排列组合基础知识及习题分析

合集下载

组合数学例题和知识点总结

组合数学例题和知识点总结

组合数学例题和知识点总结组合数学是一门研究离散对象的组合结构及其性质的数学分支。

它在计算机科学、统计学、物理学等领域都有着广泛的应用。

下面我们通过一些例题来深入理解组合数学中的重要知识点。

一、排列组合排列是指从给定的元素集合中取出若干个元素按照一定的顺序进行排列。

组合则是指从给定的元素集合中取出若干个元素组成一组,不考虑其顺序。

例题 1:从 5 个不同的元素中取出 3 个进行排列,有多少种不同的排列方式?解:根据排列的公式,\(A_{5}^3 = 5×4×3 = 60\)(种)例题 2:从 5 个不同的元素中取出 3 个进行组合,有多少种不同的组合方式?解:根据组合的公式,\(C_{5}^3 =\frac{5×4×3}{3×2×1} =10\)(种)知识点总结:1、排列数公式:\(A_{n}^m = n×(n 1)×(n 2)××(n m + 1)\)2、组合数公式:\(C_{n}^m =\frac{n!}{m!(n m)!}\)二、容斥原理容斥原理用于计算多个集合的并集的元素个数。

例题 3:在一个班级中,有 20 人喜欢数学,15 人喜欢语文,10 人既喜欢数学又喜欢语文,求喜欢数学或语文的人数。

解:设喜欢数学的集合为 A,喜欢语文的集合为 B,则喜欢数学或语文的人数为\(|A ∪ B| =|A| +|B| |A ∩ B| = 20 + 15 10= 25\)(人)知识点总结:容斥原理的一般形式:\(|\cup_{i=1}^{n} A_i| =\sum_{i=1}^{n} |A_i| \sum_{1\leq i < j\leq n} |A_i ∩ A_j| +\sum_{1\leq i < j < k\leq n} |A_i ∩ A_j∩ A_k| +(-1)^{n 1} |A_1 ∩ A_2 ∩ ∩ A_n|\)三、鸽巢原理鸽巢原理也叫抽屉原理,如果有 n + 1 个物体放入 n 个抽屉中,那么至少有一个抽屉中会放有两个或更多的物体。

排列组合知识点及排列组合经典例题讲解

排列组合知识点及排列组合经典例题讲解

排列组合知识点及排列组合经典例题讲解
 排列组合一直是一个比较难的知识内容,今天极客数学帮就来给同学们讲讲排列组合的知识点,主要还是要从练习题上对这个知识点进行掌握,所以就和极客数学帮一起来看看关于排列组合的知识点和例题解析吧。

 1.计数原理知识点
 ①乘法原理:N=n1·n2·n3·…nM (分步)
 ②加法原理:N=n1+n2+n3+…+nM (分类)
 2.排列组合混合题的解题原则:先选后排,先分再排
 排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素.
 以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.
 捆绑法(集团元素法,把某些必须在一起的元素视为一个整体考虑)
 插空法(解决相间问题)
 间接法和去杂法等等。

【公务员】排列组合基础知识

【公务员】排列组合基础知识

【分享】排列组合基础知识及习题分析如果认为本帖有价值请点一下已有15人推荐看过以后觉得好请顶帖!在介绍排列组合方法之前我们先来了解一下基本的运算公式!C5取3=(5×4×3)/(3×2×1) C6取2=(6×5)/(2×1)通过这2个例子看出CM取N 公式是种子数M开始与自身连续的N个自然数的降序乘积做为分子。

以取值N的阶层作为分母P53=5×4×3 P66=6×5×4×3×2×1通过这2个例子PMN=从M开始与自身连续N个自然数的降序乘积当N=M时即M的阶层排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”.解答排列、组合问题的思维模式有二:其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”;其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”.分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法.分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成.两个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n类办法,这n 类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理.在解决排列与组合的应用题时应注意以下几点:1.有限制条件的排列问题常见命题形式:“在”与“不在”“邻”与“不邻”在解决问题时要掌握基本的解题思想和方法:⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法.⑵“不邻”问题在解题时最常用的是“插空排列法”.⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置.⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果.2.有限制条件的组合问题,常见的命题形式:“含”与“不含”“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”.3.在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法.*****************************************************************************提供10道习题供大家练习1、三边长均为整数,且最大边长为11的三角形的个数为( C )(A)25个 (B)26个 (C)36个 (D)37个------------------------------------------------------【解析】根据三角形边的原理两边之和大于第三边,两边之差小于第三边可见最大的边是11则两外两边之和不能超过22 因为当三边都为11时是两边之和最大的时候因此我们以一条边的长度开始分析如果为11,则另外一个边的长度是11,10,9,8,7,6,。

(完整版)经典排列组合问题100题配超详细解析

(完整版)经典排列组合问题100题配超详细解析

1.n N ∈且55n <,则乘积(55)(56)(69)n n n ---等于A .5569nn A --B .1555n A -C .1569n A -D .1469n A -【答案】C【解析】根据排列数的定义可知,(55)(56)(69)n n n ---中最大的数为69-n,最小的数为55—n ,那么可知下标的值为69—n ,共有69—n-(55—n )+1=15个数,因此选择C2.某公司新招聘8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,则不同的分配方案共有( ) A. 24种 B. 36种 C 。

38种 D 。

108种 【答案】B【解析】因为平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一部门,另外三名电脑编程人员也不能全分在同一部门,那么特殊元素优先考虑,分步来完成可知所有的分配方案有36种,选B3.n ∈N *,则(20-n )(21—n )……(100-n)等于( )A .80100n A - B .nn A --20100 C .81100n A -D .8120n A -【答案】C【解析】因为根据排列数公式可知n ∈N *,则(20-n )(21—n)……(100—n)等于81100n A -,选C4.从0,4,6中选两个数字,从3.5。

7中选两个数字,组成无重复数字的四位数。

其中偶数的个数为 ( ) A 。

56 B. 96 C. 36 D 。

360 【答案】B【解析】因为首先确定末尾数为偶数,那么要分为两种情况来解,第一种,末尾是0,那么其余的有A 35=60,第二种情况是末尾是4,或者6,首位从4个人选一个,其余的再选2个排列即可 433⨯⨯,共有96种5.从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有 ( )A. 280种B. 240种 C 。

排列与组合知识总结及经典例题OK

排列与组合知识总结及经典例题OK

排列与组合1.排列与排列数“排列”的定义包含两个基本内容: 一是“取出元素;二是“按一定的书序排列。

“排列数”是指“从n 个不同元素中取出m 个元素的所有排列的个数”, 它是所有排列的个数, 是一个数值。

)1()2)(1(+---=m n n n n A m n 或)!(!m n n A m n -= (其中m ≤n m,n ∈Z ) 全排列、阶乘的意义;规定 0!=12.组合与组合数“一个组合”是指“从n 个不同元素中取出m 个元素合成一组”, 它是一件事情, 不是一个数;(隐含n ≥m )“组合数”是指“从n 个不同元素中取出m 个元素的所有组合的个数”, 它是一个数值。

基本公式: 或)!(!!m n m n C mn -=),,(n m N m n ≤∈*且 组合数公式具有的两个性质: (1)常用的等式:(3)0132n n n n n n C C C C ++++= (由二项式定理知)证明: ∵又)!(!!m n m n C m n -=∴m n n m n C C -= )]!1([)!1(!)!(!!1---+-=+-m n m n m n m n C C m n m n)!1(!!)1(!+-++-=m n m m n m n n)!1(!!)1(+-++-=m n m n m m n)!1(!)!1(+-+=m n m nm n C 1+=∴ = + .式(1)说明从n 个不同元素中取出m 个元素, 与从n 个不同元素中取出n-m 个元素是一一对应关系, 即“取出的”与“留下的”是一一对应关系;式(2)说明从a, b, c ……(n+1个元素)中取出m 个元素的组合数可以分为两类: 第一类含某个有元素( ), 第二类不含这个元素( )要解决的问题是排列问题还是组合问题, 关键是看是否与顺序有关排列问题的主要题型⑴ 有特殊元素或特殊位置的排列问题, 通常是先排特殊元素或特殊位置, 称为优先处理特殊元素(位置)法(优先法);⑵ 某些元素要求必须相邻时, 可以先将这些元素看作一个元素, 与其他元素排列后, 再考虑相邻元素的内部排列, 这种方法称为“捆绑法”;⑶ 某些元素不相邻排列时, 可以先排其他元素, 再将这些不相邻元素插入空挡, 这种方法称为“插空法”;⑷ 在处理排列问题时, 一般可采用直接和间接两种思维形式, 从而寻求有效的解题途径, 这是学好排列问题的根基.第一部分1.⑴ 7位同学站成一排, 共有多少种不同的排法?⑵ 7位同学站成两排(前3后4), 共有多少种不同的排法? ⑶ 7位同学站成一排, 其中甲站在中间的位置, 共有多少种不同的排法?⑷7位同学站成一排, 甲、乙只能站在两端的排法共有多少种?⑸7位同学站成一排, 甲、乙不能站在排头和排尾的排法共有多少种?2.7位同学站成一排.⑴甲、乙两同学必须相邻的排法共有多少种?⑵甲、乙和丙三个同学都相邻的排法共有多少种?⑶甲、乙两同学必须相邻, 而且丙不能站在排头和排尾的排法有多少种?3.7位同学站成一排.⑴甲、乙两同学不能相邻的排法共有多少种?⑵甲、乙和丙三个同学都不能相邻的排法共有多少种?4.从10个不同的文艺节目中选6个编成一个节目单, 如果某女演员的独唱节目一定不能排在第二个节目的位置上, 则共有多少种不同的排法?5.⑴八个人排成前后两排, 每排四人, 其中甲、乙要排在前排, 丙要排在后排, 则共有多少种不同的排法?⑵不同的五种商品在货架上排成一排, 其中a, b两种商品必须排在一起, 而c, d两种商品不排在一起, 则不同的排法共有多少种?⑶6张同排连号的电影票, 分给3名教师与3名学生, 若要求师生相间而坐, 则不同的坐法有多少种?6.⑴由数字1, 2, 3, 4, 5可以组成多少个没有重复数字的正整数?⑵由数字1, 2, 3, 4, 5可以组成多少个没有重复数字, 并且比13 000大的正整数?7、用1, 3, 6, 7, 8, 9组成无重复数字的四位数, 由小到大排列.⑴第114个数是多少?⑵ 3 796是第几个数?8、用0, 1, 2, 3, 4, 5组成无重复数字的四位数, 其中⑴能被25整除的数有多少个?⑵十位数字比个位数字大的有多少个?9、现有8名青年, 其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任), 现在要从中挑选5名青年承担一项任务, 其中3名从事英语翻译工作, 2名从事德语翻译工作, 则有多少种不同的选法?10、甲、乙、丙三人值周, 从周一至周六, 每人值两天, 但甲不值周一, 乙不值周六, 问可以排出多少种不同的值周表?11.6本不同的书全部送给5人, 每人至少1本, 有多少种不同的送书方法?变题1: 6本不同的书全部送给5人, 有多少种不同的送书方法?变题2: 5本不同的书全部送给6人, 每人至多1本, 有多少种不同的送书方法?变题3: 5本相同的书全部送给6人, 每人至多1本, 有多少种不同的送书方法?12、6本不同的书, 按下列要求各有多少种不同的选法:⑴分给甲、乙、丙三人, 每人两本;⑵分为三份, 每份两本;⑶分为三份, 一份一本, 一份两本, 一份三本;⑷分给甲、乙、丙三人, 一人一本, 一人两本, 一人三本;⑸分给甲、乙、丙三人, 每人至少一本.13.身高互不相同的7名运动员站成一排, 甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?14.⑴四个不同的小球放入四个不同的盒中, 一共有多少种不同的放法?⑵四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?15、马路上有编号为1, 2, 3, …, 10的十盏路灯, 为节约用电又不影响照明, 可以把其中3盏灯关掉, 但不可以同时关掉相邻的两盏或三盏, 在两端的灯都不能关掉的情况下, 有多少种不同的关灯方法?16.九张卡片分别写着数字0, 1, 2, …, 8, 从中取出三张排成一排组成一个三位数, 如果6可以当作9使用, 问可以组成多少个三位数?17、平均分组问题除法策略6本不同的书平均分成3堆,每堆2本共有多少分法?18、重排问题求幂策略把6名实习生分配到7个车间实习,共有多少种不同的分法19、排列组合混合问题先选后排策略有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.20、小集团问题先整体后局部策略用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个?第二部分一. 选择题1.3名医生和6名护士被分配到3所学校为学生体检, 每校分配1名医生和2名护士, 不同分配方法共有()(A)90种(B)180种(C)270种(D)540种2.从8盒不同的鲜花中选出4盆摆成一排, 其中甲、乙两盆不同时展出的摆法种数为()A. 1320B. 960C. 600D. 3603.20个不加区别的小球放入编号为1号, 2号, 3号三个盒子中, 要求每个盒子内的球数不小于盒子的编号数, 则不同的放法总数是()(A)760 (B)764 (C)120(D)914. 从10名女学生中选2名, 40名男生中选3名, 担任五种不同的职务, 规定女生不担任其中某种职务, 不同的分配方案有()A. B. C. D.5.编号1, 2, 3, 4, 5, 6的六个球分别放入编号为1, 2, 3, 4, 5, 6的六个盒子中, 其中有且只有三个球的编号与盒子的编号一致的放法种数有()A. 20B. 40C. 120D. 4806.如果一个三位正整数形如“”满足, 则称这样的三位数为凸数(如120、363.374等), 那么所有凸数个数为()A. 240B. 204C. 729D. 9207.有两排座位, 前排11个座位, 后排12个座位, 现安排2人就座, 规定前排中间的3个座位不能坐, 并且这2人不左右相邻, 那么不同排法的种数是( )A. 234B. 346C. 350D. 3638. 某校高二年级共有六个班级, 现从外地转入4名学生, 要安排到该年级的两个班级且每班安排2名, 则不同的安排方案种数( )A. B. C. D.9.4名教师分配到3所中学任教, 每所中学至少1名教师, 则不同的分配方案共有( )A. 12 种B. 24 种 C 36 种 D. 48 种10.从5位男教师和4位女教师中选出3位教师, 派到3个班担任班主任(每班1位班主任)要求这3位班主任中男、女教师都要有, 则不同的选派方案共有A. 210种B. 420种C. 630种D. 840种11.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种, 分别种在不同土质的三块土地上, 其中黄瓜必须种植, 不同的种植方法共有( )A. 24种B. 18种C. 12种D. 6种12.用0、1.2.3.4这五个数字组成无重复数字的五位数, 其中恰有一个偶数数字夹在两个奇数数字之间的五位数的个数是()A. 48B. 36C. 28D. 1213.已知集合A={1, 2, 3, 4}, B={5, 6}, 设映射, 使集合B中的元素在A中都有原象, 这样的映射个数共有()A. 16B. 14C. 15D. 12 14.ABCD—A1B1C1D1是单位正方体, 黑白两个蚂蚁从点A出发沿棱向前爬行, 每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA1→A1D1→……, 黑蚂蚁爬行的路是AB→BB1→……, 它们都遵循如下规则: 所爬行的第段所在直线必须是异面直线(其中i是自然数).设白、黑蚂蚁都走完2005段后各停止在正方体的某个顶点处, 这时黑、白两蚂蚁的距离是A. 1B.C.D. 015.5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为.. )A.480B.240C.120D.9616.从1, 2, 3, 4, 5, 6中任取3个数字组成无重复数字的三位数,其中若有1和3时,3必须排在1的前面,若只有1和3其中一个时,也应排在其它数字的前面,这样的不同三位数个数有( )A321144432A A C C++ B.311443A A C+ C.3612A+24A D.36A17.有7名同学站成一排照毕业照, 其中甲必须站在中间, 并且乙、丙两位同学要站在一起, 则不同的站法有( )(A)240 (B)192 (C)96 (D)48二. 填空题1. 五个不同的球放入四个不同的盒子, 每盒不空, 共有____ 种放法。

排列组合专项讲义(知识点+例题+练习含详解)

排列组合专项讲义(知识点+例题+练习含详解)

排列组合问题专项讲义知识点+例题+练习题+详细解析基本知识框架:加法原理排列数 排列数公式综合应用乘法原理 组合数 组合数公式一、基本概念:乘法原理:一般地,如果完成一件事情需要n 步,其中,做第一步有a 种不同的方法,做第二步有b 种不同的方法,…,做第n 步有x 种不同的方法,那么,完成这件事一共有:N =a ×b ×…×x种不同的方法。

加法原理:一般地,如果完成一件事有k 类方法,第一类方法中有a 种不同的做法,第二类方法中有b 种不同的做法,…,第n 类有x 种不同的做法,那么,完成这件事一共有:N =a +b +…+x种不同的方法。

排列、排列数一般地,从n 个不同的元素中任意取出m(n ≥m)个元素,按照一定的顺序排成一列,叫做从n 个不同的元素中取出m 个元素的一个排列。

从n 个不同的元素中取出m(n ≥m)个元素的所有排列的个数,叫做从n 个不同的元素中取出m 个元素的排列数。

记做mn A 。

m n A =n(n -1)(n -2)(n -3)…(n -m +1)组合、组合数一般地,从n 个不同的元素中取出m(n ≥m)个元素组成一组,不计组内各元素的次序,叫做从n 个不同的元素中取出m 个元素的一个组合。

从n 个不同的元素中取出m(n ≥m)个元素的所有组合的个数,叫做从n 个不同的元素中取出m 个不同元素的组合数。

记座mn C 。

m nC =m n m m A A =n(n -1)(n -2)(n -3)…(n -m +1)÷!m 二、常见的解题策略1、特殊元素优先排列2、合理分步与准确分类3、排列、组合混合问题先选后排4、正难则反,等价转化5、相邻问题捆绑法6、不相邻问题插空法7、定序问题除法处理8、分排问题直排处理 9、“小集团”问题先整体后局部10、构造模型 11、树形图三、排列组合例题1.有3封不同的信,投入4个邮筒,一共有多少种不同的投法?2.甲、乙两人打乒乓球,谁先连胜头两局,则谁赢.如果没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止,问有多少种可能情况?3.在6名女同学,5名男同学中,选4名女同学,3名男同学,男女相间站成一排,问共有多少种排法?4.用0、1、2、3、4、5、6这七个数字可组成多少个比300000大的无重复数字的六位偶数?5.如下图:在摆成棋盘眼形的20个点中,选不在同一直线上的三点作出以它们为顶点的三角形,问总共能作多少个三角形?6.小文和小静两位同学帮花店扎花,要从三只篮子中各取一只花扎在一起,已知每只篮子里都有3种不同的花,问她们可以扎成多少种不同式样的花束?7.某学校组织学生开展登山活动.在山的北坡有两条路直通山项;在山的南坡也有两条路,一条直通山顶,另一条通向山腰小亭,从小亭有两条路通向山顶;山的西坡有两条路通向山间寺庙,由寺庙有两条路通向山顶.要登上山顶共有多少种不同的道路?8.从5个声母,3个韵母中每次取出3个声母2个韵母的排列方法有多少种?9.4名男生5名女生站成一排,如果男生不分开,女生也不分开,有多少种不同的站法?10.五对孪生兄妹排成一排,每对兄妹不能分开,共有多少种排法?11.7人站成一排,其中4名男生,3名女生;如果限定女生不站两头,且女生站在一起,一共有多少种不同的站法?四、应用排列组合解决计数问题1、在一个半圆周上共有12个点,如右图,以这些点为顶点,可以画出多少个三角形?方法一解:三个顶点都在半圆弧上的三角形有37C =35(个)两个顶点在半圆弧上,一个顶点在线段上的三角形有27C ×15C =105(个)一个顶点在半圆弧上,两个顶点在线段上的三角形有17C ×25C =70(个)由加法原理得:35+105+70=210(个)答:略方法二(排除法)解:312C -35C =220-10=210(个)答:略2、如下图,问:①右图中,共有多少条线段? A B C D E F G②下右图中,共有多少个角?解:①图中任何两点都可以得到一条线段,这是一个组合问题,图中共有7点,所以:27C =21共有21条线段。

排列组合习题及答案

排列组合习题及答案

排列组合习题及答案排列组合是数学中的一个重要概念,它涉及到数学问题的解决方法和思维方式。

本文将介绍一些排列组合的习题及答案,以帮助读者更好地理解和应用这一概念。

1. 问题一:某班有10名学生,要从中选出3名学生组成一个小组,问有多少种不同的选法?解答:这是一个从10个学生中选出3个学生的组合问题,即C(10,3)。

根据组合的定义,C(n,r)表示从n个元素中选取r个元素的组合数。

因此,C(10,3) = 10! / (3! * (10-3)!) = 10 * 9 * 8 / (3 * 2 * 1) = 120 种不同的选法。

2. 问题二:某班有10名学生,要从中选出3名学生组成一个小组,并且要求其中包含学生A,问有多少种不同的选法?解答:由于题目要求学生A必须在选出的小组中,因此可以将问题转化为从剩下的9名学生中选出2名学生的组合问题,即C(9,2)。

根据组合的定义,C(9,2) = 9! / (2! * (9-2)!) = 9 * 8 / (2 * 1) = 36 种不同的选法。

3. 问题三:某班有10名学生,要从中选出3名学生组成一个小组,并且要求其中不包含学生A,问有多少种不同的选法?解答:由于题目要求学生A不能在选出的小组中,因此可以将问题转化为从剩下的9名学生中选出3名学生的组合问题,即C(9,3)。

根据组合的定义,C(9,3) = 9! / (3! * (9-3)!) = 9 * 8 * 7 / (3 * 2 * 1) = 84 种不同的选法。

4. 问题四:某班有10名学生,要从中选出3名学生组成一个小组,且要求其中至少有一名男生和一名女生,问有多少种不同的选法?解答:这是一个包含男生和女生的组合问题,可以分别计算出只包含男生和只包含女生的选法,然后用总的选法减去这两种情况的选法。

只包含男生的选法可以看作从5名男生中选出3名学生的组合问题,即C(5,3)= 5! / (3! * (5-3)!) = 5 * 4 / (2 * 1) = 10 种不同的选法。

高中数学排列组合专项练习(后附答案)

高中数学排列组合专项练习(后附答案)

排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的排列数,用____表示.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的________的个数,叫做从n 个不同元素中取出m 个元素的组合数,用____表示.3.排列数、组合数的公式及性质)(!n m m −+)m n n n C C =二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ( ) (2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( ) (4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )题组二 教材改编2.[P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.3.[P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.题组三易错自纠4.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种.5.为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.6.寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)三、课中讲解题型一排列问题1.某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)2.用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.3.在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有_____种不同的分派方法.例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a.对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b.对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c.对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.2.有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.3.某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.4.方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.5.有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.6.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.7.若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有_____个.11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.16. 设三位数n=abc,若以a,b,c为三条边的长可以构成一个等腰(含等边)三角形,则这样的三位数n有多少个?排列组合一、知识点讲解1.排列与组合的概念2.排列数与组合数(1)排列数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用.3.排列数、组合数的公式及性质)(!n m m −+C m -1n__ 二、课堂练习题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)所有元素完全相同的两个排列为相同排列. ()(2)一个组合中取出的元素讲究元素的先后顺序. ( ) (3)两个组合相同的充要条件是其中的元素完全相同. ( )(4)(n +1)!-n !=n ·n !.( )(5)若组合式C x n =C mn ,则x =m 成立. ( ) (6)k C k n =n C k -1n -1.( )【答案】×;×;√;√;×;√题组二教材改编2. [P29习题T5]6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为________.【答案】24“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.3. [P16例7]用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为________.【答案】48末位数字排法有A12种,其他位置排法有A34种,共有A12A34=48(种)排法,所以偶数的个数为48.题组三易错自纠4. 六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有_______种. 【答案】216第一类:甲在左端,有A55=5×4×3×2×1=120(种)排法;第二类:乙在最左端,甲不在最右端,有4A44=4×4×3×2×1=96(种)排法.所以共有120+96=216(种)排法.5. 为发展国外孔子学院,教育部选派6名中文教师到泰国、马来西亚、缅甸任教中文,若每个国家至少去一人,则不同的选派方案种数为________.【答案】540②一个国家派3名,一个国家派2名,一个国家派1名,有C36C23C11A33=360(种);③每个国家各派6. 寒假里5名同学结伴乘动车外出旅游,实名制购票,每人一座,恰在同一排A,B,C,D,E五个座位(一排共五个座位),上车后五人在这五个座位上随意坐,则恰有一人坐对与自己车票相符座位的坐法有______种. (用数字作答)【答案】45设5名同学也用A,B,C,D,E来表示,若恰有一人坐对与自己车票相符的坐法,设E同学坐在自己的座位上,则其他四位都不坐自己的座位,则有BADC,BDAC,BCDA,CADB,CDAB,CDBA,DABC,DCAB,DCBA,共9种坐法,则恰有一人坐对与自己车票相符座位的坐法有9×5=45(种).三、课中讲解题型一排列问题1. 某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写了_______条毕业留言. (用数字作答)【答案】1 560由题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560(条)留言.2. 用1,2,3,4,5,6组成一个无重复数字的六位数,要求三个奇数1,3,5有且只有两个相邻,则不同的排法种数为________.【答案】432根据题意,分三步进行:第一步,先将1,3,5分成两组,共C23A22种排法;第二步,将2,4,6排成一排,共A33种排法;第三步,将两组奇数插入三个偶数形成的四个空位,共A24种排法. 综上,共有C23A22A33 A24=3×2×6×12=432(种)排法.3. 在1,2,3,4,5,6,7的任一排列a1,a2,a3,a4,a5,a6,a7中,使相邻两数都互质的排列种数为________. 【答案】864解析先把数字1,3,5,7作全排列,有A44=24种排法,再排数字6,由于数字6不与3相邻,在排好的排列中,除去3的左、右2个空隙,还有3个空隙可排数字6,故数字6有3种排法,最后排数字2,4,又数字2,4不与6相邻,故在剩下的4个空隙中排上2,4,有A24种排法,故共有A44×3×A24=864(种)排法.排列应用问题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.题型二组合问题例1.某市工商局对35种商品进行抽样检查,已知其中有15种假货. 现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?【答案】(1)从余下的34种商品中,选取2种有C234=561种取法,∴某一种假货必须在内的不同取法有561种.(2)从34种可选商品中,选取3种,有C334种或者C335-C234=C334=5 984种取法.∴某一种假货不能在内的不同取法有5 984种.(3)从20种真货中选取1种,从15种假货中选取2种有C120C215=2 100种取法.∴恰有2种假货在内的不同的取法有2 100种.(4)选取2种假货有C120C215种,选取3种假货有C315种,共有选取方式C120C215+C315=2 100+455=2 555(种).∴至少有2种假货在内的不同的取法有2 555种.(5)方法一(间接法)选取3种的总数为C335,因此共有选取方式C335-C315=6 545-455=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.方法二(直接法)选取3种真货有C320种,选取2种真货有C220C115种,选取1种真货有C120C215种,因此共有选取方式C320+C220C115+C120C215=6 090(种).∴至多有2种假货在内的不同的取法有6 090种.组合问题常有以下两类题型变化:(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“至多”含有几个元素的组合题型:解这类题必须十分重视“至少”与“至多”这两个关键词的含义,谨防重复与漏解. 用直接法和间接法都可以求解,通常用直接法分类复杂时,考虑逆向思维,用间接法处理.练1.在某校2017年举办的第32届秋季运动会上,甲、乙两位同学从四个不同的运动项目中各选两个项目报名,则甲、乙两位同学所选的项目中至少有1个不相同的选法种数为________.【答案】30因为甲、乙两位同学从四个不同的项目中各选两个项目的选法有C24C24种.其中甲、乙所选的项目完全相同的选法有C24种,所以甲、乙所选的项目中至少有1个不相同的选法共有C24C24-C24=30(种).练2.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种. 【答案】66共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C45+C44+C25C24=66(种).题型三排列与组合问题的综合应用命题点1相邻、相间及特殊元素(位置)问题例1.在高三某班进行的演讲比赛中,共有5位选手参加,其中3位女生,2位男生,如果2位男生不能连续出场,且女生甲不能排第一个,那么出场的顺序的排法种数为________.【答案】602位男生不能连续出场的排法共有N1=A33×A24=72(种),女生甲排第一个且2位男生不连续出场的排法共有N2=A22×A23=12(种),所以出场顺序的排法种数为N=N1-N2=60.例2.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个孩子的现象普遍存在. 某城市关系要好的A,B,C,D四个家庭各有两个孩子共8人,他们准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4个孩子不考虑位置),其中A家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4个孩子恰有2个来自于同一个家庭的乘坐方式共有________种.【答案】24根据题意,分两种情况讨论:①A家庭的孪生姐妹在甲车上,甲车上另外的两个孩子要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个孩子中任选一个来乘坐甲车,有C23×C12×C12=12(种)乘坐方式;②A家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个孩子都在甲车上,对于剩余的两个家庭,从每个家庭的2个孩子中任选一个来乘坐甲车,有C13×C12×C12=12(种)乘坐方式,故共有12+12=24(种)乘坐方式.命题点2分组与分配问题例1.国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教. 现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.【答案】90例2.有4名优秀学生A,B,C,D全部被保送到甲、乙、丙3所学校,每所学校至少去一名,则不同的保送方案共有________种.【答案】36则共有6×6=36(种)不同的保送方案.(1)解排列、组合问题要遵循的两个原则①按元素(位置)的性质进行分类;②按事情发生的过程进行分步. 具体地说,解排列、组合问题常以元素(位置)为主体,即先满足特殊元素(位置),再考虑其他元素(位置).(2)分组、分配问题的求解策略①对不同元素的分配问题a. 对于整体均分,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A n n(n为均分的组数),避免重复计数.b. 对于部分均分,解题时注意重复的次数是均匀分组的阶乘数,即若有m组元素个数相等,则分组时应除以m!,分组过程中有几个这样的均匀分组,就要除以几个这样的全排列数.c. 对于不等分组,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.②对于相同元素的“分配”问题,常用方法是采用“隔板法”.练1.(2017·全国Ⅱ改编)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有________种.【答案】36由题意可知,其中1人必须完成2项工作,其他2人各完成1项工作,可得安排方式为C13·C24·A22=练2.(2017·浙江)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,则共有________种不同的选法. (用数字作答)【答案】660方法一只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C12C36A24=480(种)选法.有2名女生时,再选2名男生,有C26种方法;然后排队长、副队长位置,有A24种方法. 由分步计数原理知,共有C26A24=180(种)选法. 所以依据分类计数原理知,共有480+180=660(种)不同的选法.方法二不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26-A26C24=840-180=660(种).练3.把5件不同的产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.【答案】36将产品A与B捆绑在一起,然后与其他三种产品进行全排列,共有A22A44种方法,将产品A,B,C 捆绑在一起,且A在中间,然后与其他两种产品进行全排列,共有A22A33种方法. 于是符合题意的摆法共有A22A44-A22A33=36(种).四、课后练习1.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是________.【答案】18为A25-2=18.2. 有5本不同的书,其中语文书3本,数学书2本,若将它们随机并排摆放到书架的同一层上,则同一科目的书都不相邻的摆放方法数为________.【答案】12A33A22=12.3. 某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起,那么不同的停放方法的种数为________.【答案】24将4个车位捆绑在一起,看成一个元素,先排3辆不同型号的车,在3个车位上任意排列,有A33=6种排法,再将捆绑在一起的4个车位插入4个空档中,有4种方法,故共有4×6=24(种)方法.4. 方程ay=b2x2+c中的a,b,c∈{-3,-2,0,1,2,3},且a,b,c互不相同. 在所有这些方程所表示的曲线中,不同的抛物线共有________条.【答案】62a,b均不为0,且b取互为相反数的两数时抛物线相同,故分a取1与a不取1两类:①a取1时,b2取值为4,9两类,当b2=4和b2=9时,c都有5种情况,此时有2×5=10(种);②a不取1时有C14种,不妨设a取2,则b2取值有1,4,9三类,当b2=1时,c有4种,当b2=4时,c有4种,当b2=9时,c有5种,此时有C14(4+4+5)=52(条)不同的抛物线.故共有10+52=62(种)不同的抛物线.5. 有A,B,C,D,E五位学生参加网页设计比赛,决出了第一到第五的名次. A,B两位学生去问成绩,老师对A说:你的名次不知道,但肯定没得第一名;又对B说:你是第三名. 请你分析一下,这五位学生的名次排列的种数为________.【答案】18由题意知,名次排列的种数为C13A33=18.6. 用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为________.【答案】72由题可知,五位数要为奇数,则个位数只能是1,3,5.分为两步:先从1,3,5三个数中选一个作为个位数有C13种选法,再将剩下的4个数字排列有A44种排法,则满足条件的五位数有C13·A44=72(个).7. 若把英语单词“good”的字母顺序写错了,则可能出现的错误方法共有________种. (用数字作答)【答案】11把g,o,o,d 4个字母排一列,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共1种排法,所以总的排法种数为A24=12.其中正确的有一种,所以错误的共有A24-1=12-1=11(种).8. 在8张奖券中有一、二、三等奖各1张,其余5张无奖. 将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种. (用数字作答)【答案】60分两类:第一类:3张中奖奖券分给3个人,共A34种分法;第二类:3张中奖奖券分给2个人相当于把3张中奖奖券分两组再分给4人中的2人,共有C23A24种分法.总获奖情况共有A34+C23A24=60(种).9. 某医院拟派2名内科医生,3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生,外科医生和护士,则不同的分配方案有______种.【答案】362名内科医生的分法为A22,3名外科医生与3名护士的分法为C23C13+C13C23,共有A22(C23C13+C13C23)=36(种)不同的分法.10. 用数字0,1,2,3,4组成的五位数中,中间三位数字各不相同,但首末两位数字相同的共有________个.【答案】240由题意,知本题是一个分步计数问题,从1,2,3,4四个数中选取一个有四种选法,接着从这五个数中选取3个在中间三个位置排列,共有A35=60个,根据分步计数原理知,有60×4=240(个).11. 某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是________.【答案】120先安排小品节目和相声节目,然后让歌舞节目去插空. 安排小品节目和相声节目的顺序有三种:“小品1,小品2,相声”,“小品1,相声,小品2”和“相声,小品1,小品2”. 对于第一种情况,形式为“□小品1歌舞1小品2□相声□”,有A22C13A23=36(种)安排方法;同理,第三种情况也有36种安排方法,对于第二种情况,三个节目形成4个空,其形式为“□小品1□相声□小品2□”,有A22A34=48(种)安排方法. 由分类计数原理知,共有36+36+48=120(种)安排方法.12. 某宾馆安排A,B,C,D,E五人入住3个房间,每个房间至少住1人,且A,B不能住同一房间,则共有________种不同的安排方法. (用数字作答)【答案】1145个人住3个房间,每个房间至少住1人,则有(3,1,1)和(2,2,1)两种,当为(3,1,1)时,有C35·A33=90种,A,B住同一房间有C23·A33=18种,故有90-18=72(种),根据分类计数原理可知,共有42+72=114(种).13. 7人站成两排队列,前排3人,后排4人,现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,则不同的加入方法的种数为________.【答案】360前排3人有4个空,从甲、乙、丙3人中选1人插入,有C14C13种方法,对于后排,若插入的2人不相邻,有A25种方法;若相邻,有C15A22种,故共有C14C13(A25+C15A22)=360(种).14. 将标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,则一共有________种放法.【答案】150标号为1,2,3,4,5的五个球放入3个不同的盒子中,每个盒子至少有一个球,故可分成(3,1,1)和(2,2,1)15. 在第二届乌镇互联网大会中,为了提高安保的级别同时又为了方便接待,现为其中的五个参会国的人员安排酒店,这五个参会国的人员要在a,b,c三家酒店中任选一家,且这三家都至少有一个参会国的人员入住,则这样的安排方法共有________种.【答案】150这三家酒店入住的参会国数目有以下两种可能:满足题意的安排方法共有90+60=150(种).。

(完整版)排列组合题型分类解析(教师版)

(完整版)排列组合题型分类解析(教师版)

排列组合题型分类解析一. 知识梳理:1、 两个计数原理:___________________________(分类)____________________________(分步)2、 排列:(1)排列的定义:_______________________(2)排列数公式:__________________________3、 组合:(1)组合的定义:_______________________(2)组合数公式:__________________________(3)组合数性质:①______________②_______________二.排列组合题常见解法.1. 分类法.例1:50件产品中有4件是次品从中任意抽出5件,至少有三件是次品的抽法共多少种.解析:分两类,有4件次品抽法14644C C ⋅;有三件次品的抽法24634C C ⋅,所以共有14644C C ⋅ +24634C C ⋅=4186种不同的抽法.练习1. 假设在100件产品中有3件次品,从中任意抽取5件. ①至少有两件是次品的抽法共多少种? ②至多有两件是次品的抽法共有多少种?2. 捆绑法例2: 6名同学排成一排,其中甲、乙必须排在一起的不同排法共有___种 ( C )(A)720种 (B)360种 (C)240种 (D)120种解析 将甲、乙两人视为一人,则有55A 种,再将甲、Z 两人互换位置,则共有5522A A ⋅=240种.练习2. 7个人按如下各种方式排队照相, 甲乙两人要站在一起的排法共有多少种?练习3. 6人站成一排,其中甲乙丙不全相邻的排法共有_________种3. 对称法例3. A 、B 、C 、D 、E 五人并排站在一排,若B 必须站在A 的右边(A 、B 可以不相邻).则不同排法共有( )。

A. 24种B. 60种C. 90种D. 120种解析:考虑对称性,B 在A 右和A 在B 右机会均等.应得排法5521A =60种. 说明 本题还可以推广到更为一般的情况,m 个人并排站成一排,其中n(m>n)个人的相对顺序一定,共有n n m m A A 种.如例3中,若A 、B 、C 顺序一定,共有3355A A =20种。

(完整版)排列组合知识点总结+典型例题及答案解析

(完整版)排列组合知识点总结+典型例题及答案解析

g a o o 2. ! ①;②;③;④[解析] 因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2 28步,那么共有C=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )A.24种B.36种 C.38种D.108种[解析] 本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有213种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C种分法,然132后再分到两部门去共有C A种方法,第三步只需将其他3人分成两组,一组1人另一组213人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C种13213方法,由分步乘法计数原理共有2C A C=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33 B.34 C.35 D.36123[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C·A=12个;1233②所得空间直角坐标系中的点的坐标中含有1个1的有C·A+A=18个;13③所得空间直角坐标系中的点的坐标中含有2个1的有C=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( ) A.72 B.96 C.108 D.144213223[解析] 分两类:若1与3相邻,有A·C A A=72(个),若1与3不相邻有forsos的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选。

排列组合基础知识及解题技巧

排列组合基础知识及解题技巧

排列组合基础知识及习题分析在介绍排列组合方法之前 我们先来了解一下基本的运算公式!35C =(5×4×3)/(3×2×1) 26C =(6×5)/(2×1)通过这2个例子 看出n mC 公式 是种子数M 开始与自身连续的N 个自然数的降序乘积做为分子。

以取值N 的阶层作为分母提供10道习题供大家练习1、三边长均为整数,且最大边长为11的三角形的个数为( C )(A)25个 (B)26个 (C)36个 (D)37个------------------------------------------------------【解析】根据三角形边的原理 两边之和大于第三边,两边之差小于第三边可见最大的边是11则两外两边之和不能超过22 因为当三边都为11时 是两边之和最大的时候 因此我们以一条边的长度开始分析如果为11,则另外一个边的长度是11,10,9,8,7,6,。

1如果为10 则另外一个边的长度是10,9,8。

2,(不能为1 否则两者之和会小于11,不能为11,因为第一种情况包含了11,10的组合) 如果为9 则另外一个边的长度是 9,8,7,。

3(理由同上 ,可见规律出现)规律出现 总数是11+9+7+。

1=(1+11)×6÷2=362、(1)将4封信投入3个邮筒,有多少种不同的投法?------------------------------------------------------------【解析】 每封信都有3个选择。

信与信之间是分步关系。

比如说我先放第1封信,有3种可能性。

接着再放第2封,也有3种可能性,直到第4封, 所以分步属于乘法原则 即3×3×3×3=3^4(2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法?-------------------------------------------------------------【解析】跟上述情况类似 对于每个旅客我们都有4种选择。

排列组合知识点归纳总结高考题

排列组合知识点归纳总结高考题

排列组合知识点归纳总结高考题编号一:排列组合基础知识在高考数学中,排列组合是一个重要的考点。

掌握排列组合知识对于解决相关题目至关重要。

本文将对排列组合的基础知识进行归纳总结,并配以高考题进行实例分析。

1. 排列排列是从若干个元素中取出一部分元素,按照一定的顺序进行排列,形成不同的序列。

排列有两种情况:有重复元素的排列和无重复元素的排列。

1.1 有重复元素的排列当从 n 个元素中取出 r 个进行排列时(r ≤ n),若这些元素中有重复元素,则排列的总数为 P(n;r) = n! / (n1! × n2! × ... × nr!),其中 ni 表示第 i 个元素的个数。

【例题1】:某班上有 10 名学生,其中 5 名男生和 5 名女生,现要从这 10 人中选出 3 人组成一支足球队。

求不同的组队方案数。

解:由于男生和女生分别占一定数量,该问题属于有重复元素的排列。

根据公式可知,解法为 P(5;3) = 5! / (2! × 3!) = 10 种。

1.2 无重复元素的排列当从 n 个不同元素中取出 r 个进行排列时(r ≤ n),排列的总数为P(n;r) = n! / (n-r)!。

【例题2】:有 9 个不同的球队参加一场篮球比赛。

其中第一名和第二名分别获得冠军和亚军。

请问这 9 支球队的比赛有多少种可能的结果?解:由于每个球队的位置是不同的,问题属于无重复元素的排列。

根据公式可知,解法为 P(9;2) = 9! / 7! = 72 种。

2. 组合组合是从若干个元素中取出一部分元素,不考虑顺序,形成不同的组合。

同样地,组合也有两种情况:有重复元素的组合和无重复元素的组合。

2.1 有重复元素的组合当从 n 个元素中取出 r 个进行组合时(r ≤ n),若这些元素中有重复元素,则组合的总数为 C(n;r) = (n+r-1)! / (r! × (n-1)!)。

排列组合知识总结经典题型

排列组合知识总结经典题型

(1)知识梳理1.分类计数原理〔加法原理〕:完成一件事,有几类方法,在第一类中有m1种有不同的方法,在第2类中有m2种不同的方法……在第n类型有m3种不同的方法,那么完成这件事共有种不同的方法。

2.分步计数原理〔乘法原理〕:完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法……,做第n步有mn种不同的方法;那么完成这件事共有种不同的方法。

特别提醒:分类计数原理与“分类〞有关,要注意“类〞与“类〞之间所具有的独立性和并列性;分步计数原理与“分步〞有关,要注意“步〞与“步〞之间具有的相依性和连续性,应用这两个原理进展正确地分类、分步,做到不重复、不遗漏。

3.排列:从n个不同的元素中任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.4.排列数:从n个不同元素中取出m(m≤n)个元素排成一列,称为从n个不同元素中取出m个元素的一个排列. 从n个不同元素中取出m个元素的一个排列数,用符号表示.5.排列数公式:特别提醒:〔1〕规定0! = 1〔2〕含有可重元素的排列问题.对含有一样元素求排列个数的方法是:设重集S有k个不同元素a1,a2,…...an其中限重复数为n1、n2……nk,且n =n1+n2+……nk , 那么S的排列个数等于.例如:数字3、2、2,求其排列个数又例如:数字5、5、5、求其排列个数?其排列个数.6.组合:从n个不同的元素中任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.7.组合数公式:8.两个公式:①②特别提醒:排列与组合的联系与区别.联系:都是从n个不同元素中取出m个元素.区别:前者是“排成一排〞,后者是“并成一组〞,前者有顺序关系,后者无顺序关系.(2)典型例题考点一:排列问题例1.六人按以下要求站一横排,分别有多少种不同的站法?〔1〕甲不站两端;〔2〕甲、乙必须相邻;〔3〕甲、乙不相邻;〔4〕甲、乙之间间隔两人;〔5〕甲、乙站在两端;〔6〕甲不站左端,乙不站右端.考点二:组合问题例2. 男运发动6名,女运发动4名,其中男女队长各1人.选派5人外出比赛.在以下情形中各有多少种选派方法?〔1〕男运发动3名,女运发动2名;〔2〕至少有1名女运发动;〔3〕队长中至少有1人参加;〔4〕既要有队长,又要有女运发动.考点三:综合问题例3.4个不同的球,4个不同的盒子,把球全部放入盒内.〔1〕恰有1个盒不放球,共有几种放法?〔2〕恰有1个盒内有2个球,共有几种放法?〔3〕恰有2个盒不放球,共有几种放法?当堂测试1.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,那么不同的组队方案共有〔〕A.70 种 B.80种 C.100 种 D.140 种9.3位男生和3位女生共6位同学站成一排,假设男生甲不站两端,3位女生中有且只有两位女生相邻,那么不同排法的种数是〔〕A.360B.288C.216D.96参考答案:例1 解:〔1〕方法一:要使甲不站在两端,可先让甲在中间4个位置上任选1个,有种站法,然后其余5人在另外5个位置上作全排列有种站法,根据分步乘法计数原理,共有站法:方法二:由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有种站法,然后中间4人有种站法,根据分步乘法计数原理,共有站法:方法三:假设对甲没有限制条件共有种站法,甲在两端共有种站法,从总数中减去这两种情况的排列数,即共有站法:〔2〕方法一:先把甲、乙作为一个“整体〞,看作一个人,和其余4人进展全排列有种站法,再把甲、乙进展全排列,有种站法,根据分步乘法计数原理,共有方法二:先把甲、乙以外的4个人作全排列,有种站法,再在5个空档中选出一个供甲、乙放入,有种方法,最后让甲、乙全排列,有种方法,共有〔3〕因为甲、乙不相邻,中间有隔档,可用“插空法〞,第一步先让甲、乙以外的4个人站队,有种站法;第二步再将甲、乙排在4人形成的5个空档〔含两端〕中,有种站法,故共有站法为也可用“间接法〞,6个人全排列有种站法,由〔2〕知甲、乙相邻有种站法,所以不相邻的站法有.〔4〕方法一:先将甲、乙以外的4个人作全排列,有种,然后将甲、乙按条件插入站队,有种,故共有站法.方法二:先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上,有种,然后把甲、乙及中间2人看作一个“大〞元素与余下2人作全排列有种方法,最后对甲、乙进展排列,有种方法,故共有站法.〔5〕方法一:首先考虑特殊元素,甲、乙先站两端,有种,再让其他4人在中间位置作全排列,有种,根据分步乘法计数原理,共有站法.方法二:首先考虑两端两个特殊位置,甲、乙去站有种站法,然后考虑中间4个位置,由剩下的4人去站,有种站法,由分步乘法计数原理共有站法.〔6〕方法一:甲在左端的站法有种,乙在右端的站法有种,且甲在左端而乙在右端的站法有A种,共有站法.方法二:以元素甲分类可分为两类:①甲站右端有种站法,②甲在中间4个位置之一,而乙不在右端有种,故共有站法.例2 解〔1〕第一步:选3名男运发动,有种选法.第二步:选2名女运发动,有种选法.共有种选法.〔2〕方法一至少1名女运发动包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类加法计数原理可得总选法数为.方法二“至少1名女运发动〞的反面为“全是男运发动〞可用间接法求解.从10人中任选5人有种选法,其中全是男运发动的选法有种.所以“至少有1名女运发动〞的选法为.〔3〕方法一:可分类求解:“只有男队长〞的选法为;“只有女队长〞的选法为;“男、女队长都入选〞的选法为;所以共有种选法. 9分方法二:间接法:从10人中任选5人有种选法.其中不选队长的方法有种.所以“至少1名队长〞的选法为种. 9分〔4〕当有女队长时,其他人任意选,共有种选法.不选女队长时,必选男队长,共有种,所以不选女队长时的选法共有种选法.所以既有队长又有女运发动的选法共有种.例3 解〔1〕为保证“恰有1个盒不放球〞,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?〞即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有〔2〕“恰有1个盒内有2个球〞,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球〞与“恰有1个盒不放球〞是同一件事,所以共有144种放法.〔3〕确定2个空盒有种方法.4个球放进2个盒子可分成〔3,1〕、〔2,2〕两类,第一类有序不均匀分组有种方法;第二类有序均匀分组有种方法.故共有种.当堂检测答案1.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,那么不同的组队方案共有〔〕A.70 种 B.80种 C.100 种 D.140 种解析:分为2男1女,和1男2女两大类,共有=70种,解题策略:合理分类与准确分步的策略。

排列组合基础知识与习题分析报告x

排列组合基础知识与习题分析报告x

排列组合基础知识与习题分析报告x排列组合基础知识及习题分析在介绍排列组合方法之前我们先来了解一下基本的运算公式!C53 =( 5X 4X 3) / ( 3X 2X 1) C62=( 6X 5) / (2X 1) 通过这 2 个例子看出nCmn公式是种子数M开始与自身连续的 N个自然数的降序乘积做为分子。

以取值 N 的阶层作为分母p53= 5X 4 X 3 P66= 6X 5X 4X 3X 2 X 1通过这 2 个例子pmn =从M开始与自身连续 N个自然数的降序乘积当N = M时即M的阶层排列、组合的本质是研究“从 n个不同的元素中,任取 m (m 1),以其中三个点为顶点的直角三角形的个数为 .解:本题所求的三角形,即为圆的接直角三角形,由平面几何知识,应分两步进行:先从2n个点中构成直径(即斜边)共有 n种取法;再从余下的(2n — 2)个点中取一点作为直角顶点,有(2n—2)种不同取法.故总共有 n(2n — 2) = 2n(n — 1)个直角三角形.故填 2n(n — 1).例2:从集合{0、1、2、3、5、7、11}中任取3个元素分别作为直线方程Ax + By + C = 0中的A、B、C,所得的经过坐标原点原直线共有条(结果用数值来表示)?解:因为直线过原点,所以C= 0?从1、2、3、5、7、11这6个数中任取2个作为A、B ,两数的顺序不同,表示的直线也不同,所以直线的条数为P (6, 2)= 30.分类求解例3四边体的一个顶点为 A,从其它顶点与各棱的中点中取3点,使它们和A在同一平面上,不同取法有( )(A)30种(B)33种(C)36种 (D)39种解:符合条件的取法可分三类:①4个点(含A )在同一侧面上,有3 = 30种;②4个点(含A )在侧棱与对棱中点的截面上,有3种;由加法原理知不同取法有 33种,故选B.三排除法求解例4从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有() (A) 8 种 (B) 12 种 (C) 16 种 (D) 20 种解:由六个任取3个面共有C (6, 3)= 20种,排除掉3个面都相邻的种数,即 8个角上 3个平面相邻的特殊情形共8种,故符合条件共有20 —8= 12种,故选(B).例5正六边形的中心和顶点共 7个点,以其中3个点为顶点的三角形共有( )个?解:从7个点中任取3个点,共有C (7, 3)= 35个,排除掉不能构成三角形的情形. 3点在同一直线上有 3个,故符合条件的三角形共有35 — 3= 32个.四转化法求解例6空间六个点,它们任何三点不共线,任何四点不共面,则过每两点的直线中有多少对异面直线?解:考虑到每一个三棱锥对应着3对异面直线,问题就转化为能构成多少个三棱锥.由于这六个点可构成 C ( 6, 4)= 15个三棱锥,故共有 3X 15 = 45对异面直线.例7 一个圆的圆周上有10个点,每两个点连接一条弦,求这些弦在圆的交点个数最多有几个?解:考虑到每个凸四边形的两条对角线对应一个交点,则问题可转化为构成凸四边形的个数.显然可构成 C ( 10, 4) = 210个圆接四边形,故10个点连成的点最多能在圆点210个.6、染色问题:不涉及环形染色可以采用特殊区域优先处理的方法来分步解决。

排列组合专题复习与经典例题详解

排列组合专题复习与经典例题详解

排列组合专题复习及经典例题详解1.学习目标掌握排列、组合问题的解题策略2.重点(1)特殊元素优先安排的策略:(2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略.3.难点综合运用解题策略解决问题.4.学习过程:(1)知识梳理1. 分类计数原理(加法原理): 完成一件事, 有几类办法, 在第一类办法中有种不同的方法, 在第2类办法中有种不同的方法……在第n类型办法中有种不同的方法, 那么完成这件事共有种不同的方法.2.分步计数原理(乘法原理):完成一件事, 需要分成n个步骤, 做第1步有种不同的方法, 做第2步有种不同的方法……, 做第n步有种不同的方法;那么完成这件事共有种不同的方法.特别提醒:分类计数原理与“分类”有关, 要注意“类”与“类”之间所具有的独立性和并列性;分步计数原理与“分步”有关, 要注意“步”与“步”之间具有的相依性和连续性, 应用这两个原理进行正确地分类、分步, 做到不重复、不遗漏.3. 排列:从n个不同元素中, 任取m(m≤n)个元素, 按照一定的顺序排成一列, 叫做从n 个不同元素中取出m个元素的一个排列, 时叫做选排列, 时叫做全排列.4.排列数: 从n个不同元素中, 取出m(m≤n)个元素的所有排列的个数, 叫做从n个不同元素中取出m个元素的排列数, 用符号表示.5. 排列数公式:排列数具有的性质:特别提醒:规定0!=16. 组合: 从n个不同的元素中, 任取m(m≤n)个不同元素, 组成一组, 叫做从n个不同元素中取m个不同元素的一个组合.7.组合数: 从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个不同元素中取出m个不同元素的组合数,用符号表示.8. 组合数公式:组合数的两个性质: ①;②特别提醒: 排列与组合的联系与区别.联系: 都是从n个不同元素中取出m个元素.区别:前者是“排成一排”, 后者是“并成一组”, 前者有顺序关系, 后者无顺序关系.(2)典型例题考点一:排列问题例1.六人按下列要求站一横排, 分别有多少种不同的站法(1)甲不站两端;(2)甲、乙必须相邻;(3)甲、乙不相邻;(4)甲、乙之间间隔两人;(5)甲、乙站在两端;(6)甲不站左端, 乙不站右端.【解析】: (1)方法一: 要使甲不站在两端, 可先让甲在中间4个位置上任选1个, 有种站法, 然后其余5人在另外5个位置上作全排列有种站法, 根据分步乘法计数原理, 共有站法:方法二: 由于甲不站两端, 这两个位置只能从其余5个人中选2个人站, 有种站法, 然后中间4人有种站法, 根据分步乘法计数原理, 共有站法:方法三: 若对甲没有限制条件共有种站法, 甲在两端共有种站法, 从总数中减去这两种情况的排列数, 即共有站法:(2)方法一: 先把甲、乙作为一个“整体”, 看作一个人, 和其余4人进行全排列有种站法, 再把甲、乙进行全排列, 有种站法, 根据分步乘法计数原理, 共有方法二: 先把甲、乙以外的4个人作全排列, 有种站法, 再在5个空档中选出一个供甲、乙放入, 有种方法, 最后让甲、乙全排列, 有种方法, 共有(3)因为甲、乙不相邻, 中间有隔档, 可用“插空法”, 第一步先让甲、乙以外的4个人站队, 有种站法;第二步再将甲、乙排在4人形成的5个空档(含两端)中, 有种站法, 故共有站法为此外, 也可用“间接法”, 6个人全排列有种站法, 由(2)知甲、乙相邻有种站法, 所以不相邻的站法有.(4)方法一: 先将甲、乙以外的4个人作全排列, 有种, 然后将甲、乙按条件插入站队, 有种, 故共有站法.方法二: 先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上, 有种, 然后把甲、乙及中间2人看作一个“大”元素与余下2人作全排列有种方法, 最后对甲、乙进行排列, 有种方法, 故共有站法.(5)方法一: 首先考虑特殊元素, 甲、乙先站两端, 有种, 再让其他4人在中间位置作全排列, 有种, 根据分步乘法计数原理, 共有站法.方法二: 首先考虑两端两个特殊位置, 甲、乙去站有种站法, 然后考虑中间4个位置, 由剩下的4人去站, 有种站法, 由分步乘法计数原理共有站法.(6)方法一: 甲在左端的站法有种, 乙在右端的站法有种, 甲在左端而且乙在右端的站法有种, 故甲不站左端、乙不站右端共有-2 + =504(种)站法.方法二:以元素甲分类可分为两类:①甲站右端有 种站法, ②甲在中间4个位置之一, 而乙又不在右端有 种, 故共有 + =504(种)站法.考点二:组合问题例2.男运动员6名, 女运动员4名, 其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法(1)男运动员3名, 女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长, 又要有女运动员.【解析】: (1)选法为 .(2)方法一:至少1名女运动员包括以下几种情况:1女4男, 2女3男, 3女2男, 4女1男.由分类计数原理可得总选法数为(种)2461644263436244614=+++C C C C C C C C .方法二: 因“至少1名女运动员”的反面为“全是男运动员”, 故可用间接法求解. 从10人中任选5人有 种选法, 其中全是男运动员的选法有 种.所以“至少有1名女运动员”的选法(种)24656510=-C C .(3)方法一: 可分类求解:“只有男队长”的选法为48C ;“只有女队长”的选法为48C ;“男、女队长都入选”的选法为38C ;所以共有248C +38C =196(种)选法.方法二: 间接法: 从10人中任选5人有 种选法.其中不选队长的方法有 种.所以“至少1名队长”的选法为510C -58C =196种.(4)当有女队长时, 其他人任意选, 共有 种选法;不选女队长时, 必选男队长, 共有 种选法, 而且其中不含女运动员的选法有 种, 所以不选女队长时的选法共有 种选法.所以既有队长又有女运动员的选法共有191)(454849=-+C C C 种.考点三:综合问题例个不同的球, 4个不同的盒子, 把球全部放入盒内.(1)恰有1个盒不放球, 共有几种放法(2)恰有1个盒内有2个球, 共有几种放法(3)恰有2个盒不放球, 共有几种放法【解析】: (1)为保证“恰有1个盒不放球”, 先从4个盒子中任意取出去一个, 问题转化为“4个球, 3个盒子, 每个盒子都要放入球, 共有几种放法”即把4个球分成2, 1, 1的三组, 然后再从3个盒子中选1个放2个球, 其余2个球放在另外2个盒子内, 由分步乘法计数原理, 共有 ;(2)“恰有1个盒内有2个球”, 即另外3个盒子放2个球, 每个盒子至多放1个球, 也就是说另外3个盒子中恰有一个空盒, 因此, “恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事, 所以共有144种放法.(3)确定2个空盒有 种方法;4个球放进2个盒子可分成(3, 1)、(2, 2)两类: 第一类有序不均匀分组有8221134=P C C 种方法; 第二类有序均匀分组有622222224=⨯P P C C 种方法. 故共有842222222422113424=⨯+)(P P C C P C C C 种. 当堂测试1.从5名男医生、4名女医生中选3名医生组成一个医疗小分队, 要求其中男、女医生都有, 则不同的组队方案共有 ( )种 种 种 种【解析】: 分为2男1女, 和1男2女两大类, 共有 种.解题策略: 合理分类与准确分步的策略.年北京奥运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事司机、导游、翻译、礼仪四项不同工作, 若其中小张和小赵只能从事前两项工作, 其余三人均能从事这四项工作, 则不同的选派方案共有 ( )种种种种【解析】: 合理分类, 通过分析分为(1)小张和小赵恰有1人入选, 先从两人中选1人, 然后把这个人在前两项工作中安排一个, 最后剩余的三人进行全排列有种选法. (2)小张和小赵都入选, 首先安排这两个人做前两项工作有种方法, 然后在剩余的3人中选2人做后两项工作, 有种方法. 故共有种选法.解题策略: ①.特殊元素优先安排的策略.②.合理分类与准确分步的策略.③.排列、组合混合问题先选后排的策略.3.从0, 1, 2, 3, 4, 5这六个数字中任取两个奇数和两个偶数, 组成没有重复数字的四位数的个数为()【解析】: 分为两大类: (1)含有0, 分步: ①从另外两个偶数中选一个, 有种方法, ②.从3个奇数中选两个, 有种方法;③.给0安排一个位置, 只能在个、十、百位上选, 有种方法;④.其他的3个数字进行全排列, 有种排法, 根据乘法原理共有种方法. (2)不含0, 分步: ①偶数必然是2和4 ;②奇数有种不同的选法, ③然后把4个元素全排列, 共种排法, 不含0 的排法有种. 根据加法原理把两部分加一块得108+72=180个4.甲组有5名男同学, 3名女同学;乙组有6名男同学, 2名女同学.若从甲、乙两组中各选出2名同学, 则选出的4人中恰有1名女同学的不同选法共有()种种种种【解析】: 4人中恰有1名女同学的情况分为两种, 即这1名女同学或来自甲组, 或来自乙组, 则所有不同的选法共有种选法.解题策略: 合理分类与准确分步的策略.5.甲、乙两人从4门课程中各选修2门, 则甲、乙所选的课程中至少有1门不相同的选法共有()【解析】: 法一: 甲、乙所选的课程中至少有1门不相同的选法可以分为两类:⑴. 甲、乙所选的课程中2门均不相同, 甲先从4门中任选2门, 乙选取剩下的2门, 有种.⑵. 甲、乙所选的课程中有且只有1门相同, 分为2步:①从4门中先任选一门作为相同的课程, 有种选法, ②甲从剩余的3门中任选1门, 乙从最后剩余的2门中任选1门, 有种选法, 由分步计数原理此时共有种.最后由分类计数原理, 甲、乙所选的课程中至少有1门不相同的选法共有6+24=30种.故选C.法二: 可以先让甲、乙任意选择两门, 有种方法, 然后再把两个人全相同的情况去掉, 两个人全相同, 可以将甲与乙看成为同一个人, 从4门中任选两门有种选法, 所以至少有一门不相同的选法为种不同的选法.解题策略: 正难则反, 等价转化的策略.6.用0 到9 这10 个数字, 可以组成没有重复数字的三位偶数的个数为()【解析】:第一类个位是0, 共种不同的排法;第二类个位不是0, 共种不同的解法.故共有+ =328(个).解题策略: 合理分类与准确分步的策略.7.从10名大学毕业生中选3人担任村长助理, 则甲、乙至少有1人入选, 而丙没有入选的不同选法的总数为()【解析】: 合理分类, 甲、乙全被选中, 有种选法, 甲、乙有一个被选中, 有种不同的选法, 共+ =49种不同的选法.解题策略: (1)特殊元素优先安排的策略;(2)合理分类与准确分步的策略.8.将甲、乙、丙、丁四名学生分到三个不同的班, 每个班至少分到一名学生, 且甲、乙两名学生不能分到同一个班, 则不同分法的总数为()【解析】: 将甲、乙、丙、丁四名学生分成三组, 则共有种不同的分法, 然后三组进行全排列共种不同的方法;最后再把甲、乙分到同一个班的情况排除掉, 共种不同的排法. 所以总的排法为- =30种.注意:这里有一个分组的问题, 即四个元素分成三组有几种不同的分法的问题.解题策略:⑴.正难则反、等价转化的策略⑵.相邻问题捆绑处理的策略⑶.排列、组合混合问题先选后排的策略;解排列组合的应用题要注意以下几点:仔细审题, 判断是排列还是组合问题, 要按元素的性质分类, 按事件发生的过程进行分步. 深入分析, 严密周详, 注意分清是乘还是加, 要防止重复和遗漏, 辩证思维, 多角度分析, 全面考虑.对限制条件较复杂的排列组合问题, 要周密分析, 设计出合理的方案, 把复杂问题分解成若干简单的基本问题后用两个计数原理来解决.由于排列组合问题的答案一般数目较大, 不易直接验证, 因此在检查结果时, 应着重检查所设计的解决方案是否完备, 有无重复和遗漏, 也可采用不同的方法求解.看看结果是否相同, 在对排列组合问题分类时, 分类标准应统一, 否则易出现遗漏和重复.。

《排列组合》知识点总结+典型例题+练习(含答案)

《排列组合》知识点总结+典型例题+练习(含答案)

排列组合考纲要求1.了解排列的意义,理解排列数公式,并能用它们解决一些简单的实际问题.2.了解组合的意义,理解组合数公式,并能用它们解决一些简单的实际问题.3. 了解组合数性质. 知识点一:排列1.排列的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.若m <n ,这样的排列叫选排列;若m =n ,这样的排列叫全排列.2.排列数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有排列的个数,从n 个不同元素中取出m 元素的排列数,记作mn P .(1) P m n =n (n -1)(n -2) … (n -m +1); (2) ==!P n n n n (n -1)(n -2) … 3×2×1; (3) P m n =()!!n n m -; 规定:0!=1.知识点二:解决排列问题的基本方法.1. 优限法:即先排特殊的元素,或者特殊的位置.2.捆绑法:相邻问题,把相邻的元素看成一个整体,然后再参与其他元素的排列. 3.插空法:对元素互不相邻的排列问题,常常采用插空法,首先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空位中.4. 排除法:即从正面难以考虑时可以考虑它的对立面,用全部结果数减去对立事件的方法数.5.枚举法:即将所有排列按照一定的规律,一一列举出来的方法. 知识点三:组合1.组合的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,组成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有组合的个数,从n个不同元素中取出m 元素的组合数,记作mn C .(1)()()()121P C P !mm nnmn n n n n m m ---+==;(2)()!C !!mn n m n m =-(n ,*N ∈m ,且m ≤n ).3. 组合数性质:(1) C =C m n mn n-; (2) 111C +C C m m m n n n +++=.知识点四:解组合问题的方法1.分类讨论:即分析题中的限定条件将所给元素按性质适当分类,并侧重其中一类,相应各类分类讨论,分类时要做到不重不漏.2.等价转化:即把所求问题转化为与之等价的组合问题去解决.3.排除法.4.枚举法.知识点五:计数需注意问题1.排列为有序问题,组合为无序问题,两者都是不重复问题.2.排列包括两个要素,一个是不同的元素,另一个是确定的顺序. 即排列可分成两步,第一步取出元素,第二步排列顺序.3.组合只有一个要素,就是取出元素即可,与元素的排列顺序无关.4.要注意区分分类和分步计数原理,排列和组合,元素允许重复是直接用计数原理,而元素不允许重复的是排列和组合问题. 题型一 排列定义例1 五个同学站一排照相,共多少种排法?分析:把5个元素放在5个位置上,相当于5的全排列,也共有120P 55=种排法. 解答:N =120P 55=种排法题型二 排列数公式例2 设x N *∈,10x <,(20)(21)(30)().x x x --⋅⋅⋅-=A. 1020P x -B. 1120P x -C. 1030P x -D. 1130P x -分析:排列数公式 P m n =n (n -1)(n -2)…(n -m +1)的特点: (1)等号右边最大的数是n ; (2)等号右边最小的数是n -m +1; (3)共有m 个连续自然数相乘. 解答:30n x =-,(30)(20)111m x x =---+=,∴ (20)(21)(30)x x x --⋅⋅⋅-=1130P x -题型三 解决排列应用题 例3 用1、2、3、4、5、6个数. (1)可以组成多少个五位数?(2)可以组成多少个没有重复数字的五位数? (3)可以组成多少个1和2相邻的六位数? (4)可以组成多少个1和2不相邻的六位数?分析:先考虑是用分类分步还是用排列组合,就是要观察一下数字是否允许重复,数字允许重复用分类分步计数原理,数字不允许重复用排列组合,数字相邻用捆绑法,数字不相邻用插空法.解答:(1)数字可以重复,所以用分步计数原理,每个数位上都有6个数字可选,因此共有5666666⨯⨯⨯⨯=个.(2)数字不可以重复,还有顺序,所以用排列,共720P 56==N 个.(3)1和2相邻,用捆绑法,先排1和2共22P 种,与余下的4个元素共有55P 种,则共有240P P 5522=个.(4)1和2不相邻,插空法,先排余下的4个元素44P 种,,再从5个空中挑选2个即25P 种,则共有480P P 2544=个.题型四 组合定义及组合数公式例4 从8名男生2名女生中任选5人, (1)共有多少种不同的选法? (2)恰好有一名女生的不同选法? 分析:选取元素干同一件事就组合问题.解答:(1)所有不同选法数就从10人中任选5人的组合数即252C 510=种.(2)从2名女生中任选1人的选法有12C 种,从8名男生中选出4人的选法有48C 种,由分步计数原理,恰有一名女生的选法有140C C 4812=种.题型五 组合数公式例5 (1)已知321818C C -=x x 则x =____. (2)=+97999899C C _____.分析:灵活运用组合数性质.解答:(1)根据题意得 23x x =-或(23)18x x +-=则3x =或7x =.(2)4950299100C C C C 21009810097999899=⨯===+. 题型六 解组合应用题例6 从8件不同的服装快递,2件不同的食品快递中任选5件. (1)至少有一件食品快递的不同选法总数? (2)最多有一件食品快递的不同选法总数?分析:解决带有限制条件的组合应用题要根据题意正确地分类或分步,巧妙运用直接法或间接法.解答:(1)法一(直接法)分两类情况求解,第一类恰有一件食品快递选法有4812C C 种,第二类恰有两件食品快递选法有3822C C 种,由分类计数原理得至少有一件食品快递的不同选法共有196C C C C 38224812=+种.法二(排除法)从10件快递中任选5件选法总数减去选出的5件全为服装快递的总数即至少有一件为食品快递的不同选法有55108196C C -=种.(2) 最多有一件食品快递可分为以下两类,第一类选出的五件快递中恰有一件食品快递有1428C C 种选法,第二类选出的五件快递中恰有0件食品快递,有0528C C 种选法,由分类计数原理知最多有一件食品快递的选法有14052828196C C C C +=种.一、选择题1.设*x N ∈,10x <,则(10)(11)(17)x x x --⋅⋅⋅-用排列数符号表示为( ).A.x x --1017PB.817P x -C. 717P x -D. 810P x -2.从4人中任选2人担任正副班长,结果共有( )种.A. 4B. 6C. 12D. 243.将5本不同的笔记本分配给4个三好学生(每个学生只能拥有一本笔记本),则所有的分法种数为( ).A. 5!B. 20C. 54D. 454.5名学生报考4所不同的学校(每名学生只能报考一所学校),则所有的报考方法有( )种.A. 5!B. 20C. 54D. 455.将6名优秀教师分配到4个班级,要求每个班有1名教师,则不同的分法种数有( )种.A. 46PB. 46C. 46CD. 646.为抗击郑州水患,某医院派3名医生和6名护士支援郑州,他们被分配到郑州的三所医院,每个医院分配1名医生和2名护士,共有( )种不同的分配方法.A. 24122613P P P P +B. 221124122613P P P P P P ++ C. 121212362412C C C C C C ⋅⋅⋅⋅⋅ D. 121212362412C C C C C C ⋅+⋅+⋅7.从4名男生和5名女生中任取3人,其中男生至多有一人,则不同的取法共有( )种 . A. 30 B. 50 C. 70 D. 808.某小组有男生7人,女生3人,选出3人中有1名男生,2名女生的不同选法有( )种.A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅9.10件产品中有2件次品,任取3件至少有1件次品的不同抽法为( )种.A. 1229C C ⋅ B. 312828C C C +⋅ C. 33108C C - D. 12122928C C C C ⋅-⋅10.式子(1)(2)(15)16!x x x x ++⋅⋅⋅+(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C. 16x CD. 17x C妙记巧学,归纳感悟 二、判断题:1. 34567⨯⨯⨯⨯等于37P .( )2. 从甲、乙、丙、丁中任选两人做正、副班长,共有12种.( )3. 6个座位,3个人去坐,每人坐一个座位,则共36C 种.( ) 4. 6个点最多可确定26C 条直线.( ) 5. 6个点最多可确定26C 条有向线段.( ) 6. 某铁路有十个站点,共需准备210P 种车票.( )7. 某铁路有十个站点,有210P 种不同票价(同样的两个站点的票价相同).( ) 8. 某组学生约定,假期每两人互通一封信,共计12封,这个小组学生有5人.( ) 9. 把语文、数学、英语、美术、历史这五门课排在一天的五节课中,数学必须比美术先上的排法总数为44C 种.( )10.从3、5、7、9中任选两个,可以组成12个不同的分数值.( ) 妙记巧学,归纳感悟 三、填空题1.若57n n C C =,则n =_______..2.若56P 2=n ,则n =_______.3.从数字0、1、2、3、4、5中任选3个数,可组成______个无重复数字的三位偶数.4.将4本同样的书分给5名同学,每名同学至多分一本,而且书必须分完则不同的分法总数有______种.5.2名教师和5名学生中选3人去旅游,教师不能不去,也不能全去,则共有______种选法. 妙记巧学,归纳感悟 四、解答1.将5名学生排成一排照相,其中3名男生,2名女生,则以下情况各有多少种不同的排法?(1)甲乙必须相邻; (2)甲乙互不相邻; (3)甲乙必须站两端; (4)甲乙不在两端; (5)男女相间.2. 将6本不同的书,在下列情况下有多少种分法? (1)分成相等的三份; (2)平均分给甲乙丙三位同学;(3)分成三份,一份一本,一份两本,一份三本; (4)甲分一本,乙分两本,丙分三本;(5)如果一人分一本,一人分两本,一人分三本,分给甲乙丙. 高考链接1.(2018)某年级有四个班,每班组成一个篮球队,每队分别同其他三个队比赛一场,共需要比赛( )场.A. 4B. 6C. 5D. 7 2. 某段铁路共有9个车站,共需准备( )种不同的车票. A. 36 B. 42 C.64 D. 723. 甲袋中装有6个小球,乙袋中装有4个小球,所有小球颜色各不相同,现从甲袋中取两个小球,乙袋中取一个小球,则取出三个小球的不同取法共有( )种. A. 30 B. 60 C.120 D. 3604. 某学校举行元旦曲艺晚会,有5个小品节目,3个相声节目,要求相声节目不能相邻,则不同的出场顺序有______种. 积石成山10件产品中有2件次品任取3件,至多有一件次品的不同取法总数为( )种.A. 312828C C C +B. 1229C C C. 33108C C - D. 12122928C C C C -2. 从4名男生和5名女生中任取3人,其中至少有男生,女生各一名,则不同的取法有( )种.A. 140B. 84C. 70D. 353. 某医疗小队有护士7人,医生3人,任选3人的不同选法有( ).A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅4. 将4名优秀教师分配到3个班级,每个班至少分到一名教师,则不同的分配方案有( )种.A. 72B. 36C. 18D. 125. 5个人站成一排照相,甲不站排头,乙不站排尾的排法总数有( )种. A. 36 B. 78 C. 60 D. 486. 5个人站成一排照相,甲站中间的排法总数有( )种. A .24 B. 36 C. 60 D. 487. 5个人站成2排照相,第一排2人,第二排3人则不同的排法总数有( )种. A. 48 B. 78 C. 60 D. 1208. 从1、2、3、4中任选2个,再从5、6、7、8、9中任选2个可组成无重复的四位数的个数是( )个.A .720 B. 2880 C. 1440 D .1449. 某工作小组有9名工人,3名优秀工人,各抽5人参加比赛,要求优秀工人都参加不同的选法共有( )种.A. 12B.15C. 30D. 36 10. 式子(1)(2)(15)1!x x x x x ++⋅⋅⋅+-()(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C.16x C D .17x C排列组合答案一、选择题二、判断题三、填空题1.12 解析:根据组合数性质1得5712n =+=2.8 解析:2(1)56n P n n =-= 8n ∴=3. 52 解析:分两类,第一类个位是零则有2520P =个;第二类,个位不是零,则有11124432P P P =个,所以共有20+32=52个.4.5 解析:只需在五人中选四人得到书即可,书相同无需排序,则有455C =种. 5.20 解析:老师不能不去,也不能全去,则只能去一人即122520C C =种.妙记巧学,归纳感悟:答案全,结果简. 四、解答题1.解:(1)把甲乙捆绑在一起有22P 种,与余下的3名学生共有44P 种,则甲乙必须相邻,有242448P P =种排法.(2)先把余下的3名学生排好有33P 种,再从形成的4个空中任选两个甲乙来排有24P 种,则甲乙不相邻有323472P P =种排法.(3)甲乙必须站两端,先排甲乙有22P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙必须站两端有323212P P =种排法.(4)先从3个位置中选2个甲乙来排有23P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙不在两端有233336P P =种. (5)男女相间则有323212P P =种排法.2. 解:(1)平均分堆问题.有2226423315C C C P =种方法. (2)平均分配问题,每人均分得2本.甲先取两本26C 种,乙再取两本24C 种,丙最后取两本22C 种,由分步计数原理得222642C C C =90种方法.(3)不平均分堆问题,第一份16C 种,第二份25C 种,第三份33C 种,则共有123653C C C =60种方法.(4)不平均分配问题,甲先选一本16C 种,乙再选两本25C 种,丙最后选三本33C 种,则共有123653C C C =60种方法.(5)不平均分配问题,且没有指定对象,先分三份123653C C C 种,再把这三份分给甲乙丙三人有33P 种,则共有种12336533360C C C P =方法.妙记巧学,归纳感悟: 排列组合来相遇,先组后排无争议. 高考链接1.B2.D3.B4.2400 解析:相声节目不相邻,则用插空法先排5个小品节目共有55P 种,五个小品节目共形成六个空选三个空插入相声节目有36P 种,则共有53562400P P =种.积石成山。

(完整版)排列组合知识点总结+典型例题及答案解析

(完整版)排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。

1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=L L L 注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

完整版)高考排列组合知识点归纳

完整版)高考排列组合知识点归纳

完整版)高考排列组合知识点归纳第四讲:排列组合一、分类计数原理与分步计数原理1.分类加法计数原理:对于一件事情,有两种不同的方案,第一类方案有m种不同的方法,第二类方案有n种不同的方法,那么完成这件事情共有m+n种不同的方法。

2.分步乘法计数原理:完成一件事情需要两个步骤,第一步有m种不同的方法,第二步有n种不同的方法,那么完成这件事情共有m×n种不同的方法。

二、排列数1.组合:从n个元素中取出m个元素,记作Cnmn!/m!(n-m)!2.排列:1)全排列:将n个元素全排列,记作Ann!2)从n个元素中取出m个元素,并将这m个元素全排列,记作Anmn!/ (n-m)!三、二项式定理a+b)nC n 0 a n b 0C n 1 a n-1 b 1 C n n abn1.二次项系数之和:Cnr2.展开式的第r项:Tr+1Cnr例题1:(x-1)4的展开式中的常数项是()A、6.B、4.C、-4.D、-6例题2:在二项式(x-2y) 5的展开式中,含x2y3的项的系数是()A、-20.B、-3.C、6.D、20 随堂训练:1、在二项式(x21)5的展开式中,含x4的项的系数是()A、-10.B、10.C、-5.D、52、(1/x-2x25的展开式中的常数项是()A、5.B、-5.C、10.D、-103、在二项式(x+3y)6的展开式中,含x2y4的项的系数是()A、45.B、90.C、135.D、2704、已知关于x的二项式(x+3an的展开式的二项式系数之和为32,常数项为80,则a的值为()A、1.B、±1.C、2.D、±25、(1-2x)(1-3x)4的展开式中,x2的系数等于?6、(ax21/2x-2)7的展开式中各项系数的和为243,则该展开式中常数项为?7、(x22)2x的展开式中常数项是70,则n=?若展开式(ax+)(2x+)5中常数项为-40,则a=?四、排列组合题型总结解决排列组合综合性问题的一般过程如下:1.认真审题,弄清要做什么事;2.确定采取分步还是分类,或分步与分类同时进行,确定分多少步及多少类;3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素;4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。

排列组合知识点总结及题型归纳

排列组合知识点总结及题型归纳

排列组合知识点总结及题型归纳嘿!今天咱们来好好聊聊排列组合这个让人又爱又恨的知识点呀!首先呢,咱们得搞清楚啥是排列,啥是组合。

哎呀呀,简单来说,排列就是从一堆东西里选出来,然后再排个顺序;组合呢,只要选出来就行,不管顺序啦!一、排列的知识点1. 排列的定义:从n 个不同元素中取出m(m≤n)个元素的排列数,记为A(n,m) 。

哇,这个公式可重要啦,A(n,m) = n! / (n - m)! ,记住没?2. 排列数的计算:咱们来算个例子,比如说从5 个不同的元素里选3 个进行排列,那就是A(5,3) = 5! / (5 - 3)! = 60 呀!二、组合的知识点1. 组合的定义:从n 个不同元素中取出m(m≤n)个元素的组合数,记为C(n,m) 。

公式是C(n,m) = n! / [m!(n - m)!] 。

2. 组合数的计算:就像从6 个不同元素里选4 个的组合数,C(6,4) = 6! / [4!(6 - 4)!] = 15 呢!三、常见的排列组合题型1. 排队问题:比如说,几个人排队,有多少种排法?这就得考虑有没有特殊位置或者特殊的人啦!2. 分组问题:把一些东西分成不同的组,要注意平均分和不平均分的情况哟!3. 分配问题:把人或者物品分配到不同的地方,这里面可藏着不少小陷阱呢!四、解题技巧1. 优先考虑特殊元素或特殊位置:哎呀呀,这可是解题的关键呀!2. 捆绑法:有些元素必须在一起,那就把它们捆起来当成一个整体来处理。

3. 插空法:有些元素不能相邻,那就先排好其他的,再把不能相邻的插进去。

总之呢,排列组合虽然有点复杂,但是只要咱们掌握了这些知识点和题型,多做几道题练习练习,就一定能搞定它!哇,加油呀!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合基础知识及习题分析在介绍排列组合方法之前我们先来了解一下基本的运算公式!C5取3=(5×4×3)/(3×2×1)C6取2=(6×5)/(2×1)通过这2个例子看出CM取N 公式是种子数M开始与自身连续的N个自然数的降序乘积做为分子。

以取值N 的阶层作为分母P53=5×4×3 P66=6×5×4×3×2×1通过这2个例子PMN=从M开始与自身连续N个自然数的降序乘积当N=M时即M的阶层排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”.解答排列、组合问题的思维模式有二:其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”;其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”.分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法.分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成.两个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n类办法,这n 类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理.在解决排列与组合的应用题时应注意以下几点:1.有限制条件的排列问题常见命题形式:“在”与“不在”“邻”与“不邻”在解决问题时要掌握基本的解题思想和方法:⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法.⑵“不邻”问题在解题时最常用的是“插空排列法”.⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置.⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果.2.有限制条件的组合问题,常见的命题形式:“含”与“不含”“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”.3.在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法.*****************************************************************************提供10道习题供大家练习1、三边长均为整数,且最大边长为11的三角形的个数为(C )(A)25个(B)26个(C)36个(D)37个------------------------------------------------------【解析】根据三角形边的原理两边之和大于第三边,两边之差小于第三边可见最大的边是11则两外两边之和不能超过22 因为当三边都为11时是两边之和最大的时候因此我们以一条边的长度开始分析如果为11,则另外一个边的长度是11,10,9,8,7,6,。

1如果为10 则另外一个边的长度是10,9,8。

2,(不能为1 否则两者之和会小于11,不能为11,因为第一种情况包含了11,10的组合)如果为9 则另外一个边的长度是9,8,7,。

3(理由同上,可见规律出现)规律出现总数是11+9+7+。

1=(1+11)×6÷2=362、(1)将4封信投入3个邮筒,有多少种不同的投法?------------------------------------------------------------【解析】每封信都有3个选择。

信与信之间是分步关系。

比如说我先放第1封信,有3种可能性。

接着再放第2封,也有3种可能性,直到第4封,所以分步属于乘法原则即3×3×3×3=3^4(2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法?-------------------------------------------------------------【解析】跟上述情况类似对于每个旅客我们都有4种选择。

彼此之间选择没有关系不够成分类关系。

属于分步关系。

如:我们先安排第一个旅客是4种,再安排第2个旅客是4种选择。

知道最后一个旅客也是4种可能。

根据分步原则属于乘法关系即4×4×4=4^3(3)8本不同的书,任选3本分给3个同学,每人一本,有多少种不同的分法?-------------------------------------------------------------【解析】分步来做第一步:我们先选出3本书即多少种可能性C8取3=56种第二步:分配给3个同学。

P33=6种这里稍微介绍一下为什么是P33 ,我们来看第一个同学可以有3种书选择,选择完成后,第2个同学就只剩下2种选择的情况,最后一个同学没有选择。

即3×2×1 这是分步选择符合乘法原则。

最常见的例子就是1,2,3,4四个数字可以组成多少4位数?也是满足这样的分步原则。

用P来计算是因为每个步骤之间有约束作用即下一步的选择受到上一步的压缩。

所以该题结果是56×6=3363、七个同学排成一横排照相.(1)某甲不站在排头也不能在排尾的不同排法有多少种?(3600)---------------------------------------------【解析】这个题目我们分2步完成第一步:先给甲排应该排在中间的5个位置中的一个即C5取1=5第二步:剩下的6个人即满足P原则P66=720所以总数是720×5=3600(2)某乙只能在排头或排尾的不同排法有多少种?(1440)-------------------------------------------------【解析】第一步:确定乙在哪个位置排头排尾选其一C2取1=2第二步:剩下的6个人满足P原则P66=720则总数是720×2=1440(3)甲不在排头或排尾,同时乙不在中间的不同排法有多少种?(3120)---------------------------------------------------【解析】特殊情况先安排特殊第一种情况:甲不在排头排尾并且不在中间的情况去除3个位置剩下4个位置供甲选择C4取1=4,剩下6个位置先安中间位置即除了甲乙2人,其他5人都可以即以5开始,剩下的5个位置满足P原则即5×P55=5×120=600 总数是4×600=2400第2种情况:甲不在排头排尾,甲排在中间位置则剩下的6个位置满足P66=720因为是分类讨论。

所以最后的结果是两种情况之和即2400+720=3120(4)甲、乙必须相邻的排法有多少种?(1440)-----------------------------------------------【解析】相邻用捆绑原则2人变一人,7个位置变成6个位置,即分步讨论第1:选位置C6取1=6第2:选出来的2个位置对甲乙在排即P22=2则安排甲乙符合情况的种数是2×6=12剩下的5个人即满足P55的规律=120则最后结果是120×12=1440(5)甲必须在乙的左边(不一定相邻)的不同排法有多少种?(2520)-------------------------------------------------------【解析】这个题目非常好,无论怎么安排甲出现在乙的左边和出现在乙的右边的概率是一样的。

所以我们不考虑左右问题则总数是P77=5040 ,根据左右概率相等的原则则排在左边的情况种数是5040÷2=25204、用数字0,1,2,3,4,5组成没有重复数字的数.(1)能组成多少个四位数?(300)--------------------------------------------------------【解析】四位数从高位开始到低位高位特殊不能排0。

则只有5种可能性接下来3个位置满足P53原则=5×4×3=60 即总数是60×5=300(2)能组成多少个自然数?(1631)---------------------------------------------------------【解析】自然数是从个位数开始所有情况分情况1位数:C6取1=62位数:C5取2×P22+C5取1×P11=253位数:C5取3×P33+C5取2×P22×2=1004位数:C5取4×P44+C5取3×P33×3=3005位数:C5取5×P55+C5取4×P44×4=6006位数:5×P55=5×120=600总数是1631这里解释一下计算方式比如说2位数:C5取2×P22+C5取1×P11=25先从不是0的5个数字中取2个排列即C5取2×P22 还有一种情况是从不是0的5个数字中选一个和0搭配成2位数即C5取1×P11 因为0不能作为最高位所以最高位只有1种可能(3)能组成多少个六位奇数?(288)---------------------------------------------------【解析】高位不能为0 个位为奇数1,3,5 则先考虑低位,再考虑高位即3×4×P44=12×24=288(4)能组成多少个能被25整除的四位数?(21)----------------------------------------------------【解析】能被25整除的4位数有2种可能后2位是25:3×3=9后2位是50:P42=4×3=12共计9+12=21(5)能组成多少个比201345大的数?(479)------------------------------------------------【解析】从数字201345 这个6位数看是最高位为2的最小6位数所以我们看最高位大于等于2的6位数是多少?4×P55=4×120=480 去掉201345这个数即比201345大的有480-1=479(6)求所有组成三位数的总和. (32640)---------------------------------------------【解析】每个位置都来分析一下百位上的和:M1=100×P52(5+4+3+2+1)十位上的和:M2=4×4×10(5+4+3+2+1)个位上的和:M3=4×4(5+4+3+2+1)总和M=M1+M2+M3=326405、生产某种产品100件,其中有2件是次品,现在抽取5件进行检查.(1)“其中恰有两件次品”的抽法有多少种?(152096)【解析】也就是说被抽查的5件中有3件合格的,即是从98件合格的取出来的所以即C2取2×C98取3=152096(2)“其中恰有一件次品”的抽法有多少种?(7224560)【解析】同上述分析,先从2件次品中挑1个次品,再从98件合格的产品中挑4个C2取1×C98取4=7224560(3)“其中没有次品”的抽法有多少种?(67910864)【解析】则即在98个合格的中抽取5个C98取5=67910864(4)“其中至少有一件次品”的抽法有多少种?(7376656)【解析】全部排列然后去掉没有次品的排列情况就是至少有1种的C100取5-C98取5=7376656(5)“其中至多有一件次品”的抽法有多少种?(75135424)【解析】所有的排列情况中去掉有2件次品的情况即是至多一件次品情况的C100取5-C98取3=751354246、从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有()(A)140种(B)84种(C)70种(D)35种--------------------------------------------------------【解析】根据条件我们可以分2种情况第一种情况:2台甲+1台乙即C4取2×C5取1=6×5=30第二种情况:1台甲+2台乙即C4取1×C5取2=4×10=40所以总数是30+40=70种7、在50件产品中有4件是次品,从中任抽5件,至少有3件是次品的抽法有__种.-------------------------------------------------------【解析】至少有3件则说明是3件或4件3件:C4取3×C46取2=41404件:C4取4×C46取1=46共计是4140+46=41868、有甲、乙、丙三项任务, 甲需2人承担, 乙、丙各需1人承担.从10人中选派4人承担这三项任务, 不同的选法共有(C )(A)1260种(B)2025种(C)2520种(D)5040种---------------------------【解析】分步完成第一步:先从10人中挑选4人的方法有:C10取4=210第二步:分配给甲乙并的工作是C4取2×C2取1×C1取1=6×2×1=12种情况则根据分步原则乘法关系210×12=25209、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有__C(4,12)C(4,8)C(4,4)___种------------------------【解析】每个路口都按次序考虑第一个路口是C12取4第二个路口是C8取4第三个路口是C4取4则结果是C12取4×C8取4×C4取4可能到了这里有人会说三条不同的路不是需要P33吗其实不是这样的在我们从12人中任意抽取人数的时候,其实将这些分类情况已经包含了对不同路的情况的包含。

相关文档
最新文档