电化学原理第三章2014解析

合集下载

电化学原理3

电化学原理3
34
银-氯化银电极
silver-silver chloride electrode
由一根表面镀AgCl 的Ag丝插入到用 AgCl饱和的KCl溶 液中构成。电极端 的管口用多孔物质 封住。
优点是在升温的情况下比 甘汞电极稳定。
35
36
• (4)气体电极:由惰性金属(Pt、Au等)吸 附气体浸入含有相应离子的溶液中构成。
• (5)氧化还原电极:惰性电极浸入含有某 种离子的不同氧化态溶液中构成。
37
习题
1.可逆电极有哪几种?各举一例说明。
38
3.3 液接电位 (liquid junction potential)
• 液接电位: 两个组成或浓度不同的电解质溶液相接 触,其界面上产生的电位差,又叫扩散 电位(diffusion potential)。
• (3)电池中所进行的其他过程也必须可逆, 即当反向电流通过电池时,电极反应以外的其 他部分的变化也应当趋向于恢复到原来的状态。
17
严格来说,凡是由两个不同电解质溶 液构成的具有液体接界的电池,都是 热力学不可逆的。
两个可逆电极浸在同一电解质溶液中构 成的电池,在无限小电流通过的条件下 才是真正的可逆电池。
• (3)金属-难溶氧化物电极:由金属表面覆盖一 层该金属的难溶氧化物组成的固体浸入碱溶液 中构成。
– 第(2)(3)类最常用的有甘汞电极、银-氯化银电极、 氧化汞电极以及硫酸亚汞电极等。这些电极都可 用做参比电极。
32
饱和甘汞电极示意图
saturated calomel electrode(SCE)
– 对比:界面电位差(interfacial potential difference): 两相间内电位之差。

电化学原理1-4章思考题答案

电化学原理1-4章思考题答案

思考题答案第一章1.离子电导,电子导电3.阳极:氧化反应;阴极:还原反应,电解池:阴=负,阳=正,原电池反之5.同:导电;异:导电机理是电子和带电离子,一个是纯物理过程,一个是物理过程伴随化学反应。

κ,随着溶液7.简化电导率和浓度的关系;区别:当量电导定义;联系:λ=1000C N浓度降低,当量电导增加并趋于一个极限λ0(无线稀溶液极限当量电导),很稀的溶液中-柯劳许经验公式:λ=λ0−A√C N。

8.错,离子种类,其他离子浓度,离子淌度都有影响(根据公式说明)9.无线稀溶液,每个离子运动不受其他离子影响,溶液当量电导等于各电解质当量电导之和。

已知离子极限当量电导求电解质极限当量电导,通过强电解质极限当量电导计算多弱电解质极限当量电导。

10.真实溶液中离子间存在相互作用,与理想溶液有一定偏差,用浓度来校正真是溶液相对于理想溶液的偏差,从而令标准化学位不变(1.19公式);反映了有效浓度第二章3.电极电位是两类导体界面所形成的相间电位,在测量的时候会引入新的两相界面(可画图,并列出2.8式形象描述),故无法直接测出电极的绝对电位,我们平常所用的电极电位都是相对电极电位。

4.两种溶液之间的高浓度电解质,其正负离子迁移速度接近,保持电荷平衡使反应顺利进行。

浓度高,主要扩散作用来自盐桥,全部电流几乎都由盐桥正负离子在液体界面扩散导致,盐桥正负离子迁移速度相当,以此降低液接电位。

不能完全消除。

6.不对;可逆电池:反应可逆,平衡状态电流无限小;自发电池,反应可逆,电流不为零偏离平衡状态。

8.有电流通过产生欧姆降,有电流通过偏离平衡状态。

采用补偿法。

11.都有电化学氧化还原反应;原电池和腐蚀电池,正极还原=阴极,负极氧化=阳极,电解池,正极氧化=阳极,负极还原=阴极;原电池化学能转电能,电解池电能转化学能,腐蚀电池短路化学能转热能。

14.不对,平衡电位,是在平衡可逆条件下(电极反应可逆,电流无限小)的电极电位,稳定电位是指。

电化学基本原理与应用-第3章

电化学基本原理与应用-第3章

净电荷
α
偶极层
3.2.1 “孤立相”的几种电位
(1)外电位(Ψα)
将试验电荷自无穷远处移至距球面约 10-4~10-5厘米处。在这一过程中可以认为 球体与试验电荷之间的短程力尚未开始作 用。根据电位的定义,此时所做的功为:
W1 = Zie0ψ α
ψ α = W1
Z ie0
球体α的外部电位
试验电荷电量
当试验电荷从相内逸出到相外时,这一过 程所涉及的能量变化(-Wiα)相当于试验电荷从 该相逸出而必须摆脱与该相物质之间的短程 相互作用及越过表面时对表面电势所做的功。 这部分功称为试验电荷在α相的“逸出功”, 显然应满足下列关系式:
−Wiα = μiα + Zi Fχ α
3.2.1 “孤立相”的几种电位
(b)内电位差,又称“伽伐尼(Galvani) 电位差”,定义为φα-φβ。直接接触的两相 间的内电位差,用 αΔβφ 表示。由于表面电 位无法测量,所以该值不能测量。也无法理 论计算。
3.2.2 相间电位差
φα −φ β = (χ α +ψ α ) − (χ β +ψ β ) = (ψ α − ψ β ) + ( χ α − χ β )
(1)相间电位差的种类 两相之间出现“相间电位差”的原因只可
能是界面层中带电粒子或偶极子的非均匀分 布,并形成了界面荷电层。
根据以上关于孤立相电位的讨论不难推 想,所谓α、β两相之间的电位差也因此可 能有各种不同的定义,其中较常用的有下面 三种:
3.2.2 相间电位差
(a) 外电位差,又称“伏打(Volta)电位 差”,定义为ψα-ψβ。直接接触的两相间的 外电位差,用 αΔβψ 表示。两相均为金属 时,为金属接触电位差,可直接测量。

电化学原理-第三章-界面电化学

电化学原理-第三章-界面电化学

电流流过电极时,产生一对矛盾作用: 极化作用—电子的流动在电极表面积累电 荷,使电极电位偏离平衡状态; 去极化作用—电极反应吸收电子运动传递 的电荷,使电极电位恢复平衡状态。 极化是由上述两种作用联合作用的结果。
极化的基本规律
Ve >> V反
电荷积累:负电荷 电荷积累:正电荷 Cathodic polarization Anodic polarization Cation Anion 负移 正移 阴极极化 阳极极化
Zn
e
双电层
e
双电层

Cu
E C a IR
E超
V
E
R反应
I
a平+ a
R溶液
I
c平- c
IR
V
电解池极化规律
V a c IR
a平+ a c平-c IR
Pt
e
双电层
e
双电层

Pt
E C a IR
Electrolytic Cell

极化(polarization):有电流通过时,电 极电位偏离平衡电位的现象

过电位(overvoltage):在一定电流密度下, 电极电位与平衡电位的差值

极化值:有电流通过时的电极电位(极 化电位)与静止电位的差值 静
极化产生的原因
第四章 电极过程概述
重点要求

极化概念、产生原因及基本规律
测量极化曲线的基本原理 电极过程特征


一.电极的极化
可逆电极(reversible electrode):氧化还 原反应速度相等,物质交换和电荷交换 平衡 。 i净 0

第三章 电化学腐蚀的基本原理

第三章 电化学腐蚀的基本原理

宏观腐蚀电池
铜铆钉
1. 异种金属相接触 如 电偶腐蚀 2. 浓差电池 (1)金属离子浓度不同,
铝板
浓度低电位低,容易腐蚀 (2)氧浓度不同 氧浓度低电位低,更容易腐蚀 3. 温差电池 如金属所处环境温度不同,高温 电位低,更容易腐蚀
粘 土 沙 土
微观腐蚀电池
(1)材料本身的不均匀性
化学成分不均匀
平衡电极电位
当金属电极上只有一个确定的电极反应,并且该反应处于动态平衡,即金属 的溶解速度等于金属离子的沉积速度,在此平衡电极过程中,电极获得一个 不变的电位值,该值被称为平衡电极电位(可逆电极电位)。
Fe Fe2 2e Fe2 2e Fe
Fe Fe 2+
Fe 2+ Fe
电荷平衡: ia = ic
金属在25℃时的标准电极电位 e (V,SHE)
电极反应
K=K++e Na=Na++e
e,伏
-2.925 -2.714 -2.37 -1.66 -1.63
电极反应
Ni=Ni2++2e Mo=Mo3++3e
e,伏
-0.250
-0.2 -0.136 -0.126 -0.036 0.000 +0.337 +0.521 +0.189
组织结构不均匀
微观腐蚀电池
金属表面的物理状态不均匀
金属表面膜的不完整
(2)液相不均匀性
离子浓度(质子或氧离子浓度)
(3)系统外界条件不均匀性
温差、光照等分布不均匀
3.3 电极与电极电位
电极
电极的概念——电子导体(金属等)与离子导体(电 解质)相互接触,并有电子在两相之间迁移而发生氧 化还原反应的体系。 电极一般分为单电极和多重电极 单电极是指电极的相界面上发生唯一的电极反应 多重电极则可能发生多个电极反应

电化学原理-第3章:电极溶液界面的结构性质-4

电化学原理-第3章:电极溶液界面的结构性质-4
(2)参与建立或改变双电层。由于形成有一定电 极电位的双电层结构,只需要一定数量的电量,故这 部份电流的作用类似于给电容器充电,只在电路中引 起短暂的充电电流。
为了研究界面的结构 和性质,就希望界面 上不发生电极反应, 使外电源输入的全部 电流都用于建立或改 变界面结构和电极电 位,即可等效为图3.1 (b)中的电路。
( ) ' ln a

根据(3.21)或(3.22) 求得该浓度下的离子表 面剩余量 v
(v v ) RT ln a ( ) '
v ( ) ' (v v ) RT ln a
当电极表面带负电时,(曲 线右半部分),正离子表面
1.界面电场对电极反应速度的影响
界面电场是由电极/溶液相间存在的双电层所引起的。
而双电层中符号相反的两个电荷层之间的距离非常小, 因而能给出巨大的场强。 例如 双电层电位差(即电极电位)为1V,而界面两 个电荷层的间距为 108 cm 时,其场强可
达 10 V cm 。
8
已知电极反应是得失电子的反应,也就是有电荷在相 间转移的反应。 巨大的界面电场下,电极反应速度必将发生极大的变 化,甚至某些在其他场合难以发生的化学反应也得以 进行。
特别有意义的是,电极电位可以被人为的,连续的加
以改变,因而可以通过控制电极电位来有效地,连续 地改变电极反应速度。这正是电极反应区别于其他化
学反应的一大优点。
2.电解液性质和电极材料及其表面状态的影响
电解质溶液的组成和浓度,电极材料的物理,化学性质及其 表面状态均能影响电极/溶液界面的结构和性质,从而对电 极反应性质和速度有明显的作用。 例如在同一电极电位下,同一种溶液中,析氢反应
这样,可以把电极电位 改变到所需要的数值, 并可定量分析建立这种 双电层结构所需要的电 量。 这种不发生任何电极反 应的电极体系称为理想 极化电极。

电化学原理与应用PPT课件

电化学原理与应用PPT课件
第三章 电化学原理与应用
1
标题添加
点击此处输入相 关文本内容
标题添加
点击此处输入相 关文本内容
总体概述
点击此处输入 相关文本内容
点击此处输入 相关文本内容
2
目录
§3.1 氧化还原反应基本概念 §3.2 原电池 §3.3 电池电动势与电极电势 §3.4 影响电极电势的因素 §3.5 电极电势及电池电动势的应用 §3.6 电解与化学电源 §3.7 金属的腐蚀及其防止4Fra bibliotek氧化值
氧化值是元素一个原子的荷电数,这种 荷电数由假设把每一个键中的电子指定给电 负性更大的原子而求得。
5
❖ 确定氧化值的方法如下: ❖ a 一些规定 ❖ 在单质中,元素的氧化值皆为零。如白磷(P4)中磷的氧化
值。 ❖ 氧的氧化值在正常氧化物中皆为-2;在过氧化物(如
H202、BaO2等)中,氧的氧化值为-1,在超氧化合物(如KO2) 中,氧化值为-1/2。在氟化物中(OF2)氧化值为+2。 ❖ b 在离子型化合物中,元素原子的氧化值就等于该原子的离 子电荷。 ❖ C 在共价化合物中,将属于两原子的共用电子对指定给两原 子中电负性更大的原子以后,在两原子上形成的电荷数就是 它们的氧化数。共价化合物中元素的氧化数是原子在化合状 态时的一种形式电荷数。 ❖ d 在结构未知的化合物中,某元素的氧化值可按下述规则求 得:原子或离子的总电荷数等于各元素氧化值的代数和。分 子的总电荷数等于零。
H+(c)|H2 (p) |Pt
17
四类常见电极
电极类型 电对(例)
金属电极
Zn2+/Zn
非金属电 极 Cl2/Cl氧化还原电极 Fe3+/Fe2+
难溶盐电极 AgCl/Ag

31第三章电化学原理与应用

31第三章电化学原理与应用

① ②
化简得: 3Cl2 (g) + 6OH- = 5Cl- + ClO3- + 3H2O
3Cl2 (g) + 6NaOH = 5NaCl + NaClO3 + 3H2O
12
Example 4
配平方程式: Cr(OH)3 (s) + Br2 (l) + KOH K2CrO4 + KBr
Solution
16
§3.2 原电池
1、原电池的组成 将氧化还原反应的化学能转变为电能的装置。
Zn + Cu2+ = Cu + Zn2+
rGmθ(298.15K) = -212.55 kJ· mol-1
Cu2+ + 2e = Cu (还原反应) Zn - 2e = Zn2+ (氧化反应)
17
工作状态的电池同时发生 三个过程: 1.两个电极表面分别发生 氧化反应和还原反应。 2.电子流过外电路。 3.离子流过电解质溶液。
2Cr(OH)3 (s) + 3Br2 (l) + 10OH- = 2CrO42- + 6Br- + 8H2O
2Cr(OH)3 (s) + 3Br2 (l) + 10KOH= 2K2CrO4 + 6KBr + 8H2O
13
Example 5
配平方程式:
2SO 4 KMnO 4 C6 H12O6 H MnSO 4 CO2 K 2SO 4
22
(3) 组成电对的氧化态和相应的还原态物质,通常 称为氧化还原电对,用符号“氧化态/还原态”表示。 如,铜锌原电池中的两个半电池的电对可分别表示为 Zn2+/Zn 和 Cu2+/Cu。

腐蚀电化学原理课件第3章极化与混合电位理论

腐蚀电化学原理课件第3章极化与混合电位理论

涂层保护
通过在金属表面涂覆一层耐腐蚀的涂层,将 金属与腐蚀介质隔离,以减缓腐蚀速率。
缓蚀剂
通过在腐蚀介质中添加能够抑制腐蚀反应的 物质,降低腐蚀速率。
其他实用的腐蚀防护措施
控制环境因素
如温度、湿度、pH值等,以降低金属的腐蚀速率。
改高其耐 蚀性。
根据混合电位理论,可以通过选择适 当的材料组合或表面处理方法,使不 同金属在腐蚀介质中形成低电位差, 从而降低腐蚀速率。
防腐涂层设计
在防腐涂层设计中,可以利用混合电 位理论优化涂层材料的选择和搭配, 以提高涂层的保护效果。
混合电位理论的局限性与发展趋势
局限性
混合电位理论的应用受到腐蚀介质、金属种类和接触条件等多种因素的影响,有时难以准确预测腐蚀行为。
发展趋势
随着材料科学和电化学技术的不断发展,混合电位理论有望与现代测试技术相结合,进一步提高预测腐蚀行为的 准确性。同时,研究不同金属在复杂环境中的腐蚀行为和机制,有助于拓展混合电位理论的应用范围。
04
CATALOGUE
电化学阻抗谱在腐蚀研究中的应用
电化学阻抗谱的基本原理
阻抗谱是一种测量电极系统在交流电信号作用下的阻抗值随频率变化的电化学技术 。
概念
极化现象是腐蚀过程中的一个重 要现象,它涉及到金属表面的电 荷分布和电子转移过程,对腐蚀 速率产生影响。
极化现象对腐蚀速率的影响
01
02
03
降低腐蚀速率
当金属表面发生阳极极化 时,金属的腐蚀速率会降 低,因为阳极反应受到抑 制。
加速腐蚀
当金属表面发生阴极极化 时,金属的腐蚀速率会加 速,因为阴极反应得到促 进。
通过对比不同极化条件下金属在腐蚀 介质中的失重程度,可以验证极化现 象对腐蚀速率的影响。

电化学原理第三章

电化学原理第三章
一、概述
第三章
二、电毛细现象 三、双电层的微分电容
电极/溶液界面 四、双电层的结构
的结构和性质 五、零电荷电位 六、电极/溶液界面的吸附现

09:37:26
§3.1 概述
一、 研究电极/溶液界面性质的意义
由于各电极反应都发生在电极/溶液的界面上,故界面结和性质对电极反 应影响很大。
1. 界面电场对电极反应速度的影响 由于双电层极薄,故场强可很大,而电极反应是电荷在相间转移的反
09:37:26
三、离子表面剩余量 构成双电层溶液一侧发生了离子的吸附。金属侧电子过剩
或不足,溶液侧剩余正负离子浓度不同,发生了吸附现象 ,见下图。
09:37:26
离子表面剩余量:界面层存在时离子的摩尔数与无离子双 电层存在时离子的摩尔数之差定义为离子的表面剩余量。
T
(v
v v )RT
ln a
(1) 假设离子与电极间除静电引力外无其它相互作用, 双电层厚度比电极曲线半径小很多,将电极视为平板电极, 粒子在界面电场中服从波尔兹曼分布。
(2) 忽略粒子的体积,假定溶液中离子电荷是连续分布 的(实际上离子具有粒子性,故离子电荷是不连续分布的) 。故可用泊松(Poisson)方程。把剩余电荷的分布与双电层 溶液一侧的电位分布联系起来。电极表面剩余电荷密度q为正 值时,φ>0,随距离x增加,φ值逐渐减小 即: 0
李普曼方程
§3.2 电毛细现象 一、电毛细曲线及其测定
两相间均存在界面张力,电极体系界面张力不仅与界面 层的物质有关,而且与电极电位有关,此界面张力随电极电 位变化的现象叫做电毛细现象。而界面张力与电极电位的关 系曲线叫做电毛细曲线。常用毛细管静电计测取液态金属的 电毛细曲线。

电化学原理简答题

电化学原理简答题

电化学原理简答题第三章电极/溶液界面的结构与性质1.为什么电毛细曲线是具有极大值的抛物线形状?溶液界面存在双电层,剩余电荷无论带正电还是负电,同性电荷间相互排斥,使界面扩大,而界面张力力图使界面缩小,两者作用效果相反,因此带电界面的张力比不带电时小,且电荷密度越大,界面张力越小,因此电毛细曲线是具有极大值的抛物线形状。

2.标准氢电极的表面剩余电荷是否为零?不一定,标准氢电极电位为0指的是氢标电位,是人为规定的,电极表面剩余电荷密度为0时的电位指的是零电荷电位,其数值并不一定为0;因为形成相间电位差的原因除了离子双电层外,还有吸附双电层\偶极子双电层\金属表面电位。

3.影响双电层结构的主要因素是什么?为什么?静电作用和热运动。

静电作用使符号相反的剩余电荷相互靠近,贴于电极表面排列,热运动使荷电粒子外散,在这两种作用下界面层由紧密层和分散层组成。

4.什么叫Ψ1电位?能否说Ψ1电位的大小只取决于电解质总浓度而与电解质本性无关? Ψ1电位的符号是否总是与双电层总电位的符号一致?为什么?距离电极表面d处的电位叫Ψ1电位。

不能,因为不同的紧密层d的大小不同,而紧密层的厚度显然与电解质本性有关,所以不能说Ψ1电位的大小只取决于电解质总浓度而与电解质本性无关。

当发生超载吸附时Ψ1电位的符号与双电层总电位的符号不一致。

5.简要概括电极/溶液界面发展的四个阶段、优缺点及其主要内容。

①亥姆赫兹紧密双电层模型:主要内容:将双电层比作是平行板电容器优点:a能够解释界面张力随电极电位变化b能够解释微分电容曲线上所出现的平台区域缺点:a解释不了界面电容随电极电位和溶液总浓度的变化规律b解释不了在稀溶液中,零电荷电位下微分电容最小等实验事实②Gouy和Chapman分散层模型:主要内容:溶液中的离子在静电作用和热运动作用下,按位能场中粒子的波尔兹曼分配律分布,完全忽略紧密层,只考虑分散层。

优点:a能较好解释微分电容最小值的出现b能较好解释电容随电极电位的变化规律缺点:a理论计算微分电容值与实验事实相差太大b解释不了微分电容曲线上的“平台区”的出现③Stern模型(双电层静电模型):主要内容:双电层由紧密层和分散层两部分组成。

电化学原理思考题答案解析

电化学原理思考题答案解析

第三章1.自发形成的双电层和强制形成的双电层在性质和结构上有无不同为什么2.理想极化电极和不极化电极有什么区别它们在电化学中有什么重要用途答:当电极反应速率为0,电流全部用于改变双电层的电极体系的电极称为理想极化电极,可用于界面结构和性质的研究。

理想不极化电极是指当电极反应速率和电子反应速率相等时,极化作用和去极化作用平衡,无极化现象,通向界面的电流全部用于电化学反应,可用作参比电极。

3.什么是电毛细现象为什么电毛细曲线是具有极大值的抛物线形状答:电毛细现象是指界面张力随电极电位变化的现象。

溶液界面存在双电层,剩余电荷无论带正电还是负电,同性电荷间相互排斥,使界面扩大,而界面张力力图使界面缩小,两者作用效果相反,因此带电界面的张力比不带电时小,且电荷密度越大,界面张力越小,因此电毛细曲线是具有极大值的抛物线形状。

4.标准氢电极的表面剩余电荷是否为零用什么办法能确定其表面带电状况答:不一定,标准氢电极电位为0指的是氢标电位,是人为规定的,电极表面剩余电荷密度为0时的电位指的是零电荷电位,其数值并不一定为0;因为形成相间电位差的原因除了离子双电层外,还有吸附双电层\偶极子双电层\金属表面电位。

可通过零电荷电位判断电极表面带电状况,测定氢标电极的零电荷电位,若小于0则电极带正电,反之带负电。

5.你能根据电毛细曲线的基本规律分析气泡在电极上的附着力与电极电位有什么关系吗为什么有这种关系(提示:液体对电极表面的润湿性越高,气体在电极表面的附着力就越小。

)6.为什么在微分电容曲线中,当电极电位绝对值较大时,会出现“平台”7.双电层的电容为什么会随电极电位变化试根据双电层结构的物理模型和数学模型型以解释。

8.双电层的积分电容和微分电容有什么区别和联系9.试述交流电桥法测量微分电容曲线的原理。

10.影响双电层结构的主要因素是什么为什么答:静电作用和热运动。

静电作用使符号相反的剩余电荷相互靠近,贴于电极表面排列,热运动使荷电粒子外散,在这两种作用下界面层由紧密层和分散层组成。

高考2014专题复习电化学原理及应用

高考2014专题复习电化学原理及应用
2Cl-+2H2O ==== 2OH-+H2↑+Cl2↑ 。 电解总反应离子方程式为____________________________ (2)电解完成后,若溶液的体积为1 L,整个电解过程中共转移
电解
13 若使电解质溶液复原,需通入氯 0.1 mol e-,则溶液的pH为___,
0.1 化氢的物质的量为____mol 。 阳极 用铁钉作_____, 阴极 (3)若用该装置给铁钉镀铜,则应用铜作_____, CuSO4 溶液。 电解质溶液应为_____
O2+4H++4e-====2H2O 。 _________________
2.电解池:
++2e-====H ↑ 2H 阴 2 (1)电解时,a极是___极;电极反应式为_______________;
2Cl--2e-====Cl2↑ 氧化 反应,电极反应式为_________________; b极发生_____
热点考向 1
有关电化学原理的考查
【典例1】将如图所示实验装置的K闭合,下列判断正确的是
(
)
A.Cu电极上发生还原反应 B.电子沿Zn→a→b→Cu路径流动
C.片刻后甲池中 c(SO2 增大 4 )
D.片刻后可观察到滤纸b点变红色
【解题探究】
(1)电解质溶液导电的实质是什么?电子能通过电解质溶液吗? 提示:电解质溶液在电极电场的作用下,溶液中的阳、阴离子分 别向阴极和阳极移动,这时就在电解质溶液中产生了电流 ,所以 电解质溶液就导电了。 电解质溶液导电的过程中电子是不能通过电解质溶液的。
分析:锌与硫酸铜反应生成铜,锌、铜与稀硫酸形成原电池,可
使反应速率加快。
(11)(2012·海南高考)肼(N2H4)—空气燃料电池是一种碱性电 池,该电池放电时,负极的反应式为N2H4-4e-====4H++N2↑。 (×) 分析:碱性环境下N2H4在负极上失电子结合OH-生成N2和H2O,其 电极反应式为N2H4+4OH--4e-====4H2O+N2↑。 (12)(2012·海南高考)下列电解质溶液电解时只生成氢气和氧

电化学原理知识点

电化学原理知识点

电化学原理知识点电化学原理第一章绪论两类导体:第一类导体:凡是依靠物体内部自由电子的定向运动而导电的物体,即载流子为自由电子(或空穴)的导体,叫做电子导体,也称第一类导体。

第二类导体:凡是依靠物体内的离子运动而导电的导体叫做离子导体,也称第二类导体。

三个电化学体系:原电池:由外电源提供电能,使电流通过电极,在电极上发生电极反应的装置。

电解池:将电能转化为化学能的电化学体系叫电解电池或电解池。

腐蚀电池:只能导致金属材料破坏而不能对外界做有用功的短路原电池。

阳极:发生氧化反应的电极原电池(-)电解池(+)阴极:发生还原反应的电极原电池(+)电解池(-)电解质分类:定义:溶于溶剂或熔化时形成离子,从而具有导电能力的物质。

分类:1.弱电解质与强电解质—根据电离程度 2.缔合式与非缔合式—根据离子在溶液中存在的形态3.可能电解质与真实电解质—根据键合类型水化数:水化膜中包含的水分子数。

水化膜:离子与水分子相互作用改变了定向取向的水分子性质,受这种相互作用的水分子层称为水化膜。

可分为原水化膜与二级水化膜。

活度与活度系数:活度:即“有效浓度”。

活度系数:活度与浓度的比值,反映了粒子间相互作用所引起的真实溶液与理想溶液的偏差。

规定:活度等于1的状态为标准态。

对于固态、液态物质和溶剂,这一标准态就是它们的纯物质状态,即规定纯物质的活度等于1。

离子强度I:离子强度定律:在稀溶液范围内,电解质活度与离子强度之间的关系为:注:上式当溶液浓度小于0.01mol·dm-3 时才有效。

电导:量度导体导电能力大小的物理量,其值为电阻的倒数。

符号为G,单位为S ( 1S =1/Ω)。

第二章是电化学热力学界面:不同于基体的两相界面上的过渡层。

相间电位:两相接触时存在于界面层的电位差。

产生电位差的原因是带电粒子(包括偶极子)分布不均匀。

形成相间电位的可能情况:1。

残余电荷层:带电粒子在两相间的转移或外部电源对界面两侧的充电;2.吸附双电层:界面层中阴离子和阳离子的吸附量不同,使界面和相体带等量相反的电荷;3.偶极层:极性分子在界面溶液侧定向排列;4.金属表面电势:各种短程力在金属表面形成的表面电势差。

电化学原理第三章.ppt

电化学原理第三章.ppt

六、电池可逆性所具备的条件: (1)电池中的化学变化是可逆的,即物质的 变化是可逆的。 (2)电池中的能量的转化是可逆的。
七、能斯特方程:
v a RT E E0 ln 生成物 v nF Πa反应物 v Π a RT E E0 ln 反应物 v nF a生成物
(2.24)
八、原电池和电解池、腐蚀电池的区别与联系
2 H
对于标准氢电极已规定 :

0 H2 / H
0 且 H / H
2
0 H2 / H
RT a ln 0 2F pH2
2 H
所以: E (
0 2 Zn / Zn
RT aZn2 ln ) Zn/Zn2 2F aZn


一般情况下,可用下式表示一个电极反应 O + ne → R 可将上式写成通式,即

从上面的讨论可知,尽管第二类可逆电极本质上是
对阳离子可逆的,但因为阳离子的活度受到阴离子活 度的制约,所以该类电极的平衡电位仍然依赖于阴离 子的活度。 第二类可逆电极由于可逆性好,平衡电位稳定, 电极制备比较简单,因而常被当作参比电极使用。
3.第三类可逆电极
第三类可逆电极是由铂或其他惰性金属插入同一元素的两种
一、电极的可逆性

按照电池的结构,每个电池都可以分成两半,即 由两个半电池所组成。每个半电池实际就是一个 电极体系。 电池总反应也是由两个电极的电极反应所组成的。 因此,要使整个电池成为可逆电池,两个电极或 半电池必须是可逆的。

什么样的电极才是可逆电极呢?
可逆电极必须具备下面两个条件: 1、电极反应是可逆的。 如Zn|ZnCl电极,其电极反应为: Zn≒Zn2++2e 只有正向反应和逆向反应的速度相等时,电极反 应中物质的交换和电荷的交换才是平衡的。 即在任一瞬间,氧化溶解的锌原子数等于还原的 锌离子数;正向反应得电子数等于逆向反应失电 子数。 这样的电极反应称为可逆的电极反应。

李狄-电化学原理-第三章-界面电化学

李狄-电化学原理-第三章-界面电化学

第三节
双电层的微分电容

一. 微分电容与积分电容 微分电容(differential capacity):引 起电位微小变化时所需引入电极表面的 电量,也表征了界面在电极电位发生微 小变化时所具备的贮存电荷的能力。
dq Cd d


积分电容:从φ 0到某一电位φ 之间的平均电 容称为积分电容 。 q Ci C i 与 C d 的关系:
只有用数据才能说明客观的事实。而理论的分析、推理、经验等都是主 观的认为,而不能代表客观的事实。




要取得证据,就要收集数据,就要应用统计方法 ; 对收集的数据要分析处理,就要应用统计方法; 通过样本要推断总体质量,要应用统计方法; 以最少的实验次数找到最佳的参数搭配要用到统 计方法; 以最短的时间(工期)完成繁重的任务,要应用 统计方法; 一些语言资料、信息情报要进行汇总、整理、分 析,还要用到统计方法;……
一. 电毛细曲线的测定

体系平衡时:
2 cos gh r


gr K h 2 cos
恒定一个电位 , 通过调节贮汞瓶高度 使弯月面保持不变, 从而求得 。
毛细管静电计示意图
二.电毛细曲线及其微分方程
电毛细曲线微分方程的推导

由Gibbs吸附方程:
d i d i
q 0: 0
对应电毛细曲线右半部分(下降分支) 。

当电极表面剩余电荷等于零,即无离子 双电层存在时:
q 0, 0

定义:表面电荷密度q等于零时的电极电 位,也就是与界面张力最大值相对应的 电极电位称为零电荷电位 (zero ch不同浓度的 ~
曲线;

电化学原理_(李狄_著)北航出版社_课后1-7章习题参考答案

电化学原理_(李狄_著)北航出版社_课后1-7章习题参考答案

电化学原理第一章习题答案1、解:2266KCl KCl H O H O 0.001141.31.010142.31010001000c K K K K cm 11λ−−−−×=+=+=+×=×Ω溶液 2、解:E V Fi i =λ,FE V i i λ=,,, 10288.0−⋅=+s cm V H 10050.0−⋅=+s cm V K 10051.0−⋅=−s cm V Cl 3、解:,62.550121,,,,2−−⋅Ω=−+=eq cm KCl o HCl o KOH o O H o λλλλ2O c c c ,c 1.004H H +−====设故,2,811c5.510cm 1000o H O λκ−−−==×Ω4、(1)121,,Cl ,t t 1,t 76.33mol (KCl o KCl o Cl cm λλλλλ−−−−+−+−=++=∴==Ω⋅∵中)121121121,K ,Na ,Cl 73.49mol 50.14mol 76.31mol (NaCl o o o cm cm cm λλλ++−−−−−−−=Ω⋅=Ω⋅=Ω⋅同理:,,中)(2)由上述结果可知: 121Cl ,Na ,121Cl ,K ,mol 45.126mol 82.142−−−−⋅Ω=+⋅Ω=+−+−+cm cm o o o o λλλλ,在KCl 与NaCl 溶液中−Cl ,o λ相等,所以证明离子独立移动定律的正确性;(3) vs cm vs cm u vs cm u F u a o o l o l o i o /1020.5,/1062.7,/1091.7,/24N ,24K ,24C ,C ,,−−−×=×=×==++−−λλ5、解:Cu(OH)2== Cu 2++2OH -,设=y ;2Cu c +OH c −=2y 则K S =4y 3因为u=Σu i =KH 2O+10-3[y λCu 2++2y λOH -]以o λ代替λ(稀溶液)代入上式,求得y=1.36×10-4mol/dm 3所以Ks=4y 3=1.006×10-11 (mol/dm 3)36、解: ==+,令=y ,3AgIO +Ag −3IO Ag c +3IO c −=y ,则=y S K 2,K=i K ∑=+(y O H K 2310−+Ag λ+y −3IO λ)作为无限稀溶液处理,用0λ代替,=+y O H K 2310−3AgIO λ则:y=43651074.1104.68101.11030.1−−−×=××−×L mol /;∴= y S K 2=3.03810−×2)/(L mol 7、解:HAc o ,λ=HCl o ,λ+NaAc o ,λ-NaCl o ,λ=390.7,121−−⋅Ωeq cm HAc o ,λ=9.02121−−⋅Ωeq cm ∴α0/λλ==0.023,==1.69αK _2)1/(V αα−510−×8、解:由欧姆定律IR=iS KS l ⋅=K il,∵K=1000c λ,∴IR=1000il cλ⋅=V 79.05.0126101010533≈××××− 9、解:公式log ±γ=-0.5115||||+Z −Z I (设25)C °(1)±γ=0.9740,I=212i i z m ∑,I=212i i c z ∑,=()±m ++νm −−νm ν1(2)±γ=0.9101,(3)±γ=0.6487,(4)±γ=0.811410、解:=+H a ±γ+H m ,pH=-log =-log (0.209+H a 4.0×)=1.08电化学原理第二章习题答案1、 解:()+2326623Sb O H e Sb H O ++++ ,()−236H H +6e + ,电池:2322323Sb O H Sb H O ++解法一:00G E nF ∆=−83646F =0.0143V ≈,E=+0E 2.36RT F 2232323log H Sb O Sb H OP a a a ==0.0143V0E 解法二:0602.3 2.3log log 6Sb Sb H H RT RT a a F Fϕϕϕ+++=+=+; 2.3log H RTa Fϕ+−=∴000.0143Sb E E ϕϕϕ+−=−===V2解:⑴,(()+22442H O e H O +++ )−224H H +4e + ;电池:22222H O H O +2220022.3log 4H O H O P P RT E E E Fa =+= 查表:0ϕ+=1.229V ,0ϕ−=0.000V ,001.229E V ϕϕ+−∴=−= ⑵视为无限稀释溶液,以浓度代替活度计算()242Sn Sn e ++−+ ,(),电池:32222Fe e Fe ++++ 23422Sn Fe Sn Fe 2+++++ +23422022.3log 2Sn Fe Sn Fe C C RT E E F C C ++++=+=(0.771-0.15)+220.05910.001(0.01)log 20.01(0.001)××=0.6505V ⑶(),,(0.1)Ag Ag m e +−+ ()(1)Ag m e Ag +++ (1)(0.1)Ag m Ag m ++→电池:(1)0(0.1)2.3log Ag m Ag m a RT E E F a ++=+,(其中,=0) 0E 查表:1m 中3AgNO 0.4V γ±=,0.1m 中3AgNO 0.72V γ±=, 2.310.4log0.0440.10.72RT E V F×∴==× 3、 解:2222|(),()|(),Cl Hg Hg Cl s KCl m Cl P Pt ()2222Hg Cl Hg Cl e −−++ ,()222Cl e Cl −++ ,222Hg Cl Hg Cl 2+ 电池:222200002.3log 2Cl Hg Hg Cl P a RT E E E F a ϕϕ+−=+==−∵O 1.35950.2681 1.0914(25C)E V ,∴=−=设 由于E 与无关,故两种溶液中的电动势均为上值Cl a −其他解法:①E ϕϕ+=−−0,亦得出0E ϕϕ+=−−②按Cl a −计算ϕ+,查表得ϕ甘汞,则E ϕϕ+=−甘汞 4、 ⑴解法一:23,(1)|(1)()H Pt H atm HCl a AgNO m Ag +=()222H H e +−+ 222,()Ag e Ag +++ g ,2222H Ag H A ++++ 电池:有E ϕϕϕ+−=−=+,02.3log()AgAgAg RTE m Fϕγ++±∴=−。

电化学原理1—3小结

电化学原理1—3小结

离子表面剩余量
i i , ji
RT

ln
,
当电极表面带负电时,正离子表面剩余量随 电极电位变负而增大;负离子表面剩余量则 随电位变负而出现很小的负值,表明有很少 的吸附。

微分电容
dq Cd d
Cd 2
2

积分电容

微分电容曲线 微分电容曲线的应用 利用 0 判断q正负 ; 研究界面吸附 ; 求q、 Ci
q Cd d
0


电极/溶液界面的基本结构
a 紧+分=a 1 1



影响电极电位的因素 电位—pH图
第3章 电极溶液界面的结构与性质

通过外电路流向“电极/溶液”界面的电荷 可能参加两种不同的过程

理想极化电极 滴汞电极

电毛细现象 电毛细曲线

电毛细曲线微分方程—李普曼公式 q u

零电荷电位

M
M
M
1
d
Na2SO4溶液
Na2SO4+KI混合溶液
零电荷电位时双电层的结构及电位分布

超载吸附:电极表面带正电荷,不带电 时就吸附负电荷,带正电时又会吸附等 量负电荷,形成超载吸附。
a
M
1
有机分子的特性吸附
氢原子和氧原子的吸附
充电曲线法
第1段-氢吸附区 第2段-双电层区 第3段-氧吸附区
双电层电容看作串连模型
C紧
C分
d a d a 1 d 1 1 1 1 Cd dq dq dq C紧 C 分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、概述
第三章
二、电毛细现象 三、双电层的微分电容
电极/溶液界面 四、双电层的结构
的结构和性质 五、零电荷电位 六、电极/溶液界面的吸附现

04:29:37
§3.1 概述
一、 研究电极/溶液界面性质的意义
由于各电极反应都发生在电极/溶液的界面上,故界面结构性质对电极反 应影响很大。
1. 界面电场对电极反应速度的影响 由于双电层极薄(纳米数量级),故场强可很大,而电极反应是电 荷在相间转移的反应,故在巨大的界面电场下,电极反应速度也将 发生极大的变化,可实现一些普通化学反应无法实现的反应,并且 可通过改变电极电位改变反应速度。
µi为i物质化学位,因理想溶液无化学反应发生,故溶液中 组成不变。µi不变, 此为Lippman(李普曼)公式,q为电极表 面剩余电荷密度,单位为c/cm2,Φ单位为V,ó为J/cm2
04:29:37
若电极表面剩余电荷为零,即无离子双电层存在时,q=0则 σ/=0,对应于图3.3最高点,
无电荷排斥作用,界面张力最大; 此时的电极电位称为零电荷电位,常用符号0表示。
电极的极化
• 3.电极极化的原因 • 4. 电极反应的等效电路
Cdl
Cdl
Rs
Rct
Rct
04:29:37
电极的极化
• 5.理想极化电极 • 注意:绝对不发生反应的是没有的,所
以绝对理想极化电极也不存在! • 6.理想不极化电极? • 问题:理想不极化电极的等效电路?如
何得到接近理想不极化电极?
电毛细曲线近似有最高点的抛物线,因汞/溶液界面存在 双电层,由于电极界面同一侧带相同电荷,相互排斥作用 力图使界面扩大。与界面张力使界面缩小相反,故带电界 面张力比不带电时小。
04:29:37
二、电毛细曲线的微分方程
dG SdT Vdp 0
多组分dG SdT Vdp nidi 0
若考虑界面功dG SdT Vdp Ad nidi 0
或不足,溶液侧剩余正负离子浓度不同,发生了吸附现象 ,见下图。
d idi qd
04:29:37
离子表面剩余量:界面层存在时离子的摩尔数与无离子双 电层存在时离子的摩尔数之差定义为离子的表面剩余量。
T
(v
v v )RT
ln a
Φ'
(3.21) 可实际应用的求离 子表面剩余量的公
T
(v
v v )RT
04:29:37
电毛细曲线 微分电容 积分电容
q
i
(3.6)
Cd dq d
Ci
q o
Cd
o
微分电容曲线
q Cdd o
双电层基本结构 紧密层和分散层
04:29:37
111 Cd C紧 C分
李普曼方程
§3.2 电毛细现象
什么是界面张力?
一、电毛细曲线及其测定 两相间均存在界面张力,电极体系界面张力不仅与界面
ln a
'
(3.22) 式 如何设计测量离子表面剩余量?
离子表面剩余量步骤如下:
(1) 测量不同浓度电解质溶液的电毛细曲线б-φ关系曲线
(2) 从各条电毛细曲线上取同一相对电位下的б值。做б~lna±关系
曲线 (3) 根据б~lna±关系曲线,求出某一浓度下的斜率 即由3.21和3.22求得该浓度下的离子表面剩余量。
( ln a )'
04:29:37
§3.3 双电层的微分电容
一、 双电层的电容
界面剩余电荷的变化将引起界面双电层电位差改变,因而电极/溶 液界面具有贮存电荷的能力,即具有电容的特性。
理想极化电极可作为平板电容器处理,即把电极/溶液界面的两个 剩余电荷层比拟成电容器的两个平行板,由物理学知,该电容器 的电容值为一常数,即
若等温等压:Ad nidi 0
等式两面都除以表面积A:d
ni A
d
i
0

ni A
i , d
id i 0
d idi
04:29:37
二、电毛细曲线的微分方程 根据Gibbs等温吸附方程,由热力学可推导出界面张力
与电极电位之间的关系式
d idi qd 3.5
q
(
) i
3.6
q ( )i
3.6
无论电极表面存在剩余电荷符号如何,界面张力均随剩余电 荷数量的增加而降低。 由上式
可直接由电毛细曲线斜率求某一电位密度下电极电位 表面剩余电荷密度q判断表面剩余电荷密度符号 及零电荷电位。
分析:q0 ? q<0 ?
04:29:37
三、离子表面剩余量 构成双电层溶液一侧发生了离子的吸附。金属侧电子过剩
研究界面结构的基本方法:通常测量某些重要的,反映界 面性质的参数(如界面张力、微分电容、电极表面剩余电荷 密度等)及其与电极电位的函数关系。把实验结果与理论推 算出的模型相比较,若接近,则模型有一定正确性。但前提 条件是选一个适合界面研究的电极体系。
04:29:37
一般电极反应关,此界面张力随电极电 位变化的现象叫做电毛细现象。而界面张力与电极电位的关 系曲线叫做电毛细曲线。常用毛细管静电计测取液态金属的 电毛细曲线。
界面张力和曲面附加压力
Ps=2σ/R’=ρgh
ρ:曲表面两边物质的密度差 R’:曲面的曲率半径
σ:界面张力
04:29:37

C or
l
对一个电极/溶液界面, 其等效电容值取决于什么 ?
式中:εO为真空中的介电常数,εr为实物相的相对介电常数。 L两电容器平行板之间距离,常用单位cm;C为电容常用单位为 μF/cm2.
04:29:37
电极的极化
• 1.电极的极化(Polarization) • 电极的极化当有电流通过电极时,电
极电势偏离平衡电势的现象叫电极的极 化。 • 阴极极化?阳极极化? • 2.超电势(Overpotential) • 电极电势与平衡电势之差为电极在该电 流密度下的超电势。 • 注意:超电势永远为正值!
04:29:37
2. 电解质性质和电极材料及其表面状态的影响 这些性质对电极-溶液界面结构和性质均能产生很大影响,故需进 一 步了解电极-溶液界面性质,才能达到有效控制电极反应性质和反应 速度的目的。
04:29:37
二、理想极化电极
电极/溶液界面:是两相间一界面层,指与任何一相基体性 质均不同的相间过渡区。
界面结构:主要指在这一过渡区域中剩余电荷和电位的分 布以及它们与电极电位的关系。 界面性质:主要指界面层的物理化学性质,主要是电性质 。
相关文档
最新文档