全国大学生数学建模竞赛历年赛题

合集下载

数学建模国赛历年题目

数学建模国赛历年题目

数学建模国赛历年题目
以下是数学建模国赛历年题目的一部分:
1. 2018年题目:某公司想要投资一个新的项目,该项目有一
定的风险,但可能会带来高额的回报。

你被要求通过建立一个数学模型来评估该项目的可行性和预测可能的回报。

2. 2017年题目:某城市的交通拥堵问题日益严重,政府希望
通过优化信号灯的调节策略来缓解交通压力。

你需要建立一个数学模型来确定最佳的信号灯时间调节方案,以最大程度地减少交通拥堵。

3. 2016年题目:在某个城市,政府计划在两个特定的区域之
间修建一个新的道路,并需要确定最佳的路线以及道路的设计参数。

你需要建立一个数学模型来分析各种因素,如交通流量、土地利用等,以确定最佳的道路路线和设计。

4. 2015年题目:某公司生产的产品在市场上的销售量一直在
下降,他们希望通过改变产品的包装和定价策略来提振销售。

你需要建立一个数学模型来分析不同包装和定价方案对销售量的影响,并提出最佳的包装和定价策略。

以上题目只是数学建模国赛历年题目的一小部分,每年的具体题目会有所变化。

完成这些题目需要的技巧包括数学建模、数据分析和优化方法等。

如果你对数学建模感兴趣,建议多参加相关的竞赛和训练,积累经验和提高自己的能力。

历年数学建模

历年数学建模

历年数学建模数学建模是一种将数学理论和方法应用于实际问题的过程。

其目的是从现实世界中的数据、问题和情境中提取数学模型以解决问题。

数学建模在各个领域都有广泛的应用,如经济学、物理学、生物学等。

而在高校中,数学建模也成为了一项重要的学科竞赛。

以下是几年来数学建模竞赛的相关内容。

2017年:水位预测2017年全国大学生数学建模竞赛的题目是“水位预测模型”。

该竞赛旨在探讨如何从历史数据中预测未来的水位,以便减少洪水灾害的影响。

此竞赛的难点在于如何从大量的数据中提取有用的信息,建立合适的模型,并且预测的准确性要高。

2018年:智能交通优化2018年全国大学生数学建模竞赛的题目是“智能交通优化模型”。

该竞赛旨在探讨如何利用智能交通系统来优化城市交通。

此竞赛的难点在于如何建立合适的模型,考虑到各种复杂因素,如路况、时间、距离、交通工具等,以实现交通的高效、安全和环保。

2019年:物流配送路径规划2019年全国大学生数学建模竞赛的题目是“物流配送路径规划模型”。

该竞赛旨在探讨如何通过科学的方式来规划物流配送路径,以提高物流效率和降低物流成本。

此竞赛的难点在于如何建立合适的模型,考虑到各种复杂因素,如货物重量、体积、距离、交通工具等,以实现最佳路径规划。

2020年:新冠疫情预测2020年全国大学生数学建模竞赛的题目是“新冠疫情预测模型”。

该竞赛旨在探讨如何通过数学模型来预测新冠疫情的传播趋势和影响范围。

此竞赛的难点在于如何建立合适的模型,考虑到各种复杂因素,如人口流动、病毒传播速度、防疫措施等,以实现准确预测和科学应对。

以上是近几年全国大学生数学建模竞赛的相关内容。

可以看出,数学建模在实际应用中的范围非常广泛,同时也需要数学模型的建立和应用能力。

因此,加强数学建模的学习和实践,对于提高数学水平和解决实际问题都具有重要的意义。

全国大学生数学建模竞赛历年赛题

全国大学生数学建模竞赛历年赛题

全国大学生数学建模竞赛历年赛题1992:A?施肥效果分析 B?实验数据分解1993:A?非线性交调的频率设计 B?足球队排名次1994:A?逢山开路 B?锁具装箱1995:A?一个飞行管理问题 B?天车与冶炼炉的作业调度1996:A?最优捕鱼策略 B?节水洗衣机1997:A?零件参数 B?截断切割1998:A?投资的收益和风险 B?灾情巡视路线1999:A?自动化车床管理 B?钻井布局 C?煤矸石堆积 D?钻井布局2000:A?DNA序列分类 B?钢管购运 C?飞越北极 D?空洞探测2001:A?血管三维重建 B?公交车调度 C?基金使用2002:A?车灯线光源 B?彩票中数学 D?赛程安排2003:A?SARS的传播 B?露天矿生产 D?抢渡长江2004:A?奥运会临时超市网点设计 B?电力市场的输电阻塞管理C?饮酒驾车 D?公务员招聘2005:A 长江水质的评价和预测 B?DVD在线租赁C?雨量预报方法的评价 D?DVD在线租赁?2006:A出版社的资源配置 B 艾滋病疗法的评价及疗效的预测C易拉罐形状和尺寸的最优设计D 煤矿瓦斯和煤尘的监测与控制2007:A 中国人口增长预测 B 乘公交,看奥运C 手机“套餐”优惠几何D 体能测试时间安排2008:A 数码相机定位 B 高等教育学费标准探讨C 地面搜索D NBA赛程的分析与评价2009:A 制动器试验台的控制方法分析 B 眼科病床的合理安排C 卫星和飞船的跟踪测控 D会议筹备2010:A储油罐的变位识别与罐容表标定B 2010年上海世博会影响力的定量评估C输油管的布置D对学生宿舍设计方案的评价2011: A 城市表层土壤重金属污染分析B 交巡警服务平台的设置与调度C 企业退休职工养老金制度的改革D 天然肠衣搭配问题2012: A 葡萄酒的评价B 太阳能小屋的设计C 脑卒中发病环境因素分析及干预D 机器人避障问题2013: A 车道被占用对城市道路通行能力的影响B 碎纸片的拼接复原C 古塔的变形D 公共自行车服务系统2014: A 嫦娥三号软着陆轨道设计与控制策略B 创意平板折叠桌C 生猪养殖场的经营管理D 储药柜的设计2015: A ?太阳影子定位B?“互联网+”时代的出租车资源配置C? 月上柳梢头D? 众筹筑屋规划方案设计。

全国大学生数学建模竞赛题选

全国大学生数学建模竞赛题选

全国大学生数学建模竞赛题选2001年C题基金使用计划某校基金会有一笔数额为M元的基金,打算将其存入银行或购买国库券。

当前银行存款及各期国库券的利率见下表。

假设国库券每年至少发行一次,发行时间不定。

取款政策参考银行的现行政策。

校基金会计划在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额。

校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。

请你帮助校基金会在如下情况下设计基金使用方案,并对M=5000万元,n=10年给出具体结果:1.只存款不购国库券;2.可存款也可购国库券。

3.学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金比其2003年C 题2002年5月1日,“武汉国际抢渡长江挑战赛”在江城隆重举行,参赛的国内外选手共186人。

虽然选手中专业人员将近一半,但仅34人到达终点。

与此形成鲜明对比的是,于1934年9月9日在武汉首次举办的横渡长江游泳竞赛,参赛的44人中,却有40人到达终点。

究其原因,关键在于游泳者能否根据自己的速度,合理地选择游泳方向。

假设竞渡区域两岸为平行线,它们之间的垂直距离为1160米,从起点正对岸到终点的距离为1000米,见图1。

具体问题如下:1. 假定在竞渡过程中游泳者的速度大小和方向不变,水流速度为1.89米/秒。

已知第一名的成绩为14分8秒,求她游泳的路线,游泳速度的大小和方向;已知一游泳者速度大小为1.5米/秒,求他的游泳方向并估计他的成绩。

2. 在(1)的假设下,如果游泳者始终以和岸边垂直的方向游, 他(她)们能否到达终点?根据你们的数学模型说明为什么1934年 和2002年能游到终点的人数的百分比有如此大的差别;给出能够成功到达终点的选手的条件。

图1. 渡江示意图3. 若流速沿离岸边距离的分布为 (设从武昌汉阳门垂直向上为 y 轴正向) :⎪⎩⎪⎨⎧≤≤<<≤≤=米米秒,米米米秒,米米米秒,米1160960/47.1960200/11.22000/47.1)(0y y y y v游泳者的速度大小(1.5米/秒)仍全程保持不变,试为他选择游泳方向和路线,估计他的成绩。

历年全国大学生数学建模竞赛-题目(1994-2009)

历年全国大学生数学建模竞赛-题目(1994-2009)
B 题 节水洗衣机
我国淡水资源有限,节约用水人人有责。洗衣机在家庭用水中占有相当大的 份额,目前洗衣机已非常普及,节约洗衣机用水十分重要。假设在放入衣物和洗 涤剂后洗衣机的运行过程为:加水-漂水-脱水-加水-漂水-脱水-…-加水-漂水脱水(称“加水-漂水-脱水”为运行一轮)。请为洗衣机设计一种程序(包括运 行多少轮、每轮加多少水等),使得在满足一定洗涤效果的条件下,总用水量最 少。选用合理的数据进行计算。对照目前常用的洗衣机的运行情况,对你的模型 和结果作出评价。
1)建立数学模型分析如何可持续捕获(即每年开始捕捞时渔场中各年龄组 鱼群不变),并且在此前提下得到最高的年收获量(捕捞总重量)。
2)某渔业公司承包这种鱼的捕捞业务5年,合同要求鱼群的生产能力不能 受到太大的破坏。已知承包时各年龄组鱼群的数量分别为: 122,29.7,10.1,3.29(×109 条),如果仍用固定努力量的捕捞方式,该公司采取 怎样的策略才能使总收获量最高。
1996 年全国大学生数学建模竞赛
A 题:最优捕鱼策略
为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开 发必须适度。一种合理、简化的策略是,在实现可持续收获的前提下,追求最大 产量或最佳效益。
考虑对某种鱼(鲳鱼)的最优捕捞策略:
假设这种鱼分4个年龄组:称1龄鱼,……,4龄鱼。各年龄组每条鱼的平 均重量分别为 5.07,11.55,17.86,22.99(克);各年龄组鱼的自然死亡率均为 0.8(1/年);这种鱼为季节性集中产卵繁殖,平均每条4龄鱼的产卵量为 1.109 ×105(个);3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵,产卵和 孵化期为每年的最后4个月;卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产 卵总是 n 之比)为 1.22×1011/(1.22×1011+n).

数学建模国赛题目

数学建模国赛题目

数学建模国赛题目一、关于校园生活类- 逻辑:同学们在食堂排队打饭的时候,总是希望能尽快拿到食物。

这里面涉及到食堂窗口的数量、每个窗口打饭的速度(比如打不同菜品的复杂程度、工作人员的熟练程度等)、同学们到达食堂的时间分布等因素。

可以通过建立数学模型,来分析怎样安排窗口的服务或者调整同学们的排队方式,能让整体的排队等待时间最短,就像指挥一场让大家都能快速填饱肚子的战斗。

- 逻辑:在宿舍里,每个舍友用电用水的习惯都不太一样。

有人喜欢长时间开着电脑,有人洗澡特别久,水电费总是一笔糊涂账。

通过收集每个舍友的电器使用时长、用水次数和时长等数据,建立数学模型,来找出到底谁在水电费上贡献最大,就像侦探破案一样,揭开隐藏在宿舍里的“耗能大户”的神秘面纱。

二、环境保护类- 逻辑:城市里种了很多小树苗来美化环境,但是有些树苗活不了多久就夭折了。

这可能和种植的土壤质量、浇水的频率和量、周围的空气污染程度、光照等因素有关。

我们要建立一个数学模型,就像给小树苗当医生一样,找出影响它们存活的关键因素,然后提出提高树苗存活率的最佳方案,让城市里能有更多茁壮成长的绿树。

- 逻辑:城市每天都会产生大量的垃圾,这些垃圾要从各个小区、街道收集起来,然后运到垃圾处理厂。

但是垃圾车的行驶路线、垃圾收集点的分布、不同区域垃圾产量的不同等因素都会影响垃圾处理的效率。

我们要像给垃圾规划一场旅行一样,建立数学模型找到垃圾从产生地到处理厂的最优路径,让垃圾能够高效地被处理,减少对城市环境的污染。

三、经济与商业类- 逻辑:校园小卖部里的商品琳琅满目,但是怎么给这些商品定价可是个大学问。

如果定价太高,同学们就不买了;定价太低,又赚不到钱。

这里面要考虑商品的进价、同学们的消费能力、不同商品的受欢迎程度等因素。

通过建立数学模型,就像寻找宝藏的密码一样,找到能让小卖部利润最大化的定价策略。

- 逻辑:现在有很多网红店,门口总是排着长长的队伍。

这背后可能是因为独特的营销策略、美味的食物或者时尚的装修。

数学建模国赛历年

数学建模国赛历年

数学建模国赛历年
中国数学建模国赛(CUMCM,China Undergraduate Mathematical Contest in Modeling)是由中国高等教育学会主办的年度竞赛活动。

该比赛自2002年开始,在国内具有较高的知名度和影响力。

以下是数学建模国赛的历年比赛题目:
1. 2002年:载具最优路径规划问题。

2. 2003年:某种病例发病规律研究与流行趋势预测。

3. 2004年:火山的群体爆发问题。

4. 2005年:寻找最优泊位调度问题。

5. 2006年:渐开线传动机构建模与优化设计。

6. 2007年:数字图书馆文献导航问题。

7. 2008年:草坪生长问题。

8. 2009年:城市排水系统优化设计。

9. 2010年:城市地下热岛效应形成机制与控制。

10. 2011年:航空贸易通航网络优化设计。

11. 2012年:移动互联网2G网络运用效果评估与优化。

12. 2013年:网约车资源调度问题。

13. 2014年:地板砖铺设方案优化设计。

14. 2015年:电视台节目时段规划问题。

15. 2016年:共享单车调度问题。

16. 2017年:基于航班延误的航空公司航线规划问题。

17. 2018年:产品质量维度数学量化研究。

18. 2019年:风力发电场多目标优化规划问题。

19. 2020年:新能源汽车充电站规划问题。

以上只是部分年份的题目,每年的题目都与实际问题紧密相关,考察数学建模的能力和创新思维。

全国大学生数学建模竞赛历年试题

全国大学生数学建模竞赛历年试题

全国大学生数学建模竞赛历年试题1.1992年A题:施肥效果分析;B题:试验数据分析;2.1993年A题:非线性交调的频率设计;B题:足球队拍名次;3.1994年A题:逢山开路;B题:锁具开箱;4.1995年A题:一个飞行管理问题;B题:天车与冶炼炉的作业调度;5.1996年A题:最优捕鱼策略;B题:节水洗衣机;6.1997年A题:零件的参数设计;B题:截断切割;7.1998年A题:投资的收益和风险B题:灾情巡视路线8.1999年A题:自动化车床管理B题:钻井布局C题:煤矸石堆积D题:钻井布局9.2000年A题:DNA序列分类B题:钢管订购和运输C题:飞越北极D题:空洞探测10.2001年A题:血管的三维重建B题:公交车调度C题:基金使用计划D题:公交车调度11.2002年A题:车灯线光源的优化设计B题:彩票中的数学C题:车灯线光源的计算D题:赛程安排12.2003年A题:SARS的传播B题:露天矿生产的车辆安排C题:SARS的传播D题:抢渡长江13.2004年A题:奥运会临时超市网点设计B题:电力市场的输电阻塞管理C题:饮酒驾车D题:公务员招聘14.2005年A题:长江水质的评价和预测B题:DVD在线租赁C题:雨量预报方法的评价D题:DVD在线租赁15.2006年A题:出版社的资源配置B题:艾滋病疗法的评价及疗效的预测C题:易拉罐形状和尺寸的最优设计D题:煤矿瓦斯和煤尘的监测与控制16.2007A题:中国人口增长预测;B题:乘公交,看奥运;C题:手机“套餐”优惠几何;D题:体能测试时间安排17.2008A题数码相机定位;B题高等教育学费标准探讨;C题地面搜索;D题NBA赛程的分析与评价.18.2009A题制动器试验台的控制方法分析B题眼科病床的合理安排C题卫星和飞船的跟踪测控D题会议筹备19.2010A题储油罐的变位识别与罐容表标定B题2010年上海世博会影响力的定量评估C题输油管的布置D题对学生宿舍设计方案的评价19.2011A题城市表层土壤重金属污染分析B题交巡警服务平台的设置与调度C题企业退休职工养老金制度的改革D题天然肠衣搭配问题20.2012A题葡萄酒的评价B题太阳能小屋的设计C题脑卒中发病环境因素分析及干预D题机器人避障问题21.2013 A题车道被占用对城市道路通行能力的影响B题碎纸片的拼接复原C题古塔的变形D题公共自行车服务系统。

数学建模历年竞赛试题

数学建模历年竞赛试题

目录前言................................................................................................. 错误!未定义书签。

目录........................................................................................................................... - 0 - 一、什么是数学模型............................................................................................... - 3 -2001年B题……公交车调度......................................................................... - 4 - 2001年C题……基金使用计划..................................................................... - 9 - 2002年A题……车灯线光源的优化设计................................................... - 10 - 2002年B题……彩票中的数学................................................................... - 11 - 2003年A题……SARS的传播.................................................................... - 15 - 2003年B题……露天矿生产的车辆安排................................................... - 26 - 2003年D题……抢渡长江........................................................................... - 29 - 2004年C题……饮酒驾车........................................................................... - 32 - 2004年B题……电力市场的输电阻塞管理............................................... - 34 - 电力市场交易规则:............................................................................. - 35 -输电阻塞管理原则:............................................................................. - 36 -表1各机组出力方案(单位:兆瓦,记作MW) ............................ - 39 -表2各线路的潮流值(各方案与表1相对应,单位:MW) ......... - 41 -表3各机组的段容量(单位:MW) ................................................. - 42 -表4各机组的段价(单位:元/兆瓦小时,记作元/MWh)............. - 42 -表5各机组的爬坡速率(单位:MW/分钟) .................................... - 43 -表6各线路的潮流限值(单位:MW)和相对安全裕度 ................. - 43 -2008年B题……高等教育学费标准探讨................................................... - 43 - 2008年D题……NBA赛程的分析与评价 ................................................. - 45 - 2009年A题……制动器试验台的控制方法分析....................................... - 47 - 2009年B题……眼科病床的合理安排....................................................... - 50 - 【附录】2008-07-13到2008-09-11的病人信息 ................................ - 51 - 2009年D题……会议筹备........................................................................... - 77 - 附表1……10家备选宾馆的有关数据................................................. - 78 -附表2……本届会议的代表回执中有关住房要求的信息(单位:人)- 79 -附表3……以往几届会议代表回执和与会情况.................................. - 80 -附图(其中500等数字是两宾馆间距,单位为米)......................... - 81 -二、为什么要学习数学模型................................................................................. - 83 -1、数学模型无处不在,我们的生活、工作、学习都离不开它............... - 83 -例1买房贷款问题................................................................................. - 83 -例2物体冷却过程的数学模型............................................................. - 84 -2、是学好数学用好数学的必经之路........................................................... - 86 -3、是数学教学改革的重要手段和有效路径............................................... - 88 -4、数学建模竞赛所提唱的团队精神是现代大学生必须具备素质........... - 91 -5、数学建模竞赛鼓励学生用跳跃式的、发散式的形象思维方法,这有利于培养学生的创新意识。

高教社杯全国大学生数学建模竞赛题目

高教社杯全国大学生数学建模竞赛题目

高教社杯全国大学生数学建模竞赛题目高教社杯全国大学生数学建模竞赛已经成为了我国大学生数学建模领域一项极具影响力的赛事之一。

作为一项旨在提高大学生数学建模能力和创新能力的比赛,其题目的设计非常关键。

从2009年开始,高教社杯全国大学生数学建模竞赛就引入了“数学、建模和计算机”三个方面相结合来设置竞赛题目,旨在充分体现创新性、实际性和时代性。

每年的竞赛题目独具特色,既注重基础,又注重应用,给参赛选手提供了一个广泛展示科技创新成果的舞台,极大地推动了我国大学生数学建模水平的提升。

以下是近几年高教社杯全国大学生数学建模竞赛的题目:2019年:多元时空数据的融合与应用该题目要求选手用数据分析和模型建模技术进行多元时空数据融合,制作出能应用于数据分析、可视化和预测等领域的模型。

该题目考验选手的计算机应用能力和数据处理能力。

2018年:海洋环境与生态建设该题目需要选手从海洋生态、环境污染、资源利用、气候变化等方面出发,结合数学模型和计算机技术,探究关键问题。

选手要能积极运用大数据技术,分析丰富的海洋数据,并针对不同海洋问题给出行之有效的数学和计算模型。

2017年:共享单车智能管理与优化该题目以共享单车为研究对象,要求选手分析共享单车智能管理的效能,探究如何在现有的单车停放、调度、维修等方面研究出更优的管理模式,实现精准的数量分配和智能的管理系统。

以上三个题目从不同的角度出发,分别涉及了数据分析、海洋环境、共享单车等多个领域。

它们都融合了计算机技术和数学建模思想,是一道技术与创新相结合的精彩之作。

总体而言,高教社杯全国大学生数学建模竞赛的题目设计体现了需求实际、具有挑战性和创新性等特点,能够有效地提高大学生的数学建模和创新能力。

同时,它也为推进我国大学生数学建模水平的提升做出了重大贡献。

相信未来会有更多具有前瞻性和实践性的竞赛题目出现,让更多大学生通过数学建模实现梦想。

2023数学建模国赛题

2023数学建模国赛题

2023数学建模国赛题一、选择题(每题3分,共30分)下列函数中,最小正周期为π的是()A. y=sin2xB. y=cos2xC. y=tanxD. y=∣sinx∣若实数a,b满足a>b,则下列不等式一定成立的是()A. a2>b2B. ac2>bc2C. a+a1>b+b1D. ab<1已知loga2<logb2<0,则下列不等式成立的是()A. a>b>1B. b>a>1C. 0<a<b<1D. 0<b<a<1二、填空题(每题4分,共16分)已知等差数列{an}的前n项和为Sn,若a1=1,S5=15,则公差d= _______。

已知圆x2+y2=4与直线y=kx+b相切,且直线在y轴上的截距为2,则k= _______。

若a,b是两个不共线的向量,且AB⟶=2a+kb,CB⟶=a+b,CD⟶=−2a−b,则k= _______时,A,B,D三点共线。

三、解答题(共54分)1.(本题满分12分)已知函数f(x)=lnx−xa。

(1)求函数f(x)的单调区间;(2)若函数f(x)在[1,e]上的最小值为23,求实数a的值。

2.(本题满分14分)在ΔABC中,角A,B,C的对边分别为a,b,c,且a=2,b=3,cosC=41。

(1)求sinC的值;(2)求ΔABC的面积。

3.(本题满分14分)已知椭圆C:a2x2+b2y2=1(a>b>0)的离心率为23,且过点P(1,23)。

(1)求椭圆C的方程;(2)过点E(4,0)的直线l与椭圆C交于A,B两点,若线段AB的中点坐标为(m,n),求m的取值范围。

4.(本题满分14分)已知函数f(x)=31x3−21x2+cx+d有极值点x1,x2,且x1<x2,x1+2x2=0。

(1)求c的取值范围;(2)证明:f(x1)>41。

历年全国大学生数学建模竞赛题目

历年全国大学生数学建模竞赛题目

武汉理工大学队员比赛论文mcm2003_A_王蝉娟_唐兵_隗勇mcm2003_A_万丽军_唐涛_陈正旭mcm2003_A王鹏_邓科_刘文慧mcm2003_B_王雨春_钟原_李霜icm2003_C_刘旺_董显_吴辉icm2003_C_夏立_成浩_易科mcm2004_b 厉化金_谷雨_曾祥智mcm2004_b_夏立_赵明杰_高婷全国比赛优秀论文1993年A题非线性交调的频率设计1993年B题球队排名问题1994年A题逢山开路1994年B题锁具装箱1995年A题一个飞行管理模型1995年B题天车与冶炼炉的作业调度1996年A题最优捕鱼策略1996年B题节水洗衣机1997年A题零件的参数设计1997年B题截断切割1998年A题投资的收益和风险1998年B题灾情巡视路线1999年A题自动化车床管理1999年B题钻井布局2000年A题 DNA序列分类2000年B题钢管定购和运输2001年A题血管的三维重建2001年B题公交车调度中国科大老师对美国赛题目的讲解(题目可从往届试题处下载) MCM 1985 A题(王树禾教授)MCM 1985 B题(侯定丕教授)MCM 1986 A题(常庚哲教授,丁友东老师)MCM 1986 B题(李尚志教授)MCM 1988 A题(苏淳教授)MCM 1988 B题(侯定丕教授)MCM 1989 A题(赵林城老师)MCM 1989 B题(侯定丕教授)MCM 1990 A题(王树禾教授)MCM 1990 B题(王树禾教授)MCM 1991 A题(常庚哲教授,丁友东老师)MCM 1992 B题(侯定丕教授)MCM 1993 A题(苏淳教授)MCM 1993 B题(万战勇老师)MCM 1994 B题(程继新老师)美国赛优秀论文MCM 2001 UMAP MCM 2002 UMAPMCM 2003 UMAP MCM 2004 (Quick Pass)。

全国大学生数学建模竞赛的历年真题

全国大学生数学建模竞赛的历年真题

全国大学生数学建模竞赛的历年赛题(1992年—2011年)1992年:(A)作物生长的施肥效果问题(北理工:叶其孝)(B)化学试验室的实验数据分解问题(复旦:谭永基)1993年:(A)通讯中非线性交调的频率设计问题(北大:谢衷洁)(B)足球甲级联赛排名问题(清华:蔡大用)1994年:(A)山区修建公路的设计造价问题(西电大:何大可)(B)锁具的制造、销售和装箱问题(复旦:谭永基等)1995年:(A)飞机的安全飞行管理调度问题(复旦:谭永基等)(B)天车与冶炼炉的作业调度问题(浙大:刘祥官等)1996年:(A)最优捕鱼策略问题(北师大:刘来福)(B)节水洗衣机的程序设计问题(重大:付鹂)1997年:(A)零件参数优化设计问题(清华:姜启源)(B)金刚石截断切割问题(复旦:谭永基等)1998年:(A)投资的收益和风险问题(浙大:陈淑平)(B)灾情的巡视路线问题(上海海运学院:丁颂康)1999年:(A)自动化机床控制管理问题(北大:孙山泽)(B)地质堪探钻井布局问题(郑州大学:林诒勋)(C)煤矸石堆积问题(太原理工大学:贾晓峰)(D)钻井布局问题2000年:(A)DNA序列的分类问题(北工大:孟大志)(B)钢管的订购和运输问题(武大:费甫生)(C)飞越北极问题(复旦:谭永基)(D)空洞探测问题(东北电力学院:关信)2001年:(A)三维血管的重建问题(浙大:汪国昭)(B)公交车的优化调度问题(清华:谭泽光)(C)基金使用计划问题(东南大学:陈恩水)(D)公交车调度问题2002年:(A)汽车车灯的优化设计问题(复旦:谭永基等)(B)彩票中的数学问题(信息工程大学:韩中庚)(C)车灯线光源的计算问题(D)球队的赛程安排问题(清华:姜启源)2003年:(A)SARS的传播问题(集体)(B)露天矿生产的车辆安排问题(吉林大:方沛辰)(C)SARS的传播问题(D)抢渡长江问题(华中农大:殷建肃)2004年:(A)奥运会临时超市网点设计问题(北工大:孟大志)(B)电力市场的输电阻塞管理问题(浙大:刘康生)(C)酒后开车问题(清华:姜启源)(D)公务员的招聘问题(信息工程大学:韩中庚)2005年:(A)长江水质的评价与预测问题(信息工大:韩中庚)(B)DVD在线租赁问题(清华:谢金星等)(C)雨量预报方法的评价问题(复旦:谭永基)(D)DVD在线租赁问题2006年:(A)出版社的资源管理问题(北工大:孟大志)(B)艾滋病疗法的评价及预测问题(天大:边馥萍)(C)易拉罐形状和尺寸的设计问题(北理工:叶其孝)(D)煤矿瓦斯和煤尘的监测与控制问题(信息工程大学:韩中庚)2007年: (A)中国人口增长预测问题(B) 乘公交,看奥运问题(C) 手机“套餐”优惠几何问题(D) 体能测试时间安排问题2008年:(A) 数码相机定位问题(B) 高等教育学费标准探讨问题(C) 地面搜索问题(D) NBA赛程的分析与评价问题2009年:(A) 制动器试验台的控制方法分析问题(B) 眼科病床的合理安排问题(C) 卫星和飞船的跟踪测控问题(D) 会议筹备问题2010年:(A) 储油罐的变位识别与罐容表标定问题(B) 2010年上海世博会影响力的定量评估问题(C) 输油管的布置问题(D) 对学生宿舍设计方案的评价问题2011年:(A) 城市表层土壤重金属污染分析问题(B) 交巡警服务平台的设置与调度问题(C) 企业退休职工养老金制度的改革问题(D) 天然肠衣搭配问题问题。

2023年历年全国数学建模试题及解法归纳

2023年历年全国数学建模试题及解法归纳

历年全国数学建模试题及解法归纳赛题93A非线性交调的频率设计93B足球队排名94A逢山开路94B锁具装箱问题95A飞行管理问题95B天车与冶炼炉的作业调度96A最优捕鱼策略96B节水洗衣机97A零件的参数设计97B截断切割的最优排列98A一类投资组合问题98B灾情巡视的最佳路线99A自动化车床管理99B钻井布局OOA DNA序列分类00B钢管订购和运送01A血管三维重建解法拟合、规划图论、层次分析、整数规划图论、插值、动态规划图论、组合数学非线性规划、线性规划动态规划、排队论、图论微分方程、优化非线性规划非线性规划随机模拟、图论多目的优化、非线性规划图论、组合优化随机优化、计算机模拟0-1规划、图论模式辨认、Fisher判别、人工神经网络组合优化、运送问题曲线拟合、曲面重建赛题01B 公交车调度问题02A 车灯线光源的优化02B 彩票问题03A SARS 的传播03B 露天矿生产的车辆安排04A 奥运会临时超市网点设计04B 电力市场的输电阻塞管理05A 长江水质的评价和预测05B DVD 在线租赁06A 出版社书号问题06B Hiv 病毒问题07A 人口问题07B 公交车问题08A 照相机问题08B 大学学费问题2023年A 题制动器实验台的控制方法分析2023年B 题眼科病床的合理安排2023年C 题卫星监控 解法多目的规划非线性规划单目的决策微分方程、差分方程整数规划、运送问题记录分析、数据解决、优化数据拟合、优化预测评价、数据解决随机规划、整数规划整数规划、数据解决、优化线性规划、回归分析微分方程、数据解决、优化 多目的规划、动态规划、图论、0-1规划非线性方程组、优化数据收集和解决、记录分析、回归分析工程控制排队论,优化,仿真,综合评价几何问题,搜集数据2023年D题会议筹备优化赛题发展的特点:1.对选手的计算机能力提出了更高的规定:赛题的解决依赖计算机,题目的数据较多,手工计算不能完毕,如03B,某些问题需要使用计算机软件,01A。

历年高教杯全国大学生数学建模题目

历年高教杯全国大学生数学建模题目
1.6 近几年全国大学生数学建模竞赛题
A 1992 B A 1993 B A 1994 B 锁具装箱 锁具装箱 足球比赛的排名问题 逢山开路 实验数据分解 交调频率设计 农作物施肥效果分析
A 1995 B A 1996 B A 1997 B
一个飞行管理问题 天车与冶炼炉的作业调度 节水洗衣机问题 最优捕鱼问题 零件的参数设计 最优截断切割问题
长江水质的评价和预测 DVD 在线租赁 在线租赁
2006
2007
出版社的资源配置 艾滋病疗法的评价及疗效 B 的预测 A 中国人口增长预测 A B A 乘公交, 乘公交,看奥运 数码相机定位
2008 B 2009
高等教育学费标准探讨 制动器试验台的控制方法 A 分析 B 眼科病床的合理安排
A 1998 B A 1999 B A 2000 B A 2001 B
投资的收益和风险 灾情巡视路线 自动化车床管理 钻井布局 DNA 序列分类 钢管订购和运输
血管的三维重建 公交车调度
A 2002 B A 2003 B A 2004 B A 2005 B
车灯线光源的优化设计 彩票中的数学 SARS 的传播 露天矿生产的车辆安排 奥运会临时超市网点设计 电力市场的输电阻塞管理

历年全国赛数学建模题目

历年全国赛数学建模题目

目录1996年全国大学生数学建模竞赛题目 (2)A题最优捕鱼策略 (2)B题节水洗衣机 (2)1997年全国大学生数学建模竞赛题目 (3)A题零件的参数设计 (3)B题截断切割 (4)1998年全国大学生数学建模竞赛题目 (5)A题投资的收益和风险 (5)B题灾情巡视路线 (6)1999创维杯全国大学生数学建模竞赛题目 (7)A题自动化车床管理 (7)B题钻井布局 (8)C题煤矸石堆积 (9)D题钻井布局(同 B 题) (9)2000网易杯全国大学生数学建模竞赛题目 (10)A题 DNA分子排序 (10)B题钢管订购和运输 (12)C题飞越北极 (15)D题空洞探测 (15)2001年全国大学生数学建模竞赛题目 (17)A题血管的三维重建 (17)B题公交车调度 (18)C题基金使用计划 (20)D题公交车调度 (20)2002高教社杯全国大学生数学建模竞赛题目 (21)A题车灯线光源的优化设计 (21)B题彩票中的数学 (21)C题车灯线光源的计算 (23)D题赛程安排 (23)2003高教社杯全国大学生数学建模竞赛题目 (24)A题 SARS的传播 (24)B题露天矿生产的车辆安排 (28)C题 SARS的传播 (29)D题抢渡长江 (30)2004高教社杯全国大学生数学建模竞赛题目 (31)A题奥运会临时超市网点设计 (31)B题电力市场的输电阻塞管理 (35)C题饮酒驾车 (39)D题公务员招聘 (39)2005高教社杯全国大学生数学建模竞赛题目 (42)A题: 长江水质的评价和预测 (42)B题: DVD在线租赁 (43)C题雨量预报方法的评价 (44)D题: DVD在线租赁 (45)2006高教社杯全国大学生数学建模竞赛题目 (46)A题: 出版社的资源配置 (46)B题: 艾滋病疗法的评价及疗效的预测 (46)C题: 易拉罐形状和尺寸的最优设计 (47)D题: 煤矿瓦斯和煤尘的监测与控制 (48)2007高教社杯全国大学生数学建模竞赛题目 (53)A题:中国人口增长预测 (53)2008高教社杯全国大学生数学建模竞赛题目 (56)A题数码相机定位 (56)B题高等教育学费标准探讨 (57)C题地面搜索 (57)2009高教社杯全国大学生数学建模竞赛题目 (59)A题制动器试验台的控制方法分析 (59)B题眼科病床的合理安排 (60)C题卫星和飞船的跟踪测控 (61)D题会议筹备 (61)2010全国高教社杯数学建模题目 (65)A题储油罐的变位识别与罐容表标定 (65)B题 2010年上海世博会影响力的定量评估 (66)A题最优捕鱼策略为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度.一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益.考虑对某种鱼(鳀鱼)的最优捕捞策略:假设这种鱼分四个年龄组,称1龄鱼,…,4龄鱼,各年龄组每条鱼的平均重量分别为 5.07,11.55,17.86,22.99(g),各年龄组鱼的自然死亡率为0.8(1/年),这种鱼为季节性集产卵繁殖,平均每条4龄鱼的产卵量为1.109× (个),3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵,产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22× /(1.22× +n).渔业管理部门规定,每年只允许在产卵孵化期前的8个月内进行捕捞作业.如果每年投入的捕捞能力(如渔船数﹑下网次数等)固定不变,这时单位时间捕捞量与各年龄组鱼群条数成正比,比例系数不妨称捕捞强度系数.通常使用13mm网眼的拉网,这种网只能捕3龄鱼和4龄鱼,其两个捕捞强度系数之比为0.42:1.渔业上称这种方式为固定努力量捕捞.1)建立数学模型分析如何实现可持续捕获(即每年开始捕捞时鱼场中各年龄组鱼群不变),并且在此前提下得到最高的年收获量(捕捞总重量).2)某渔业公司承包这种鱼的捕捞业务5年,合同要求5年后鱼群的生产能力不能受到太大破坏. 已知承包时各年龄组鱼群的数量分别为:122,29.7,10.1,3.29(×条),如果任用固定努力量的捕捞方式,该公司应采取怎样的策略才能使总收获量最高.(北京师范大学刘来福提供)B题节水洗衣机我国淡水资源有限,节约用水人人又责,洗衣在家庭用水中占有相当大的份额,目前洗衣机已相当普及,节约洗衣机用水十分重要.假设在放入衣服和洗涤剂后洗衣机的运行过程为:加水-漂水-脱水-加水-漂洗-脱水-…-加水-漂洗-脱水(称"加水-漂洗-脱水"为运行一轮).请为洗衣机设计一种程序(包括运行多少轮﹑每轮加水量等),使得在满足一定洗涤效果的条件下,总用水量最少.选用合理的数据进行计算,对照目前常用的洗衣机的运行情况,对你的模型和结果做出评价.A题零件的参数设计一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。

历年数学建模赛题题目详解

历年数学建模赛题题目详解

历年数学建模赛题题目1992年(A) 施肥效果分析问题(北京理工大学:叶其孝)(B) 实验数据分解问题(华东理工大学:俞文此; 复旦大学:谭永基)1993年(A) 非线性交调的频率设计问题(北京大学:谢衷洁)(B) 足球排名次问题(清华大学:蔡大用)1994年(A) 逢山开路问题(西安电子科技大学:何大可)(B) 锁具装箱问题(复旦大学:谭永基,华东理工大学:俞文此)1995年(A) 飞行管理问题(复旦大学:谭永基,华东理工大学:俞文此)(B) 天车与冶炼炉的作业调度问题(浙江大学:刘祥官,李吉鸾)1996年(A) 最优捕鱼策略问题(北京师范大学:刘来福)(B) 节水洗衣机问题(重庆大学:付鹂)1997年(A) 零件参数设计问题(清华大学:姜启源)(B) 截断切割问题(复旦大学:谭永基,华东理工大学:俞文此)1998年(A) 投资的收益和风险问题(浙江大学:陈淑平)(B) 灾情巡视路线问题(上海海运学院:丁颂康)1999年(A) 自动化车床管理问题(北京大学:孙山泽)(B) 钻井布局问题(郑州大学:林诒勋)(C) 煤矸石堆积问题(太原理工大学:贾晓峰)(D) 钻井布局问题(郑州大学:林诒勋)2000年(A) DNA序列分类问题(北京工业大学:孟大志)(B) 钢管订购和运输问题(武汉大学:费甫生)(C) 飞越北极问题(复旦大学:谭永基)(D) 空洞探测问题(东北电力学院:关信)2001年(A) 血管的三维重建问题(浙江大学:汪国昭)(B) 公交车调度问题(清华大学:谭泽光)(C) 基金使用计划问题(东南大学:陈恩水)(D) 公交车调度问题(清华大学:谭泽光)2002年(A) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)(B) 彩票中的数学问题(解放军信息工程大学:韩中庚)(C) 车灯线光源的优化设计问题(复旦大学:谭永基,华东理工大学:俞文此)(D) 赛程安排问题(清华大学:姜启源)2003年(A) SARS的传播问题(组委会)(B) 露天矿生产的车辆安排问题(吉林大学:方沛辰)(C) SARS的传播问题(组委会)(D) 抢渡长江问题(华中农业大学:殷建肃)2004年(A) 奥运会临时超市网点设计问题(北京工业大学:孟大志)(B) 电力市场的输电阻塞管理问题(浙江大学:刘康生)(C) 酒后开车问题(清华大学:姜启源)(D) 招聘公务员问题(解放军信息工程大学:韩中庚)2005年(A) 长江水质的评价和预测问题(解放军信息工程大学:韩中庚)(B) DVD在线租赁问题(清华大学:谢金星等)(C) 雨量预报方法的评价问题(复旦大学:谭永基)(D) DVD在线租赁问题(清华大学:谢金星等)2006年(A) 出版社的资源配置问题(北京工业大学:孟大志)(B) 艾滋病疗法的评价及疗效的预测问题(天津大学:边馥萍)(C) 易拉罐的优化设计问题(北京理工大学:叶其孝)(D) 煤矿瓦斯和煤尘的监测与控制问题(解放军信息工程大学:韩中庚)2007年(A) 中国人口增长预测(B) 乘公交,看奥运(C) 手机“套餐”优惠几何(D) 体能测试时间安排2008年(A)数码相机定位,(B)高等教育学费标准探讨,(C)地面搜索,(D)NBA赛程的分析与评价2009年(A)制动器试验台的控制方法分析(B)眼科病床的合理安排(C)卫星和飞船的跟踪测控(D)会议筹备2010年(A)储油罐的变位识别与罐容表标定(B)2010年上海世博会影响力的定量评估(C)输油管的布置(D)对学生宿舍设计方案的评价注:C、D题是大专组赛题2011年(A)城市表层土壤重金属污染分析(B)交巡警服务平台的设置与调度(C)企业退休职工养老金制度的改革(D)天然肠衣搭配问题2012年(A)葡萄酒的评价(B)太阳能小屋的设计(C)脑卒中发病环境因素分析及干预(D)机器人避障问题实物交换模型,战争模型,3.传染病模型,4.救火模型,5.储存模型,6.气象站模型7.卖报模型,8.牙膏销售模型,9.席位数量模型最优化方法:LP建模、LP模型分析、IP建模、IP建模技巧LINGO:LINGO基本编程、用LINGO分析模型,高级算法:遗传算法,粒子群算法。

全国数学建模大赛题目

全国数学建模大赛题目

全国数学建模大赛题目
全国数学建模大赛的题目通常涉及现实生活中的复杂问题,需要参赛者运用数学建模和数据分析的知识来解决。

以下是一些历年的题目:
2019年高教社杯全国大学生数学建模竞赛赛题:“金融风险量化分析”、“光伏发电单元对配电网影响分析”、“基于大数据的快递服务问题”
2018年高教社杯全国大学生数学建模竞赛赛题:“移动通信网络优化”、“城市共享单车调度优化”、“基于随机森林算法的信用卡违约预测”
2017年高教社杯全国大学生数学建模竞赛赛题:“电力市场的输电阻塞管理”、“移动支付用户行为分析”、“城市道路交通状态预测”
2016年高教社杯全国大学生数学建模竞赛赛题:“光伏发电功率预测”、“智能制造中机器人路径规划”、“互联网+时代下的出租车资源配置” 2015年高教社杯全国大学生数学建模竞赛赛题:“电动汽车充电设施规划”、“全球气候变化对人类健康的影响”、“互联网电影推荐系统”
2014年高教社杯全国大学生数学建模竞赛赛题:“快递服务满意度调查分析”、“基金定投策略分析”、“电力市场的输电阻塞管理”
以上只是部分题目,具体每年的题目可能会因实际情况而有所变化。

如果需要更详细的信息,建议查阅全国数学建模大赛的官方网站或相关资料。

全国大学生数学建模竞赛试题集

全国大学生数学建模竞赛试题集

5
12 7/32 65% 15% 20% 500 50 10
13 7/32 70% 10% 20% 500 50 10
备注
按序 按序 按序 按序
-2-
14 7/32 75% 10% 15% 500 50 10
15 7/33 70% 10% 20% 600 60
6
16 7/33 75% 10% 15% 500 50 10
选 7 中(4)
五等奖 abcXXX……XbcdXX……XXcdeX……XXXdef
选 7 中(3)
六等奖
abXXXX……XbcXXX……XXcdXX……XXXdeX XXXXef
选 7 中(2)
“乐透型”有多种不同的形式,比如“33 选 7”的方案:先从 01~33 个号码 球中一个一个地摇出 7 个基本号,再从剩余的 26 个号码球中摇出一个特别号码。 投注者从 01~33 个号码中任选 7 个组成一注(不可重复),根据单注号码与中奖 号码相符的个数多少确定相应的中奖等级,不考虑号码顺序。又如“36 选 6+1” 的方案,先从 01~36 个号码球中一个一个地摇出 6 个基本号,再从剩下的 30 个 号码球中摇出一个特别号码。从 01~36 个号码中任选 7 个组成一注(不可重复), 根据单注号码与中奖号码相符的个数多少确定相应的中奖等级,不考虑号码顺 序。这两种方案的中奖等级如表二。
1
29 5/60 60% 20% 20% 300 30
5
2
5 5 5
无特别 号
5
5
-3-
2003 年 A 题……SARS 的传播
SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗 称:非典型肺炎)是 21 世纪第一个在世界范围内传播的传染病。SARS 的爆发和 蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的 经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创 造条件的重要性。请你们对 SARS 的传播建立数学模型,具体要求如下:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国大学生数学建模竞赛历年赛题1992:A?施肥效果分析B?实验数据分解
1993:A?非线性交调的频率设计B?足球队排名次
1994:A?逢山开路B?锁具装箱
1995:A?一个飞行管理问题B?天车与冶炼炉的作业调度
1996:A?最优捕鱼策略B?节水洗衣机
1997:A?零件参数B?截断切割
1998:A?投资的收益和风险B?灾情巡视路线
1999:A?自动化车床管理B?钻井布局C?煤矸石堆积D?钻井布局2000:A?DNA序列分类B?钢管购运C?飞越北极D?空洞探测2001:A?血管三维重建B?公交车调度C?基金使用
2002:A?车灯线光源B?彩票中数学D?赛程安排
2003:A?SARS的传播B?露天矿生产D?抢渡长江
2004:A?奥运会临时超市网点设计B?电力市场的输电阻塞管理
C?饮酒驾车D?公务员招聘
2005:A长江水质的评价和预测B?DVD在线租赁
C?雨量预报方法的评价D?DVD在线租赁?
2006:A出版社的资源配置B艾滋病疗法的评价及疗效的预测C易拉罐形状和尺寸的最优设计D煤矿瓦斯和煤尘的监测与控制2007:A中国人口增长预测B乘公交,看奥运
C手机“套餐”优惠几何D体能测试时间安排
2008:A数码相机定位B高等教育学费标准探讨
C地面搜索DNBA赛程的分析与评价
2009:A制动器试验台的控制方法分析B眼科病床的合理安排C卫星和飞船的跟踪测控D会议筹备
2010:A储油罐的变位识别与罐容表标定
B2010年上海世博会影响力的定量评估
C输油管的布置
D对学生宿舍设计方案的评价
2011:A城市表层土壤重金属污染分析
B交巡警服务平台的设置与调度
C企业退休职工养老金制度的改革
D天然肠衣搭配问题
2012:A葡萄酒的评价
B太阳能小屋的设计
C脑卒中发病环境因素分析及干预
D机器人避障问题
2013:A车道被占用对城市道路通行能力的影响B碎纸片的拼接复原
C古塔的变形
D公共自行车服务系统
2014:A嫦娥三号软着陆轨道设计与控制策略B创意平板折叠桌
C生猪养殖场的经营管理
D储药柜的设计
2015:A?太阳影子定位
B?“互联网+”时代的出租车资源配置
C?月上柳梢头
D?众筹筑屋规划方案设计。

相关文档
最新文档