专升本高等数学讲义共80页文档
专升本高等数学(文史财经类)复习课件
第二节.函数的性质 一带而过
1. 函数的奇偶性 注意:定义域关于原点对称
奇函数:f (x) f (x) 图像关于原点对称
偶函数:f (x) f (x) 图像关于y轴对称
2. 函数的单调性
已知 y 当 x1 x2 当 x1 x2
f (x), xa,b, 若有
时,若有f x1 f x2
运算顺序:1 x2 3 2正弦函数sin 3指数运算e 分解顺序:1 y e 2 sin 3 x2 3
(反过来)
方法:从最后一层运算开始分解,每分解一步去掉一 层运算,分解到基本初等函数的和差积商为止。
例2 将下列复合函数分解为简单函数
1.y cos2 x
2.y x2 2x
3 y cos 2x 1 4 y ln sin x3
lim ex , 即当x 时,ex为正无穷大
x
lim 1 , 即当x 0时,1 为无穷大
x0 x
x
关于无穷大的说明
1、f (x) ,即f (x) 或
2、函数f (x)无穷大,不仅与函数有关,还与
变化趋势有关。如lim 1 ,而lim 1 1
x0 x
x3 x 3
3、无穷大实际上极限是不存在
1、只有0是可以作为无穷小的唯一的常数
2、无穷小与自变量的变化趋势有关,
例如:
lim
1
1
x1 x
例2:自变量x在怎样的变化过程中,下列函数为无穷小
(1)y 3x 1 无穷小的性质
(2) y 2x
(3) y (1)x 3
性质1 有限个无穷小的代数和为无穷小
性质2 有界函数与无穷小的乘积为无穷小
性质3 有限个无穷小的乘积为无穷小
例3
第一章函数、极限、连续(专升本专用PPT)-文档资料
六个常见函数的有界性: | sin x | 1; | cos x | 1; ( , ) | | arcsinx | | arctanx |
2
; | arccosx | ;[1,1] ; | arc cot x | ; ( , )
2
x 例2.判断函数f ( x) 的有界性 2 1 x x | x| | x| 1 解: 因为| f ( x) || | 2 2 1 x 1 x 2| x| 2 (1 x 2 2 | x |).所以函数f ( x)有界 .
y u是中间变量,y是因变量.
u , u 1 x 2
4 y就不是x的复合函数;复 合函数可分解为蕳单的函数
( 2)反函数 : 设函数y f ( x )的值域为Z f , 如果对Z f 中 任一y值从关系式y f ( x )中可确定惟一的一个 x值, 则称变量x为变量y的函数, 记为 : x ( y ), 其中 ( y )称为y f ( x )的反函数,习惯上y f ( x )的反 函数记为: y f 1 ( x )
f n ( x), y lim f (t , x) (1)极限形式的函数:y lim n tx
(2)积分形式的函数: y
5.非初等函数
x
0
f (t )dt ( f (t )连续 )
6.函数的简单性质 (1)奇偶性 设函数 f ( x )在区间x上有定义,如果对x X 恒有 f ( x ) f ( x ) (或f ( x ) f ( x )) 则称f(x)为偶函数(或f(x)为奇函数).偶函数f(x)的 图形对称于y轴,奇函数f(x)的图形对称于原点.
13ቤተ መጻሕፍቲ ባይዱ
(完整word版)《高数专升本讲义》第一至第五章
第一章函数、极限、连续首先请允许我做一个自我介绍.我叫周世国,郑州大学数学系副教授,从事大学数学教学研究十三年,从事《高数》专升本教学五年。
普通高校的专科生,最大的愿望就是希望通过“专升本”来提高自己的学历层次,弥补因高考的一次失误而不能进入本科层次深造的遗憾.由于全国各专科院校专业设置繁杂,没有统一标准,各省市设置的考试方案各不相同。
河南省设置考试两门课程:一门是公共大学英语(150分);一门是专业基础课程(150分)。
《高数》是大学理工类专业的基础课程,也是河南省普通高校“专升本”理工类专业的必考课程。
但该课程抽象性强,某些内容对于那些高中阶段数学基础薄弱的学生有一定难度。
例如对某些概念理解不透,运算技巧掌握不好等.因此,很多同学都希望通过参加“《高数》专升本”培训班来大力提升自己的数学水平。
在这里我恭喜大家明智地选择了耶鲁外语学校08《高数》专升本培训班,因为它是郑州最具实力和盛名的“《高数》专升本”培训班。
耶鲁自举办《高数》专升本培训班以来,其学员高数科目100分以上的占到80%,历年来全省高数的最高分都出自耶鲁学员,达到140多分.耶鲁外语为什么能取得如此优异的成绩?我想可从以下两个方面找到原因:(一)耶鲁学校有一支教学经验丰富,教学态度认真负责的较为稳定的教师队伍。
这些老师对《高数》专升本考试的考试大纲、每章节重点、难点的分布,题型题量的布局,卷面分值的比例,出题思想及其动态等都了如执掌,做到知己知彼,百战不殆.(二)耶鲁诚实办学的品牌效应,使越来越多的同学们毫不犹豫地作出了正确的选择,并认真地贯彻老师的要求,使自己的《高数》水平有了质的提升。
可以这样说:踏进耶鲁们,美梦定成真。
老师的最大成就莫过于看到自己的学生有进步。
记得去年我教的一个女孩叫梅婷,架着双拐来上课,后来考上了河南中医学院,还特发短信向我报喜.《高数》专升本考试的题型、题量及考察的知识点,分值的分布相对固定,近几年的考卷具有明显的连续性和强烈的可参考性。
专转本高数知识点 讲义课件 第一讲:极限、洛比塔法则
n 例如, 数列 x n ; 有界 数列 x n 2 n . 无界 n1 数轴上对应于有界数列的点 x n 都落在闭区间
[ M , M ]上.
2.唯一性
定理2 每个收敛的数列只有一个极限.
问题: 函数 y f ( x ) 在 x 的过程中, 对应 函数值 f ( x ) 无限趋近于确定值 A.
1
y x2 1
o
x
分x 0和x 0两种情况分别讨论
x从左侧无限趋近 x0 , 记作x x0 0; x从右侧无限趋近 x0 , 记作x x0 0;
左极限
0, 0, 使当x0 x x 0时,
恒有 f ( x ) A . 记作 lim f ( x ) A 或 f ( x 0 0) A.
A
o
x0
x0
x0
x
显然, 找到一个后, 越小越好.
x 1 2. 例4 证明 lim x 1 x 1
2
证
函数在点x=1处没有定义.
任给 0,
x2 1 f ( x) A 2 x 1 x 1
要使 f ( x ) A ,只要取 ,0
x
0, X 0, 使当x X时, 恒有 f ( x ) A .
lim f ( x ) A且 x lim f ( x ) A. 定理 : lim f ( x) A x x
二、自变量趋向有限值时函数的极限
问题: 函数 y f ( x ) 在 x x0 的过程中 , 对应 函数值 f ( x ) 无限趋近于确定值 A.
满足不等式 f ( x ) A ,那末常数 A 就叫函数
等价无穷小替换_极限的计算
无穷小 极限的简单计算一、无穷小与无穷大1.定义前面我们研究了∞→n 数列n x 的极限、∞→x (+∞→x 、+∞→x )函数()x f 的极限、0x x →(+→0x x 、-→0x x )函数()f x 的极限这七种趋近方式。
下面我们用→x *表示上述七种的某一种趋近方式,即*{}-+→→→-∞→+∞→∞→∞→∈000x x x x x x x x x n定义:当在给定的→x *下,()f x 以零为极限,则称()f x 是→x *下的无穷小,即()0lim =→x f x *。
例如, ,0sin lim 0=→x x .0sin 时的无穷小是当函数→∴x x,01lim=∞→x x .1时的无穷小是当函数∞→∴x x,0)1(lim =-∞→nn n .})1({时的无穷小是当数列∞→-∴n n n【注意】不能把无穷小与很小的数混淆;零是可以作为无穷小的唯一的数,任何非零常量都不是无穷小。
定义: 当在给定的→x *下,()x f 无限增大,则称()x f 是→x *下的无穷大,即()∞=→x f x *lim 。
显然,∞→n 时, 、、、32n n n 都是无穷大量,【注意】不能把无穷大与很大的数混淆;无穷大是极限不存在的情形之一。
无穷小与无穷大是相对的,在不同的极限形式下,同一个函数可能是无穷小也可能是无穷大,如0l i m =-∞→x x e , +∞=+∞→xx e lim ,所以xe 当-∞→x 时为无穷小,当+∞→x 时为无穷大。
2.无穷小与无穷大的关系:在自变量的同一变化过程中,如果()x f 为无穷大,则()x f 1为无穷小;反之,如果()x f 为无穷小,且()0≠x f ,则()x f 1为无穷大。
小结:无穷大量、无穷小量的概念是反映变量的变化趋势,因此任何常量都不是无穷大量,任何非零常量都不是无穷小,谈及无穷大量、无穷小量之时,首先应给出自变量的变化趋势。
3.无穷小与函数极限的关系: 定理 1 0lim ()()(),x x x f x A f x A x α®=?+其中)(x α是自变量在同一变化过程0x x →(或∞→x )中的无穷小.证:(必要性)设0lim (),x x f x A ®=令()(),x f x A α=-则有0lim ()0,x x x α®=).()(x A x f α+=∴(充分性)设()(),f x A x α=+其中()x α是当0x x ®时的无穷小,则lim ()lim(())x x xx f x A x α =+ )(lim 0x A x x α→+= .A =【意义】(1)将一般极限问题转化为特殊极限问题(无穷小);(2)0()(),().f x x f x A x α»给出了函数在附近的近似表达式误差为 3.无穷小的运算性质定理2 在同一过程中,有限个无穷小的代数和仍是无穷小. 【注意】无穷多个无穷小的代数和未必是无穷小.是无穷小,时例如nn 1,,∞→ .11不是无穷小之和为个但n n 定理3 有界函数与无穷小的乘积是无穷小. 如:01)1(lim =-∞→n nn ,01sin lim 0=→xx x ,0sin 1lim =∞→x x x推论1 在同一过程中,有极限的变量与无穷小的乘积是无穷小. 推论2 常数与无穷小的乘积是无穷小. 推论3 有限个无穷小的乘积也是无穷小.二、无穷小的比较例如,2210,,,sin ,sinx x x x x x®当时都是无穷小,观察各极限: xx x 3lim 20→,0=;32要快得多比x x xxx sin lim0→,1=;sin 大致相同与x x2201sinlimx x x x →x x 1sin lim 0→=.不存在不可比. 极限不同, 反映了趋向于零的“快慢”程度不同.1.定义: 设,αβ是自变量在同一变化过程中的两个无穷小,且0.α¹(1)lim0,,();o ββαβαα==如果就说是比高阶的无穷小记作 ;),0(lim )2(是同阶的无穷小与就说如果αβαβ≠=C Clim 1,~;ββααβα=特殊地如果则称与是等价的无穷小,记作(3)lim(0,0),.kC C k k ββαα=?如果就说是的阶的无穷小例1 .tan 4,0:3的四阶无穷小为时当证明x x x x →证:430tan 4lim x x x x →30)tan (lim 4xx x →=,4=.tan 4,03的四阶无穷小为时故当x x x x → 例2 .sin tan ,0的阶数关于求时当x x x x -→ 解30sin tan limx x x x -→ )cos 1tan (lim 20x x x x x -⋅=→,21=.sin tan 的三阶无穷小为x x x -∴ 2.常用等价无穷小:,0时当→x(1)x sin ~x ; (2)x arcsin ~x ; (3)x tan ~x ; (4)x arctan ~x ; (5))1ln(x +~x ; (6)1-xe ~x(7)x cos 1-~22x (8)1)1(-+μx ~x μ (9)1xa -~ln a x *用等价无穷小可给出函数的近似表达式:,1lim=αβ ,0lim =-∴αβα),(αβαo =-即).(αβαo +=于是有 例如),(sin x o x x +=).(211cos 22x o x x +-= 3.等价无穷小替换定理:.lim lim ,lim ~,~αβαβαβββαα''=''''则存在且设 证:αβlim)lim(αααβββ'⋅''⋅'=αααβββ'⋅''⋅'=lim lim lim .lim αβ''=例3 (1).cos 12tan lim20xx x -→求; (2)1cos 1lim20--→x e x x 解: (1).2~2tan ,21~cos 1,02x x x x x -→时当 故原极限202(2)lim 12x x x ®== 8(2)原极限=2lim 220xx x -→=21- 例4 .2sin sin tan lim30xxx x -→求错解: .~sin ,~tan ,0x x x x x 时当→30)2(limx xx x -=→原式=0正解: ,0时当→x ,2~2sin x x )cos 1(tan sin tan x x x x -=-,21~3x 故原极限33012lim (2)x xx ®=.161=【注意】和、差形式一般不能进行等价无穷小替换,只有因子乘积形式才可以进行等价无穷小替换。
专升本高数二第讲讲义
定积分的第一换元法和不定积分的第一换元法没有太大的区别,只要按照步骤仔细计算即可。
(1)直接凑(能在积分基本公式中找到相近的积分公式)
(2)间接凑(先凑微分,再凑公式)(被积函数中含有导数关系)
五、第二类换元法(目的是为了去掉被积函数中的根号)(注意积分上下限的变化)
法则:被积函数右减左,积分区间看上下。
步骤(1)画图;
(2)有时通过两次分部积分后产生循环式,从而解出所求积分.
(3)有时被积函数只是一个函数,也可以用分部积分。
定积分
一、定积分的概念——(本质是和式的极限)
二、积分上限函数的导数
变上限积分主要考查它的求导性质,考试时遇到变上限积分的问题都要进行求导,主要的考查题型是:直接给一个变限积分,进行求导;定积分求导;含有变限积分的极限问题。
特点:能在积分基本公式中找到相近的积分公式
【注】积分公式的特点是三个一致,即被积函数、积分变量和积分结果中都是x,是一致的,而所求积分中被积函数和积分变量往往是不一致的,所以做题时要凑成一致的。
(2)间接凑
间接凑就是不定积分本身在积分公式中找不上相同或相近的,但是通过凑微分,变形,可以凑成形式上和公式相同的,从而利用性质和公式来解决问题的方法。其本质就是先凑微分,再凑公式。
专升本高数二第讲讲义
———————————————————————————————— 作者:
———————————————————————————————— 日期:
不定积分
一、不定积分
1、原函数
二、换元积分法
1、第一换元法(凑微分法)
(1)直接凑
要求不定积分,首先考虑能否用公式,即能否直接用公式,基本公式中没有相同的,就找相近的公式如果有相近的,就用直接凑。
专升本高等数学课件 第一章
称为由①, ②确定的复合函数, u 称为中间变量.
[说明] 通常 f 称为外层函数,g 称为内层函数.
注意:1.不是任何两个函数都可以复合成一个复 合函数的;
例如 y arcsin u, u 2 x2; y arcsin(2 x2 )
2.复合函数可以由两个以上的函数经过复 合构成.
例如 y cot x , y u, u cot v, v x .
例如,
2x 1,
f
(
x)
x2
1,
x0 x0
y x2 1
y 2x 1
• 隐函数:函数 y 与自变量 x 的对应法则用一个方程 F(x, y) 0
表示的函数,如x2 y2 1 0 .
二、函数的性质
1.函数的单调性
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点 x1及 x2 , 当x1 x2时, (1) 若恒有 f ( x1 ) f ( x2 ),
o
例如,x2 y2 a2.
(x, y)
x
x
D
定义: 点集C {( x, y) y f ( x), x D} 称为
函数y f ( x)的图形.
3、函数的表示法
解析法:用解析表达式表示函数关系
表格法:用列表的方法来表示函数关系
图示法:用平面直角坐标系上的曲线来 表示函数关系
几个特殊的函数举例
反余弦函数 y arccos x
y arccos x
反正切函数 y arctan x
y arctan x
反余切函数 y arccot x
y arccot x
幂函数,指数函数,对数函数,三角函数和反 三角函数统称为基本初等函数.
专转本冲刺高等数学讲义
换元的同时也换限,可证明
s
in
n
xdx
2 sin n xdx,
0
2
从而上式得证
2004年专转本考试真题(答案)
四.综合题(每题8分,3题共24分)
21.证明: xf (sin x)dx
f (sin x)dx,
0
20
并利用此等式求
0
sin x x 1 cos2
dx . x
证明:令 x t,代入左式即可;
分析:零点定理结合严格单调性
方法二:应用零点定理
例4 证明方程 2x2 1 x2 1 dt 0在
0 1t
0,1内有唯一实根 .
方法二:应用零点定理(答案):
例 4 证明方程 2x2 1 x2 1 dt 0
0 1t
在0,1 内有唯一实根 .
分析:令 f (x) 2x2 1 x2 1 dt,f (0) f (1) 0,
0 a b a b的a, b, 恒 有 下 式 成 立 :f (a) f (b) f (a b)
(2001年 考 题 )
提示:f (a b) f (b) f (1) • a, f (a) f (0) f (2 ) • a
0, a, b, a b四个关键点
0 a b a+b
0 1t
又因为
f (x)
2x 4x3 1 x2
0,f
( x)严格单调增加.
方法二:应用零点定理
例 5 函数f (x) 在a,b上连续,且f (x) 0,
求方程
x
f (t)dt
b
1
dt 0
a
x f (t)
在(a,b) 内根的个数.
方法二:应用零点定理(答案):
专升本-高数一-PPT课件
例 2.下列各函数中,互为反函数的是(
n t, x o t cy (1 ) . y a x
)
1 x , 1 y ( ) 1 - x (2) .y2 2
知识点:反函数 求反函数的步骤是:先从函数 y f ( x ) 中解出 x f 1 ( y ) ,再置换 x 与
y ,就得反函数 y f 1 ( x ) 。
故函数的定义域为:{( x , y ) | x 0 且 x y 0} (2)要使函数有意义必须满足
故
x2 x 2 0 x 1 或 x 2 ,即 , x 2 x20 D ( 2, 1) (2, ) .
二、 极限
1.概念回顾
2、 极限的求法
利用极限四则运算、 连续函数、重要极限、无穷小代换、洛比达法则等 例 5: 求 lim
x
x5 . x2 9
1 5 1 5 2 lim( 2 ) x5 x x x 0 0. 解: lim 2 lim x x x x 9 x 9 9 1 1 2 lim(1 2 ) x x x 知识点:设 a0 0, b0 0, m, n N ,
数。
: D g ( D ) D f: D f( D ) g 1 1 1
f g : D f [ g ( D ) ]
例 1.下列函数中,函数的图象关于原点对称的是( (1) y 2 x 2 1 ; (3) y x 1 . 知识点: 函数的奇偶性 (2) y x 3 2sin x ;
则 lim
am x x b x n n
m
m a bn a1 x a0 0 b1 x b0
mn mn mn
(完整word版)高等数学辅导讲义.doc
第一部分函数极限连续函数、极限、连续函数极限连续函数概念函数的四种反函数与复初等函数数列极限函数极限连续概念间断点分类初等函数的连闭区间上连续特征合函数续性函数的性质函数的有界数列极限的函数极限的第一类间断有界性与最大性定义定义点值最小值定理函数的单调收敛数列的函数极限的可去间断点零点定理性性质性质函数的奇偶极限的唯一函数极限的跳跃间断点性性唯一性函数的周期收敛数列的函数极限的第二类间断性有界性局部有界性点收敛数列的函数极限的保号性局部保号性数列极限四函数极限与数则运算法则列极限的关系极限存在准函数极限四则则运算法则夹逼准则两个重要极限单调有界准无穷小的比则较高阶无穷小低阶无穷小同阶无穷小等价无穷小历年试题分类统计及考点分布考点复合函数极限四则两个重要单调有界无穷小的合计运算法则极限准则阶年份19871988 5 3 8 19891990 3 3 6 1991 5 3 8 1992 3 3 1993 5 3 8 1994 3 3 1995 3 3 1996 3 6 3 12 1997 3 3 199819992000 5 5 200120022003 4 4 8 2004 4 4 20052006 12 3 15 2007 4 4 2008 4 4 2009 4 4 2010 4 4 2011 10 10 20 合计8 18 37 32 27本部分常见的题型1.求分段函数的复合函数。
2.求数列极限和函数极限。
3.讨论函数连续性,并判断间断点类型。
4.确定方程在给定区间上有无实根。
一、 求分段函数的复合函数 例 1 (1988, 5 分) 设 f (x)e x2, f [ (x)]1 x 且 ( x) 0 求 (x) 及其定义,域。
解: 由 f (x) e x 2知 f [ ( x)] e2( x)1x ,又 (x) 0 ,则 ( x)ln(1 x), x 0 .例 2 (1990, 3 分) 设函数 f ( x)1, x1则 f [ f ( x)]10, x 1, .1, x1,练习题 : (1)设f (x)0, x1, g ( x)e x , 求f [ g( x)] 和 g[ f (x)] , 并作出这1, x 1,两个函数的图形。
专升本高等数学课件《内部资料》
多做练习 方可熟能生巧
善于归纳 才能灵活应变
第一章函数,极限,连续
一.函数
(一)函数概念 1.函数定义 yf(x),xD
2.函数关系两要素:
(1)对应关系f; (2)定义域D(f)
例① f(x) 25x2 ln(x4)
高校专升本
高等数学辅导 主讲:教授
专升本 高等数学主要内容
A 三大概念 一.函数,极限,连续; 二.导数,微分,偏导数,全微分 三.积分
B 四大运算
一.求Lim 1. lx i0m sxixn1,lx im (11 x)xe
2. 洛必达法则
二.求 y,dy,Zx,Zy,dZ
b 2
三.求 ,a ,a ,1
4.可导与连续的关系
T.h .f.(x .)在 x0 可 导 f(x)在 x0 连续
(10)f(x)x在x0处是( ),
A.可导但不连续;B.不连续且不可导; C.连续且可导;D.连续但不可导
★ 函数定义,极限,连续, 可导,可微的关系
ቤተ መጻሕፍቲ ባይዱ
二.求导数归纳
1.基本导数公式
lim f(x0) x 0 f(x0 xx )f(x0)
xx1dx,D f(x,y)d
四.解微分方程
C.三大应用
一.导数的应用 1.函数单调性、极值,曲线凹凸性、拐点,
作图. 2.应用题.求Max,Min. 3.利用中值定理证明等式或不等式. 二.定积分的应用.
1.几何应用 S,V, L
2.物理应用 W , F
三.微分方程的简单应用
D.向量代数与空间解几简介
(C)的等价无 ( ; D穷 )小 不是无穷小
《高数专升本讲义》第六-第九章
第六章多元函数微分法多元函数的极限运算法则与一元函数完全类似,如四则运算法则、复合极限法则、无穷小的概念及其性质、等价无穷小的替换、夹逼准则等,但不再有所谓的洛必达法则。
不再一一指出。
下面举几例说明。
例6.求(1);21lim222201-=+-++→→yxyxy x(2).lim lim 11111112e x xe x x yx xy x yx y x ===⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛++→∞→+→∞→;(3)()()222200limsin0.x y yyxx→→++=(4)0022sin sin limlim. 2.x x y y xy xyy xxy→→→→==关于二元函数的连续性,请记住一个基本结论:一切二元初等函数在其定义区域内均连续. 例7.求10ln limy x y x e →→+解:因为()1,0是初等函数()ln ,y x e f x y +=定义域内的点,故()ln ,y x e f x y +=()1,0处连续,所以,原式()1,0ln 2.f ==例8.讨论函数设()=y x f ,222222,0,0,0.xyy x y x y x⎧+≠⎪⎪+⎨⎪+=⎪⎩在其定义域内的连续性。
解:函数的定义域是全平面,并且当()ln ,y x e f x y +=(),f x y 是初等函数,从而是连续的;下面考察函数在()0,0处的连续性。
因为22limx y xy x y →→+不存在(例4已证),所以(),f x y 在()0,0处不连续。
四.高阶偏导数对于二元函数()y x f z ,=,如果其偏导函数仍然可求偏导,一般说来,求得的结果仍然是关于y x ,的二元函数,称之为关于y x ,的二阶偏导数.按照对自变量求导次序的不同,共有四种不同形式的二阶偏导数: (1)x z 22∂∂(或记为),,////22fz x xxxxf∂∂;(2)yx z∂∂∂2(或记为),,////2fz xyxy yx f∂∂∂;(3)x y z ∂∂∂2(或记为),,////2f zyxyxx y f ∂∂∂;4)yz22∂∂(或记为),,////22fz yyyyy f∂∂。
学习版高等数学教材(专升本).doc
目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (9)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。
集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。
比如“身材较高的人”不能构成集合,因为它的元素不是确定的。
我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。
如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。
⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。
记作N⑵、所有正整数组成的集合叫做正整数集。
记作N+或N+。
⑶、全体整数组成的集合叫做整数集。
记作Z。
⑷、全体有理数组成的集合叫做有理数集。
记作Q。
⑸、全体实数组成的集合叫做实数集。
记作R。
集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。
集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。
⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。
⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。
⑷、空集:我们把不含任何元素的集合叫做空集。
记作,并规定,空集是任何集合的子集。
⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。
专升本高等数学课件 第四章
多元函数中同样有定义域、值域、自变量、因变量 等概念.
【例1】求 f ( x, y) arcsin(3的定x义2 域y2.) x y2
【解】 3 x2 y2 1 x y2 0
2 x2 y2 4
x
y2
所求定义域为 D {(x, y) | 2 x2 y2 4, x y2}.
偏导数 , 记为
z , y
f , y
zy ,
f y ( x, y) , f2( x, y)
(2)【多元函数的偏导数】
偏导数的概念可以推广到二元以上函数
[例如] 三元函数 u = f (x , y , z) 在点 (x , y , z) 处对 x 的
偏导数定义为
x x
x
x
x
fy(x, y, z) ? fz(x, y, z) ?
f (x x, y) f (x, y) A x o(| x |),
lim f (x x, y) f (x, y) A z ,
x0
x
x
同理可得
B z . y
故
dz z x z y
x y
由此可见:可微 连续;可微 可偏导
⑵可导与可微的关系: ①一元函数:在某点 可导
可微.
②多元函数:各偏导数存在
2. 【混合偏导数相等的条件】
(1)【问题】 混合偏导数都相等吗? 答: 不一定相等
【补例】设
f
( x,
y)
x3 y x2 y2
0
( x, y) (0,0) ( x, y) (0,0)
求 f ( x, y)在点(0,0)的二阶混合偏导数.
[注意]分段函数
在分界点的偏导 数要用定义求得.
专升本-高等数学--第三章-PPT
Δx0
Δx Δx0
Δx0
Δx
由此可见,曲线 y f (x)在点M 0处的纵坐标 y 的增量
Δ y 与横坐标 x的增量Δx之比,当 x 0 时的极限即为
曲线在M 0点处的切线斜率.
二、导数的概念
1.导数的定义
设函数 y f (x)在点 x0的某一邻域内有定义,当自
变量 x在 x0处有增量Δx(Δx 0, x0 Δx仍在该邻域内)时,
Q (t0 )
细杆 质量
的线 m m(x) Δm m(x0 Δx) m(x0)
密度
Δx
Δx
(x0
)
lim
Δx0
m(
x0
Δx) Δx
m(x0
)
边际
成本 总成本 模型 C C(x)
ΔC C(x Δx) C(x)
Δx
Δx
C(x) limΔC limC(xΔx)C(x)
Δx Δx0
Δx0
即在 x 处连续的函数未必在 x 处可导.
例如,函数 y
x
x, x 0,
x,
x
0
显然在
x 0 处连续,
但是在该点不可导.
因为y f (0 x) f (x) x ,
所以在x 0 点的右导数:
f (0)
lim
x0
y x
lim x0
x x
x lim x0 x
1.
而左导数是:
f (0)
2.若lim xa
f (x) f (a) xa
A(A 为常数),试判断下列命
题是否正确.
(1) f (x)在点 x=a 处可导;
(2) f (x)在点 x=a 处连续;
(3) f (x) f (a) A(x a) o(x a).
(完整word版)高等数学讲义(一)
高等数学基础高等数学基础课程的学习内容微积分学,它是创建于十七世纪的一门数学学科,创始人是英国数学家牛顿(Newton )和德国数学家莱布尼茨(Leibniz )。
用著名学者的话来形容“微积分、或者数学分析,是人类思维的伟大成果之一。
它处于自然科学与人文科学之间的地位,使它成为高等教育的一种特别有效的工具”。
“微积分的创立,与其说是数学史上,不如说是人类历史上的一件大事。
时至今日,它对工程技术的重要性就像望远镜之于天文学,显微镜之于生物学一样。
第1讲 函数1.2 函数要知道什么是函数,需要先了解几个相关的概念。
一、常量与变量先看几个例子:圆的面积公式2πr S =自由活体的下落距离2021gt t v s += 在上述讨论的问题中,g v ,,π0是常量,t s r S ,,,是变量。
变量可以视为实属集合(不止一个元素)。
二、函数的定义定义1.1 设D 是一个非空数集。
如果有一个对应规则f ,使得对每一D x ∈,都能对应于唯一的一个数y ,则此对应规则f 称为定义在集合D 上的一个函数,并把数x 与对应的数y 之间的对应关系记为)(x f y =并称x 为该函数的自变量,y 为函数值或因变量,D 为定义域。
实数集合},)(;{D x x f y y Z ∈==称为函数f 的值域。
看看下面几个例子中哪些是函数:}6,3,1{=Xf}9,8,6,2{=Yf 是函数,且2)1(=f ,8)3(=f ,6)6(=f定义域}6,3,1{=D ,值域}8,6,2{=Z ,一般地Y Z ⊂。
}7,6,3,1{=X}9,8,6,2{=Yf 不是函数。
}6,3,1{=X}9,8,6,2{=Yf 是函数,且2)1(=f ,8)3(=f ,8)6(=f定义域}6,3,1{=D ,值域}8,2{=Z 。
}6,3,1{=X}9,8,6,2{=Yf 不是函数。
由函数定义可以得出,函数的对应规则和定义域是确定函数的两个要素,用解析法表示的函数的对应规则就是由表达式确定的,而定义域就是使表达式有意义的所有x 轴上的点。
(完整word版)天一专升本高数知识点
第一讲函数、极限、连续1、基本初等函数的定义域、值域、图像,尤其是图像包含了函数的所有信息。
2、函数的性质,奇偶性、有界性 奇函数:)()(x f x f -=-,图像关于原点对称。
偶函数:)()(x f x f =-,图像关于y 轴对称3、无穷小量、无穷大量、阶的比较设βα,是自变量同一变化过程中的两个无穷小量,则(1)若0=βαlim ,则α是比β高阶的无穷小量。
(2)若c βα=lim(不为0),则α与β是同阶无穷小量 特别地,若1=βαlim ,则α与β是等价无穷小量 (3)若∞=βαlim,则α与β是低阶无穷小量 记忆方法:看谁趋向于0的速度快,谁就趋向于0的本领高。
4、两个重要极限 (1)100==→→xxx x x x sin lim sin lim使用方法:拼凑[][][][][][]000==→→sin lim sin lim,一定保证拼凑sin 后面和分母保持一致(2)e x x x x xx =+=⎪⎭⎫⎝⎛+→∞→10111)(lim lim使用方法1后面一定是一个无穷小量并且和指数互为倒数,不满足条件得拼凑。
5、()() ⎝⎛>∞<==∞→m n m n m n ba X Q x P mn x ,,,lim00()x P n 的最高次幂是n,()x Q m的最高次幂是m.,只比较最高次幂,谁的次幂高,谁的头大,趋向于无穷大的速度快。
m n =,以相同的比例趋向于无穷大;m n <,分母以更快的速度趋向于无穷大;m n >,分子以更快的速度趋向于无穷大。
7、左右极限左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0注:此条件主要应用在分段函数分段点处的极限求解。
8、连续、间断 连续的定义:[]0)()(lim lim000=-∆+=∆→∆→∆x f x x f y x x 或)()(lim00x f x f x x =→间断:使得连续定义)()(lim00x f x f x x =→无法成立的三种情况记忆方法:1、右边不存在2、左边不存在3、左右都存在,但不相等 9、间断点类型 (1)、第二类间断点:)(lim 0x f x x -→、)(lim 0x f x x +→至少有一个不存在(2)、第一类间断点:)(lim 0x f x x -→、)(lim 0x f x x +→都存在注:在应用时,先判断是不是“第二类间断点”,左右只要有一个不存在,就是“第二类”然后再判断是不是第一类间断点;左右相等是“可去”,左右不等是“跳跃”10、闭区间上连续函数的性质(1) 最值定理:如果)(x f 在[]b a ,上连续,则)(x f 在[]b a ,上必有最大值最小值。