”而来,边数记为4a ,……,依此类推,由正n 边形“扩展”而来的多边形的边数记为n a (3n ≥ ),则34511112014++++6051n a a a a =,那么n =( ).(4)(3)(2)(1)A.2014B.2015C.2016D.2017【考点】找规律【难度】☆☆☆【答案】C【解析】33(22)34a=⨯+=⨯,44(23)45a=⨯+=⨯,55(24)56a=⨯+=⨯,……(21)(1)na n n n n=⨯+-=+,34511111111120143445(1)316051na a a a n n n++++=+++=-=⨯⨯⨯++,12017n+=,2016n=.10.如右图所示,五边形ABCDEF面积是2014平方厘米,BC与CE垂直于C点,EF与CE垂直于E点,四边形ABDF是正方形,:3:2CD DE=.那么,三角形ACE的面积是()平方厘米.FECBAA.1325B.1400C.1475D.1500【考点】几何【难度】☆☆☆【答案】A【解析】作正方形ABCD的“弦图”,如右图所示,IHGFEDCBA假设CD的长度为3a,DE的长度为2a,那么3BG a=,2DG a=,根据勾股定理可得2222229413BD BG DG a a a=+=+=,所以,正方形ABDF的面积为213a;因为CD EF=,BC DE=,所以三角形BCD和三角形DEF的面积相等为23a;又因为五边形ABCEF面积是2014平方厘米,所以222136192014a a a+==,解得2106a=, 三角形ACE的面积为:2255522a a a⨯÷=,即2510613252⨯=.11.甲乙两车分别从A 、B 两地同时出发,相向而行,甲车的速度大于乙车.甲行驶了60千米后和乙车在C点相遇.此后甲车继续向前行驶,乙车掉头与甲车同向行驶.那么当甲车到达B 地时,甲乙两车最远相距( )千米.A .10 B.15 C.25 D .30 【考点】行程问题 【难度】☆☆☆ 【答案】A【解析】假设甲走60千米时,乙走了a 千米,甲到达B 地时,乙车应走26060a a a ⨯=千米,此时甲、乙相差最远为1(60)6060a a a a -=⨯-⨯,和一定,差小积大,60a a -=,30a =.甲、乙最远相差900301560-=(千米).三、选择题(每题12分,共48分)12.在“爸爸去哪儿”的节目中有一个任务,五个参加任务的孩子(天天、石头、K imi 、Cin dy、Angela )需要换爸爸(每个小朋友可以选择除了自己爸爸之外其他四位父亲中的任何一位),那么最终五人有( )种不同的选择结果.A .40 B.44 C.48 D.52 【考点】排列组合 【难度】☆☆☆ 【答案】B【解析】设五个爸爸分别是A B C D E 、、、、,五个孩子分别是a b c d e 、、、、,a 有4种选择,假设a 选择B ,接着让b 选择,有两种可能,选择A 和不选择A ,(1)选择A ,c d e 、、 选择三个人错排,(2)不选择A ,则b c d e 、、、 选择情况同4人错排.所以5434()S S S =⨯+ 同理4323()S S S =⨯+ ,3212()S S S =⨯+,而10S =(不可能排错),21S =,所以32S =,49S =,544S =.13.老师在黑板上从1开始将奇数连续地写下去,写了一长串数后,擦去了其中的两个数,将这些奇数隔成了3串,已知第二串比第一串多1个数,第三串比第二串多1个数,且第三串奇数和为4147,那么被划去的两个奇数的和是( ).A.188 B .178 C.168 D.158 【考点】数论 【难度】☆☆☆ 【答案】C【解析】设第一段有n 个,则第2段有1n +个,第一个擦的奇数是21n +,第二个擦的奇数是45n +,和为66n +,是6的倍数.只有168符合.14.从一张大方格纸上剪下5个相连的方格(只有一个公共顶点的两个方格不算相连),要使剪下的图形可折叠为一个无盖的正方体,则共可以剪出( )种不同的图形(经过旋转或翻转相同的图形视为同一种).A.8 B .9 C .10 D .11 【考点】立体几何 【难度】☆☆☆ 【答案】A【解析】如下图15.老师把某个两位数的六个不同约数分别告诉了A F六个聪明诚实的同学.A和B同时说:“我知道这个数是多少了.”C和D同时说:“听了他们两人的话,我也知道这个两位数是多少了.”E:“听了他们的话,我知道我的数一定比F的大.”F:“我拿的数的大小在C和D之间.”那么六个人拿的数之和是()A.141 B.152 C.171D.175【考点】数论【难度】☆☆☆☆【答案】A【解析】(1)这个数的因数个数肯定不低于6个(假定这个数为N,且拿到的6个数从大到小分别是、、、、、)A B C D E F(2)有两个人同时第一时间知道结果,这说明以下几个问题:第一种情况:有一个人知道了最后的结果,这个结果是怎么知道的呢?很简单,他拿到的因数在5099之间(也就是说A的2倍是3位数,所以A其实就是N)第二种情况:有一个人拿到的不是最后结果,但是具备以下条件:1)这个数的约数少于6个,比如:有人拿到36,单他不能断定N究竟是36还是72.2)这个数小于50,不然这个数就只能也是N了.3)这个数大于33,比如:有人拿到29,那么他不能断定N是58还是87;这里有个特例是27,因为272=54⨯,因数个数少于6个,所以如果拿到27可以判断⨯,因数个数不少于6个;273=81N只能为54)4)这个数还不能是是质数,不然不存在含有这个因数的两位数.最关键的是,这两人的数是2倍关系但是上述内容并不完全正确,需要注意还有一些“奇葩”数:17、19、23也能顺利通过第一轮.因此,这两个人拿到的数有如下可能:(54,27)(68,34)(70,35)(76,38)(78,39)(92,46)(98,49)(3)为了对比清晰,我们再来把上面所有的情况的因数都列举出来:(54,27,18,9,6,3,2,1)(68,34,17,4,2,1)(×)(70,35,14,10,7,5,2,1)(76,38,19,4,2,1)(×)(78,39,26,13,6,3,2,1)(92,46,23,4,2,1)(×)(98,49,14,7,2,1)对于第一轮通过的数,我们用红色标注,所以N不能是68、76、92中的任意一个.之后在考虑第二轮需要通过的两个数.用紫色标注的6、3、2、1,因为重复使用,如果出现了也不能判断N是多少,所以不能作为第二轮通过的数.用绿色标注的14和7也不能作为第二轮通过的数,这样N也不是98.那么通过第二轮的数只有黑色的数.所以N只能是54、70、78中的一个.我们再来观察可能满足E和F所说的内容:(54,27,18,9,6,3,2,1)(70,35,14,10,7,5,2,1)(78,39,26,13,6,3,2,1)因为F说他的数在C和D之间,我们发现上面的数据只有当70、(10和N=的时候,7F=,在C D5)之间,是唯一满足条件的一种情况.又因为E确定自己比F的大,那么他拿到的数一定是该组中剩余数里最大的.所以E拿到的是14(70N=).所以70N=,六个人拿的数之和为:70+35+14+10+7+5=141.。

“迎春杯”数学花园探秘科普活动试卷(六年级初赛b卷)

“迎春杯”数学花园探秘科普活动试卷(六年级初赛b卷)

2015年“迎春杯”数学花园探秘科普活动试卷(六年级初赛B卷)一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(+++)×2015的计算结果是.2.(8分)如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是3.(8分)A电池的广告语是“一节更比六节强”.意义是A电池比其他电池更耐用.我们就假定1节A电池的电量是B电池的6倍,有两种耗电速度一样的时钟,现在同时在甲钟里装了2节A电池,乙钟里装了2节B电池,结果乙时钟正常工作了2个月电池就耗尽了,那么甲时钟的正常工作时间比乙时钟多个月.4.(8分)如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的倍.二、填空题(共4小题,每小题10分,满分40分)5.(10分)一个正整数A乘以6后所得结果的因数个数变为原来的3倍,那么符合条件的A最小是.6.(10分)在2014年北京APEC会议期间,京津冀实施道路限行和污染企业停工等措施,来保证空气质量达到良好水平,在经历了一个月三场雾霾,北京11月3日空气达到一级优水平,人们称为“APEC蓝”,2013年北京优良空气天数仅占47.9%,2014上半年实行减排30%的措施,优良空气天数比2013年同期增加20天,要达到全年优良空气天数增加20%的目标,下半年需要使优良天气相比2013年同期至少增加天.7.(10分)甲、乙、丙三户人家打算订阅报纸,共有5种不同的报纸可供选择,已知每户人家都订两份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有几种不同的订阅方式?8.(10分)6个半径相等的小圆和1个大圆如图摆放.图中大圆的面积是120,那么,一个小圆面积是.三、填空题(共3小题,每小题12分,满分36分)9.(12分)希希和姗姗各有若干张积分卡.希希对姗姗说:“如果你给我3张,我的张数就是你的3倍”姗姗对希希说:“如果你给我4张,我的张数就是你的4倍”希希对姗姗说:“如果你给我5张,我的张数就是你的5倍”已知以上三句话中恰有一句不正确,那么,原来希希有张积分卡.10.(12分)如图,A、B为圆形轨道一条直径的两个端点,甲、乙、丙三个微型机器人在圆形轨道上同时出发,作匀速圆周运动,甲、乙从A出发,丙从B出发;乙顺时针运动,甲、丙逆时针运动,出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到达A后,再过秒钟,乙才第一次到达B.11.(12分)在空格内填入数字1﹣6,使得每行每列数字不重复,黑点两边的数是两倍的关系,白点两边的数差为1.那么第四行所填数字从左往右前5位组成的五位数是.2015年“迎春杯”数学花园探秘科普活动试卷(六年级初赛B卷)参考答案与试题解析一、填空题(共4小题,每小题8分,满分32分)1.(8分)算式(+++)×2015的计算结果是2418 .【解答】解:(+++)×2015=()×2015==2418故答案为:2418.2.(8分)如图,一道除法竖式中已经填出了“2015”和“0”,那么被除数是20685【解答】解:依题意可知:首先根据图中方框代表的是金三角,只能唯一情况是10﹣9.所以结果1中的百位和十位为10,那么除数的百位和十位就是10,商的首位是1.再根据结果2的首位数字是9,那么商的十位数字是9,根据尾数是5,推理出除数为105.商的前两位是19.最后结果3的数字经尝试不能是600多只能是105的7倍735.被除数为105×197=20685.故答案为:206853.(8分)A电池的广告语是“一节更比六节强”.意义是A电池比其他电池更耐用.我们就假定1节A电池的电量是B电池的6倍,有两种耗电速度一样的时钟,现在同时在甲钟里装了2节A电池,乙钟里装了2节B电池,结果乙时钟正常工作了2个月电池就耗尽了,那么甲时钟的正常工作时间比乙时钟多10 个月.【解答】解:根据分析,因都是正常耗电,正常工作,故耗电速度一样,甲时钟耗尽电量所需时间是乙时钟的电池耗尽电量所需时间的6倍,所以甲时钟可以正常工作:6×2=12个月,比乙时钟多工作:12﹣2=10个月.故答案是:10.4.(8分)如图六角星的6个顶点恰好是一个正六边形的6个顶点,那么阴影部分面积是空白部分面积的 3 倍.【解答】解:根据分析,如图所示,将图进行分割成面积相等的三角形,阴影部分由18个小三角形组成,而空白部分有6个小三角形,故阴影部分面积是空白部分面积的18÷6=3倍.故答案是:3.二、填空题(共4小题,每小题10分,满分40分)5.(10分)一个正整数A乘以6后所得结果的因数个数变为原来的3倍,那么符合条件的A最小是 2 .【解答】解:假设原数分解质因数后为2a×3b,乘6后变为2a+1×3b+1,由题意:3(a+1)(b+1)=(a+2)(b+2),由于A要尽可能小,因此令a=1,b=0即可得到答案.所以满足条件的A最小值为2.6.(10分)在2014年北京APEC会议期间,京津冀实施道路限行和污染企业停工等措施,来保证空气质量达到良好水平,在经历了一个月三场雾霾,北京11月3日空气达到一级优水平,人们称为“APEC蓝”,2013年北京优良空气天数仅占47.9%,2014上半年实行减排30%的措施,优良空气天数比2013年同期增加20天,要达到全年优良空气天数增加20%的目标,下半年需要使优良天气相比2013年同期至少增加15 天.【解答】解:365×47.9%×20%﹣20≈174.8×20%﹣20≈35.0﹣20=15(天)答:下半年需要使优良天气相比2013年同期至少增加15天.故答案为:15.7.(10分)甲、乙、丙三户人家打算订阅报纸,共有5种不同的报纸可供选择,已知每户人家都订两份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有几种不同的订阅方式?【解答】解:由题意可知,有ab,ac,ad和ab,ac,bc两种不同的订阅类型:ab,ac,ad有×=5×(4×3×2)=5×24=120种;ab,ac,bc有×=10×6=60种.所以共有120+60=120种不同的订阅方式.8.(10分)6个半径相等的小圆和1个大圆如图摆放.图中大圆的面积是120,那么,一个小圆面积是40 .【解答】解:根据分析,如图1所示,由对称性可知,△ADE与△OBE面积相等,因此可知,△AOD的面积与△AOB的面积相等,都等于△ABC面积的三分之一,由于△AOD与△ABC都是圆的内接正三角形,因此可以得到小圆的面积为大圆面积的三分之一,依此小圆面积为40故答案是:40.三、填空题(共3小题,每小题12分,满分36分)9.(12分)希希和姗姗各有若干张积分卡.希希对姗姗说:“如果你给我3张,我的张数就是你的3倍”姗姗对希希说:“如果你给我4张,我的张数就是你的4倍”希希对姗姗说:“如果你给我5张,我的张数就是你的5倍”已知以上三句话中恰有一句不正确,那么,原来希希有15 张积分卡.【解答】解:根据分析,假设第一、二句是对的,那么总和应该是20的倍数,根据第一句,希希与珊珊积分卡之比应该为15:5,根据第二句,希希与珊珊卡数之比应该为4:16,每个人差的11倍对应了7张卡,不是整数,舍去.假设第一、三句是对的,总和应该是12的倍数,根据第一句,二人积分卡之比为9:3,根据第二句,二人积分卡之比为10:2,差的1份为多给的2张,成立,因此希希和珊珊积分卡之比为6:24,根据第三句,希望和珊珊积分卡之比为25:5,相差的19份为9张,不是整数,不成立,舍去.综上,第一、三句是对的,希希有15张积分卡.故答案是:15.10.(12分)如图,A、B为圆形轨道一条直径的两个端点,甲、乙、丙三个微型机器人在圆形轨道上同时出发,作匀速圆周运动,甲、乙从A出发,丙从B出发;乙顺时针运动,甲、丙逆时针运动,出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到达A后,再过56 秒钟,乙才第一次到达B.【解答】解:甲经过12秒钟到从A到达B,则再过9秒钟后甲到达C点,且BC的长度等于AB长度的,则AC的长度等于AB长度的,即21秒钟的时间内,甲的路程为AB+BC=AB段,乙的路程为AC=AB,丙的路程为BC=AB,则速度比甲:乙:丙=7:1:3,丙从C到达A所用时间=21×=7(秒),此时乙从C点到达D点,所用时间也为7秒,因为CA=BC,则CD=AC,则CB=8CD,丙到达A后乙到达B的所需时间:8×7=56(秒)故答案为:5611.(12分)在空格内填入数字1﹣6,使得每行每列数字不重复,黑点两边的数是两倍的关系,白点两边的数差为1.那么第四行所填数字从左往右前5位组成的五位数是21436 .【解答】解:依题意可知:如图所示,D,E,F必然是1,2,4或者4,2,1.因此B,C一定是3和6.故可知A是5.而G,H,I为三个连续自然数,I存在2倍关系,则只能是1,2,3.故右上角为6.左上角为4.并可以判定B是6,C是3.因此C的右边临格为6.以此为突破口,可以填表如图所示:故答案为:21436声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:12:42;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800第11页(共11页)。

六年级下册数学竞赛试题-北京市“迎春杯”数学竞赛决赛试卷(含答案解析)全国通用

六年级下册数学竞赛试题-北京市“迎春杯”数学竞赛决赛试卷(含答案解析)全国通用

北京市“迎春杯”小学数学竞赛决赛试卷一、计算:1.(×1.65﹣+×)×47.5×0.8×2.5.2.(﹣)÷[+(4﹣)÷1.35].二、填空题(共20小题,每小题3分,满分60分)3.(3分)用一个杯子盛满水向一个空罐里倒水.如果倒进2杯水,连罐共重0.6千克;如果倒进5杯水,连罐共重0.975千克.这个空罐重千克.3.(3分)计算:÷÷=.4.(3分)一个直角梯形,它的上底是下底的60%.如果上底增加24米,可变成正方形.原来直角梯形的面积是平方米.5.(3分)如果按一定规律排出的加法算式是:3+4,5+9,7+14,9+19,11+24,….那么,把各个算式中前后两个加数分别排到第10个就是和;第80个算式就是.6.(3分)甲、乙两人共同加工一批零件,8小时可以完成任务,如果甲单独加工,需要12小时完成,现在甲、乙两人共同生产了2小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务,乙一共加工了零件多少个?7.(3分)把一个长25厘米,宽10厘米,高4厘米的长方体木块锯成若干个大小相等的正方体,然后拼成一个大的正方体.这个大正方体的表面积是平方厘米.8.(3分)有5000多根牙签,可按六种规格分成小包.如果10根一包,那么最后还剩9根.如果9根一包,那么最后还剩8根.第三、四、五、六种的规格是,分别以8、7、6、5根为一包,那么最后也分别剩7、6、5、4根.原来一共有牙签根.9.(3分)用红、黄、蓝、黑、白、绿六种颜色分别涂在正方体的各面上(每个面只涂一种颜色),现在涂色方式完全一样的相同的四块小正方体,把它们拼成一长方体,如图所示.试回答:每个小正方体红色面的对面涂的是色,黄色面的对面涂的是色,黑色面的对面涂的是色.10.(3分)李刚给军属王奶奶运蜂窝煤,第一次运了全部的,第二次运了50块.这时,已运来的恰好是没运来的.还有块蜂窝煤没有运来.11.(3分)在下面各数之间,填上适当的运算符号和括号,使等式成立.10 6 9 3 2=48.13.(3分)有一个长方形,它的各边的长度都是小于10的自然数.如果用宽作分子,长作分母,那么所得的分数值比要大,比要小.那么满足上述条件的各个长方形的面积和是.14.(3分)一个1994位的整数,各个数位上的数字都是3.它除以13,商的第200位(从左往右数)数字是,商的个位数字是,余数是.15.(3分)有黑白两种棋子共300枚,黑乌鸦将黑白两种棋子按每堆3枚分成100堆.其中只有l枚白子的共有27堆,有2枚或3枚黑子的共有42堆,有3枚白子的与3枚黑子的堆数相等.那么,在这些棋子中白子共有枚.16.(3分)如图,已知长方形ADEF的面积是16,三角形ADB的面积是3,三角形ACF 的面积是4,那么三角形ABC的面积是.17.(3分)在小于5000的自然数中,能被11整除,并且数字和为13的数,共有个.18.(3分)已知算术式﹣=1994,其中、均为四位数;a、b、c、d、e、f、g、h是0、1、2、…、9中8个不同整数,且a≠0,e≠0.那么与之和的最大值是,最小值是.19.(3分)男、女两名田径运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B).两人同时从A点出发,在A、B之间不停地往返奔跑.如果男运动员上坡速度是每秒3米,下坡速度是每秒5米;女运动员上坡速度是每秒2米,下坡速度是每秒3米,那么两人第二次迎面相遇的地点离A点米.20.(3分)用1×2的小长方形或1×3的小长方形覆盖2×6的方格网(如图),共有种不同的盖法.21.(3分)某车间原有工人不少于63人.在1月底以前的某一天调进了若干工人,以后,每天都增调1人进车间工作.现知该车间1月份每人每天生产一件产品,共生产1994件.试问:1月几号开始调进工人?共调进多少工人?22.(3分)一个自然数除以8得到的商加上这个数除以9的余数,其和是13.求所有满足条件的自然数.北京市第十届“迎春杯”小学数学竞赛决赛试卷参考答案与试题解析一、计算:1.(×1.65﹣+×)×47.5×0.8×2.5.【解答】解:(×1.65﹣+×)×47.5×0.8×2.5=×(1.65﹣1+)×47.5×(0.8×2.5)=×1×47.5×2=×1×47.5×2=1994.2.(﹣)÷[+(4﹣)÷1.35].【解答】解:(﹣)÷[+(4﹣)÷1.35],=÷[+÷1.35],=÷[+],=÷,=.二、填空题(共20小题,每小题3分,满分60分)3.(3分)用一个杯子盛满水向一个空罐里倒水.如果倒进2杯水,连罐共重0.6千克;如果倒进5杯水,连罐共重0.975千克.这个空罐重0.35千克.【解答】解:3杯水重:0.975﹣0.6=0.375(千克),2杯水重:0.375÷3×2=0.25(千克),空罐重:0.6﹣0.25=0.35(千克);答:这个空罐重0.35千克.3.(3分)计算:÷÷=.【解答】解:÷÷,=××,=××,=××,=,=.故答案为:.4.(3分)一个直角梯形,它的上底是下底的60%.如果上底增加24米,可变成正方形.原来直角梯形的面积是2880平方米.【解答】解:原来直角梯形的下底是:24÷(1﹣60%)=60(米);原來直角梯形的上底是:60×60%=36(米);原來直角梯形的面积是:(60+36)×60÷2=2880(平方米);答:原来直角梯形的面积是2880平方米.故答案为:2880.5.(3分)如果按一定规律排出的加法算式是:3+4,5+9,7+14,9+19,11+24,….那么,把各个算式中前后两个加数分别排到第10个就是21和49;第80个算式就是161+399.【解答】解:第10个算式的加数分别是:2×10+1=21,5×10﹣1=49,这两个加数就是21,49.第80个算式的加数分别是:2×80+1=81,5×80﹣1=399,第80个算式是161+399.故答案为:21,49,161+399.6.(3分)甲、乙两人共同加工一批零件,8小时可以完成任务,如果甲单独加工,需要12小时完成,现在甲、乙两人共同生产了2小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务,乙一共加工了零件多少个?【解答】解:加工的总零件为:420÷(1﹣2×)=420÷(1﹣)=420÷=600(个);乙一共加工的零件为:600﹣600÷12×2=600﹣120=480(个);答:乙一共加工了480个零件.7.(3分)把一个长25厘米,宽10厘米,高4厘米的长方体木块锯成若干个大小相等的正方体,然后拼成一个大的正方体.这个大正方体的表面积是600平方厘米.【解答】解:长25厘米,宽10厘米,高4厘米的长方体木块锯成边长为1厘米的正方体的个数:25×10×4=1000;1000个小正方体拼成一个大的正方体的长、宽、高为10厘米,因为10×10×10=1000;所以,这个大正方体的表面积是:10×10×6=600平方厘米;答:这个大正方体的表面积是600平方厘米.故答案为:600.8.(3分)有5000多根牙签,可按六种规格分成小包.如果10根一包,那么最后还剩9根.如果9根一包,那么最后还剩8根.第三、四、五、六种的规格是,分别以8、7、6、5根为一包,那么最后也分别剩7、6、5、4根.原来一共有牙签5039根.【解答】解:这个数+1=10、9、8、7、6、5的公倍数,10,9、8、7、6、5的最小公倍数为:5×2×3×3×4×7=2520,满足5000多这个条件的公倍数是2520×2=5040,牙签的数量就是5040﹣1=5039(根).答:原来一共有牙签5039根.故答案为:5039.9.(3分)用红、黄、蓝、黑、白、绿六种颜色分别涂在正方体的各面上(每个面只涂一种颜色),现在涂色方式完全一样的相同的四块小正方体,把它们拼成一长方体,如图所示.试回答:每个小正方体红色面的对面涂的是绿色色,黄色面的对面涂的是蓝色色,黑色面的对面涂的是白色色.【解答】解:通过以上分析可知,红色的对面是绿色;黄色的对面是蓝色;黑色的对面是白色.故答案为:①绿色;②蓝色;③白色.10.(3分)李刚给军属王奶奶运蜂窝煤,第一次运了全部的,第二次运了50块.这时,已运来的恰好是没运来的.还有700块蜂窝煤没有运来.【解答】解:已运来的恰好是没运来的,那么已运来的就是全部的:=,没运来的就是全部的:=;50÷()=50÷,=1200(块);1200×=700(块);答:还有700块没运来.故答案为:700.11.(3分)在下面各数之间,填上适当的运算符号和括号,使等式成立.10 6 9 3 2=48.【解答】解:10×6﹣(9﹣3)×2=48.13.(3分)有一个长方形,它的各边的长度都是小于10的自然数.如果用宽作分子,长作分母,那么所得的分数值比要大,比要小.那么满足上述条件的各个长方形的面积和是133.【解答】解:根据题意,可知<<,变换后可得:2×宽<长<×宽,所以:(1)若宽=1,则2<长<10/3,长=3;(2)若宽=2,则4<长<20/3,长=5或6;(3)若宽=3,则6<长<10,长=7或8或9;(4)若宽=4,则8<长<10<40/3,长=9.所以所有满足条件的长方形面积之和为1×3+2×5+2×6+3×7+3×8+3×9+4×9=133.14.(3分)一个1994位的整数,各个数位上的数字都是3.它除以13,商的第200位(从左往右数)数字是5,商的个位数字是2,余数是7.【解答】解:试探≈0.2307692308、≈2.5384615385、≈25.615384615…=25641,所以这个1994位数除以13的结果是:25641的循环.(忽略小数部分),故200÷6=33…2,商的第200位(从左往右数)数字是5;1994÷6=332…2,33÷13的结果33÷13=2…7,由此可以知道商的个位数字是2余数是7.答:一个1994位数,各个数位的数字都是3,它除以13,商的第200位(从左往右数)数字是5,商的个位是2,余数是7.故答案为:5、2、7.15.(3分)有黑白两种棋子共300枚,黑乌鸦将黑白两种棋子按每堆3枚分成100堆.其中只有l枚白子的共有27堆,有2枚或3枚黑子的共有42堆,有3枚白子的与3枚黑子的堆数相等.那么,在这些棋子中白子共有158枚.【解答】解:只有一枚白子,即1白2黑,是27堆,2黑或3黑共42堆,其中2黑已经知道有27堆,那么3黑的就有:42﹣27=15(堆),所以,3白的也是15堆,又因为一共有100堆,那么2白1黑的就有:100﹣27﹣15﹣15=43(堆),所以,白子共有:27×1+15×0+15×3+43×2=158(枚);答:白子共有158枚.故答案为:158.16.(3分)如图,已知长方形ADEF的面积是16,三角形ADB的面积是3,三角形ACF 的面积是4,那么三角形ABC的面积是 6.5.【解答】解:△AEC的面积:16÷2﹣4=4,△ABE的面积:16÷2﹣3=5,BD:BE=3:5,DE=BD+BE=3+5=8,△BCE的面积:4×=2.5,△ABC的面积:16﹣(3+4+2.5)=6.5;故答案为:6.5.17.(3分)在小于5000的自然数中,能被11整除,并且数字和为13的数,共有18个.【解答】解:①奇数位数字和=12,偶数位数字和=1,为3190,3091,4180,4081共4种可能.②奇数位数字和=1,偶数位数字和=12.为1309,1408,1507,1606,1705,1804,1903;319,418,517,616,715,814,913共14种可能.共4+14=18种.故答案为:18.18.(3分)已知算术式﹣=1994,其中、均为四位数;a、b、c、d、e、f、g、h是0、1、2、…、9中8个不同整数,且a≠0,e≠0.那么与之和的最大值是15000,最小值是4988.【解答】解:由以上分析可知,和的最大值为8497+6503=15000;和的最小值为3496+1502=4998.故答案为:15000,4998.19.(3分)男、女两名田径运动员在长110米的斜坡上练习跑步(坡顶为A,坡底为B).两人同时从A点出发,在A、B之间不停地往返奔跑.如果男运动员上坡速度是每秒3米,下坡速度是每秒5米;女运动员上坡速度是每秒2米,下坡速度是每秒3米,那么两人第二次迎面相遇的地点离A点47米.【解答】解:设两人第二次迎面相遇的地点离A点X米,则++=+,+=,220+2x=550﹣5x,7x=330,x=47;答:两人第二次迎面相遇的地点离A点47米.故此题答案为:47.20.(3分)用1×2的小长方形或1×3的小长方形覆盖2×6的方格网(如图),共有30种不同的盖法.【解答】解:(1)都用1×2的长方形,共需要6个:①都横着放,1种方法;②都竖着放,1种方法;③2个横放,4竖放,5种方法.④4个横放,2竖放,6种方法.(2)都用1×3的长方形,共需4个,只用1种方法,都横放.(3)用2个1×3的长方形,3个1×2的长方形:①,两个1×3的长方形并排放,2种方法,②,两个1×3的长方形排成1列,10种方法,③,两个1×3的长方形错着放,4种方法.其他数量都不可以.1+1+5+6+1+10+2+4=30(种)一共27种.故答案为:30.21.(3分)某车间原有工人不少于63人.在1月底以前的某一天调进了若干工人,以后,每天都增调1人进车间工作.现知该车间1月份每人每天生产一件产品,共生产1994件.试问:1月几号开始调进工人?共调进多少工人?【解答】解:因为原有工人不少于63人,并且1994=63×31+41,1994=64×31+10,1994<65×31,所以,这个车间原有工人不多于64人,即这个车间原有工人63人或64人.这个车间原有工人1月份完成产品是63×31=1953或64×31=1984(件).于是可知,余下的41件或10件产品应该表示为连续自然数之和.据已知,不能是1月31日调进工人,设第一天调进x名工人,共调入n天,那么显然2≤n≤8.事实上,九个连续自然数之和最小为1+2+3+4+5+6+7+8+9=45>41.经检验,当n=2时x=20,并且有:20+21=41;当n=4时x=1,并且有:1+2+3+4=10.答:从1月30日开始调进工人,共调进工人21名;或者从1月28日开始调进工人,共调进工人4人.22.(3分)一个自然数除以8得到的商加上这个数除以9的余数,其和是13.求所有满足条件的自然数.【解答】解:设这个数为n,除以9所得余数r≤8,所以除以8得到的商q≥13﹣8=5,又显然q≤13.q=5时,r=8,n=5×8+4=44;q=6时,r=7,n=6×8+4=52;q=7时,r=6,n=7×8+4=60;q=8时,r=5,n=8×8+4=68;q=9时,r=4,n=9×8+4=76;q=10时,r=3,n=10×8+4=84;q=11时,r=2,n=11×8+4=92;q=12时,r=1,n=12×8+4=100;q=13时,r=0,n=13×8+4=108.满足条件的自然数共有9个:108,100,92,84,76,68,60,52,44.答:满足条件的自然数共有9个:108,100,92,84,76,68,60,52,44.。

第1-29届历届小学“迎春杯”真题word版

第1-29届历届小学“迎春杯”真题word版

目录第1届“迎春杯”数学竞赛刊赛试题... .............................................................. . 1 第2届“迎春杯”数学竞赛决赛试题... .............................................................. . 5 第3届“迎春杯”数学竞赛决赛试题... .............................................................. . 8 第4届“迎春杯”数学竞赛决赛试题... ............................................................ .. 10 第5届“迎春杯”数学竞赛决赛试题... ............................................................ .. 11 第6届“迎春杯”数学竞赛决赛试题... ............................................................ .. 13 第7届“迎春杯”数学竞赛决赛试题... ............................................................ .. 16 第8届“迎春杯”数学竞赛决赛试题... ............................................................ .. 18 第9届“迎春杯”数学竞赛决赛试题... ............................................................ .. 20 第10 届“迎春杯”数学竞赛决赛试题... .......................................................... (23)第11 届“迎春杯”数学竞赛初赛试题... ........................................................... (25)第11 届“迎春杯”数学竞赛决赛试题... ........................................................... (27)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (29)第12 届“迎春杯”数学竞赛决赛试题... .......................................................... (31)第13 届“迎春杯”数学竞赛初赛试题... .......................................................... (33)第13 届“迎春杯”数学竞赛决赛试题... .......................................................... (35)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (37)第14 届“迎春杯”数学竞赛决赛试题... .......................................................... (39)第15 届“迎春杯”数学竞赛初赛试题... .......................................................... (41)第15 届“迎春杯”数学竞赛决赛试题... .......................................................... (43)第16 届“迎春杯”数学科普活动日区县邀请赛试题... .................................. (45)第17 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 47 第18 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 50 第19 届“迎春杯”数学科普活动日计机交流试题... ....................................... . 52 第19 届“迎春杯”数学科普活动日队际交流试题... ....................................... . 54 第20 届“迎春杯”数学科普活动日试题... ....................................................... .. 55 第21 届“迎春杯”数学科普活动日解题能力展示初赛试题... ...................... (57)第21 届“迎春杯”数学解题能力展示读者评选活动复试计算机交流试题... (58)第22 届“迎春杯”数学解题能力展示读者评选活动中年级初试试题... ..... .. 60 第22 届“迎春杯”数学解题能力展示读者评选活动中年级复试试题... ..... .. 62 第22 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 64第22 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 66第23 届“迎春杯”数学解题能力展示评选活动中年级初试试题... .............. . 69第23 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 71第23 届“迎春杯”数学解题能力展示评选活动高年级初试试题... .............. . 73第23 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 75第24 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 77第24 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 79第24 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 81第24 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 83第24 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 85第24 届“迎春杯”数学解题能力展示评选活动高年级复试试题... .............. . 88第25 届“迎春杯”数学解题能力展示评选活动三年级初试试题... .............. . 90第25 届“迎春杯”数学解题能力展示评选活动四年级初试试题... .............. . 92第25 届“迎春杯”数学解题能力展示评选活动中年级复试试题... .............. . 94第25 届“迎春杯”数学解题能力展示评选活动五年级初试试题... .............. . 96第25 届“迎春杯”数学解题能力展示评选活动六年级初试试题... .............. . 98第25 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 100 第26 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 102 第26 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 104 第26 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 106 第26 届“迎春杯”数学解题能力展示评选活动五年级初试试题... ........... .. 108 第26 届“迎春杯”数学解题能力展示评选活动六年级初试试题... ........... .. 110 第26 届“迎春杯”数学解题能力展示评选活动高年级复试试题... ........... .. 112 第27 届“迎春杯”数学解题能力展示评选活动三年级初试试题... ........... .. 114 第27 届“迎春杯”数学解题能力展示评选活动四年级初试试题... ........... .. 116 第27 届“迎春杯”数学解题能力展示评选活动中年级复试试题... ........... .. 118第 27届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 122 第 27届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 124 第 28届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 126 第 28届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 128 第 28届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 130 第 28届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 132 第 28届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 134 第 28届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 136 第 29届“迎春杯”数学解题能力展示评选活动三年级初试试题... .......... .. 138 第 29届“迎春杯”数学解题能力展示评选活动四年级初试试题... .......... .. 140 第 29届“迎春杯”数学解题能力展示评选活动中年级复试试题... .......... .. 141 第 29届“迎春杯”数学解题能力展示评选活动五年级初试试题... .......... .. 143 第 29届“迎春杯”数学解题能力展示评选活动六年级初试试题... .......... .. 144 第 29届“迎春杯”数学解题能力展示评选活动高年级复试试题... .......... .. 145第 1 届“迎春杯”数学竞赛刊赛试题1.天安门广场是世界上最大的广场,面积约44万平方米,合____亩。

六年级迎春杯试题及答案

六年级迎春杯试题及答案

六年级迎春杯试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是正确的?A. 地球是平的B. 地球是圆的C. 地球是方的D. 地球是三角形的2. 以下哪个数学公式是正确的?A. 圆的面积 = 半径× 半径B. 圆的面积 = 半径× π × 半径C. 圆的周长 = 直径× 2D. 圆的周长 = 半径× 2π3. 根据题目所给信息,以下哪个选项是错误的?A. 春天是一年四季之一B. 迎春杯是冬季举行的竞赛C. 迎春杯是为了庆祝春天的到来D. 迎春杯通常在春季举行4. 以下哪个成语与“春天”有关?A. 春暖花开B. 秋高气爽C. 夏日炎炎D. 冬日暖阳5. 以下哪个选项是迎春杯试题的类型?A. 选择题B. 填空题C. 判断题D. 论述题二、填空题(每题2分,共10分)6. 春天是_________、_________、_________和_________四个季节之一。

7. 迎春杯试题的类型包括选择题、填空题、_________和_________。

8. 地球的形状是_________,因为它在自转和公转时表现出的离心力和引力的平衡。

9. 圆的周长公式是_________,其中C代表周长,d代表直径。

10. 成语“春暖花开”常用来形容_________。

三、判断题(每题1分,共5分)11. 迎春杯试题及答案的标题是“六年级迎春杯试题及答案”。

()12. 地球的形状是平的。

()13. 迎春杯试题通常在冬季举行。

()14. 成语“秋高气爽”与春天有关。

()15. 圆的面积公式是πr²,其中r代表半径。

()四、简答题(每题5分,共10分)16. 请简述迎春杯试题的特点。

17. 请解释为什么地球的形状是圆的。

五、论述题(15分)18. 论述春天对人们生活的影响。

参考答案:1. B2. B3. B4. A5. A6. 春、夏、秋、冬7. 判断题、论述题8. 圆的9. C = πd10. 春天的气候温暖,百花盛开的景象11. √12. ×13. ×14. ×15. √16. 迎春杯试题通常包括选择题、填空题、判断题和论述题,旨在考查学生的综合能力。

迎春杯六年级讲义(6讲)迎春杯第 1 讲应用题学生版

迎春杯六年级讲义(6讲)迎春杯第 1 讲应用题学生版

第一讲应用题行程问题行程问题的三个基本量是距离、速度和时间。

其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。

行程问题的主要数量关系是:距离=速度×时间。

它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。

(3)同向而行:速度慢的在前,快的在后。

追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。

追及距离=速度差×时间。

解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。

例题1.甲、乙两辆汽车同时从两城相对开出,甲车每小时行55千米,乙车每小时行45千米,经过3小时相遇,问两城之间相距多少千米?例题2.一辆公共汽车和一辆小轿车同时从相距450千米的两地相向而行,公共汽车每小时行40千米,小轿车每小时行50千米,问几小时后两车相距90千米?例题3.甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发。

甲车行几小时后与乙车相遇?例题4。

李明和王亮同时分别从两地骑车相向而行,李明每小时行18千米,王亮每小时行16千米,两人相遇时距全程中点3千米。

问全程长多少千米?例题5.两地相距900米,甲、乙二人同时、同地向同一方向行走,甲每分钟走80米,乙每分钟走100米,当乙到达目标后,立即返回,与甲相遇,从出发到相遇共经过多少分钟?例题6.一个圆形操场跑道的周长是500米,两个学生同时同地相背而行。

甲每分钟走66米,乙每分钟走59米。

经过几分钟才能相遇?工程问题在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。

2008-2016迎春杯初赛真题高清汇编

2008-2016迎春杯初赛真题高清汇编

多对一道题,超越1000人
第 9 页
兴趣是最好的老师
做完一道检查一道,会做的争取全对
做错了的题分值是几分就思考几分钟哦
2010 迎春杯六年级初赛真题
(测评时间:2010 年 1 月 3 日 9:00—10:00)
一、填空题Ⅰ(每题 8 分,共 32 分)
1.
11 1 22
100 个1 50个 2
多对一道题,超越1000人
第 2 页
兴趣是最好的老师
做完一道检查一道,会做的争取全对
做错了的题分值是几分就思考几分钟哦
9.
A、B 两地相距 22.4 千米.有一支游行队伍从 A 出发,向 B 匀速前进;当游行队伍队 尾离开 A 时,甲、乙两人分别从 A、B 两地同时出发.乙向 A 步行;甲骑车先追向队 头,追上队头后又立即骑向队尾,到达队尾后再立即追向队头,追上队头后又立即骑向 队尾……当甲第 5 次追上队头时恰与乙相遇在距 B 地 5.6 千米处; 当甲第 7 次追上队头 时,甲恰好第一次到达 B 地,那么此时乙距 A 地还有 千米.
关注“帅帅思维”公众号,回复“六年级迎春杯”获取详解!
做完一道检查一道,会做的争取全对
做错了的题分值是几分就思考几分钟哦
2008 迎春杯六年级初赛真题
(测评时间:2007 年 12 月 2 日 11:00—12:00)
一、填空题Ⅰ(每题 8 分,共 40 分)
1. 计算: 2007 8.5 8.5 1.5 1.5 10 160 0.3 = .
12. 国际象棋中 “马” 的走法如图 1 所示, 位于○位置的 “马” 只能走到标有×的格中,类似于中国象棋中的“马走 日” .如果“马”在 8×8 的国际象棋棋盘中位于第一行 第二列 (图 2 中标有△的位置) , 要走到第八行第五列 (图 2 中标有★的位置) ,最短路线有 条.

2015六年级网赛试题解析_06

2015六年级网赛试题解析_06

2. 大圆柱的高是小圆柱高的 2 倍,大圆柱的侧面积是小圆柱侧面积的 12 倍,大圆柱的体积是小圆柱体积 的_______倍. 【答案】72 【解析】圆柱的侧面积公式为 S 2 rh ,大圆柱与小圆柱的侧面积之比为 12 :1 ,高之比为 2 :1 ,则半径之
12 1 : 6 :1 62 2 : 12 1 72 :1 ,即大圆柱是小圆术体积的 72 倍. 比为 2 1 ,故体积之比为
5. 请在右图的每个方框中填入适当的数字,使得竖式成立(现已填了“2015” ) .那 么,竖式中乘积的最大值是__________. 【答案】19864 【解析】从竖式的第三行可知,2 与两位因数的乘积是十位为 0 的三位数,故两位因 数的个位与 2 相乘不能向前进位,即最大是 4,且十位一定是 5.即两位因数为 50 至 54 中的一个. (1)当两位因数为 54 时,竖式无法填出(三位因数的百位填不出,不存在一个数字 与 54 相乘结果十位为 5) . (2)当两位因数为 53 时,三位因数最大为 362,积为 19186; (3)当两位因数为 52 时,三位因数最大为 382,积为 19864. 比较可知,乘积最大为 19864. ×
2 0 1 5
6. 近年来网络购物已成为一种主要的购物方式.王阿姨经营着一家卖洗衣机的网店,她每月平均可以卖 出 50 台洗衣机,每台成本为 1200 元,由于售货时是包邮的,所以每台洗衣机还需要王阿姨支付 20 元 的快递费,除此之外每个月还需要给运营网站交付 1 万元的“店面费”,返修每月需要 5000 元,那么 她经营的洗衣机每台售价至少应定为__________元才能使她每月售货的利润率不低于 20%. 【答案】1824 【解析】每月的总成本为 50 1200 50 20 10000 5000 76000 元,为了使利润率不低于 20%,则总的 售价最少为

2016年迎春杯6年级初赛试题(全国卷)含答案及解析

2016年迎春杯6年级初赛试题(全国卷)含答案及解析

6.
A
B
7.
0 6 1 0 2 0
8.
三.填空题Ⅲ(每小题 12 分,共 48 分)
9. 如图,四边形 CDEF 是平行四边形.如果梯形 ABCD 的面积 是 320, 三角形 AFH 和三角形 GEB 的面积分别为 32 和 48. 那 么三角形 OCD 的面积是__________. A H E
D O M F
C
G B
10. 变形金刚擎天柱以机器人的形态从 A 地出发向 B 地,可按时到达 B 地;如果一开始就变形为汽车, 速度比机器人形态提高 25%,可以提前 1 小时到达 B 地;如果以机器人的形态行驶 150 千米后, 再变形为汽车,并且速度比机器人形态提高 20%,则可以提前 40 分钟到达.那么,A、B 两地相 距________题Ⅱ(每小题 10 分,共 40 分)
5. 小鑫参加了一个奇怪的数学考试. 一共 100 道题, 答对一题得 1 分, 答错一题扣 3 分, 不答扣 2 分. 已 知小鑫一共得了 50 分.那么,小鑫最多答对了__________道题. 如图,半径为 4 厘米的两个圆如图放置,长方形中两块阴影部分面积 相等,A、B 两点为两圆圆心,那么 AB 的长度为__________厘米. (π 取 3) . 如图,一道除法竖式中已经填出了“2016”和“0” ,那么被除 数是__________. 对于自然数 N, 如果在 1~9 这九个自然数中至少有八个数是 N 的因数, 则称 N 是一个 “八仙数” , 则在大于 2000 的自然数中, 最小的“八仙数”是___________.
2016 年“数学花园探秘”科普活动 六年级组初试试卷 C
(测评时间: 2015 年 12 月 19 日 8:30— 9:30) 学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我

迎春杯六年级试题及答案

迎春杯六年级试题及答案

迎春杯六年级试题及答案一、选择题(每题3分,共30分)1. 以下哪个数是质数?A. 15B. 23C. 48D. 66答案:B2. 一个长方体的长、宽、高分别是10cm、8cm和6cm,那么它的体积是多少立方厘米?A. 480B. 400C. 320D. 240答案:A3. 一个数的3倍是48,这个数是多少?A. 16B. 12C. 8D. 6答案:A4. 以下哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A5. 一个圆的直径是14cm,那么它的半径是多少?B. 14cmC. 21cmD. 28cm答案:A6. 一个数除以5余3,除以7余1,这个数最小是多少?A. 36B. 37C. 38D. 39答案:B7. 一个等腰三角形的底边长为10cm,两腰长为8cm,那么它的周长是多少?A. 26cmB. 28cmD. 32cm答案:A8. 一个数的5倍加上3等于这个数的7倍减去5,这个数是多少?A. 4B. 5C. 6D. 7答案:A9. 一个长方形的长是宽的两倍,如果宽增加2cm,长减少2cm,那么它的面积不变,原来的长方形的长和宽分别是多少?A. 长8cm,宽4cmB. 长10cm,宽5cmC. 长12cm,宽6cmD. 长14cm,宽7cm答案:B10. 一个数的1/4加上这个数的1/3等于9,这个数是多少?A. 12B. 18C. 24D. 36答案:C二、填空题(每题4分,共40分)11. 一个数的倒数是1/5,这个数是______。

答案:512. 一个数的1/2加上这个数的1/3等于7,这个数是______。

答案:1213. 一个数的3倍减去2等于这个数的2倍加上3,这个数是______。

答案:514. 一个长方体的长、宽、高分别是a、b、c,那么它的表面积是______。

答案:2(ab + ac + bc)15. 一个数的1/4加上这个数的1/6等于1/2,这个数是______。

2016年迎春杯学而思模拟考试试卷(六年级)

2016年迎春杯学而思模拟考试试卷(六年级)

11. 如上图所示,三角形 ABC 为直角三角形,C 为直角.甲、乙、丙、丁四人分别从 A、B、C 三地出 发,甲、丙逆时针行走,速度分别为的速度为每 小时 40 千米,结果四人恰好在 A、B 边上相遇,那么乙的速度为每小时 千米. 12. 作答要求: (1) 请在答题卡第 12 题的万位+千位,填涂上你认为本试卷中一道最佳试题的题号; 如认为本试卷第 6 题出得最好,那么请在万位填涂“0” ,千位填涂“6” . (2) 请在答题卡第 12 题的百位,填涂上你认为本试卷整体的难度级别; 最简单为“0” ,最难为“9” ,总计十个级别. (3) 请在答题卡第 12 题的十位+个位,填涂上你认为本试卷中一道最难试题的题号; 如认为本试卷第 11 题最难,那么请在十位填涂“1” ,个位填涂“1” .
一.填空题Ⅰ(每小题 8 分,共 32 分)
1.
算式 1+

1 1 1 1 1 0.72 的计算结果是__________. 2 3 4 5 6
2.
如右图,阴影部分的面积是__________. ( 取 3)
8
3. 4. 有一份 350 克的盐水,含盐率是 20%.如果想让含盐率变成 14%,需要再加入__________克纯水. 有 3 个互不相同的整数,最大的数和最小的数相差 3,最小的两个数和是 24,那么,这 3 个数的和 是 .
二.填空题Ⅱ(每小题 10 分,共 40 分)
5. 有一个棱长为 20 的大立方体, 在它的每个角上按如图所示的方式各 做一个小立方体,于是得到 8 个小立方体,这些立方体中,上面 4 个棱长为 12,下面 4 个的棱长为 13.那么,所有这 8 个小立方体公 共部分的体积是__________.

小学奥数--分数裂项-精选练习例题-含答案解析(附知识点拨及考点)

小学奥数--分数裂项-精选练习例题-含答案解析(附知识点拨及考点)

本讲知识点属于计算大板块内容,其实分数裂项很大程度上是发现规律、利用公式的过程,可以分为观察、改造、运用公式等过程。

很多时候裂项的方式不易找到,需要进行适当的变形,或者先进行一部分运算,使其变得更加简单明了。

,本讲是整个奥数知识体系中的一个精华部分,列项与通项归纳是密不可分的,所以先找通项是裂项的前提,是能力的体现,对学生要求较高。

分数裂项一、“裂差”型运算 将算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.裂项分为分数裂项和整数裂项,常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。

遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。

(1)对于分母可以写作两个因数乘积的分数,即1a b ⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b =-⨯- 、(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+ 裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。

(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。

$知识点拨教学目标分数裂项计算二、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a +=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。

2016山东春季高考数学试题与详细讲解答案解析

2016山东春季高考数学试题与详细讲解答案解析

省2015年普通高校招生(春季)考试数学试题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.2.本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.第Ⅰ卷(选择题,共60分)一、选择题(本大题20个小题,每小题3分,共60分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项字母选出,填涂在答题卡上)1.若集合A={1,2,3},B={1,3},则A∩B等于()(A){1,2,3} (B){1,3} (C){1,2} (D){2}2.|x-1|<5的解集是()(A)(-6,4) (B)(-4,6)(C) (-∞, -6)∪(4, +∞) (D)(-∞, -4 )∪(6,+∞)3.函数y=x+1 +1x的定义域为()(A){x| x≥-1且x≠0} (B){x|x≥-1}(C){x x>-1且x≠0} (D){x|x>-1}4.“圆心到直线的距离等于圆的半径”是“直线与圆相切”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件5.在等比数列{a n}中,a2=1,a4=3,则a6等于()(A)-5 (B)5 (C)-9 (D)96.如图所示,M 是线段OB 的中点,设向量→OA =→a ,→OB =→b ,则→AM 可以表示为( ) (A )→a + 12→b(B ) -→a + 12→b(C )→a - 12→b (D )-→a - 12→b7.终边在y 轴的正半轴上的角的集合是( ) (A ){x |x =π2+2k π,k ∈Z }(B ){x |x =π2+k π}(C ){x |x =-π2+2k π,k ∈Z }(D ){x |x =-π2+k π,k ∈Z }8.关于函数y =-x 2+2x ,下列叙述错误的是( ) (A )函数的最大值是1(B )函数图象的对称轴是直线x =1(C )函数的单调递减区间是[-1,+∞)(D )函数图象过点(2,0)9.某值日小组共有5名同学,若任意安排3名同学负责教室的地面卫生,其余2名同学负责教室外的走廊卫生,则不同的安排方法种数是( ) (A )10(B )20(C )60(D )10010.如图所示,直线l 的方程是( ) (A )3x -y -3=0 (B )3x -2y -3=0(C )3x -3y -1=0(D )x -3y -1=011.对于命题p ,q ,若p ∧q 为假命题”,且p ∨q 为真命题,则( ) (A )p ,q 都是真命题(B )p ,q 都是假命题 (C )p ,q 一个是真命题一个是假命题 (D )无法判断12.已知函数f (x )是奇函数,当x >0时,f (x )=x 2+2,则f (-1)的值是( ) (A )-3 (B )-1 (C )1 (D )313.已知点P (m ,-2)在函数y =log 13x 的图象上,点A 的坐标是(4,3),则︱→AP ︱的值是( ) (A )10(B )210(C )6 2(D )5 2BOMA14.关于x ,y 的方程x 2+m y 2=1,给出下列命题:①当m <0时,方程表示双曲线;②当m =0时,方程表示抛物线;③当0<m <1时,方程表示椭圆;④当m =1时,方程表示等轴双曲线;⑤当m >1时,方程表示椭圆。

迎春杯2016年中年级复赛解析_00

迎春杯2016年中年级复赛解析_00

【考点】 图形计数 【难度】 【答案】30 【分析】分别有如下三种三角形,个数分别为 9 个、18 个、3 个. 所以图中共有 30 三角形.
4.
今天是 1 月 30 日,我们先写下 130;后面写数的规则是;如果刚写下的数是偶数就把它除以 2 再 加上 2 写在后面,如果刚写下的数是奇数就把它乘以 2 再减去 2 写在后面. 于是得到:130、67、 132、68……;那么这列数中第 2016 个数是__________.
【考点】填数游戏、整体分析问题 【难度】 【答案】63 【分析】在总算和时, A 、 C 、 D 、 E 、 F 分别算了两次, B 算了三次 . 所以五条直线的总和为
2 ( A C D E F ) 3 B 2 (1 2 3 4 5 6) B 42 B . 又由于这五条直线上的数和都
相等,所以这五条直线的总和应该为 5 的倍数,所以 B 只能等于 3, 且这五条直线的总和为 45. 所 以每条直线上的数和为 9.所以 A=6,所以 AB 63 . 下面给出一种填法:
6.
在 A、B、C 三个连桶的小水池中各放入若干条金鱼,若有 12 条金鱼从 A 池游到 C 池中,则 C 池 内的金鱼将是 A 池的 2 倍,若有 5 条金鱼从 B 池游到 A 池中,则 A 池与 B 池的金鱼数将相符. 此 外,若有 3 条金鱼从 B 池游到 C 池中,则 B 池与 C 池中的金鱼数也会相等,那么 A 水池中原来有 __________条金鱼.
【考点】 周期问题 【难度】 【答案】6 【分析】从 130 开始:130、67、132、68、36、20、12、8、6、5、8、6、5、8、6、5……后面是 8、6、 5 的循环,2016-7=2009,2009 除以 3 的余数是 2,所以第 2016 个数是 6. 5. 请将 1~6 分别填入右图的 6 个圆圈中,使得每条直线上的圆圈中填的所有数的和都相等(图中有 3 条直线上各有 3 个圆圈,有 2 条线上各有 2 个圆圈);那么两位数 AB ________【答案】1440 【分析】先考虑 9,9 不能出现在十位,所以 I 9 ,且 9 前面只能是 4,所以 H=4;再考虑 7,和 7 相 关的只有 27、72 两种,若以 27 的形式出现,则 7 后面又只能是 2,矛盾,所以必须是以 72 的形 式出现,且放在首位,即 A=7,B=2;再考虑 8,8 作为十位,只能组成 81,8 作为个位,可以组 成 18、28、48,但是 1 必须放在 8 后面,且 4 已经放在 9 前面,所以 8 作为个位,只能组成 28, 所以 C=8,D=1;还剩下 3、5、6 三个数,1 的后面和 4 的前面都不能是 3,所以只有唯一的排列 635,即 E=6、F=3、G=5. 所以这九位数字为 728163549,728+163+549=1440. 10. 图③是由 6 个图①这样的模块拼成的,如果最底层已经给定一块的位置(如图②),那么剩下部 分一共有__________种不同的拼法.

2015迎春杯六年级初赛详解

2015迎春杯六年级初赛详解


1 ,那么符合条件的 A 最小是 3
【分析】设 A 2 x 3 y p1a1 p2 a2 pn an ,则 B A 3! 2 x 1 3 y 1 p1a1 p2 a2 pn an 则 ( x 1)( y 1)(a1 1)(a2 1) (an 1) 3 [ xy (a1 1)(a2 1) (an 1)] 即 ( x 1)( y 1) 3xy ,xy 都取 1 不满足此式,所以取 x 2, y 1, a1 ~ an 0 得到最小值 12
【考点】基础应用题 【难度】☆ 【答案】14 【分析】乙钟 2 个月耗 3 节 B 电池,甲钟相当于有 24 节, 24 3 2 2 14
4.
右图六角星的 6 个顶点恰好是一个正六边形的 6 个顶点.那么阴影部分面积是空白部分面积的
__________倍.
【考点】图形分割 【难度】☆☆ 【答案】3
1 1 的那两份报纸中各挑一份,再挑个甲乙都没订的,所以有 C1 2 C 2 C 2 1 9 种选择;
35 18 9 5670 种
三.填空题(每题 12 分,共 48 分) 作匀速圆周运动.甲、乙从 A 出发,丙从 B 出发;乙顺时针,甲、丙逆时针.出发后 12 秒钟甲到

8.
甲、乙、丙三户人家打算订阅报纸,共有 7 种不同的报纸可供选择,已知每户人家都订三份不同 的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有________多 少种不同的订阅方式.
帅帅思维公众号:shuaiteacher

上排从左至右:图 1、图 2、图 3

第 3 页 兴趣是最好的老师

2016迎春杯六年级初赛详解

2016迎春杯六年级初赛详解
S小 2 (3 2 3 1 2 1)k 2 88 (其实也可以不求 k,用比也可以)
跑跑家族七人要分别通过下图中的七个门完成挑战, 第一个人可以任选一个门激活, 完成挑战后将 会激活相邻的门, 下一个人可以在已激活的门中任选一个挑战. 按照他们完成挑战的次序将七个门 的编号排序将会得到一个七位数.这个七位数一共有________种不同可能.


4× 4×3× 1× 3× 1×4× 2×3× 2×
第 5 页

兴趣是最好的老师

第 4 页
兴趣是最好的老师
学习有意思
快乐思维
v1 24 v2 2 s 24 s 21 s v1 v1 14 v2 s ( 1 2v2 1 v2 ) 21 6 6 v2 2 v 20 1 v2 2s 20 1 2v 2 3

【考点】数字谜,竖式数字谜 【难度】☆ 【答案】83720 【分析】后两次乘法末尾是 0,而第一次末尾是 6,这说明商的末两位是 5,从而得到答案
帅帅思维公众号:shuaiteacher

学习有意思
快乐思维
5 5
0 6 1 0 9 1 2 0 2 0 2 0 0
4 1 8 4 8 7 1 3 3 0 9 7 6 1 2 9 9
帅帅思维公众号:shuaiteacher


第 3 页

⑥:2004、2010、2016、2022、2028、2034、……
兴趣是最好的老师
学习有意思
快乐思维
【考点】计数,加乘原理 【难度】☆☆☆ 【答案】64 【分析】每种选择情况一定对应一个七位数,第一人选完后,后六人只需要选择“左”还是“右” ,而 第一个人的门可以完全由后六个人的“左” “右”总情况逆推出来, 26 64

人教版六年级上册16年复习总结知识点

人教版六年级上册16年复习总结知识点

第五单元圆的认识二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。

用字母C表示。

2、圆周率实验:(滚动法)在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,得到圆的周长。

或者用线围绕圆形纸片一周量出线的长度就是圆的周长(测绳法)。

发现,圆周长与它直径的比值(圆周长除以直径)是一个固定数即3倍多一点,我们把它叫做圆周率用字母π表示。

3、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。

用字母π(pai) 表示。

世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。

圆周率π是一个无限不循环小数。

在计算时,一般取π ≈ 3.14。

(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。

4、圆的周长公式:圆的周长等于圆周率乘直径用字母表示C= πd(1)、已知圆的周长求直径用圆的周长除以圆周率,用字母表示d = C ÷π或圆的周长等于2乘圆周率乘半径,用字母表示C=2πr(2)、已知圆的周长求半径用圆的周长除以圆周率的2倍,用字母表示r = C ÷ 2π(r = C / 2π)5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。

在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

6、区分周长的一半和半圆的周长:(1)、周长的一半:等于圆的周长÷2计算方法:2π r ÷ 2 即C半= π r(2)半圆的周长:等于圆的周长的一半加直径。

计算方法:半圆的周长=5.14 r (推导过程C半=2π r ÷ 2+d=πr+d=πr+2r =5.14 r)三、圆的面积1、圆的面积:圆所占平面的大小叫做圆的面积。

用字母S表示。

2、圆面积公式的推导:(1)把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。

长方形的长相当于圆的周长的一半,长方形的宽相当于圆的半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

99,总箱子数是 100 . 5.将右图中的乘法竖式补充完整后,两个乘数的和是_______.

2 0 1 6 5
【答案】 935 【解析】因为 abc 2 的计算结果是四位数, abc d 的计算结果是一位数,所以可得 b=1,d=1,c=3 或 8.最高位 a 只能取 5、 6、 7、 8、 9 中的一种.因为积的万位是 5, 千位相加的进位只能是 0、 1、 2, 因此 a 只能取 7. 71c e f 0 gi , 可推出 e=7,c=8.因此上式为 718 217 155806 ,因此 718 217 935 . a b c 2 d e
事先的约定,这个数是去掉那箱毒品后,其他各箱号的平均数,那么那箱毒品的号码是________ 【答案】 19
9 559 50.8 ,所以去掉该箱后箱子数量必为 11 的倍数.箱数平均数是 50.8, 11 11 (1 100) 100 x 559 ,因此,毒 所以箱子数可估算为 99,设毒品箱编号为 x,根据题意,可列方程: 2 , x 19 99 11
【答案】2275 【解析】图中每段圆弧的圆心都是 O,对应的角度也一样,所以各种颜色“圆环”的面积都可以表示出来. 设 OD= r , 每种颜色宽度都是 a, 可得: ① 紫色面积为: [(r a) r ] π n 360
2 2
② 蓝色面积为: [(r 2a) (r a) ] π n 360
2 2
两者相比可得出: r
19 a ; 2
2 2
③ 红色面积为: [(r 7a) (r 6a) ] π n 360 = (2r 13a) π n 360 =400 ④“彩虹”面积为: [(r 7a) r ] π n 360 = (14r 49a) π n 360
6▽9=6, 那么, 算式 [ (3▽2016) △5] x [ (2015△2016) ▽8] ÷ [ (1.999△2) + ( 【答案】 8 【解析】 原式 (3△5) (2016▽8) (2 3)
66 ▽3) ] 的计算结果是_________. 21
58 5 8
假设第一次相遇的点,这样便可以根据两人来回运动的周期性求解,最后要注意人来跑步的正常速度来取舍答案. 9.据外媒报道,美国华盛顿大学研究团队近日发现了一种新的不规则五边形,相互组合后可完全铺满平面,不会出 现重叠或有任何空隙,是目前发现的第 15 种能做到此效果的五边形.而在 100 年前,Karl Rheinhardt 发现了 5 种 不同五边形可以完全铺满平面而不会出现重叠或有任何空隙,右图是其中的一种. 现在有右图中五边形形状的瓷砖,最长边长为 10 厘米,要想覆盖 1 米 x1 米的正方形区域,最少需要_______块瓷 砖.(瓷砖不能切割)
4 8 2 2 32 , 2 4 2 2 8 , 6 6 2 18 , S空白 58 , S整体 64 64 - 16 112 ,所以,所求面积为 112 58 54 .
【知识点】几何,整体-空白 【知识点梳理】 8.体育课上老师要求练习折返跑,即在 A、B 间不断地往返,老师分别在 A、B、C、D、E 各放了一个标志桶,C、D、 E 恰好把 AB 四等分.已知小鑫和阿楷在练习过程中均保持匀速,且小鑫的速度比阿楷快,一声令下,他们两人同时 从 A 起跑.在折返跑的过程中,他们发现:他们两人在每一个有标志桶的地方都遇上过,没有标志桶的地方都没有 遇上过(包括迎面相遇和追击).已知阿楷速度是每分钟 210 米,那么小鑫的速度是每分钟________米.
x 20 3 ,即可求得 x=35 . x 10 5
【知识点】比例应用题 【知识梳理】类此的关系在工程问题和行程问题中多有涉及,可举一反三. 3.构成如图“彩虹”图案的每段弧所在圆的圆心都是点 O,且每种颜色的宽度相同;已知最内两种颜色(紫、蓝) 的面积比是 10:11,且最外侧颜色(红色)的面积是 400 平方厘米;那么整个“彩虹”图案(彩色部分)的面积是 _______平方厘米
【知识点】定义新运算 【知识梳理】严格按照新定义的运算规则,把已知的数代入,转化为加减乘除的运算,然后按照基本运算过程、规 律进行运算.正确理解定义的运算符号的意义.特别注意运算顺序. 7.右图中,两个边长为 8 的大正方形如图摆放,A、B 为大正方形的中心,那么红色部分的面积是_________
【答案】54 【解析】
【解析】已知:各箱平均数是 50 品编号是 19. 【知识点】平均数 【知识梳理】本题是对平均数的考察, 平均数= 11 的倍数,由于 50 总和 9 ,根据 50 可以推出除了毒品箱以外,其它箱子的个数是 11 总个数
9 1+2+3+4+ +89-1 1+2+3+ +111+112-112 50.8 , 45.5 , =56 ,所以其它箱子数的和比为 11 88 111
【答案】 350 【解析】由于两人速度不同,第一次相遇只能在 CDE 三个点,若两人第一次相遇在 C 点,则阿楷和小鑫的速度比为 1:7,第二次相遇会在 D 点,第三次相遇会在 E 点,第四次相遇会在 B 点,此后会周期性在这几个点相遇,满足条 件,则小鑫的速度为 210×7=1470 米每分钟; 若第一次相遇在 D 点,可得两人只会在 ADB 相遇,不满足条件; 若第一次相遇在 E 点,则阿楷和小鑫的速度比为 3:5 第二次相遇会在 D 点,第三次相遇会在 C 点,第四次相遇会在 B 点,且阿经楷过 6 个全程回到 A 点时,小鑫也会回到 A 点,因此满足条件,则小鑫的速度为 210÷3×5=350 米每 分钟; 综上,考虑到人类跑步的速度,小鑫的速度是每分钟 350 米. 【知识点】比例行程 【知识梳理】由于题目中无法算出距离,因此可以根据两者速度的比例来求解,由于两人相遇的点是固定的,可以
f 0 g i j 1 k l m n 6 o 5 p q r s
【知识点】数字谜 【知识梳理】本题的关键突破口在于算式 abc 2 lmn6 的最高位分析,a 的取值只能是 5,6,7,8,9 中的一种,结合 积的最高两位是 15,并且三个数相加进位可能是 0,1,2 三种可得 a 7 . 解数字谜一般解法: 一般是从某个数的首位或末位数字上寻找突破口.推理时应注意: ⑴ 数字谜中的文字,字母或其它符号,只取中的某个数字; ⑵ 要认真分析算式中所包含的数量关系,找出尽可能多的隐蔽条件; ⑶ 必要时应采用枚举和筛选相结合的方法(试验法) ,逐步淘汰掉那些不符合题意的数字; ⑷ 数字谜解出之后,最好验算一遍. 6.规定符号“△”为选择两个数中较大的数的运算,符号“▽”为选择两个数中较小的数的运算,比如:3△7=7,
2 2
两者相比可得: 彩虹面积=
14r 49a 91 400 400 2275 (平方厘米) 2r 【知识梳理】掌握常见曲线图形面积计算.如:圆环、扇形等.
4.国际刑警接到举报,告知某船上有一箱毒品,并说了一个数 50
9 ,船上的箱子依 1、2、3、…编号,而且根据 11
【答案】 【解析】 【知识点】 【知识梳理】 10.有五堆棋子,个数和为 3 的倍数,每次操作从其中 3 堆中各取走一个棋子,如果能通过一系列操作,使得最后 各堆棋子都恰好被取完,则称这五堆棋子是“和谐的”.当五堆棋子的个数分别为以下各组数据时,判断各堆棋子 和谐与否. (1)3、3、3、3、3 (若和谐则 A=1,若不和谐则 A=0) (2)9、6、3、2、1 (若和谐则 B=1,若不和谐则 B=0) (3)2、4、6、8、10 (若和谐则 C=1,若不和谐则 C=0) (4)2、3、5、7、13 (若和谐则 D=1,若不和谐则 D=0) (5)9、15、19、21、26 (若和谐则 E=1,若不和谐则 E=0) 那么五位数 ABCDE =__________ 【答案】10101 【解析】由已知可得,若拿的次数少于某堆中的棋子数,则该堆棋子不能拿完,这种情况肯定是不和谐的,因此第 (2) (4)组不满足条件; 第(1)组拿法:2 次 11100,后 3 次 10011,01011,00111, 第(3)组拿法:2 次 11001,2 次 01011,6 次 00111, 第(5)组尝试也是成立的, 因此只有第(2) (4)组不成立,最后答案为 10101.
2016 年六年级数学花园探秘网考解析与知识点总结
1.有三个互不相同的数字,其中任意两个数字组成的两位数都是质数,那么这三个数字的和是_______ 【答案】11 【解析】质数的个位数字只能是 1,3,7,9,去掉 3 或者 9,经尝试 1,3,7 【知识点】数论,质数 【知识梳理】考察基本数论知识. ①要求任意两个数字可以组成两位数,说明不能含 0; ②两位的质数一定是奇数,所以这三个数字只能在 1、3、5、7、9 中选取; ③ 以 5 结尾的两位数一定能被 5 整除,不是质数,排除 5; ④ 简单试验,发现 1、3、7 满足条件,6 个质数分别为 13、17、31、37、71、73 . 2.甲乙两个圆柱体容器,底面积比为 5:3,甲容器水深 20 厘米,乙容器水深 10 厘米,再往两个容器注入同样多的 水,使两个容器的水深相等,这时水深______厘米 【答案】 35 【解析】往两个容器内注入同样多的水,则水深增加的高度之比与底面积成反比.设注水后水深为厘米,列出简单 方程,
相关文档
最新文档