STATA使用教程(第一章)
使用Stata进行数据分析的教程
使用Stata进行数据分析的教程第一章:介绍StataStata是一种统计软件,经常被研究人员和学者用于数据分析和统计建模。
它提供了强大的数据处理和分析功能,可以应用于不同领域的研究项目。
本章介绍了Stata的基本功能和特点,包括数据管理、数据操作和Stata的界面等。
1.1 Stata的起源和发展Stata最初是由James Hardin和William Gould创建的,旨在为统计学家和社会科学研究人员提供一个数据分析工具。
随着时间的推移,Stata得到了广泛的应用,并逐渐发展成为一种强大的统计软件。
1.2 Stata的功能和特点Stata提供了许多数据处理和分析函数,包括描述性统计、回归分析、因子分析和生存分析等。
它还具有数据的管理功能,可以导入、导出和编辑数据文件。
Stata的界面友好,并且支持批处理和交互模式。
第二章:数据管理与准备在进行数据分析之前,首先需要准备和管理数据集。
本章将详细介绍Stata中的数据导入、数据清洗和数据变换等操作。
2.1 数据导入与导出Stata可以导入各种格式的数据文件,包括CSV、Excel和SPSS 等。
同时,Stata也支持将分析结果导出为不同的格式,如PDF和HTML等。
2.2 数据清洗和缺失值处理在实际研究中,数据常常存在缺失值和异常值。
Stata提供了处理缺失值和异常值的方法,可以通过删除、替换或插补来处理这些问题。
2.3 数据变换和指标构造数据变换是指将原始数据转化为适合分析的形式,常见的变换包括对数变换、差分和标准化等。
指标构造是指根据已有变量构造新的变量,如计算平均值和构造虚拟变量等。
第三章:描述性统计和数据可视化描述性统计是对数据集的基本统计特征进行总结和分析,而数据可视化则是通过图表和图形展示数据的特征和关系。
本章将介绍在Stata中进行描述性统计和数据可视化的方法。
3.1 中心趋势和离散程度的度量通过计算平均值、中位数和众数等指标来描述数据的中心趋势。
stata入门教程
Stata 快速入门1、Stata的窗口•在最上方有一排菜单,即“File Edit Data Graphics Statistics User Window Help”。
•左上“Review”(历史窗口):此窗口记录着自启动Stata以来执行过的命令。
•右上“Variables”(变量窗口):此窗口记录着目前Stata内存中的所有变量。
•正上方“Results”(结果窗口):此窗口显示执行Stata命令后的输出结果。
•正下方“Command”(命令窗口):在此窗口输入想要执行的Stata命令。
2、将数据导入Stata•打开Stata软件后,点击Data Editor(Edit)图标(也可以点击菜单“Window”→“Data Editor”),即可打开一个类似Excel的空白表格。
•用Excel打开文件“nerlove.xls”,复制文件中的所有数据,并粘贴到Data Editor 中。
•导入数据的另一方法是,点击菜单“File”→“Import”,然后导入各种格式的数据。
但这种方法有时不如直接从Excel表中粘贴数据来得方便直观。
3、变量窗口•关闭Data Editor后,即会看到右上方的“Variables”窗口出现了5个变量:•分别为tc(total cost,总成本),q(total output, 总产量),pl(price of labor,小时工资率),pf(price of fuel,燃料价格),与pk(user cost of capital,资本的租赁价格。
4、存为dta数据文件•此时,可以点击Save图标(也可以点击菜单“File”→“Save”),将数据存为Stata格式的文件(扩展名为dta),比如nerlove.dta。
•以后就可以用Stata直接打开这个数据集了(不需要再从Excel表中粘贴过来)。
5、打开dta数据文件打开的方式有三种:1.点击Open图标(也可以点击菜单“File”→“Open”),然后寻找要打开的dta 文件的位置。
Stata软件基本操作和数据分析入门(完整版讲义)
Stata软件基本操作和数据分析入门(完整版讲义)Stata软件基本操作和数据分析入门第一讲Stata操作入门张文彤赵耐青第一节概况Stata最初由美国计算机资源中心(Computer Resource Center)研制,现在为Stata公司的产品,其最新版本为7.0版。
它操作灵活、简单、易学易用,是一个非常有特色的统计分析软件,现在已越来越受到人们的重视和欢迎,并且和SAS、SPSS一起,被称为新的三大权威统计软件。
Stata最为突出的特点是短小精悍、功能强大,其最新的7.0版整个系统只有10M左右,但已经包含了全部的统计分析、数据管理和绘图等功能,尤其是他的统计分析功能极为全面,比起1G以上大小的SAS 系统也毫不逊色。
另外,由于Stata在分析时是将数据全部读入内存,在计算全部完成后才和磁盘交换数据,因此运算速度极快。
由于Stata的用户群始终定位于专业统计分析人员,因此他的操作方式也别具一格,在Windows席卷天下的时代,他一直坚持使用命令行/程序操作方式,拒不推出菜单操作系统。
但是,Stata的命令语句极为简洁明快,而且在统计分析命令的设置上又非常有条理,它将相同类型的统计模型均归在同一个命令族下,而不同命令族又可以使用相同功能的选项,这使得用户学习时极易上手。
更为令人叹服的是,Stata 语句在简洁的同时又拥有着极高的灵活性,用户可以充分发挥自己的聪明才智,熟练应用各种技巧,真正做到随心所欲。
除了操作方式简洁外,Stata的用户接口在其他方面也做得非常简洁,数据格式简单,分析结果输出简洁明快,易于阅读,这一切都使得Stata成为非常适合于进行统计教学的统计软件。
Stata的另一个特点是他的许多高级统计模块均是编程人员用其宏语言写成的程序文件(ADO文件),这些文件可以自行修改、添加和下载。
用户可随时到Stata网站寻找并下载最新的升级文件。
事实上,Stata 的这一特点使得他始终处于统计分析方法发展的最前沿,用户几乎总是能很快找到最新统计算法的Stata 程序版本,而这也使得Stata自身成了几大统计软件中升级最多、最频繁的一个。
Stata教程(免费)
第一章 Stata 概貌§1.1 Stata的功能、特点和背景Stata是一个用于分析和管理数据的功能强大又小巧玲珑的实用统计分析软件,由美国计算机资源中心(Computer Resource Center)研制。
从1985至1998的十四年时间里,已连续推出1.1,1.2,1.3,1.4,1.5,……及2.0,2.1,3.0,3.1,4.0,5.0,6.0等多个版本,通过不断更新和扩充,内容日趋完善。
它同时具有数据管理软件、统计分析软件、绘图软件、矩阵计算软件和程序语言的特点,又在许多方面别具一格。
Stata融汇了上述程序的优点,克服了各自的缺点,使其功能更加强大,操作更加灵活、简单,易学易用,越来越受到人们的重视和欢迎。
Stata的突出特点是只占用很少的磁盘空间,输出结果简洁,所选方法先进,内容较齐全,制作的图形十分精美,可直接被图形处理软件或字处理软件如WORD等直接调用。
一、 Stata的数据管理能力1.Stata的数据管理空间受计算机的操作系统和计算机扩展内存的影响。
对640k内存的微机,3.1版本的Stata可以管理2400个记录×99个变量,并随计算机扩展内存的增加而增加;对4.0的WINDOWS版本,Stata可以管理4800个记录×99个变量;对WINDOWS 95下的5.0版本,可根据计算机的配置情况设置变量数和记录数,如32M扩展内存的计算机,可处理2千万个数据。
变量数和记录数可以互相交易(trade),即减少记录数可以增加变量数,减少变量数可以增加记录数。
2.可以将分组变量转换成指示变量(哑变量),将字符串变量映射成数字代码。
3.可以对数据文件进行横向和纵向链接,可以将行数据转为列数据,或反之。
4.可以恢复、修改执行过的命令。
5.可以利用数值函数或字符串函数产生新变量。
6.可以从键盘或磁盘读入数据。
二、 Stata的统计功能Stata的统计功能很强,除了传统的统计分析方法外,还收集了近20年发展起来的新方法,如Cox比例风险回归,指数与Weibull回归,多类结果与有序结果的logistic回归,Poisson回归、负二项回归及广义负二项回归,随机效应模型等。
STATA使用教程
STATA使用教程第一章:介绍 StataStata 是一款统计分析软件,广泛应用于经济学、社会科学、健康科学和医学研究等领域。
本章将介绍 Stata 软件的基本特点、适用范围和主要功能。
1.1 Stata 的特点Stata 是一款功能强大、易于使用的统计软件。
不同于其他统计软件,Stata 具有灵活性高、数据处理效率好的优点。
它支持多种数据文件格式,可以处理大规模的数据集,并且具有丰富的数据处理、统计分析和图形展示功能。
1.2 Stata 的适用范围Stata 软件适用于各类研究领域,涵盖了经济学、社会科学、医学、健康科学等多个领域。
它广泛应用于定量分析、回归分析、面板数据分析、时间序列分析等领域,可用于统计推断、数据可视化和模型建立等任务。
1.3 Stata 的主要功能Stata 软件提供了丰富的功能模块,包括数据导入导出、数据清洗、数据管理、描述性统计、推断统计、回归分析、面板数据分析、时间序列分析、图形展示等。
这些功能模块为用户提供了全面且灵活的数据分析工具。
第二章:Stata 数据处理数据处理是统计分析的前置工作,本章将介绍 Stata 软件的数据导入导出、数据清洗和数据管理等功能。
2.1 数据导入导出Stata 支持导入多种文件格式的数据,如文本文件、Excel 文件和 SAS 数据集等。
用户可以使用内置命令或者图形界面进行导入操作,导入后的数据可以存储为 Stata 数据文件(.dta 格式),方便后续的数据处理和分析。
2.2 数据清洗数据清洗是数据处理的重要环节,Stata 提供了多种数据清洗命令,如缺失值处理、异常值处理和数据类型转换等。
用户可以根据实际情况选择合适的数据清洗操作,确保数据的准确性和完整性。
2.3 数据管理数据管理是有效进行数据处理的关键,Stata 提供了许多数据管理命令,如数据排序、数据合并、数据分割和数据标记等。
这些命令可以帮助用户高效地对数据进行管理和组织,提高数据处理效率。
stata教程
stata教程Stata 是一种广泛应用于统计分析的软件,拥有强大的数据处理和建模能力。
本教程将介绍 Stata 的一些基础操作和常用命令,帮助您快速上手使用该软件。
1. 安装和启动 Stata在开始使用Stata 之前,您需要先安装该软件。
安装完成后,双击图标启动 Stata。
2. 导入数据使用 Stata 进行统计分析的第一步是导入数据。
可以通过命令 `use` 来加载已有的 Stata 数据集,或者使用 `import` 命令导入其它格式的数据文件。
3. 数据处理Stata 提供了许多数据处理的命令,比如 `drop` 可以删除某些变量或观察值,`rename` 可以修改变量名,`generate` 可以创建新变量等。
4. 描述性统计描述性统计是对数据的基本概况进行分析,可以使用命令`summarize` 来获取平均值、标准差等统计量,使用 `tabulate`命令生成频数表,还可以通过 `graph` 命令绘制直方图或散点图等图形。
5. 假设检验假设检验用于验证某个统计假设是否成立。
Stata 提供了多种假设检验的命令,比如 `ttest` 可以进行单样本或独立样本 t 检验,`anova` 可以进行方差分析等。
6. 回归分析回归分析是一种常用的建模方法,可以用于研究变量之间的关系。
在Stata 中,可以使用`regress` 命令进行简单线性回归,使用 `logit` 命令进行逻辑回归等。
7. 图形输出Stata 可以生成各种类型的图形输出,比如线图、散点图、柱状图等。
可以使用`graph export` 命令将图形导出为图片文件,方便在报告中使用。
8. 编写批处理脚本如果需要重复执行一组命令,可以将这些命令写入批处理脚本。
Stata 支持编写批处理脚本来自动化数据处理和分析的过程。
以上是关于 Stata 的基础教程,希望能帮助您快速入门并熟练使用该软件进行数据分析。
更多高级功能和命令,请参考Stata 官方文档或相关教程。
STATA统计分析软件使用教程
STATA统计分析软件使用教程引言STATA统计分析软件是一款功能强大、使用广泛的统计分析软件,广泛应用于经济学、社会学、医学和其他社会科学领域的研究中。
本教程将介绍STATA的基本操作和常用功能,并提供实例演示,帮助读者快速上手使用。
第一章:STATA入门1.1 安装与启动首先,下载并安装STATA软件。
完成安装后,点击软件图标启动STATA。
1.2 界面介绍STATA的界面分为主窗口、命令窗口和结果窗口。
主窗口用于数据显示,命令窗口用于输入分析命令,结果窗口用于显示分析结果。
1.3 数据导入与保存使用命令`use filename`导入数据,使用命令`save filename`保存当前数据。
1.4 基本命令介绍常用的基本命令,如`describe`用于显示数据的基本信息、`summarize`用于计算变量的统计描述等。
第二章:数据处理与变量管理2.1 数据选择与筛选通过命令`keep`和`drop`选择和删除数据的特定变量和观察值。
2.2 数据排序与重编码使用命令`sort`对数据进行排序,使用命令`recode`对变量进行重编码。
2.3 缺失值处理介绍如何检测和处理数据中的缺失值,包括使用命令`missing`和`recode`等。
第三章:数据分析3.1 描述性统计介绍如何使用STATA计算和展示数据的描述性统计量,如均值、标准差、最大值等。
3.2 统计检验介绍如何进行常见的统计检验,如t检验、方差分析、卡方检验等。
3.3 回归分析介绍如何进行回归分析,包括一元线性回归、多元线性回归和逻辑回归等。
3.4 生存分析介绍如何进行生存分析,包括Kaplan-Meier生存曲线和Cox比例风险模型等。
第四章:图形绘制与结果解释4.1 图形绘制基础介绍如何使用STATA进行常见的数据可视化,如散点图、柱状图、折线图等。
4.2 图形选项与高级绘图介绍如何通过调整图形选项和使用高级绘图命令,进一步美化和定制图形。
Stata教程(免费)
第一章 Stata 概貌§1.1 Stata的功能、特点和背景Stata是一个用于分析和管理数据的功能强大又小巧玲珑的实用统计分析软件,由美国计算机资源中心(Computer Resource Center)研制。
从1985至1998的十四年时间里,已连续推出1.1,1.2,1.3,1.4,1.5,……及2.0,2.1,3.0,3.1,4.0,5.0,6.0等多个版本,通过不断更新和扩充,内容日趋完善。
它同时具有数据管理软件、统计分析软件、绘图软件、矩阵计算软件和程序语言的特点,又在许多方面别具一格。
Stata融汇了上述程序的优点,克服了各自的缺点,使其功能更加强大,操作更加灵活、简单,易学易用,越来越受到人们的重视和欢迎。
Stata的突出特点是只占用很少的磁盘空间,输出结果简洁,所选方法先进,内容较齐全,制作的图形十分精美,可直接被图形处理软件或字处理软件如WORD等直接调用。
一、 Stata的数据管理能力1.Stata的数据管理空间受计算机的操作系统和计算机扩展内存的影响。
对640k内存的微机,3.1版本的Stata可以管理2400个记录×99个变量,并随计算机扩展内存的增加而增加;对4.0的WINDOWS版本,Stata可以管理4800个记录×99个变量;对WINDOWS 95下的5.0版本,可根据计算机的配置情况设置变量数和记录数,如32M扩展内存的计算机,可处理2千万个数据。
变量数和记录数可以互相交易(trade),即减少记录数可以增加变量数,减少变量数可以增加记录数。
2.可以将分组变量转换成指示变量(哑变量),将字符串变量映射成数字代码。
3.可以对数据文件进行横向和纵向链接,可以将行数据转为列数据,或反之。
4.可以恢复、修改执行过的命令。
5.可以利用数值函数或字符串函数产生新变量。
6.可以从键盘或磁盘读入数据。
二、 Stata的统计功能Stata的统计功能很强,除了传统的统计分析方法外,还收集了近20年发展起来的新方法,如Cox比例风险回归,指数与Weibull回归,多类结果与有序结果的logistic回归,Poisson回归、负二项回归及广义负二项回归,随机效应模型等。
STATA使用教程(第一章)
1.1Stata软件简介
Stata与SAS、SPSS被共同成为三大权威统计软件,它 被广泛地应用于统计学、经济学、生物学、医药学、 社会学、人口学等等一系列学科的研究,功能十分强 大。但是与其他软件相比,Stata具有以下明显优势:
主要内容
1.Stata软件简介 2.Stata窗口及基本操软件简介
Stata软件是现今较为流行的统计计量分析软件,具有 强大的数据处理和分析功能,它是由Stata公司在1985 年研制开发成功之后面市的,到现在已经有25年的历 史了。虽然现在最新的版本为2009年刚推出的 stata11.0,但是鉴于11.0的版本还基本没有在中国推广 和使用,所以本书所介绍的功能主要是通过Stata10.0 来实现的。
[by varlist:] command [varlist] [=exp] [if exp] [in range] [weight] [using filename] [, options]
(二)Stata自带帮助系统是使用最方便,也是最常用 的方法。其语法格式为:help [所要查询命令]
(三)Stata的网络帮助系统更为强大,用户可以在网 上查找Stata还没有内置化的命令,实现自行安装。
1.2 Stata窗口及基本操作
1.2.3Stata语法和命令
熟练地掌握Stata的基本语法和命令,是熟练应用Stata 做统计或计量分析的基础。首先,介绍一下Stata的基 本命令语句的格式,具体形式如下:
Stata操作讲义_经济学_高等教育_教育专区
Stata操作讲义第一讲Stata操作入门第一节概况Stata最初由美国计算机资源中心(Computer Resource Center)研制,现在为Stata公司的产品,其最新版本为7.0版。
它操作灵活、简单、易学易用,是一个非常有特色的统计分析软件,现在已越来越受到人们的重视和欢迎,并且和SAS、SPSS一起,被称为新的三大权威统计软件。
Stata最为突出的特点是短小精悍、功能强大,其最新的7.0版整个系统只有10M左右,但已经包含了全部的统计分析、数据管理和绘图等功能,尤其是他的统计分析功能极为全面,比起1G以上大小的SAS系统也毫不逊色。
另外,由于Stata在分析时是将数据全部读入内存,在计算全部完成后才和磁盘交换数据,因此运算速度极快。
由于Stata的用户群始终定位于专业统计分析人员,因此他的操作方式也别具一格,在Windows席卷天下的时代,他一直坚持使用命令行/程序操作方式,拒不推出菜单操作系统。
但是,Stata的命令语句极为简洁明快,而且在统计分析命令的设置上又非常有条理,它将相同类型的统计模型均归在同一个命令族下,而不同命令族又可以使用相同功能的选项,这使得用户学习时极易上手。
更为令人叹服的是,Stata语句在简洁的同时又拥有着极高的灵活性,用户可以充分发挥自己的聪明才智,熟练应用各种技巧,真正做到随心所欲。
除了操作方式简洁外,Stata的用户接口在其他方面也做得非常简洁,数据格式简单,分析结果输出简洁明快,易于阅读,这一切都使得Stata成为非常适合于进行统计教学的统计软件。
Stata的另一个特点是他的许多高级统计模块均是编程人员用其宏语言写成的程序文件(ADO文件),这些文件可以自行修改、添加和下载。
用户可随时到Stata网站寻找并下载最新的升级文件。
事实上,Stata的这一特点使得他始终处于统计分析方法发展的最前沿,用户几乎总是能很快找到最新统计算法的Stata程序版本,而这也使得Stata自身成了几大统计软件中升级最多、最频繁的一个。
stata操作指南
stata操作指南计量经济学stata操作(实验课)第一章stata基本知识1、stata窗口介绍2、基本操作(1)窗口锁定:Edit-preferences-general preferences-windowing-lock splitter (2)数据导入(3)打开文件:use E:\example.dta,clear(4)日期数据导入:gen newvar=date(varname, “ymd”)format newvar %td 年度数据gen newvar=monthly(varname, “ym”)format newvar %tm 月度数据gen newvar=quarterly(varname, “yq”)format newvar %tq 季度数据(5)变量标签Label variable tc ` “total output” ’(6)审视数据describelist x1 x2list x1 x2 in 1/5list x1 x2 if q>=1000drop if q>=1000keep if q>=1000(6)考察变量的统计特征summarize x1su x1 if q>=10000su q,detailsutabulate x1correlate x1 x2 x3 x4 x5 x6(7)画图histogram x1, width(1000) frequency kdensity x1scatter x1 x2twoway (scatter x1 x2) (lfit x1 x2) twoway (scatter x1 x2) (qfit x1 x2) (8)生成新变量gen lnx1=log(x1)gen q2=q^2gen lnx1lnx2=lnx1*lnx2gen larg=(x1>=10000)rename larg largeg large=(q>=6000)replace large=(q>=6000)drop ln*(8)计算功能display log(2)(9)线性回归分析regress y1 x1 x2 x3 x4vce #显示估计系数的协方差矩阵reg y1 x1 x2 x3 x4,noc #不要常数项reg y1 x1 x2 x3 x4 if q>=6000reg y1 x1 x2 x3 x4 if largereg y1 x1 x2 x3 x4 if large==0reg y1 x1 x2 x3 x4 if ~large predict yhatpredict e1,residualdisplay 1/_b[x1]test x1=1 # F检验,变量x1的系数等于1test (x1=1) (x2+x3+x4=1) # F联合假设检验test x1 x2 #系数显著性的联合检验testnl _b[x1]= _b[x2]^2(10)约束回归constraint def 1 x1+x2+x3=1cnsreg y1 x1 x2 x3 x4,c(1)cons def 2 x4=1cnsreg y1 x1 x2 x3 x4,c(1-2)(11)stata的日志File-log-begin-输入文件名log off 暂时关闭log on 恢复使用log close 彻底退出(12)stata命令库更新Update allhelp command第二章有关大样本ols的stata命令及实例(1)ols估计的稳健标准差reg y x1 x2 x3,robust(2)实例use example.dta,clearreg y1 x1 x2 x3 x4test x1=1reg y1 x1 x2 x3 x4,rtestnl _b[x1]=_b[x2]^2第三章最大似然估计法的stata命令及实例(1)最大似然估计help ml(2)LR检验lrtest #对面板数据中的异方差进行检验(3)正态分布检验sysuse auto #调用系统数据集auto.dtahist mpg,normalkdensity mpg,normalqnorm mpg*手工计算JB统计量sum mpg,detaildi (r(N)/6)*((r(skewness)^2)+[(1/4)*(r(kurtosis)-3)^2]) di chi2tail(自由度,上一步计算值)*下载非官方程序ssc install jb6jb6 mpg*正态分布的三个检验sktest mpgswilk mpgsfrancia mpg*取对数后再检验gen lnmpg=log(mpg)kdensity lnmpg, normaljb6 lnmpgsktest lnmpg第四章处理异方差的stata命令及实例(1)画残差图rvfplotrvfplot varname*例题use example.dta,clearreg y x1 x2 x3 x4rvfplot # 与拟合值的散点图rvfplot x1 # 画残差与解释变量的散点图(2)怀特检验estat imtest,white*下载非官方软件ssc install whitetst(3)BP检验estat hettest #默认设置为使用拟合值estat hettest,rhs #使用方程右边的解释变量estat hettest [varlist] #指定使用某些解释变量estat hettest,iidestat hettest,rhs iidestat hettest [varlist],iid(4)WLSreg y x1 x2 x3 x4 [aw=1/var]*例题quietly reg y x1 x2 x3 x4predict e1,resgen e2=e1^2gen lne2=log(e2)reg lne2 x2,nocpredict lne2fgen e2f=exp(lne2f)reg y x1 x2 x3 x4 [aw=1/e2f](5)stata命令的批处理(写程序)Window-do-file editor-new do-file#WLS for examplelog using E:\wls_example.smcl,replaceset more offuse E:\example.dta,clearreg y x1 x2 x3 x4predict e1,resgen e2=e1^2g lne2=log(e2)reg lne2 x2,nocpredict lne2fg e2f=exp(lne2f)*wls regressionreg y x1 x2 x3 x4 [aw=1/e2f]log closeexit第五章处理自相关的stata命令及实例(1)滞后算子/差分算子tsset yearl.l2.D.D2.LD.(2)画残差图scatter e1 l.e1ac e1pac e1(3)BG检验estat bgodfrey(默认p=1)estat bgodfrey,lags(p)estat bgodfrey,nomiss0(使用不添加0的BG检验)(4)Ljung-Box Q检验reg y x1 x2 x3 x4predict e1,residwntestq e1wntestq e1,lags(p)* wntestq指的是“white noise test Q”,因为白噪声没有自相关(5)DW检验做完OLS回归后,使用estat dwatson(6)HAC稳健标准差newey y x1 x2 x3 x4,lag(p)reg y x1 x2 x3 x4,cluster(varname)(7)处理一阶自相关的FGLSprais y x1 x2 x3 x4 (使用默认的PW估计方法)prais y x1 x2 x3 x4,corc (使用CO估计法)(8)实例use icecream.dta, cleartsset timegraph twoway connect consumption temp100 time, msymbol(circle) msymbol(triangle) reg consumption temp price incomepredict e1, resg e2=l.e1twoway (scatter e1 e2) (lfit e1 e2)ac e1pac e1estat bgodfreywntestq e1estat dwatsonnewey consumption temp price income, lag (3)prais consumption temp price income, corcprais consumption temp price income, nologreg consumption temp l.temp price incomeestat bgodfreyestat dwatson第六章模型设定与数据问题(1)解释变量的选择reg y x1 x2 x3estat ic*例题use icecream.dta, clearreg consumption temp price incomeestat icreg consumption temp l.temp price incomeestat ic(2)对函数形式的检验(reset检验)reg y x1 x2 x3estat ovtest (使用被解释变量的2、3、4次方作为非线性项)estat ovtest, rhs (使用解释变量的幂作为非线性项,ovtest-omitted variable test)*例题use nerlove.dta, clearreg lntc lnq lnpl lnpk lnpfestat ovtestg lnq2=lnq^2reg lntc lnq lnq2 lnpl lnpk lnpfestat ovtest(3)多重共线性estat vif*例题use nerlove.dta, clearreg lntc lnq lnpl lnpk lnpfestat vif(4)极端数据reg y x1 x2 x3predict lev, leverage (列出所有解释变量的lev值)gsort –levsum levlist lev in 1/3*例题use nerlove.dta, clearquietly reg lntc lnq lnpl lnpk lnpfpredict lev, leveragesum levgsort –levlist lev in 1/3(5)虚拟变量gen d=(year>=1978)tabulate province, generate (pr)reg y x1 x2 x3 pr2-pr30(6)经济结构变动的检验方法1:use consumption_china.dta, cleargraph twoway connect c y year, msymbol(circle) msymbol(triangle)reg c yreg c y if year<1992reg c y if year>=1992计算F统计量方法2:gen d=(year>1991)gen yd=y*dreg c y d ydtest d yd第七章工具变量法的stata命令及实例(1)2SLS的stata命令ivregress 2sls depvar [varlist1] (varlist2=instlist)如:ivregress 2sls y x1 (x2=z1 z2)ivregress 2sls y x1 (x2 x3=z1 z2 z3 z4) ,r firstestat firststage,all forcenonrobust (检验弱工具变量的命令)ivregress liml depvar [varlist 1] (varlist2=instlist)estat overid (过度识别检验的命令)*对解释变量内生性的检验(hausman test),缺点:不适合于异方差的情形reg y x1 x2estimates store olsivregress 2sls y x1 (x2=z1 z2)estimates store ivhausman iv ols, constant sigmamore*DWH检验estat endogenous*GMM的过度识别检验ivregress gmm y x1 (x2=z1 z2) (两步GMM)ivregress gmm y x1 (x2=z1 z2),igmm (迭代GMM)estat overid*使用异方差自相关稳健的标准差GMM命令ivregress gmm y x1 (x2=z1 z2), vce (hac nwest[#])(2)实例use grilic.dta,clearsumcorr iq sreg lw s expr tenure rns smsa,rreg lw s iq expr tenure rns smsa,rivregress 2sls lw s expr tenure rns smsa (iq=med kww mrt age),restat overidivregress 2sls lw s expr tenure rns smsa (iq=med kww),r first estat overidestat firststage, all forcenonrobust (检验工具变量与内生变量的相关性)ivregress liml lw s expr tenure rns smsa (iq=med kww),r *内生解释变量检验quietly reg lw s iq expr tenure rns smsaestimates store olsquietly ivregress 2sls lw s expr tenure rns smsa (iq=med kww) estimates store ivhausman iv ols, constant sigmamoreestat endogenous (存在异方差的情形)*存在异方差情形下,GMM比2sls更有效率ivregress gmm lw s expr tenure rns smsa (iq=med kww)estat overidivregress gmm lw s expr tenure rns smsa (iq=med kww),igmm*将各种估计方法的结果存储在一张表中quietly ivregress gmm lw s expr tenure rns smsa (iq=med kww)estimates store gmmquietly ivregress gmm lw s expr tenure rns smsa (iq=med kww),igmmestimates store igmmestimates table gmm igmm第八章短面板的stata命令及实例(1)面板数据的设定xtset panelvar timevarencode country,gen(cntry) (将字符型变量转化为数字型变量)xtdesxtsumxttab varnamextline varname,overlay*实例use traffic.dta,clearxtset state yearxtdesxtsum fatal beertax unrate state yearxtline fatal(2)混合回归reg y x1 x2 x3,vce(cluster id)如:reg fatal beertax unrate perinck,vce(cluster state)estimates store ols对比:reg fatal beertax unrate perinck(3)固定效应xtreg y x1 x2 x3,fe vce(cluster id)xi:reg y x1 x2 x3 i.id,vce(cluster id) (LSDV法)xtserial y x1 x2 x3,output (一阶差分法,同时报告面板一阶自相关)estimates store FD*双向固定效应模型tab year, gen (year)xtreg fatal beertax unrate perinck year2-year7, fe vce (cluster state)estimates store FE_TWtest year2 year3 year4 year5 year6 year7(4)随机效应xtreg y x1 x2 x3,re vce(cluster id) (随机效应FGLS)xtreg y x1 x2 x3,mle (随机效应MLE)xttest0 (在执行命令xtreg, re 后执行,进行LM检验)(5)组间估计量xtreg y x1 x2 x3,be(6)固定效应还是随机效应:hausman testxtreg y x1 x2 x3,feestimates store fextreg y x1 x2 x3,reestimates store rehausman fe re,constant sigmamore (若使用了vce(cluster id),则无法直接使用该命令,解决办法详见P163)estimates table ols fe_robust fe_tw re be, b se (将主要回归结果列表比较)第九章长面板与动态面板(1)仅解决组内自相关的FGLSxtpcse y x1 x2 x3 ,corr(ar1) (具有共同的自相关系数)xtpcse y x1 x2 x3 ,corr(psar1) (允许每个面板个体有自身的相关系数)例题:use mus08cigar.dta,cleartab state,gen(state)gen t=year-62reg lnc lnp lnpmin lny state2-state10 t,vce(cluster state)estimates store OLSxtpcse lnc lnp lnpmin lny state2-state10 t,corr(ar1) (考虑存在组内自相关,且各组回归系数相同)estimates store AR1xtpcse lnc lnp lnpmin lny state2-state10 t,corr(psar1) (考虑存在组内自相关,且各组回归系数不相同)estimates store PSAR1xtpcse lnc lnp lnpmin lny state2-state10 t, hetonly (仅考虑不同个体扰动性存在异方差,忽略自相关)estimates store HETONL Yestimates table OLS AR1 PSAR1 HETONL Y, b se(2)同时处理组内自相关与组间同期相关的FGLSxtgls y x1 x2 x3,panels (option/iid/het/cor) corr(option/ar1/psar1) igls注:执行上述xtpcse、xtgls命令时,如果没有个体虚拟变量,则为随机效应模型;如果加上个体虚拟变量,则为固定效应模型。
STATA实用教程
第一章接触STATA小而功能强大;数据存储在内存中,运算速度快;语法简单,结果易读;可编程・cd [direction] /*调整默认目录,当路径中存在空格时要加引号*/・set memory [number] /*内存设定,默认单位为KB,可自定MB*/・exit /*退出*/第二章STATA命令[prefix:]command[varlist] [=exp.] [if exp.] [using filename] [in range] [weigh:] [, options]命令前缀命令变量串表达式条件式使用文件个案范围权重选项・var | var#-var## | var* /*表示单变量、多变量、以var开头的变量*/・in # | in -# | in #/## /*表示第#个、倒数第#个、从第#到第##个变量*/・help commandname/*帮助*/第三章使用STATA数据文件一、读取数据・use filename [, clear] /*读取全部数据,选项clear表示清空内存*/・use var1 var# using filename /*将数据部分变量读进内存*/・use in #/## using filename /*将数据部分个案读进内存*/・use if var==# using filename /*将数据特定个案读进内存*/・use filename if var==# /*同上*/二、数据的标签与注释・label data “text”/*标签用于对数据整体的说明,这是贴标签的命令*/・notes:“text”/*注释用于记录操作过程,这是写注释的命令*/・note /*这是读注释的命令*/三、数据的显示・browse [if] /*弹出数据表格窗口,if表达式可以弹出满足条件的数据表格窗口*/・describe /*显示数据的整体信息,如样本量、变量个数、变量列表*/・codebook varname#/*显示具体某个变量的编码、格式等*/・list varname# [in] /*以列表形式显示指定的若干变量*/四、数据存储・save filename [,replace]五、数据压缩・compress /*数据压缩与变取值的存储格式有关,节约内存*/第四章变量的属性和运算*变量标签,对变量本身进行说明・label variable varname “text”/*贴标签*/*数值标签,说明变量下各取值的含义・label define labelname # text1 ## text2 [,modify] /*定义数值标签*/・label value varname labelname /*将数值标签赋予某变量*/・label list labelname/*显示某数值标签内容*/・[, nolabel] /*在命令结果中显示原始取值*/**・rename oldvarname newvarname/*变量重命名*/・sort [varlist] /*排序(从小到大)*/・gsort -varname#/*排序(从小到大)*/・command [varlist] if varname[exp.] /*条件输出*/・by varname: command [varlist][, sort] /*对某一变量所有取值的条¶件输出,先进行sort操作,或增加,sort选项*/・generate newvarname=exp. [if][in] /*生成新变量*/・replace varname=exp. [if][in] /*替换已有变量的值,一般使¶用generate进行新变量的生成,但是generate的缺点是其条件表达会导致缺失值生¶成,因此用replace进行弥补,这两个命令组合使用*/・recode varname [exp.] nonmising | else [exp.] , generate(newvarname) /*变¶量重新编码,其中nonmissing是指将其他非缺失值编码为#,else则是将其他所有值¶编码为#;选项generate可以在不改变原有变量的同时生成编完码的新变量*/・generate newvarname=autocode(oldvarname,#,min,max)・generate newvarname=recode(oldvarname,#,…,##)*连续变量变成非连续变量的五种策略*其他Stata中的函数round(x), int(x), uniform(), invnormal(uniform())egen命令计算器功能:display normal(#), display invnorm(#), display 1-normal(#)第五章命令程序(do.文件)1)注释:/*text*/, 或*text(整行)2)超长命令的处理Stata会默认分段符¶为提交命令的标志。
stata教程(一)
的图书销售数据。变量主要包括:t=时间,sales=销售额。
对于这些销售数据,我们想分析其随时间的变化趋势,并希望通过模
型对其进行拟合及预测。
这样,利用“sales.dta”的数据,我们来讲解移动平均滤波、单指数
为几个单位,表12.3给出了各个具体的选项。
下面,我们利用“tsexmp.dta”的数据,对tsset命令及选项做进一步
说明。 如果我们要设定时间变量为time,输入命令: tsset time
进行时间变量的设定之后,stata会自动将数据按设定的时间变量从小
到大排序,从而方便相关命令的使用。如果要查看已设定的时间变量, 可键入不带后缀的tsset命令。在数据被重新排序之后,想要恢复按时 间序列排序,也可以通过tsset命令实现。也就是说,设定time为时间 变量之后,如下两条命令会产生相同的效果。 ① tsset ② sort time
实验操作指导
1 时间序列数据的设定 (1)定义时间变量的基本命令 设定时间序列(time series set)变量的基本命令格式为: tsset timevar [, options] 其中,tsset是“定义时间变量”的基本命令,timevar为用于标识时间 序列数据的变量名,options代表其他选项。 可用的options选项主要分两类,一类设定时间变量的单位(units of timevar),一类设定时间变量的周期(period of timevar)。表12.2给 出了各个单位选项(unit options)。
实验内容及数据来源 利用本书附带光盘data文件夹下的“tsexmp.dta”工作文 件,我们来讲解时间变量的设定。“tsexmp.dta”中,主 要变量包括:time=整数的时间变量,time1=字符串格式的 时间变量。 利用这些数据,我们会讲解时间序列数据的设定,时间区 间的扩展,以及前滞变量、滞后变量、差分变量、季节差 分变量的设定等。
stata第一章基本操作
insheet using "D:\Teach课件\STATA\data\corgov0110.csv ",clear
append using "D:\Teach课件\STATA\data\corgov99-00.dta "
keep year topone,删除其它变量,只保留year和topone这 两个变量
keep if year==2010,删除其它年度变量,只保留2010年的 变量
rename,编辑变量名称
rename topone top1
label ,为变量名贴标签,以更容易理解
label var top1 "第一大股东持股比例"
save "D:\Teach课件\STATA\data\corgov9910.dta",replace
br
merge命令
数据表之间横向合并,追加新的变量
insheet using "D:\Teach课件\STATA\data\corgov.csv",clear sort stkcd year save "D:\Teach课件\STATA\data\corgov.dta",replace insheet using "D:\Teach课件\STATA\data\earning.csv",clear sort stkcd year merge stkcd year using "D:\Teach课件\STATA\data\corgov.dta" tab _merge(数值为1表示表一有,表二没有;2表示表二有表一没有;
stata操作介绍之基础部分(一)教程
数据编辑器
注意:
1.如果为某一变量输入的第一个值是一个数字,比如对人口、失业率和预 期寿命这些变量,那么stata便会认为这一列是一个“数值变量”,从此 以后只允许数字作为取值。 2.如果为某一变量第一次输入的是非数值字符,比如像地名的输入(或者 输入了带逗号的数字),那么stata会判断此列是字符串或文本变量。 3.在数据编辑器或数据浏览器中,字符串变量值显示为红色,这将其与数 值变量(黑色)或加标签的数值变量(蓝色)区分开来。
利用Stata做统计分析时,官方提供的命令包并不一定能满足需 求,因此许多研究者编写了大量的非官方命令包(包括.do文件、 .ado文件和帮助文件),使用此类非官方命令包之前需要对其进行 安装。
Stata中有两个命令对于用户寻找与安装命令包相当有用:search 和findit。
通过这两个命令可以找到相关搜索内容中有哪些额外的命令,点 击链接后安装即可。
2021/7/27
1.8 Stata窗口介绍
• Stata 的界面主要是由四个窗口构成: 1、结果窗口 2、命令窗口 3、命令回顾窗口 4、变量名窗口 除以上四个默认打开的窗口外,在 Stata 中还有数据编辑窗口、
程序文件编 辑窗口、帮助窗口、绘图窗口、Log 窗口等,如果需要 使用,可以用 Window 或 Help 菜单将其打开。
2021/7/27
1.2 Stata功能
Stata主要功能: 1、数据管理功能 2、统计分析功能
• 统计分析:概要统计、交互表 • 回归分析:
OLS, 2SLS, Logit, Probit, Tobit, Heckman, GMM Panel data, Time series, Survey data • 多变量分析: Cluster analysis • 抽样和模拟: Bootstrap, Monte Carlo Simulation
stata 第一章 基本操作
练习1.3
用stata打开corgov文件 看看一共有多少家样本 看看2010年一共有多少家样本
keep year topone,删除其它变量,只保留year和topone这 两个变量
keep if year==2010,删除其它年度变量,只保留2010年的 变量
rename,编辑变量名称
rename topone top1
label ,为变量名贴标签,以更容易理解
lab;
数据
试试browse,list,edit三个命令,看看三者的区别 注意:上述命令也可以通过菜单的方式实现。
--
保存数据
菜单窗口
File/save File/save as(另存为)
命令窗口
save "D:\Teach课件\STATA\data\corgov.dta " save "D:\Teach课件\STATA\data\corgov.dta
--
Insheet:导入数据
通常数据来源于数据库下载,而不是手工录入 导入格式
Stata不能直接支持很多格式(Excel files, SAS files) 可以先保存为csv格式后再导入stata
准备工作:将Excel文件另存为csv格式,然后导入 csv文 件。
菜单窗口
File/import/ASCII data created by spreadsheet /browse file name
",replace
replace的作用是,如果文件已存在,则替换 注意stata格式文件的后缀为.dta
--
练习1.1
导入表名为earning的Excel格式数据 检查数据 保存数据为stata数据格式
STATA操作流程-附面板数据演示
第一篇 Stata的安装和设置
第二篇 数据格式转化
• 我们可以从SinofinData中导出数据,这 时数据文件的格式时文本文件
• 接下来,我们用Microsoft Access将txt的 文本文件转化为mdb的数据文件
• replace 修改某个变量的数据
• save filename 将处理后的结果保存到一个 新的文件中
save,replace 将处理后的新文件保存覆盖 原来的文件
• clear 关闭数据库
• Exit
退出stata
• Sort 把数据库关于某个变量进行排序
• Merge 把两个具有某个共同变量的数据库 进行合并,增加了变量,但是没有增加观 测值
• use exp1.dta 打开当前目录中的一个数据 文件
• sum 显示exp1数据库中的各个变量信息 • list in 1/5 显示从第1个到第5各观测值 • edit 直接编辑数据库 • drop varname 删除你不需要的变量 • keep varname 保留你需要的变量
• gen 生成一个新的变量
• demo
谢谢 杨俊制作
• Hausman 进行hausman检验
• gen 生成一个新的变量
• replace 修改某个变量的数据
• save filename 将处理后的结果保存到一个 新的文件中
save,replace 将处理后的新文件保存覆盖 原来的文件
• clear 关闭数据库
demoபைடு நூலகம்
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.Stata软件简介
2.Stata窗口及基本操作
3. Stata主要功能模块介绍
1.1Stata软件简介
Stata软件是现今较为流行的统计计量分析软件,具有
强大的数据处理和分析功能,它是由Stata公司在1985 年研制开发成功之后面市的,到现在已经有25年的历 史了。虽然现在最新的版本为2009年刚推出的 stata11.0,但是鉴于11.0的版本还基本没有在中国推广 和使用,所以本书所介绍的功能主要是通过Stata10.0 来实现的。 Stata10.0在安装时主要有四种版本,包括:Small(小 型版)、IC(标准版)、SE(特殊版)和MP(多处 理器版)。用户可以在安装过程中自主进行选择,一 般而言,SE版已经能实现Stata的所有功能,MP版与 SE版相比,功能一致,但是运算速度更快。
1.2 Stata窗口及基本操作
(3)Data的下拉菜单包括数据的描述、编辑、浏览、
增加或删除变量、文件合并、矩阵操作等方面的内容. (4)Graphics主要是用来作图的菜单,作图种类主要 包括散点图、线图、柱状图、饼图等等各种图形。 (5)Statistics主要是用来进行各种统计和计量分析的 菜单,主要包括线性回归模型分析、时间序列分析、 面板数据分析等等方面的内容。 (6)User主要是用来构建用户自己的菜单,主要包括 有关数据、图表和统计分析等个方面的设置和操作。 (7)Window主要是用于对显示界面的操作,主要包 括对Review、Results、Variables、Command四大窗 口的操作。
1.2 Stata窗口及基本操作
1.2.2Stata帮助系统 Stata为用户提供了强大的帮助系统,新用户可以通过
帮助系统的应用,更好地利用Stata完成自己所需要的 功能和操作。Stata的帮助系统主要由Stata手册、Stata 自带帮助和网络帮助三个方面组成。 (一)Stata手册是一本学习Stata使用的权威书籍,它 按字母顺序排列出了Stata所有相关的命令。 (二)Stata自带帮助系统是使用最方便,也是最常用 的方法。其语法格式为:help [所要查询命令] (三)Stata的网络帮助系统更为强大,用户可以在网 上查找Stata还没有内置化的命令,实现自行安装。
习题
1.熟悉Stata的界面,了解菜单选项的主
要内容。 2.练习使用帮助系统了解Stata的常用命 令的使用方法。 3.熟记Stata的基本命令语句格式以及相 关部分的具体含义。
1.2 Stata窗口及基本操作
1.2.3Stata语法和命令
熟练地掌握Stata的基本语法和命令,是熟练应用Stata
做统计或计量分析的基础。首先,介绍一下Stata的基 本命令语句的格式,具体形式如下: [by varlist:] command [varlist] [=exp] [if exp] [in range] [weight] [using filename] [, options] 基本命令语句中,[]中的内容表示可以省略的部分, 因此我们可以看出,只有command是必不可少的,其 他部分的内容用户可以根据自己的需要进行选择。
1.2 Stata窗口及基本操作
Stata最主要的部分是由四大窗口组成的,它们是分别是命
令回顾窗口(Review)、结果窗口(Results)、变量窗口 (Variables)、和命令输入窗口(Command),接下来, 将会详细地介绍一下这四个窗口。 (1)命令回顾窗口(Review),主要是用来临时性存储已 经执行过的命令语句的窗口,这些执行的命令语句主要包 括两种:一种是直接从命令窗口中输入的命令,另一种是 通过窗口菜单操作转化而成的命令。Review窗口可以临时 性存储自Stata本次运行到结束的所有命令,若Stata中途或 最终被关闭,则所有的命令语句将会自动消失,若想永久 保存这些命令,可以通过使用log命令或单击右键实现存储。 在Stata运行过程中,可以重复使用显示在Review窗口中的 命令,只需要左键单击命令,该命令将会重新显示在 Command窗口中,供用户进行修改和执行。
正常的标题栏、菜单栏、工具栏和状态栏,在这里着 重介绍一下菜单栏,因为它是用户进行菜单操作的主 要媒介和工具。菜单栏主要包括File、Edit、Data、 Graphics、Statistics、User、Window、Help这八个子 菜单。由于Stata主要是通过命令进行操作,所以这里 只是简要介绍一下各个菜单的功能。 (1)File的下拉菜单包括打开、保存、查看文件,导 入、导出数据以及打印等等功能。 (2)Edit的下拉菜单包括数据的复制、粘贴等有关数 据管理和设置的功能。
1.3Stata主要功能模块介绍
1.3.3统计分析 Stata具有强大的统计分析功能,本书中将要介绍的内容主要有
Байду номын сангаас
方差分析(包括单因素方差分析、双因素与多因素方差分析、 协方差分析等)和假设检验(包括单个总体均值的检验、两个 总体均值的检验、总体方差的假设检验、拟合优度的检验等), 以上这些内容将会在第四、五两章中具体讲述。 1.3.4回归与建模分析 回归与建模分析是本书的主体内容,也是应用Stata做经济计量 分析的重中之重,主要包括基本回归分析、模型的设定与修正、 离散被解释变量模型、计数模型、受限因变量模型、时间序列 分析、面板数据分析、系统方程模型、蒙特卡罗模拟与自助法 等方面的内容,这些将会在第六至第十五章中具体讲述。 1.3.5编程 Stata还可以实现用户自己编写的程序,极大地方便了用户的使 用,在本书中将会在第十六章具体讲述有关Stata编程的基础内 容。
1.3Stata主要功能模块介绍
Stata软件具有数据处理、绘图、统计分析、回归分析和编
程处理这五大主要功能,其相互配合,可以完成系统完整 的数据分析和处理任务。 1.3.1数据处理 用户得到第一手数据之后要做的就是对数据进行基本的处 理,主要包括数据的读入、类型的转换、压缩等,此外还 可以对数据进行基本的描述分析,包括频数分布、离散趋 势、集中趋势的分析等等。以上内容将在第二章中具体讲 述。 1.3.2绘图 绘图是进行数据分析的又一种重要的分析工具,Stata提供 了强大的绘图功能,主要包括散点图、线图、条形图、直 方图、饼图、箱线图、函数图等图形的绘制和相应设定, 这些内容将会在第三章中具体讲述。
(3)Stata具有强大的数据分析功能。
(4)Stata具有强大的图形制作功能。
1.2 Stata窗口及基本操作
1.2.1Stata窗口说明
运行Stata后,将会看到如图1.1所示的操作界面。
1.2 Stata窗口及基本操作
从图1.1中可以看出,Stata与其他操作软件一样,具有
1.1Stata软件简介
Stata与SAS、SPSS被共同成为三大权威统计软件,它
被广泛地应用于统计学、经济学、生物学、医药学、 社会学、人口学等等一系列学科的研究,功能十分强 大。但是与其他软件相比,Stata具有以下明显优势:
(1)Stata操作较为简单,方便掌握。 (2)Stata是一个开放的软件系统。
1.2 Stata窗口及基本操作
(2)结果窗口(Results),主要是用来显示命令执
行结果的窗口。若是命令执行的结果过长,则会在命 令窗口的底端出现“more”这一字样,这时只需要按 下空格键或者回车键,就可以浏览下面的内容;如果 想停止浏览,只需要按“q”键或者工具栏中的 图 标,就可停止。 (3)变量窗口(Variables),主要是用来显示变量名 称和类型的窗口。点击某个变量名称,其就可以显示 在右方的命令窗口中。如果想要删除某个变量,则只 需要在命令窗口中输入drop命令,然后鼠标左键单击 相应的变量名称,然后点击回车键即可完成删除操作。 (4)命令输入窗口(Command),是用户进行交互 式程序操作的主要实现场所,只要用户将相关命令输 入,然后点击回车键即可。