北师大版八年级数学下册《第二章一元一次不等式与一元一次不等式组》单元测试试题含答案
北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)
北师大版八年级数学下册第二章《一元一次不等式与一元一次不等式组》测试卷(含答案)一、选择题(共10小题;共40分)1. 现有以下数学表达式:①−3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3.其中不等式有( )A. 5个B. 4个C. 3个D. 1个2. 自从11月起,贝贝每天至少跑步1800m,若他每天跑x m,则x满足的关系式是( )A. x>1800B. x<1800C. x≥1800D. x≤18003. 不等式组{2x−4<0,3−2x<1的解集为( )A. x<1B. x>2C. x<1或x>2D. 1<x<24. 如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b>0的解集是( )A. x>−2B. x>3C. x<−2D. x<35. 下列说法中,错误的是( )A. 不等式x<2的正整数解只有一个B. −2是不等式2x−1<0的一个解C. 不等式−3x>9的解集是x>−3D. 不等式x<10的整数解有无数个6. 实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )A. ∣a−c∣>∣b−c∣B. −a<cC. a+c>b+cD. ab <cb7. 使不等式 x −2≥2 与 3x −10<8 同时成立的 x 的整数值是 ( ) A. 3,4B. 4,5C. 3,4,5D. 不存在8. 已知点 P (2a −1,1−a ) 在第一象限,则 a 的取值范围在数轴上表示正确的是 ( )A.B.C. D.9. 篮球联赛中,每场比赛都要分出胜负,每队胜 1 场得 3 分,负 1 场得 1 分.某队预计在 2014~2015赛季全部 32 场比赛中最少得到 54 分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜 x 场,要达到目标,x 应满足的关系式是 ( ) A. 3x −(32−x )≥54 B. 3x +(32−x )≥54 C. 3x +(32−x )≤54D. 3x ≥5410. 若关于 x 的一元一次不等式组 {x −2m <0,x +m >2 有解,则 m 的取值范围为 ( )A. m >−23B. m ≤23C. m >23D. m ≤−23二、填空题(共8小题;共32分)11. 2016年6月9日某市最高气温是 34 ∘C ,最低气温是 27 ∘C ,则当天该市气温 t 的变化范围可表示为 .12. 若 x >y ,则 −3x +2 −3y +2(填“<”或“>”).13. 若 (m −2)x ∣m−1∣−3>6 是关于 x 的一元一次不等式,则 m = .14. 不等式组 {3x +10>0,163x −10<4x 的最小整数解是 .15. 小明借到一本 72 页的图书,要在 10 天之内读完,开始两天每天只读 5 页,设以后几天里每天读 x 页,所列不等式为 .16. 函数 y =mx +n 和函数 y =kx 在同一坐标系中的图象如图所示,则关于 x 的不等式 mx +n >kx 的解集是 .17. 已知关于 x 的不等式 (a −1)x >4 的解集是 x <4a−1,则 a 的取值范围是 .18. 某商品的售价是 150 元,商家售出一件这种商品可获利润是进价的 10%∼20%,则进价的范围为 (结果取整数). 三、解答题(共7小题;共77分)19. 解不等式组 {4(x +1)≤7x +10,x −5<x−83, 并写出它的所有非负整数解.20. 若关于 x ,y 的方程组 {x +y =30−a,3x +y =50+a 的解都是非负数,求 a 的取值范围.21. 如图,一次函数 y 1=kx −2 和 y 2=−3x +b 的图象相交于点 A (2,−1).(1)求 k ,b 的值.(2)利用图象求出:当 x 取何值时,y 1≥y 2? (3)利用图象求出:当 x 取何值时,y 1>0 且 y 2<0?22. 解关于 x 的不等式 ax −x −2>0.23. 若关于x的不等式组{x2+x+13>0,3x+5a+4>4(x+1)+3a恰有三个整数解,求实数a的取值范围.24. 按如图所示的程序进行运算:并规定:程序运行到“结果是否大于65”为一次运算.(1)求程序运行一次便输出时的x的取值范围;(2)已知输入x后程序运行3次才停止,求x的取值范围.25. 去年夏天,某地区遭受到罕见的水灾,“水灾无情人有情”,某单位给该地区某中学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件.(2)现计划租用甲、乙两种型号的货车共8辆,一次性将这批饮用水和蔬菜全部运往这所中学.已知每辆甲型货车最多可装饮用水40件和蔬菜10件,每辆乙型货车最多可装饮用水和蔬菜20件,则该单位安排甲、乙两种型号的货车时有几种方案?请你帮忙设计出来.(3)在(2)的条件下,如果甲型货车每辆需付运费400元,乙型货车每辆需付运费360元,该单位选择哪种方案可使运费最少?最少运费是多少?参考答案第一部分 1. B 【解析】③ 是等式;④ 是代数式,没有不等关系,所以不是不等式.不等式有①②⑤⑥,共 4个. 2. C 3. D 4. A 5. C 6. A 7. B8. C【解析】根据点 P 在第一象限,知横、纵坐标都是正数,可得到关于 a 的不等式组{2a −1>0,1−a >0, 求得 a 的取值范围是 0.5<a <1. 9. B10. C 【解析】{x −2m <0, ⋯⋯①x +m >2. ⋯⋯②解不等式 ① 得 x <2m ,解不等式 ② 得 x >2−m .∵ 不等式组有解,∴ 2m >2−m .∴ m >23. 第二部分11. 27 ∘C ≤t ≤34 ∘C 12. < 13. 0【解析】根据一元一次不等式的定义可知 ∣m −1∣=1 且 m −2≠0,求解即可. 14. −315. 2×5+(10−2)x ≥72 16. x <−1【解析】由图象可知,直线 y =mx +n 和直线 y =kx 的交点坐标是 (−1,−1),∴ 关于 x 的不等式 mx +n >kx 的解集是 x <−1. 17. a <1 18. 125∼136 元【解析】设进价为 x 元.依题意,得 0.1x ≤150−x ≤0.2x ,即 {150−x ≥0.1x,150−x ≤0.2x, 解得 125≤x ≤136411.∵ 结果取整数,∴ 进价的范围为 125∼136 元.第三部分 19.{4(x +1)≤7x +10, ⋯⋯①x −5<x −83. ⋯⋯②由 ① 得x ≥−2,由 ② 得x <72,∴−2≤x <72.∴ 非负整数的解为 0,1,2,3. 20. 解方程组,得{x =10+a,y =20−2a.依题意有{10+a ≥0,20−2a ≥0,解得−10≤a ≤10.21. (1) 将 A 点坐标代入 y 1=kx −2,得 2k −2=−1,即 k =12;将 A 点坐标代入 y 2=−3x +b ,得 −6+b =−1,即 b =5.(2) 从图象可以看出:当 x ≥2 时,y 1≥y 2. (3) 直线 y 1=12x −2 与 x 轴的交点为 (4,0), 直线 y 2=−3x +5 与 x 轴的交点为 (53,0).从图象可以看出:当 x >4 时,y 1>0;当 x >53 时,y 2<0, ∴ 当 x >4 时,y 1>0 且 y 2<0. 22. 由题意变形得(a −1)x >2.当 a −1>0,即 a >1 时,x >2a −1. 当 a −1=0,即 a =1 时,不等式无解; 当 a −1<0,即 a <1 时,x<2 a−1.23. 由不等式x2+x+13>0,解得x>−25.由不等式3x+5a+4>4(x+1)+3a,解得x<2a.∵不等式组恰有三个整数解,∴2<2a≤3.∴1<a≤32.24. (1)根据题意得2x−1>65,解得x>33.(2)根据题意得{2x−1≤65,2(2x−1)−1≤65,2[2(2x−1)−1]−1<65,解得9<x≤17.25. (1) 设饮用水有 x 件,则蔬菜有 (x −80) 件. 依题意,得x +(x −80)=320,解这个方程,得x =200. x −80=120.答:饮用水和蔬菜分别有 200 件和 120 件.(2) 设租用甲型货车 n 辆,则租用乙型货车 (8−n ) 辆. 依题意,得{40n +20(8−n )≥200,10n +20(8−n )≥120,解这个不等式组,得2≤n ≤4.∵n 为整数, ∴ n =2 或 3 或 4,所以安排甲、乙两种型号的货车时有 3 种方案,分别是: ①甲型货车 2 辆,乙型货车 6 辆; ②甲型货车 3 辆,乙型货车 5 辆; ③甲型货车 4 辆,乙型货车 4 辆. (3) 3 种方案的运费分别为:方案①:2×400+6×360=2960(元); 方案②:3×400+5×360=3000(元); 方案③:4×400+4×360=3040(元); ∴ 方案①运费最少,最少运费是 2960 元.答:选择甲型货车 2 辆,乙型货车 6 辆,可使运费最少,最少运费是 2960 元.。
北师大版数学八年级下册第二章《一元一次不等式和一元一次不等式组》测试卷附答案
北师大版八年级下册数学第二章测试题评卷人得分一、单选题1.下列是一元一次不等式的有()x >0,1x <-1,2x <-2+x ,x +y >-3,x =-1,x 2>3≥0.A .1个B .2个C .3个D .4个2.不等式3(2)4x x -≤+的非负整数解有()个A .4B .6C .5D .无数3.已知a <3,则不等式(a ﹣3)x <a ﹣3的解集是()A .x >1B .x <1C .x >﹣1D .x <﹣14.下列说法正确的是()A .不等式组3,5x x >⎧⎨>⎩的解集是5<x<3B .2,3x x >-⎧⎨<-⎩的解集是-3<x<-2C .2,2x x ≥⎧⎨≤⎩的解集是x=2D .3,3x x <-⎧⎨>-⎩的解集是x≠35.下列变形中不正确的是()A .由a b >得b a <B .由a b ->-得b a>C .若a>b,则ac 2>bc 2(c 为有理数)D .由12x y -<得2x y>-6.x 与3的和的一半是负数,用不等式表示为()A .12x +3>0B .12x +3<0C .12(x +3)<0D .12(x +3)>07.不等式x <-2的解集在数轴上表示为()A .B .C .D .8.贵阳市今年5月份的最高气温为27℃,最低气温为18℃,已知某一天的气温为t℃,则下面表示气温之间的不等关系正确的是()A .18<t <27B .18≤t <27C .18<t≤27D .18≤t≤279.如果点P (3﹣m ,1)在第二象限,那么关于x 的不等式(2﹣m )x +2>m 的解集是()A .x >﹣1B .x <﹣1C .x >1D .x <110.已知关于x 的不等式x >32a -表示在数轴上如图所示,则a 的值为()A .1B .2C .-1D .-2评卷人得分二、填空题11.若m <n ,则不等式组x m x n <⎧⎨<⎩的解集是__.12.某饮料瓶上有这样的字样:Eatable D ate 18months .如果用x (单位:月)表示Eatable D ate (保质期),那么该饮料的保质期可以用不等式表示为__.13.不等式组-2≤x +1<1的解集是__________________.14.x 的23与6的差不小于-4的相反数,那么x 的最小整数解是______________.15.下列结论正确的有__________(填序号).①如果a b >,c d <;那么a c b d ->-②如果a b >;那么1a b >③如果a b >,那么11a b <;④如果22a b c c <,那么a b <.16.三角形三边长分别为4,a ,7,则a 的取值范围是______________17.不等式组23010x x -+≥⎧⎨->⎩的解集是_____.18.在方程组2122x y m x y +=-⎧⎨+=⎩中,若未知数x 、y 满足x+y >0,则m 的取值范围是_______.19.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到:“判断结果是否大于190”为一次操作.如果操作只进行一次就停止,则x的取值范围是_________.20.若干名学生分宿舍,每间4人余20人,每间8人,其中一间不空也不满,则宿舍有_____间。
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(较易)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分,第I 卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. x 与1的和是非负数,用不等式表示为.( ) A. x +1<0B. x +1≤0C. x +1≥0D. x +1>02. 下列式子: ①x +y =1; ②x >y; ③x +2y; ④x −y ≥1; ⑤x <0中,属于不等式的有( )A. 2个B. 3个C. 4个D. 5个3. 由ax >b 得到x <ba ,则a 应满足的条件是.( ) A. a ≤0B. a >0C. a ≥0D. a <04. 已知实数a 、b ,若a >b ,则下列结论正确的是( ) A. a −5<b −5B. 2+a <2+bC. −a4>−b4D. 3a >3b5. 下列不等式的一个解是x =3的是.( ) A. x +3>5B. x +3>6C. x +3>7D. x +3>86. 下列各数中,是不等式2(x −5)<x −8的解的是.( ) A. 4 B. −5C. 3D. 57. 解不等式2+x3>2x−15的过程中,下列错误的一步是.( ) A. 5(2+x)>3(2x −1) B. 10+5x >6x −3 C. 5x −6x >−3−10D. x >138. 不等式4x −a >7x +5的解集是x <−1,则a 的值为.( ) A. −2B. 2C. 5D. 89. 如图,直线y =x +32与y =kx −1相交于点P ,点P 的纵坐标为12,则关于x 的不等式x +32>kx −1的解集是( )A. x >−1B. x <−1C. x>12D. x<1210. 如图是一次函数y1=kx+b与y2=x+a的图象,则不等式kx+b<x+a的解集是( )A. x<3B. x>3C. x>a−bD. x<a−b11. 定义新运算“☆”如下:当a>b时,a☆b=ab+b;当a<b时,a☆b=ab−b.若3☆(x+2)>0,则x的取值范围是.( )A. −1<x<1或x<2B. x<−2或1<x<2C. −2<x<1或x>1D. x<−2或x>212. 一个关于x的一元一次不等式组的解集在数轴上的表示如图所示,则该不等式组的解集是.( )A. x>1B. x≥1C. x>3D. x≥3第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 某生物兴趣小组要在温箱里培养A,B两种菌苗,A种菌苗的生长温度x(℃)的范围是35≤x≤38,B种菌苗的生长温度y(℃)的范围是34≤y≤36.那么温箱里的温度t(℃)的范围是____.14. 若a>b,则ac2_______bc2.15. 如图,函数y=3x+b和y=ax−3的图像交于点P(−2,−5),则不等式3x+b>ax−3的解集是.16. 一元一次不等式组中各个不等式解集的,叫做这个一元一次不等式组的解集.三、解答题(本大题共9小题,共72.0分。
最新北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组章节测评试卷(含答案详解)
第二章一元一次不等式和一元一次不等式组章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣42、下列说法中,正确的是( )A .x =3是不等式2x >1的解B .x =3是不等式2x >1的唯一解C .x =3不是不等式2x >1的解D .x =3是不等式2x >1的解集3、一次函数y =mx ﹣n (m ,n 为常数)的图象如图所示,则不等式mx ﹣n ≥0的解集是( )A .x ≥2B .x ≤2C .x ≥3D .x ≤34、在数轴上表示不等式1x >-的解集正确的是( )A.B.C.D.5、已知a>b,下列变形一定正确的是()A.3a<3b B.4+a>4﹣b C.ac2>bc2D.3+2a>3+2b6、设m为整数,若方程组3131x y mx y m+=-⎧⎨-=+⎩的解x、y满足175x y+>-,则m的最大值是()A.4 B.5 C.6 D.77、如图,一次函数y=ax+b的图象交x轴于点(2,0),交y轴与点(0,4),则下面说法正确的是()A.关于x的不等式ax+b>0的解集是x>2B.关于x的不等式ax+b<0的解集是x<2C.关于x的方程ax+b=0的解是x=4D.关于x的方程ax+b=0的解是x=28、一次函数y=kx+b的图象如图所示,则下列说法错误的是()A.y随x的增大而减小B.k<0,b<0C.当x>4时,y<0x的图象D.图象向下平移2个单位得y=﹣129、一个不等式的解集为x≤1,那么在数轴上表示正确的是()A.B.C.D.10、下列说法正确的是()A.若a<b,则3a<2b B.若a>b,则ac2>bc2 C.若﹣2a>2b,则a<b D.若ac2<bc2,则a<b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、某种药品的说明书上贴有如下的标签,一次服用这种药品的剂量范围是_________mg .2、如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围为_____________.3、当|x ﹣4|=4﹣x 时,x 的取值范围是___.4、如果a >b ,那么﹣2﹣a ___﹣2﹣b .(填“>”、“<”或“=”)5、已知点M (-6,3-a )是第二象限的点,则a 的取值范围是________.三、解答题(5小题,每小题10分,共计50分)1、学校计划购买甲、乙两种品牌的羽毛球拍若干副.已知购买3副甲种品牌球拍和2副乙种品牌球拍共需230元;购买2副甲种品牌球拍和1副乙种品牌球拍共需140元.(1)甲、乙两种品牌球拍的单价分别是多少元?(2)学校准备购买这两种品牌球拍共100副,要求乙种品牌球拍数量不超过甲种品牌球拍数量的3倍,那么购买多少副甲种品牌球拍最省钱?2、人和人之间讲友情,有趣的是,数与数之间也有相类似的关系.若两个不同的自然数的所有真因数(即除了自身以外的正因数)之和相等,我们称这两个数为“亲和数”.例如:18的正因数有1、2、3、6、9、18,它的真因数之和为1236921++++=;51的正因数有1、3、17、51,它的真因数之和为131721++=,所以称18和51为“亲和数”.又如要找8的亲和数,需先找出8的真因数之和为1247++=,而7133=++,所以8的亲和数为1339⨯⨯=,数还可以与动物形象地联系起来,我们称一个两头(首位与末位)都是1的数为“两头蛇数”.例如:121、1351等.(1)10的真因数之和为_______;(2)求证:一个四位的“两头蛇数”11ab 与它去掉两头后得到的两位数的3倍的差,能被7整除;(3)一个百位上的数为4的五位“两头蛇数”,能被16的“亲和数”整除,若这个五位“两头蛇数”的千位上的数字小于十位上的数字,求满足条件的五位“两头蛇数”.3、解不等式组求它的整数解:()202131x x x ->⎧⎪⎨+≥-⎪⎩ 4、解不等式(组)(1)3(1)5x x -≤+(2)4614312163x x x x +>-⎧⎪++⎨-≤⎪⎩ 5、为做好“园林城市创建”工作,打造美丽城市,达州市绿化提质改造工程正如火如荼地进行.某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某桥标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?-参考答案-一、单选题1、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.2、A【分析】对A 、B 、C 、D 选项进行一一验证,把已知解代入不等式看不等式两边是否成立.【详解】解:A 、当x =3时,2×3>1,成立,故A 符合题意;B 、当x =3时,2×3>1成立,但不是唯一解,例如x =4也是不等式的解,故B 不符合题意;C 、当x =3时,2×3>1成立,是不等式的解,故C 不符合题意;D 、当x =3时,2×3>1成立,是不等式的解,但不是不等式的解集,其解集为:x >12,故D 不符合题意;故选:A .【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题.3、D【分析】观察直线位于x轴及x轴上方的图象所对应的自变量的值即可完成解答.【详解】由图象知:不等式的解集为x≤3故选:D【点睛】本题考查了一次函数与一元一次不等式的关系,数形结合是解答本题的关键.4、A【分析】根据在数轴上表示不等式的解集的方法进行判断即可.【详解】在数轴上表示不等式1x>-的解集如下:故选:A.【点睛】本题考查不等式在数轴上的表示,掌握不等式在数轴上的画法是解题的关键.5、D【分析】根据不等式的基本性质逐项排查即可.【详解】解:A.在不等式的两边同时乘或除以同一个正数,不等号的方向不发生改变,这里应该是3a>3b,故A不正确,不符合题意;B.无法证明,故B选项不正确,不符合题意;C .当c =0时,不等式不成立,故C 选项不正确,不符合题意;D .不等式的两边同时乘2再在不等式的两边同时3,不等式,成立,故D 选项正确,符合题意. 故选:D .【点睛】本题主要考查了不等式的性质,1.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变; 2.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;3.不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变.6、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=, 把25m x -=代入①得6315m y m -+=-,解得125m y --=, ∵175x y +>-, ∴21217555m m ---+>-,即131755m ->-, 解得6m <,∵m 为整数,∴m 的最大值为5,故选B.【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.7、D【分析】直接根据函数图像与x轴的交点,进行逐一判断即可得到答案.【详解】解:A、由图象可知,关于x的不等式ax+b>0的解集是x<2,故不符合题意;B、由图象可知,关于x的不等式ax+b<0的解集是x>2,故不符合题意;C、由图象可知,关于x的方程ax+b=0的解是x=2,故不符合题意;D、由图象可知,关于x的方程ax+b=0的解是x=2,符合题意;故选:D.【点睛】本题主要考查了一次函数图像与x轴的交点问题,利用一次函数与x轴的交点求不等式的解集,解题的关键在于能够利用数形结合的思想求解.8、B【分析】由一次函数的图象的走势结合一次函数与y轴交于正半轴,可判断A,B,由图象可得:当x>4时,函数图象在x轴的下方,可判断C,先求解一次函数的解析式,再利用一次函数图象的平移可判断D,从而可得答案.【详解】解:一次函数y=kx+b的图象从左往右下降,所以y随x的增大而减小,故A不符合题意;k b故B符合题意;一次函数y=kx+b, y随x的增大而减小,与y轴交于正半轴,所以0,0,由图象可得:当x >4时,函数图象在x 轴的下方,所以y <0,故C 不符合题意;由函数图象经过0,2,4,0,240b k b ,解得:1,22k b 所以一次函数的解析式为:12,2y x 把122y x =-+向下平移2个单位长度得:12y x =-,故D 不符合题意; 故选B 【点睛】本题考查的是一次函数的性质,一次函数的平移,利用待定系数法求解一次函数的解析式,掌握“一次函数的图象与性质”是解本题的关键.9、C【分析】根据数轴上数的大小关系解答.【详解】解:解集为x ≤1,那么在数轴上表示正确的是C ,故选:C .【点睛】此题考查利用数轴表示不等式的解集,正确掌握数轴上数的大小关系及表示解集的方法是解题的关键.10、D【分析】利用不等式的性质,即可求解.【详解】解:A、若a<b,则3a<3b,故本选项错误,不符合题意;B、若a>b,当c=0时,则ac2=bc2,故本选项错误,不符合题意;C、若﹣2a>﹣2b,则a<b,故本选项错误,不符合题意;D、若ac2<bc2,则a<b,故本选项正确,符合题意;故选:D【点睛】本题主要考查了不等式的性质,熟练掌握不等式的性质是解题的关键.二、填空题1、20~45【分析】根据60≤2次服用的剂量≤90,60≤3次服用的剂量≤90,列出两个不等式组,求出解集,再求出解集的并集即可.【详解】解:设一次服用的剂量为x mg,根据题意得;60≤2x≤90或60≤3x≤90,解得30≤x≤45或20≤x≤30,则一次服用这种药品的剂量范围是:20~45mg.故答案为:20~45.【点睛】此题考查一元一次不等式组的应用,得到不同次数服用剂量的数量关系是解决本题的关键.2、1<m<2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一幅图得m >1,由第二幅图得m <2,故1<m <2;故答案是:1<m <2.【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键.3、4x ≤【分析】根据绝对值的意义进行分析解答【详解】解:∵ |4|4x x =-=-,∴40x -≥,故答案为:4x ≤.【点睛】本题考查绝对值的意义,解一元一次不等式,熟练掌握基础知识即可.4、<【分析】根据不等式的基本性质:不等式的两边乘(或除以)同一个负数,不等号的方向改变;不等式两边加上同一个数,不等式的方向不变.【详解】解:∵a >b ,∴﹣a <﹣b ,∴﹣2﹣a <﹣2﹣b ,故答案为:<.【点睛】本题考查不等式的性质,熟练掌握不等式的基本性质是解题的关键.5、a<3【分析】根据第二象限的符号特点(-,+),建立不等式解答即可.【详解】∵M(-6,3-a)是第二象限的点,∴3-a>0,解得a<3,故答案为:a<3.【点睛】本题考查了坐标与象限,不等式的解法,根据点的位置,正确建立不等式求解是解题的关键.三、解答题1、(1)甲种品牌球拍的单价是50元,乙种品牌球拍的单价是40元(2)购买25副甲种品牌球拍最省钱【分析】(1)设甲种品牌球拍的单价是x元,乙种品牌球拍的单价是y元,根据“购买3副甲种品牌球拍和2副乙种品牌球拍共需230元;购买2副甲种品牌球拍和1副乙种品牌球拍共需140元”,即可得出关于x,y的二元一次方程组,解之即可得出甲、乙两种品牌球拍的单价;(2)设购买m副甲种品牌球拍,则购买(100﹣m)副乙种品牌球拍,根据乙种品牌球拍数量不超过甲种品牌球拍数量的3倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设学校购买100副球拍所需费用为w元,利用总价=单价×数量,即可得出w关于m的函数关系式,再利用一次函数的性质,即可解决最值问题.(1)解:设甲种品牌球拍的单价是x 元,乙种品牌球拍的单价是y 元,依题意得:{3x +2x =2302x +x =140, 解得:5040x y =⎧⎨=⎩. 答:甲种品牌球拍的单价是50元,乙种品牌球拍的单价是40元.(2)解:设购买m 副甲种品牌球拍,则购买(100﹣m )副乙种品牌球拍,依题意得:100﹣m ≤3m ,解得:m ≥25.设学校购买100副球拍所需费用为w 元,则w =50m +40(100﹣m )=10m +4000.∵10>0,∴w 随m 的增大而增大,∴当m =25时,w 取得最小值,∴购买25副甲种品牌球拍最省钱.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.2、(1)8;(2)见解析;(3)10461,11451,12441.【分析】(1)先求出10的真因数,再求10的真因数之和即可;(2)先把给出的数用代数式表示111001+10010ab a b =+,10ab a b =+,根据要求列代数式得1121001100103(10)ab ab a b a b -=++-+=7(10143)a b ++,说明括号中的数为整式即可;(3)设五位“两头蛇数”为141x y (x y <),先求出16的真因数之和15,找到16的亲和数为131133⨯⨯= ,根据能被16的“亲和数”整除,将五位数写成33的倍数与剩余部分为14133315333010106x y x x y =⨯+⨯+++,可得553x y ++能被33整除,根据08x ≤≤,19y ≤≤且x y <,得出555388x y ≤++≤能被33整除得出6x y +=即可.【详解】.解:(1)10的真因数为1,2,5,10的真因数之和为1+2+5=8,故答案为8;(2)11100010010+1=1001+10010ab a b a b =+++,10ab a b =+, ∵1131001100103(10)ab ab a b a b -=++-+,=7071001a b ++,=7(10143)a b ++,又因为09a ≤≤,09b ≤≤的整数,∴10143a b ++为整数,∴一个四位“两头蛇数”与它去掉两头后得到的两位数的3倍的差能被7整除;(3)设五位“两头蛇数”为141x y (x y <),∵末位数为1,∴不能被2(真因数)整除,∵16的真因数之和1248151311=+++==++,∴16的亲和数为131133⨯⨯= ,1411040110001033315633301010x y x y x x y =++=⨯++⨯++能被33整除,101062(553)x y x y ∴++=++能被33整除,又2不能被33整除,553x y ∴++能被33整除,08x ≤≤又,19y ≤≤且x y <,∴555388x y ≤++≤,55333x y ∴++=或66.5530x y ∴+=或5563x y +=(舍去),6x y ∴+=,09x y ≤≤<,∴06x y ==,或1,5x y ==或2,4x y ==,所以五位“两头蛇数”为10461,11451,12441.【点睛】本题考查数字之间的新定义,仔细阅读题目,把握实质,明确真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解,掌握真因数与亲和数,整除性质,五位数的代数式表示,不等式组的解集,二元一次方程的非负整数解是解题关键.3、不等式组的解集为23x <≤,不等式组的整数解为3.【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出不等式组的整数解即可.【详解】解:()202131x x x ->⎧⎪⎨+≥-⎪⎩①② 解不等式①得:2x >,解不等式②得:3x ≤,∴不等式组的解集为23x <≤,∴不等式组的整数解为3.【点睛】本题主要考查了解一元一次不等式组和求一元一次不等式组的整数解,解题的关键在于能够熟练掌握解不等式组的方法.4、(1)4x ≤;(2)1x >-【分析】(1)根据解不等式的基本步骤求解即可;(2)先求得每一个不等式的解集,后确定出解集即可.【详解】(1)∵3(1)5x x -≤+ ,∴335x x -≤+,∴28x ≤,∴4x ≤;(2)4614312163x x x x +>-⎧⎪⎨++-≤⎪⎩①② 由①:1x >-,由②:4x ≥-,1x ∴>-.【点睛】本题考查了一元一次不等式和一元一次不等式组的解法,熟练掌握解题的基本步骤是解题的关键.5、(1)购买甲种树苗300棵,则购买乙种树苗100棵;(2)至少应购买甲种树苗240棵【分析】(1)设购买甲种树苗x棵,则购买乙种树苗(400-x)棵,根据购买两种树苗的总金额为90000元建立方程求出其解即可;(2)设应购买甲种树苗a棵,则购买乙种树苗(400-a)棵,根据购买甲种树苗的金额不少于购买乙种树苗的金额建立不等式求出其解即可.【详解】解:(1)设购买甲种树苗x棵,则购买乙种树苗(400-x)棵,由题意得200x+300(400-x)=90000,解得:x=300,∴购买乙种树苗400-300=100棵,答:购买甲种树苗300棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a棵,则购买乙种树苗(400-a)棵,由题意,得200a≥300(400-a),解得:a≥240.答:至少应购买甲种树苗240棵.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次不等式的解法的运用,解答时建立方程和不等式是关键.。
北师大版八年级数学下册《第2章 一元一次不等式与一元一次不等式组》单元测试题(含答案)
第二章 一元一次不等式(组) 单元检测卷(全卷满分100分 限时90分钟) 一.选择题:(每小题3分共36分)1. 若b a <,则下列各不等式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac < 2.实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( ) A .0ab > B .0a b +< C .1ab <D .0a b -<3.已知x y >,则下列不等式不成立的是( ).A .66x y ->-B .33x y >C .22x y -<-D .3636x y -+>-+ 4. 如果1-x 是负数,那么x 的取值范围是( )A .x >0B .)x <0C .x >1D .x <1 5. 若1-=aa ,则a 只能是:( ) ( )A .1-≤aB .0<aC .1-≥aD .0≤a6. 某种商品的进价为800元,出售时标价为1200元,后来由于商品积压,商品准备打折出售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折7.一次函数y =2x -4与x 轴的交点坐标为(2,0),则一元一次不等式2x -4≤0的解集应是( )A .x ≤2B .x <2C .x ≥2D .x >28. 小明用100元钱去购买笔记本和钢笔共30件,如果每支钢笔5元,每个笔记本2元,那么小明最多能买______支钢笔.A.12B.13C.14D.159.已知关于x 的不等式组0220x a x ->⎧⎨->⎩的整数解共有6个,则a 的取值范围是A. 65a -<<-B. 65a -≤<-C. 65a -<≤-D. 65a -≤≤- 10. 不等式2(1)3x x +<的解集在数轴上表示出来应为 ( )11.给出四个命题:①若a>b ,c=d , 则ac>bd ;②若ac>bc ,则a>b ;③若a>b 则ac 2>bc 2;④若ac 2>bc 2,则a>b 。
八年级数学北师大版下册 第二章 一元一次不等式与一元一次不等式组 同步单元训练卷(含答案)
北师大版八年级数学下册第二章 一元一次不等式与一元一次不等式组同步单元训练卷一、选择题(共10小题,3*10=30)1.若2a +6的值是正数,则a 的取值范围是( ) A .a >0 B .a >3 C .a >-3 D .a <-32.若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m≥2 B .m >2 C .m <2 D .m≤23.把某不等式组中两个不等式的解集表示在数轴上,如图所示,则这个不等式组可能是( )A.⎩⎪⎨⎪⎧x >-1,x≤2B.⎩⎪⎨⎪⎧x≥-1,x <2 C.⎩⎪⎨⎪⎧x≥-1,x≤2 D.⎩⎪⎨⎪⎧x <-1,x≥2 4.在数轴上到原点的距离大于2的点对应的x 满足( ) A .x>2 B .x<2C .x>2或x<-2D .-2<x<25.若函数y =kx +b 的图象如图所示,则关于x 的不等式kx +2b <0的解集为( )A .x <3B .x >3C .x <6D .x >66. 不等式组⎩⎪⎨⎪⎧2-x >1,①x +52≥1②中,不等式①和②的解集在数轴上表示正确的是( )7. 三个连续正整数的和小于39,这样的正整数中,最大一组的和是( ) A .39 B .36 C .35 D .348.关于x 的不等式2x +a ≤1只有2个正整数解,则a 的取值范围为( ) A.-5<a <-3 B.-5≤a <-3 C.-5<a ≤-3 D.-5≤a ≤-39.若不等式2x<4的解都能使关于x 的不等式(a -1)x<a +5成立,则a 的取值范围是( ) A .1<a≤7 B .a≤710.某镇有甲,乙两家液化气站,它们每罐液化气的价格,质地和重量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年需购买8罐液化气,则购买液化气最省钱的方法是( ) A .买甲站的 B .买乙站的 C .买两站的都一样D .先买甲站的1罐,以后买乙站的 二.填空题(共8小题,3*8=24) 11. 不等式 2x -1>3的解集是________.12. 已知“x 的3倍大于5,且x 的一半与1的差不大于2”,则x 的取值范围是__________. 13. 不等式组⎩⎪⎨⎪⎧x -3(x -2)≤8,5-12x >2x 的整数解是________.14.已知关于x 的不等式(a -1)x >4的解集是x <4a -1,则a 的取值范围是____________.15.若|5-10x|=10x -5, 则x 的取值范围是________.16.某商场推出一种购物“金卡”,凭卡在该商场购物可按商品价格的八折优惠,但办理金卡时每张要收100元购卡费,设按标价累计购物金额为x(元),当x___________时,办理金卡购物省钱. 17.某中学举办了“汉字听写大会”,准备为获奖的40名同学颁奖(每人一个书包或一本词典),已知每个书包28元,每本词典20元,学校计划用不超过900元钱购买奖品,则最多可以购买________个书包.18. 已知实数x ,y 满足2x -3y =4,并且x≥-1,y <2,现有k =x -y ,则k 的取值范围是____________.三.解答题(7小题,共66分)19.(8分) 解不等式,并把它们的解集在数轴上表示出来:15-9y <10-4y ;20.(8分) 已知不等式3x -a≤0的正整数解是1,2,3.求a 的取值范围.21.(8分) 根据题意列出不等式:(1)某市化工厂现有甲原料290千克,计划用这种原料与另一种足够多的原料配合生产A,B两种产品共50件.已知生产一件A型产品需甲种原料15千克,生产一件B型产品需甲种原料2.5千克,若该化工厂现有的原料能保证生产,试写出满足生产A型产品x(件)的关系式;(2)某厂生产一种机械零件,固定成本为2万元,每件零件成本为3元,零售价为5元,应纳税款为总销售额的10%.若要使该厂盈利,则该零件至少要生产销售x个,试写出x应满足的不等式.22.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值;(2)利用图象求出:当x取何值时,y1≥y2?(3)利用图象求出:当x取何值时,y1>0且y2<0?23.(10分) 某校九年级有三个班,其中九(一)班和九(二)班共有105名学生,在期末体育测试中,这两个班级共有79名学生满分,其中九(一)班的满分率为70%,九(二)班的满分率为80%.(1)求九(一)班和九(二)班各有多少名学生;(2)该校九(三)班有45名学生,若九年级体育成绩的总满分率超过75%,求九(三)班至少有多少名学生体育成绩是满分.24.(10分) 如图,一次函数y1=kx-2和y2=-3x+b的图象相交于点A(2,-1).(1)求k,b的值.(2)利用图象求出:当x取何值时,y1≥y2.(3)利用图象求出:当x取何值时,y1>0且y2<0.25.(12分) 某区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设买甲种树苗x棵.有关甲、乙两种树苗的信息如图所示.(1)当n=500时.①根据信息填表(用含x的代数式表示):②如果购买甲、乙两种树苗共用25600元,那么甲、乙两种树苗各买了多少棵?参考答案1-5CCACD 6-10BBCAB11. x>2 12.53<x≤6 13.-1,0,1 14.a <1 15. x≥1216.>500 17. 12 18.1≤k <319.解:移项,得-9y +4y <10-15.合并同类项,得-5y <-5.系数化为1,得y >1.不等式的解集在数轴上表示如图所示.20. 解:3x -a≤0,解得x≤a 3,因为它的正整数解为1,2,3,当a 3=3时,a =9;当a3=4时,a =12.当a =12时,x≤4,有4个正整数,舍去,∴9≤a<1221. 解:(1)生产A 型产品x 件,则生产B 型产品(50-x)件,根据题意, 得15x +2.5(50-x)≤290. (2)5x -3x -5x×10%-20 000>0.22. 解:(1)k =12,b =5.(2)当x≥2时,y 1≥y 2.(3)当x >4时,y 1>0且y 2<0.⎩⎪⎨⎪⎧x =50,y =55.答:九(一)班有50名学生,九(二)班有55名学生 (2)设九(三)班有m 名学生体育成绩满分,根据题意得79+m >(105+45)×75%,解得m >33.5,∵m 为整数,∴m 的最小值为34.答:九(三)班至少有34名学生体育成绩是满分24. 解:(1)将A 点的坐标代入y 1=kx -2,得2k -2=-1,即k =12. 将A 点的坐标代入y 2=-3x +b ,得-6+b =-1,即b =5.(2)从图象可以看出:当x≥2时,y 1≥y 2.(3)直线y 1=12x -2与x 轴的交点坐标为(4,0),直线y 2=-3x +5与x 轴的交点坐标为⎝⎛⎭⎫53,0.从图象可以看出:当x >4时,y 1>0;当x >53时,y 2<0,∴当x >4时,y 1>0且y 2<0.25. 解:(1)①500-x 50x 80(500-x)②由题意得50x +80(500-x)=25600,解得x =480,500-x =20.答:甲种树苗买了480棵,乙种树苗买了20棵(2)由题意得90%x +95%(n -x)≥92%×n ,解得x≤35n ,50x +80(n -x)=26000,解得x =8n -26003.∵8n -26003≤35n ,∴n≤4191131.∵n 为正整数,x 为正整数,当n 为419时,x =7523≈250.7不是整数;当n 为418时,x =248,∴n 的最大值为418。
北师大版八年级数学下册 第二章 一元一次不等式和一元一次不等式组 单元测试题含答案
北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组单元测试题一.选择题(共10小题,每小题3分,共30分)1.给出下列数学表达式:①﹣3<0;②4x+3y>0;③x=5;④x2﹣xy+y2;⑤x+2>y﹣7.其中不等式的个数是()A.5个B.4个C.3个D.4个2.下列式子一定成立的是()A.若ac2=bc2则a=bB.若ac>bc,则a>bC.若a>b则ac2>bc2D.若a<b,则3.不等式x>3在数轴上表示正确的是()A.B.C.D.4.下列各数中,能使不等式x﹣2<0成立的是()A.6 B.5 C.4 D.25.如图是小芳同学解不等式的过程,其中错误步骤共有()A.1个B.2个C.3个D.4个6.不等式3(x﹣2)≤5﹣x的非负整数解有()A.1个B.2个C.3个D.4个7.函数y=kx+b的图象如图所示,则关于x的不等式kx+b>0的解集是()A.x>0 B.x<0 C.x>﹣2 D.x<﹣28.观察图中的函数图象,则关于x的不等式ax﹣bx>c的解集为()A.x<2 B.x<1 C.x>2 D.x>19.不等式组的解集在数轴上表示正确的是()A.B.C.D.10.关于x的不等式组无解,则a的取值范围是()A.a>﹣B.a≥﹣C.a<D.a≤二.填空题(共8小题,每小题3分,共24分)11.某药品说明书上标明药品保存的温度是(10±4)℃,设该药品合适的保存温度为t,则温度t 的范围是.12.若a>1,则a+2019 a+2018.(填“>”或“<”)13.2 不等式2(x﹣1)+5>3x的解.(填“是”或“不是”)14.某次数学测验,共16个选择题,评分标准为:答对一题给6分,答错一题扣2分,不答得0分.某个学生只有1题未答,他想自己的分数不低于70分,他至少要答对道题.15.已知一次函数y=kx+b(≠0)的图象经过(6,0)和(0,﹣3),则kx+b≥0的解集为.16.一次函数y=ax+b的图象如图所示,不等式ax+b>﹣2的解集为.17.不等式组的整数解是.18.已知关于x的不等式组恰好有两个整数解,则实数a的取值范围是.三.解答题(共7小题,共66分)19.解不等式2x﹣1≤x+4,并把解集在数轴上表示出来20.解不等式组请结合题意填空,完成本题的解答(1)解不等式(1),得.(2)解不等式(2),得.(3)把不等式(1)和(2)的解集在数轴上表示出来:(4)原不等式组的解集为.21.如果关于x的方程x+2+m=0的解也是不等式组的一个解,求m的取值范围.22.已知关于x,y的方程组(1)当x=1时,求y的值;(2)若x>y,求k的取值范围.23.已知关于x的一次函数y=kx+b(k≠0)的图象过点A(2,4)、B(0,3).(1)求一次函数y=kx+b的解析式;(2)若关于x的一次函数y=mx+n(m<0)的图象也经过点A,则关于x的不等式mx+n≥kx+b 的解集为.24.在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).那么初三(1)班至少有多少名同学?最多有多少名同学?25.我市某中学组织部分学生去某地开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生,现有甲、乙两种大客车,它们的载客量和租金如表所示.学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)①既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,需租用几辆客车;②求租车费用的最小值.参考答案一.选择题1.解:③是等式,④是代数式,没有不等关系,所以不是不等式.不等式有①②⑤,共3个.故选:C.2.解:∵c=0时,ac2=bc2一定成立,∴ac2=bc2,a不一定等于b,∴选项A不符合题意;∵若ac>bc,c<0,则a<b,∴选项B不符合题意;∵c=0时,ac2=bc2,∴若a>b则ac2>bc2不一定成立,∴选项C不符合题意;∵若a<b,则,∴选项D符合题意.故选:D.3.解:解集x>3在数轴上表现为向右不包括端点的射线.D、B、C都不正确.故选:A.4.解:解不等式x﹣2<0,得x<4.故选:D.5.解:由题意知,原解题过程中去分母、去括号和系数化为1这3步出现错误,故选:C.6.解:3(x﹣2)≤5﹣x,3x﹣6≤5﹣x,3x+x≤5+6,4x≤11,x≤,所以不等式3(x﹣2)≤5﹣x的非负整数解有0,1,2,共3个,故选:C.7.解:由图象可得:当x>﹣2时,kx+b>0,所以关于x的不等式kx+b>0的解集是x>﹣2,故选:C.8.解:由图象可知,两图象的交点坐标是(1,2),当x>1时,ax>bx+c,∴关于x的不等式ax﹣bx>c的解集为x>1.故选:D.9.解:∵解不等式①得:x≤2,解不等式②得:x>1,∴不等式组的解集为1<x≤2,在数轴上表示为:,故选:C.10.解:解不等式2x<3(x﹣3)+1,得:x>8,解不等式>x+a,得:x<2﹣4a,∵不等式组无解,∴2﹣4a≤8,解得:a≥﹣.故选:B.二.填空题11.解:某药品说明书上标明药品保存的温度时(10±4)℃,说明在10℃的基础上,再上下4℃,∴6℃≤t≤14℃;故答案为:6℃≤t≤14℃.12.解:∵a>1,a=a,∴a+2019>a+2018,故答案为:>.13.解:∵2(x﹣1)+5>3x,∴x<3,∵2<3,∴2是不等式2(x﹣1)+5>3x的一个解.故答案为:是.14.解:设答对x道题,则答错(16﹣1﹣x)道题,依题意,得:6x﹣2(16﹣1﹣x)≥70,解得:x≥.∵x为整数,∴x的最小值为13.故答案为:13.15.解:∵一次函数y=kx+b(≠0)的图象经过(6,0)和(0,﹣3),∴y随着x的增大而增大,∴kx+b≥0的解集为x≥6,故答案为:x≥6.16.解:因为x=0时,y=﹣2,所以当x>0时,y>﹣2,即kx+b>﹣2,所以不等式ax+b>﹣2的解集为x>0.故答案为:x>0.17.解:,解不等式①,得x≤1,解不等式②,得x>﹣3.∴原不等式组的解集为﹣3<x≤1.又∵x为整数,∴x=﹣2,﹣1,0,1.故答案为﹣2,﹣1,0,1.18.解:不等式组整理得:,即a≤x<4,由不等式组恰好有两个整数解,得到1<a≤2,故答案为:1<a≤2三.解答题19.解:2x﹣x≤4+1,x≤5,将不等式的解集表示在数轴上如下:20.解:(1)解不等式(1),得x>﹣2.(2)解不等式(2),得x≤4.(3)把不等式(1)和(2)的解集在数轴上表示出来:(4)原不等式组的解集为﹣2<x≤4.故答案为x>﹣2,x≤4,﹣2<x≤4.21.解:不等式组整理得:,解得:x≤﹣2,由x+2+m=0,得到x=﹣2﹣m,可得﹣2﹣m≤﹣2,解得:m≥0.22.解:(1)①+②得:7x﹣y=1,∵x=1,∴y=7×1﹣1=6;(2)由方程组得,∵x>y,∴>,∴k<.23.解:(1)∵直线y=kx+b经过点A(2,4)、B(0,3),∴,解方程组得,∴直线AB的解析式为y=x+3;(2)∵直线y=mx+n(m<0)与直线AB相交于点A(2,4),∴不等式mx+n≥kx+b的解集是x≤2.故答案为:x≤2.24.解:设初三(1)班有x名同学,根据题意,得解这个不等式组,得40<x≤44.答:初三(1)班至少有41名同学,最多有44名同学.25.解:(1)设参加此次研学旅行活动的老师有x名,学生有y名,依题意,得:,解得:.答:参加此次研学旅行活动的老师有16名,学生有284名;(2)①∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;∵要保证300名师生有车坐,汽车总数不能小于(取整为8)辆,∴需租8辆客车.②设租用m辆乙种客车,则租用甲种客车(8﹣m)辆,依题意,得:,解得:5≤m≤7(m为整数).∵乙种车辆租金高,∴租用乙种车辆越少,租车费用越低,∴租用甲种客车3辆,乙种客车5辆时,租车费用最低,最低费用为400×5+300×3=2900元.。
北师大版八年级下册第2章 一元一次不等式与一元一次不等式组 单元练习卷
A.4
B.5
C.6
D.5 或 6
9.若关于 x 的不等式组
的解集为 x<3,则 k 的取值范围为( )
A.k>1
B.k<1
C.k≥1
D.k≤1
10.某企业决定购买 A,B 两种型号的污水处理设备共 8 台,具体情况如下表:
A型
B型
价格(万元/台)
12
10
月污水处理能力(吨/月)
200
160
经预算,企业最多支出 89 万元购买设备,且要求月处理污水能力不低 1380 吨,该企业 有哪些购买方案呢?为解决这个问题,设购买 A 型污水处理设备 x 台,所列不等式组正 确的是( )
19.某电器超市销售每台进价 160 元、120 元的 A、B 两种型号的电风扇,如表是近两周的 销售情况.(进价、销价保持不变,利润=销售收入﹣进货成本)
销售 时段
销售量 A 型号
B 型号
销售 收入
第一周
3台
4台
1200 元
第二周
5台
6台
1900 元
①求 A、B 两种型号的电风扇的销售单价? ②若超市准备用不多于 7500 元的金额再采购这两种型号的电风扇共 50 台.求:A 种型 号的电风扇最多能采购多少台? ③在②的条件下,超市销售完这 50 台电风扇能否实现利润超过 1850 元?若能,请给出 相应的采购方案,若不能,请说明理由. ④在②的条件,超市销售完这 50 台风扇能否实现利润超过 1880 元?说明理由.
2.不等式 >x 的最大整数解为( )
A.x=﹣1
B.x=0
C.x=1
D.x=2
3.已知关于 x 的不等式组
恰有 3 个整数解,则 a 的取值范围为( )
(常考题)北师大版初中数学八年级数学下册第二单元《一元一次不等式和一元一次不等式组》检测卷含答案解析
一、选择题1.不等式323x x +-≤的非负整数解有( ) A .3个 B .4个 C .5个 D .无数个 2.若a b <,下列各式中,正确的是( )A .55a b -<-B .22a b >C .22a b ->-D .44a b +<+ 3.如图,已知AB 是线段MN 上的两点,MN =12,MA =3,MB >3,以A 为中心顺时针旋转点M ,以点B 为中心顺时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,当△ABC 为直角三角形时AB 的长是( )A .3B .5C .4或5D .3或51 4.若a b <,则下列各式中不一定成立的是( ) A .11a b -<- B .33a b < C .a b ->- D .ac bc < 5.直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,关于x 的不等式21k x k x b >+的解集为( )A .-1x >B .1x <-C .2x <-D .无法确定 6.如果a >b ,那么下列不等式不成立...的是( ) A .0a b -> B .33a b ->- C .1133a b > D .33a b ->-7.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解,则a 的取值范围是( ) A .a <-2 B .a ≤-2C .a >-2D .a ≥-2 8.爆破员要爆破一座旧桥,根据爆破情况,安全距离是70米(人员要撤到70米及以外的地方).已知人员撤离速度是7米/秒,导火索燃烧速度是10.3厘米/秒,为了确保安全,这次爆破的导火索至少为( )A .100厘米B .101厘米C .102厘米D .103厘米9.如图,已知直线11y k x m =+与x 轴交于点()30A -,,和直线22y k x n =+交于点()1,2P -,则关于x 的不等式210k x n k x m +>+>的解集是()A .3x >-B .10x -<<C .31x -<<-D .2x <10.某种导火线的燃烧速度是0.81厘米/秒,爆破员跑开的速度是5米/秒,为在点火后使爆破员跑到150米以外的安全地区,导火线的长至少为( )A .22厘米B .23厘米C .24厘米D .25厘米 11.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤212.已知不等式()33a x a -<-的解集是1x >-,则a 的取值范围是( )A .3a >B .3a ≥C .3a <D .3a ≤二、填空题13.不等式组63024x x x -⎧⎨<+⎩的解集是__. 14.令a 、b 两个数中较大数记作{}max ,a b 如{}max 2,33=,已知k 为正整数且使不等式{}max 21,33k k +-+≤成立,则关于x 方程21136x k x ---=的解是_____________. 15.点()3,1m m --在第四象限,则m 的取值范围是_______.16.若关于x 的不等式3m ﹣2x <5的解集是x >3,则实数m 的值为_____.17.如图,一次函数2y x m =-+与26y ax =+的图象相交于点()2,3P -,则关于x 的不等式26x m ax -+>+的解集为__________.18.在一次知识竞赛中,有25道抢答题,答对一题得4分,答错或不答每题扣2分,成绩不低于60分就可获奖.那么获奖至少要答对___________道题.19.某次知识竞赛共有10题,答对一题得10分,答错或不答扣5分,小华得分要超过70分,他至少要答对__________题20.如图,已知A 、B 是线段MN 上的两点,MN=4,MA=1,MB >1.以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成ABC .设AB=x ,若ABC 为直角三角形,则x=__.三、解答题21.某校准备组织290名师生进行野外考察活动,行李共有100件.学校计划租用甲、乙两种型号的汽车共8辆,经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.设租用甲种汽车x 辆,请你帮助学校设计所有可能的租车方案.22.设一次函数()11y m x =-,()21y n x =+(m ,n 是常数,且m≠0,m≠n ,n>0) (1)当m=3,n=2时,①求函数y 1,y 2图象的交点坐标.②若y 1>y 2,求自变量x 的取值范围.(2)在0<x<1的范围内,有且只有部分函数值满足y 1>y 2,求证:m+n<0.23.2020年以来,新冠肺炎疫情肆虐全球,感染人数不断攀升,口罩瞬间成为需求最为迫切的防疫物资.为了缓解供需矛盾,在中央的号召下,许多企业纷纷跨界转行生产口罩.我县某工厂接到订单任务,要求用7天时间生产A 、B 两种型号的口罩,共不少于5.8万只,其中A 型口罩只数不少于B 型口罩.该厂的生产能力是:每天只能生产一种口罩,如果2天生产A 型口罩,3天生产B 型口罩,一共可以生产4.6万只;如果3天生产A 型口罩,2天生产B 型口罩,一共可以生产4.4万只,并且生产一只A 型口罩可获利0.5元,生产一只B 型口罩可获利0.3元.(1)试求出该厂的生产能力,即每天能生产A 型口罩或B 型口罩多少万只?(2)在完成订单任务的前提下,应怎样安排生产A 型口罩和B 型口罩的天数,才能使获得的总利润最大,最大利润是多少万元?24.已知不等式组5431 2133x xx x+>+⎧⎪⎨+≥⎪⎩.(1)解这个不等式组,并把它的解集在数轴上表示出来.(2)若a是这个不等式组的最小整数解,求2(2)a-的值.25.在平面直角坐标系xOy中,一次函数y kx b=+(0k≠)的图像由函数y x=的图像平移得到,且经过点()1,2.(1)请在所给平面直角坐标系中画出这个一次函数的图像并求该一次函数的解析式;(2)当1x>时,对于x的每一个值函数y mx=(0m≠)的值大于一次函数y kx b=+的值,求出m的取值范围.26.解下列不等式组:(1)3(1)51124x xx x-<+⎧⎨-≥-⎩(2)3(2)421152x xx x--≥⎧⎪-+⎨>⎪⎩【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出不等式的解集,再根据非负整数解的条件求出特殊解.【详解】解:去分母得:3(x-2)≤x+3,去括号,得3 x-6≤x+3,移项、合并同类项,得2x≤9,系数化为1,得x≤4.5,则满足不等式的“非负整数解”为:0,1,2,3,4,共5个,故选:C .【点睛】本题考查解不等式,解题的关键是理解题中的“非负整数”.2.D解析:D【分析】根据不等式两边乘(或除以)同一个负数,不等号的方向改变,这一法则判断A 项;根据不等式两边乘(或除以)同一个正数,不等号的方向不变,这一法则判断B 项;根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,这一法则判断C 、D 三项.【详解】解:A 、∵a <b ,∴55>--a b ,故本选项不符合题意;B 、∵a <b , ∴22a b <,故本选项不符合题意; C 、∵a <b ,∴a b ,故本选项不符合题意;D 、∵a <b ,∴44a b +<+,故本选项符合题意;故选:D .【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.C解析:C【分析】设AB =x ,则BC =9-x ,根据三角形两边之和大于第三边,得到x 的取值范围,再利用分类讨论思想,根据勾股定理列方程,计算解答.【详解】解:∵在△ABC 中,AC =AM =3,设AB =x ,BC =9-x ,由三角形两边之和大于第三边得:3939x x x x +-⎧⎨+-⎩>>, 解得3<x <6,①AC 为斜边,则32=x 2+(9-x )2,即x 2-9x +36=0,方程无解,即AC 为斜边不成立,②若AB 为斜边,则x 2=(9-x )2+32,解得x =5,满足3<x <6,③若BC 为斜边,则(9-x )2=32+x 2,解得x =4,满足3<x <6,∴x =5或x =4;故选C .【点睛】本题考查三角形的三边关系,勾股定理等,分类讨论和方程思想是解答的关键. 4.D解析:D【分析】根据不等式的性质进行解答.【详解】A 、在不等式的两边同时减去1,不等式仍成立,即11a b -<-,故本选项不符合题意.B 、在不等式的两边同时乘以3,不等式仍成立,即33a b <,故本选项不符合题意.C 、在不等式的两边同时乘以-1,不等号方向改变,即a b ->-,故本选项不符合题意.D 、当0c ≤时,不等式ac bc <不一定成立,故本选项符合题意.故选:D .【点睛】本题考查了不等式的性质,做这类题时应注意:在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.5.B解析:B【分析】由图象可知,当1x =-时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式21k x k x b >+解集.【详解】两条直线的交点坐标为(-1,3),且当 x<−1 时,直线2l 在直线1l 的上方,∴不等式21k x k x b >+的解集为: x<−1故选:B.【点睛】本题考察借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.6.D解析:D【分析】根据不等式的基本性质逐项判断即可得.【详解】A 、0a b ->,成立;B 、不等式的两边同减去3,不改变不等号的方向,即33a b ->-,成立;C 、不等式的两边同乘以正数13,不改变不等号的方向,即1133a b >,成立; D 、不等式的两边同乘以负数3-,改变不等号的方向,即33a b -<-,不成立; 故选:D .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键. 7.D解析:D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122x a x x ->⎧⎨->-⎩①② 解①得:x >a+3,解②得:x <1.根据题意得:a+3≥1,解得:a≥-2.故选:D .【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.8.D解析:D【分析】设这次爆破的导火索需要xcm 才能确保安全,安全距离是70米(人员要撤到70米以外),根据人员速度是7米/秒,导火索的燃烧速度是10.3厘米/秒,列不等式求解即可.【详解】设这次爆破的导火索为x 厘米才能确保安全.根据安全距离是70米(人员要撤到70米及以外的地方),可列不等式:77010.3x ⨯≥ 解得:103x ≥故选:D【点睛】本题考查一元一次不等式的应用,关键是理解导火索燃尽时人撤离的距离要大于等于70米. 9.C解析:C【分析】所求不等式的解集就是满足“x轴上方直线2y在直线1y上边”的x的取值范围,即图中点A、P的横坐标之间的范围.【详解】解:由题意可知,满足条件的x的值在A与P之间,∵A点坐标为(-3,0),P点坐标为(-1,2),所以所求不等式的解集为:-3<x< -1故选C.【点睛】本题考查一次函数图象的应用,熟练掌握一次函数间的交点坐标及一次函数与坐标轴的交点坐标的意义是解题关键.10.D解析:D【分析】设导火线的长为xcm,根据题意可得跑开时间要小于或等于爆炸的时间,由此列出不等式,解不等式即可求解.【详解】设导火线的长为xcm,由题意得:150 0815 .x解得x≥24.3cm,∴导火线的长至少为25厘米.故选D.【点睛】本题考查了一元一次不等式的应用,根据题意列出不等式是解决问题的关键.11.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a⩽2,故选C.12.C解析:C【分析】根据已知解集得到a-3为负数,即可确定出a的范围.【详解】解:不等式(a-3)x <3-a 的解集为x >-1,∴a-3<0,解得a <3.故选:C .【点睛】本题考查不等式的解集,熟练掌握不等式的基本性质是解题关键.二、填空题13.【分析】分别解两个不等式得到和x <4然后根据同大取大同小取小大于小的小于大的取中间小于小的大于大的无解确定不等式组的解集【详解】解:解不等式得:解不等式得:则不等式组的解集为故答案为【点睛】本题考查 解析:2x【分析】分别解两个不等式得到2x 和x <4,然后根据同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解确定不等式组的解集.【详解】解:解不等式630x -,得:2x ,解不等式24x x <+,得:4x <,则不等式组的解集为2x ,故答案为2x .【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集. 14.【分析】根据新定义分两种情况分别列出不等式求解得出k 的值代入分别求解可得【详解】①当时解得:;②当时解得:;∵为正整数∴使不等式max{2k+1-k+3}≤3成立的k 的值是1当时则关于x 方程为解得: 解析:95【分析】根据新定义分213213k k k +>-+⎧⎨+≤⎩、21333k k k +≤-+⎧⎨-+≤⎩两种情况,分别列出不等式求解得出k 的值,代入分别求解可得.【详解】①当213213k k k +>-+⎧⎨+≤⎩时, 解得:213k <≤;②当21333k k k +≤-+⎧⎨-+≤⎩时, 解得:203k ≤≤; ∵k 为正整数,∴使不等式max{2k+1,-k+3}≤3成立的k 的值是1,当1k =时,则关于x 方程21136x k x ---=为211136x x ---=, 解得:95x =. 【点睛】本题主要考查了对新定义的理解及解一元一次不等式组,解一元一次方程,根据新定义分类讨论是前提,根据题意列出不等式组是关键. 15.【分析】根据点()在第四象限列出关于m 的不等式组解之可得【详解】∵点()在第四象限∴解得故答案为:【点睛】本题考查了已知点所在的象限求参数以及求一元一次不等式组的解集正确求出每一个不等式解是基础熟知 解析:1m <【分析】根据点(3m -,1m -)在第四象限列出关于m 的不等式组,解之可得.【详解】∵点(3m -,1m -)在第四象限,∴3010m m ->⎧⎨-<⎩, 解得1m <,故答案为:1m <.【点睛】本题考查了已知点所在的象限求参数以及求一元一次不等式组的解集,正确求出每一个不等式解是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.【解析】试题分析:根据解不等式可得不等式3m ﹣2x <5的解集根据不等式的解集可得关于m 的方程根据解方程可得m= 解析:113【解析】 试题分析:根据解不等式,可得不等式3m ﹣2x <5的解集532m x -->,根据不等式的解集,可得关于m 的方程5332m -=-,根据解方程,可得m=113.17.【分析】观察函数图象根据两函数图象的上下位置关系即可找出关于x 的不等式的解集【详解】解:观察函数图象可知:当x<-2时一次函数y1=-2x+m 的图象在y2=ax+6的图象的上方∴关于x 的不等式的解集解析:2x <-【分析】观察函数图象,根据两函数图象的上下位置关系即可找出关于x 的不等式26x m ax -+>+的解集.【详解】解:观察函数图象可知:当x<-2时,一次函数y 1=-2x+m 的图象在y 2=ax+6的图象的上方, ∴关于x 的不等式26x m ax -+>+的解集是x<-2.故答案为:2x <-.【点睛】本题考查了一次函数与一元一次不等式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.18.19【分析】设答对x 道题可以获奖则答错或不答(25-x)道题根据成绩=4×答对的题目数-2×答错或不答的题目数即可得出关于x 的一元一次不等式解之取其中的最小整数值即可得出结论【详解】解:设答对x 道题解析:19【分析】设答对x 道题可以获奖,则答错或不答(25-x)道题,根据成绩=4×答对的题目数-2×答错或不答的题目数,即可得出关于x 的一元一次不等式,解之取其中的最小整数值即可得出结论.【详解】解:设答对x 道题可以获奖,则答错或不答(25-x)道题,依题意,得:4x-2(25-x)≥60,解得:x≥553, 又x 为整数,故x 的最小为19,故答案为:19.【点睛】题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.19.9【分析】设答对x 题则答错10-x 题然后根据竞赛得分=10×答对的题数-5×未答对的题数列出不等式解答即可【详解】解:设答对x 题则答错10-x 题根据题意得:10x-5(10-x )>70解得x >8故答解析:9【分析】设答对x 题,则答错10-x 题,然后根据竞赛得分=10×答对的题数-5×未答对的题数列出不等式解答即可.【详解】解:设答对x 题,则答错10-x 题根据题意得:10x-5(10-x )>70解得x >8.故答案为9.【点睛】本题考查了一元一次不等式的应用,设出未知数、确定不等关系、列出不等式是解答本题的关键.20.或【分析】根据三角形的三边关系:两边之和大于第三边即可得到关于x 的不等式组求出x 的取值范围再根据勾股定理即可列方程求解【详解】解:∵在△ABC 中AC=1AB=xBC=3-x 解得1<x <2;①∵1<x 解析:43或53【分析】 根据三角形的三边关系:两边之和大于第三边,即可得到关于x 的不等式组,求出x 的取值范围,再根据勾股定理,即可列方程求解.【详解】解:∵在△ABC 中,AC=1,AB=x ,BC=3-x .1313x x x x+>-⎧∴⎨+->⎩, 解得1<x <2;①∵1<x ,∴AC 不能为斜边,②若AB 为斜边,则x 2=(3-x )2+1,解得x=53,满足1<x <2, ③若BC 为斜边,则(3-x )2=1+x 2,解得x=43 ,满足1<x <2, 故x 的值为:43或53, 故答案为:43或53. 【点睛】本题主要考查了三角形的三边关系以及勾股定理,正确理解分类讨论是解题的关键. 三、解答题21.有两种租车方案.方案(一)甲种车5辆,乙种车3辆;(二)甲种车6辆,乙种车2辆.【分析】根据题意列出不等式组:()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩,化简得出x 的取值,看在取值范围中x 可取的整数的个数即为方案数.【详解】解:根据题意,得()()4030829010208100x x x x ⎧+-≥⎪⎨+-≥⎪⎩, 解不等式组得56x x ≥⎧⎨≤⎩, ∴不等式组解集为56x ≤≤.又∵车辆因为整数,∴x 应为5或6,则8x -应为3或2.则有两种方案:(一)甲种车5辆,乙种车3辆,(二)甲种车6辆,乙种车2辆. 答:有两种租车方案.方案(一)甲种车5辆,乙种车3辆,(二)甲种车6辆,乙种车2辆.【点睛】此题考查了一元一次不等式组的应用,难度一般,解答本题的关键是设出未知数,根据题意的两个不等关系得出不等式组.22.(1)①(5,12);②x>5;(2)见解析.【分析】(1)①将m=3、n=2代入两个一次函数,然后联立解二元一次方程组即可;②根据题意列不等式求解即可;(2)先确定两函数与y 轴的交点坐标以及所多顶点,然后再根据x 的取值范围即可解答.【详解】解:(1)当m=3,n=2时,133y x =-,222y x =+①联立3322y x y x =-⎧⎨=+⎩,解得512x y =⎧⎨=⎩∴交点坐标为(5,12);②y 1>y 2则3322x x >-+解得x>5;(2)∵()11y m x =-与y 轴交点为(0,m -),1y 过定点(1,0),()21y n x =+与y 轴交点为(0,n ),同时2y 过定点(-1,0),∵在0<x<1的范围内,有且只有部分函数值满足y 1>y 2∴根据图像得到m ->n 即m+n<0.【点睛】本题属于一次函数的综合题,主要考查了一次函数的性质、解二元一次方程组、解不等式,考查知识点较多,灵活应用相关知识成为解答本题的关键.23.(1)该厂每天能生产A 型口罩0.8万只或B 型口罩1万只;(2)当安排生产A 型口罩6天、B 型口罩1天,获得2.7万元的最大总利润【分析】(1)设该厂每天能生产A 型口罩x 万只或B 型口罩y 万只,由2天生产A 型口罩,3天生产B 型口罩,一共可以生产4.6万只;如果3天生产A 型口罩,2天生产B 型口罩,一共可以生产4.4万只,列出方程组,即可求解;(2)由总利润=A 型口罩的利润+B 型口罩的利润,列出一次函数关系式,由不等式组和一次函数的性质可求解.【详解】解:(1)设该厂每天能生产A 型口罩x 万只或B 型口罩y 万只.根据题意,得23 4.632 4.4x y x y +=⎧⎨+=⎩, 解得0.81x y =⎧⎨=⎩, 答:该厂每天能生产A 型口罩0.8万只或B 型口罩1万只.(2)设该厂应安排生产A 型口罩m 天,则生产B 型口罩(7)m -天.根据题意,得()0.870.87 5.8m m m m ≥-⎧⎨+-≥⎩, 解得3569m ≤≤, 设获得的总利润为w 万元, 根据题意得:0.50.80.31(7)0.1 2.1w m m m =⨯+⨯⨯-=+,∵0.10m =>,∴w 随m 的增大而增大.∴当m =6时,w 取最大值,最大值为0.16 2.1 2.7⨯+=(万元).答:当安排生产A型口罩6天、B型口罩1天,获得2.7万元的最大总利润.【点睛】本题主要考查二元一次方程组的应用以及一次函数的应用,根据工作效率×工作时间=工作总量即可列出(1)问的方程;第二问根据总利润=单件利润×数量列出关系式,求解即可.属于基础类应用题.24.(1)31 2-<≤x,见解析;(2)3【分析】(1)解不等式组,表示即可;(2)根据(1)求出最小整数,代入计算即可;【详解】(1)54312133x xx x+>+⎧⎪⎨+≥⎪⎩,由5431+>+x x得32x>-,由2133+≥x x,解得1x≤,∴不等式组的解集为312-<≤x;(2)由(1)可知1a=-,∴2(2)23a a-=-=;【点睛】本题主要考查了一元一次不等式组的求解,结合代数式求值是解题的关键.25.(1)见解析;1y x=+;(2)2m≥.【分析】(1)先根据直线平移时k的值不变得出k=1,再将点A(1,2)代入y=x+b,求出b的值,即可得到一次函数的解析式;(2)根据点(1,2)结合图象即可求得.【详解】解:(1)∵一次函数y=kx+b(k≠0)的图象由直线y=x平移得到,∴k=1,将点(1,2)代入y=x+b,得1+b=2,解得b=1,∴一次函数的解析式为y=x+1;(2)把点(1,2)代入y=mx,求得m=2,∵当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=x+1的值,∴m≥2.【点睛】本题考查了一次函数图象与几何变换,一次函数与系数的关系,数形结合是解题的关键.26.(1)-2<x≤3;(2)x<-7.【分析】分别求出不等式组中每一个不等式的解集,后根据解集确定口诀确定不等式组的解集即可.【详解】(1)由3(1)51124x xx x-<+⎧⎨-≥-⎩①②,不等式①的解集为x>-2,不等式②的解集为x≤3,∴原不等式组的解集为-2<x≤3;(2)由3(2)4 21152x xx x--≥⎧⎪⎨-+>⎪⎩①②,不等式①的解集为x≤1,不等式②的解集为x<-7,∴原不等式组的解集为x<-7.【点睛】本题考查了一元一次不等式组的解集,熟练解一元一次不等式是解题的关键.。
北师大版八年级下册 数学第2章 一元一次不等式与一元一次不等式组 单元练习卷 含答案解析
北师大版八年级下册数学第2章一元一次不等式与一元一次不等式组单元练习卷含答案解析一.选择题(共10小题)1.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.>C.﹣2x<﹣2y D.3﹣x>3﹣y 2.不等式组﹣3<x≤1的解集在数轴上表示正确的是()A.B.C.D.3.已知不等式组的解集是x<﹣3,则m的取值范围是()A.m>﹣3 B.m≥﹣3 C.m<﹣3 D.m≤﹣34.我们知道,适合二元一次方程的一对未知数的值叫做这个二元一次方程的一个解.同样地,适合二元一次不等式的一对未知数的值叫做这个二元一次不等式的一个解.对于二元一次不等式2x+3y≤10,它的正整数解有()A.4个B.5个C.6个D.无数个5.若不等式(a+1)x>a+1的解是x<1,那么a满足()A.a<0 B.a>﹣1 C.a<﹣1 D.a<16.已知x的不等式2x﹣a+1>0的最小整数解是3,则a的取值范围是()A.a<7 B.a≤7 C.5≤a<7 D.5<a≤77.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打几折?如果将该商品打x折销售,则下列不等式中能正确表示该商店的促销方式的是()A.120x≥80×5% B.120x﹣80≥80×5%C.120×≥80×5% D.120×﹣80≥80×5%8.某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打()A.六折B.七折C.八折D.九折9.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为()A.x>﹣2 B.x<﹣2 C.x>﹣5 D.x<﹣510.如图,一次函数y=kx+b的图象与直线y=1交点的横坐标为5,则不等式kx+b≥1的解集为()A.x≥1 B.x≥5 C.x≤1 D.x≤5二.填空题(共9小题)11.已知x≥2的最小值是m,x≤﹣6的最大值是n,则m+n=12.若﹣<﹣,则a b(填“<、>或=“号)13.如果不等式(a﹣3)x<b的解集是x<,那么a的取值范围是.14.若关于x的不等式组无解,则a的取值范围是.15.已知一个不等式组的两个不等式的解集在数轴上如图表示,那么这个不等式组的解集为.16.已知关于x的不等式2x﹣k≥1的解在数轴上的表示如图,则k的值是.17.在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对了得10分,答错了或不答扣5分,小明要想在竞赛中得分超过90分,则他至少要答对道题.18.若直线l1:y1=k1x+b1经过点(0,3),l2:y2=k2x+b2经过点(3,1),且l1与l2关于x轴对称,则关于x的不等式k1x+b1>k2x+b2的解集为.19.某市出租车的收费标准是:起步价5元(即行使距离不超过2千米都需付车费5元).超过2米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元,则该同学的家到学校的距离的范围是.三.解答题(共3小题)20.求不等式组的整数解.21.某校为了开展“阳光体育运动”,计划购买篮球和足球,已知购买20个篮球和40个足球的总金额为4600元;购买30个篮球和50个足球的总金额为6100元.(1)每个篮球、每个足球的价格分别为多少元?(2)若该校购买篮球和足球共60个,且购买篮球的总金额不超过购买足球的总金额,则该校最多可购买多少个篮球?22.如图,直线y=﹣2x与直线y=kx+b相交于点A(a,2),并且直线y=kx+b经过x轴上点B(2,0)(1)求直线y=kx+b的解析式.(2)求两条直线与y轴围成的三角形面积.(3)直接写出不等式(k+2)x+b≥0的解集.参考答案与试题解析一.选择题(共10小题)1.若x>y,则下列式子错误的是()A.x﹣3>y﹣3 B.>C.﹣2x<﹣2y D.3﹣x>3﹣y 【分析】利用不等式的性质,即可解答.【解答】解:A、x>y,根据不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变,x﹣3>y﹣3,正确,不符合题意;B、不等式两边乘(或除以)同一个数,不等号的方向不改变,故,正确,不符合题意;C、x>y,根据不等式的基本性质:不等式两边乘(或除以)同一个负数,不等号的方向改变,故﹣2x<﹣2y,正确,不符合题意;D、不等式两边同时乘以﹣1,再加上3,不等号的方向改变,故3﹣x>3﹣y,错误,符合题意;故选:D.2.不等式组﹣3<x≤1的解集在数轴上表示正确的是()A.B.C.D.【分析】先在数轴上表示出不等式组的解集,再得出选项即可.【解答】解:不等式组﹣3<x≤1的解集在数轴上表示为:,故选:C.3.已知不等式组的解集是x<﹣3,则m的取值范围是()A.m>﹣3 B.m≥﹣3 C.m<﹣3 D.m≤﹣3【分析】根据同小取小可得m的取值范围.【解答】解:∵不等式组的解集是x<﹣3,∴m≥﹣3,故选:B.4.我们知道,适合二元一次方程的一对未知数的值叫做这个二元一次方程的一个解.同样地,适合二元一次不等式的一对未知数的值叫做这个二元一次不等式的一个解.对于二元一次不等式2x+3y≤10,它的正整数解有()A.4个B.5个C.6个D.无数个【分析】先把y作为常数,解不等式得:x≤=5﹣y,根据x,y是正整数,得5﹣y>0,分情况可解答.【解答】解:2x+3y≤10,x≤=5﹣y,∵x,y是正整数,∴5﹣y>0,0<y<,即y只能取1,2,3,当y=1时,0<x≤3.5,正整数解为:,,,当y=2时,0<x≤2,正整数解为:,,当y=3时,0<x≤,无正整数解;综上,它的正整数解有5个,故选:B.5.若不等式(a+1)x>a+1的解是x<1,那么a满足()A.a<0 B.a>﹣1 C.a<﹣1 D.a<1【分析】根据已知不等式的解集和不等式的性质得出a+1<0,再求出即可.【解答】解:∵不等式(a+1)x>a+1的解是x<1,∴a+1<0,解得:a<﹣1,故选:C.6.已知x的不等式2x﹣a+1>0的最小整数解是3,则a的取值范围是()A.a<7 B.a≤7 C.5≤a<7 D.5<a≤7【分析】根据关于x的不等式2x﹣a+1>0的最小整数解是3,可以得到关于a的不等式组,从而可以求得a的取值范围.【解答】解:由2x﹣a+1>0,得x>,∵关于x的不等式2x﹣a+1>0的最小整数解是3,∴2≤<3,解得,5≤a<7,故选:C.7.某种商品的进价为80元,出售时标价为120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至多可打几折?如果将该商品打x折销售,则下列不等式中能正确表示该商店的促销方式的是()A.120x≥80×5% B.120x﹣80≥80×5%C.120×≥80×5% D.120×﹣80≥80×5%【分析】直接利用打折与利润的计算方法得出不等关系进而得出答案.【解答】解:设该商品打x折销售,根据题意可得:120×﹣80≥80×5%.故选:D.8.某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打()A.六折B.七折C.八折D.九折【分析】设打了x折,用售价×折扣﹣进价得出利润,根据利润率不低于10%,列不等式求解.【解答】解:设打了x折,由题意得,1100×0.1x﹣700≥700×10%,解得:x≥7.即至多打7折.故选:B.9.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为()A.x>﹣2 B.x<﹣2 C.x>﹣5 D.x<﹣5【分析】函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),求不等式3x+b>ax﹣3的解集,就是看函数在什么范围内y=3x+b的图象对应的点在函数y=ax﹣3的图象上面.【解答】解:从图象得到,当x>﹣2时,y=3x+b的图象对应的点在函数y=ax﹣3的图象上面,∴不等式3x+b>ax﹣3的解集为:x>﹣2.故选:A.10.如图,一次函数y=kx+b的图象与直线y=1交点的横坐标为5,则不等式kx+b≥1的解集为()A.x≥1 B.x≥5 C.x≤1 D.x≤5【分析】根据图象得出不等式的解集即可.【解答】解:由图象可得:当x≥5时,kx+b≥1,所以不等式kx+b≥1的解集为x≥5,故选:B.二.填空题(共9小题)11.已知x≥2的最小值是m,x≤﹣6的最大值是n,则m+n=﹣4【分析】根据不等式的定义得出m,n的值,进而解答即可.【解答】解:因为x≥2的最小值是m,x≤﹣6的最大值是n,由题意可得:m=2,n=﹣6,所以m+n=﹣4,故答案为:﹣412.若﹣<﹣,则a>b(填“<、>或=“号)【分析】根据不等式的性质3判断即可.【解答】解:﹣<﹣,∴乘以﹣3得:a>b,故答案为:>.13.如果不等式(a﹣3)x<b的解集是x<,那么a的取值范围是a>3 .【分析】由题意可得a﹣3>0,所以a>3.【解答】解:由题意可得a﹣3>0,∴a>3.故答案为:a>3.14.若关于x的不等式组无解,则a的取值范围是a≤1 .【分析】根据已知不等式组无解,得出不等式2a≤a+1,求出解集即可.【解答】解:∵关于x的不等式组无解,∴2a≤a+1,解得:a≤1,故答案为:a≤1.15.已知一个不等式组的两个不等式的解集在数轴上如图表示,那么这个不等式组的解集为x≥﹣1 .【分析】根据同大取大的原则.【解答】解:不等式组的解集为:x≥﹣1.16.已知关于x的不等式2x﹣k≥1的解在数轴上的表示如图,则k的值是﹣3 .【分析】直接利用已知不等式的解集得出关于k的等式进而得出答案.【解答】解:由数轴可知不等式2x﹣k≥1的解集为:x≥﹣1,2x﹣k≥1则x≥,故=﹣1,解得:k=﹣3.故答案为﹣3.17.在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对了得10分,答错了或不答扣5分,小明要想在竞赛中得分超过90分,则他至少要答对13 道题.【分析】设小明答对x道题,则答错或不答的题数为(20﹣x)道,根据“对于每一道题,答对了得10分,答错了或不答扣5分,小明要想在竞赛中得分超过90分”,列出关于x 的一元一次不等式,解之即可.【解答】解:设小明答对x道题,则答错或不答的题数为(20﹣x)道,根据题意得:10x﹣5(20﹣x)>90,解得:x,∵x为整数,∴至少答对13道题,故答案为:13.18.若直线l1:y1=k1x+b1经过点(0,3),l2:y2=k2x+b2经过点(3,1),且l1与l2关于x轴对称,则关于x的不等式k1x+b1>k2x+b2的解集为x<.【分析】根据对称的性质得出关于x轴对称的对称点的坐标,再根据待定系数法确定函数关系式y1=k1x+b1,再根据对称的性质得到y2=kx+b2,求出不等式的解集.【解答】解:依题意得:直线l1:y1=k1x+b1经过点(0,3),(3,﹣1),则.解得.故直线l1:y1=x+3.所以,直线l2:y2=x﹣3.由k1x+b1>k2x+b2的得到:x+3>x﹣3.解得x<.故答案是:x<.19.某市出租车的收费标准是:起步价5元(即行使距离不超过2千米都需付车费5元).超过2米以后,每增加1千米,加收1.8元(不足1千米按1千米计).某同学从家乘出租车到学校,付了车费24.8元,则该同学的家到学校的距离的范围是12<x≤13 .【分析】由条件知该同学的家到学校共需支付车费24.8元,从同学的家到学校的距离为x千米,首先去掉前2千米的费用,从而根据题意列出不等式,从而得出答案.【解答】解:设该同学的家到学校的距离是x千米,依题意:24.8﹣1.8<5+1.8(x﹣2)≤24.8,解得:12<x≤13.故答案为:12<x≤13.三.解答题(共3小题)20.求不等式组的整数解.【分析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.【解答】解:,由①得x>﹣;由②得x≤4;不等式组的解集为:﹣<x≤4.故不等式组的整数解为0,1,2,3,4.21.某校为了开展“阳光体育运动”,计划购买篮球和足球,已知购买20个篮球和40个足球的总金额为4600元;购买30个篮球和50个足球的总金额为6100元.(1)每个篮球、每个足球的价格分别为多少元?(2)若该校购买篮球和足球共60个,且购买篮球的总金额不超过购买足球的总金额,则该校最多可购买多少个篮球?【分析】(1)设每个篮球、足球的价格分别是x元,y元,根据题意列出方程组,求出方程组的解即可得到结果;(2)设购买了篮球m个,根据题意列出不等式,求出解集即可确定出m的最大值.【解答】解:(1)设每个篮球、足球的价格分别是x元,y元,根据题意得:,解得:,答:每个篮球、足球的价格分别是70元,80元;(2)设购买了篮球m个,根据题意得:70m≤80(60﹣m),解得:m≤32,∴m最多取32,答:最多可购买篮球32个.22.如图,直线y=﹣2x与直线y=kx+b相交于点A(a,2),并且直线y=kx+b经过x轴上点B(2,0)(1)求直线y=kx+b的解析式.(2)求两条直线与y轴围成的三角形面积.(3)直接写出不等式(k+2)x+b≥0的解集.【分析】(1)首先确定点A的坐标,然后利用点B的坐标利用待定系数法确定直线的解析式即可;(2)首先根据直线AB的解析式确定直线AB与y轴的交点坐标,从而利用三角形的面积公式求得三角形的面积;(3)将不等式变形后结合函数的图象确定不等式的解集即可.【解答】解:(1)把A(a,2)代入y=﹣2x中,得﹣2a=2,∴a=﹣1,∴A(﹣1,2)把A(﹣1,2),B(2,0)代入y=kx+b中得,∴k=﹣,b=,∴一次函数的解析式是y=﹣x+;(2)设直线AB与Y轴交于点C,则C(0,)∴S△AOC=××1=;(3)不等式(k+2)x+b≥0可以变形为kx+b≥﹣2x,结合图象得到解集为:x≥﹣1.。
(常考题)北师大版初中数学八年级数学下册第二单元一元一次不等式和一元一次不等式组测试题包含答案解析
一、选择题1.已知a b >,下列不等式中,不成立的是( ) A .44a b +>+B .33a b ->-C .22a b >D .22a b ->-2.若不等式组11233x xx m+⎧<+⎪⎨⎪>⎩有解,则m 的取值范围为( )A .1mB .1m <C .1mD .3m <3.若关于x 的不等式组5335x x x a -+⎧⎨⎩><无解,则a 的取值范围为( )A .a <4B .a=4C .a≤4D .a≥44.下列各式中正确的是( ) A .若a b >,则11a b -<- B .若a b >,则22a b > C .若a b >,且0c ≠,则ac bc >D .若||||a bc c >,则a b > 5.关于x 的方程3a x -=的解是非负数,那么a 满足的条件是( ) A .3a >B .3a ≤C .3a <D .3a ≥6.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( )A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤77.已知:一次函数1y kx =-的图像经过点A (1x ,1)和点B (2x ,-3)且1x <2x ,则它的图像大致是( ).A .B .C .D .8.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a的值为( )A .﹣1B .0C .1D .2 9.直线1y x =+与2y x a =-+的交点在第一象限,则a 的取值可以是( )A .1-B .3C .1D .010.运行程序如图所示,规定从“输入一个值x ”到“结果是否95>”为一次程序操作,如果程序操作进行了两次才停止,那么x 的取值范围是()A .23x >B .2347x <≤C .1123x ≤<D .47x ≤11.如图是一次函数1y kx b =+与2y x a =+的图象,则不等式kx b x a ++<的解集是( )A .0x >B .0x <C .3x >D .3x <12.如果a b >,可知下面哪个不等式一定成立( ) A .a b ->-B .11a b< C .2a b b +> D .2a ab >二、填空题13.小张同学在解一元一次不等式时,发现一个不等式右边的数被墨迹污染看不清了,所看到的部分不等式是13x -<■,他查看练习本后的答案知道这个不等式的解是2x >,则被污染的数是__________.14.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.15.若不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,则m 的取值范围是__________.16.若不等式组0122x a x x +≥⎧⎨->-⎩恰有四个整数解,则a 的取值范围是_________.17.若关于x 的不等式组0521x m x -<⎧⎨-≤⎩的整数解有且只有4个,则m 的取值范围是:__________.18.关于x 、y 的二元一次方程组313x y mx y +=+⎧⎨+=⎩的解满足21x y +<,则m 的取值范围是_________.19.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是_____.20.某同学设计了一个程序:对输入的正整数x ,首先进行奇偶识别,然后进行对应的计算,如下图所示.如果按1,2,3…的顺序依次逐个输入正整数x ,则首次输出大于100的y 的值是__________.三、解答题21.已知a ,b 是某一等腰三角形的底边长与腰长,且23a b +=. (1)求a 的取值范围;(2)设32c a b +=,求c 的取值范围22.某校组织元旦汇演,准备购进A ,B 两种文具共40件作为奖品,设购进A 种文具x 件,总费用为y 元.A ,B 文具的费用与x 的函数关系如下表.x (件)8 9 12 A 种文具费用(元) 120 135 ______ B 种文具费用(元)640______560(2)求y 关于x 的函数表达式.(3)当A 种文具的费用不大于B 种文具的费用时,求总费用y 的最小值. 23.在平面直角坐标系中,已知直线经过()3,7A -,()2,3B -两点. (1)画出该一次函数的图象,求经过A ,B 两点的直线的解析式; (2)观察图象直接写出0y ≤时x 的取值范围;(3)求这个一次函数的图象与坐标轴所围成的三角形的面积.24.在2019年全国青少年信息学联赛中,巴蜀中学创历史新高,有69人获得“全国信息学联赛一等奖”,充分展现了巴蜀人探索求知的精神,实力冠绝重庆.学校想借此提升信息课的教学质量,准备更换一批硬件设备,包括电脑主机,显示器和鼠标.其中学校通过招标拟采购两种类型的鼠标,分别为无线鼠标和有线鼠标.根据计划的采购清单,采购12个无线鼠标和16个有线鼠标共花费972元,采购25个无线鼠标比采购8个有线鼠标多花费909元.(1)求采购的无线鼠标和有线鼠标单价各为多少?(2)学校本次计划拟采购两种鼠标一共420个,若采购的无线鼠标数量不少于有线鼠标的数量,用W (单位:元)表示本次计划采购的总费用,请求出W 的最小值.25.近两年,重庆市奉节县紧紧围绕“村有骨干产业、户有致富门路”的发展思路,大力实施农产品产业扶贫项目,实现助农增收其中“乡坛子”什锦套菜礼盒、奉节脐橙10km 装广受好评,单价分别为100元/盒和60元/盒.(1)某公司大力响应扶贫政策,准备用不低于15000元购买什锦套菜礼盒、奉节脐橙共200盒,则至少购入什锦套菜礼盒多少盒?(2)2021年春节将至,该公司准备再次购入以上两种产品作为员工新春福利.恰逢“学习强国”重庆学习平台开展“党员直播带货、‘渝’你抗疫助农”扶贫农产品公益直播活动.直播中,什锦套菜礼盒以原价8折销售,该公司购买数量在(1)问最少数量的基础上增加了5%2m ;奉节脐橙售价比原价降低了815m 元,购买数量在(1)问奉节脐橙最多数量的基础上增加了40%.该公司在直播间下单后实际花费比(1)问中最低花费增加2350元,求m 的值.26.解不等式:()3157x x +≤+,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据不等式的性质逐个判断即可. 【详解】解:A .不等式a b >两边都加上4,不等号的方向不变,即44a b +>+,原变形成立,故此选项不符合题意;B .不等式a b >两边都减去3,不等号的方向不变,即33a b ->-,原变形成立,故此选项不符合题意;C .不等式a b >两边都除以2,不等号的方向不变,即22a b>,原变形成立,故此选项不符合题意;D .不等式a b >两边都乘以2-,不等号的方程改变,即22a b -<-,原变形不成立,故此选项符合题意;故选:D.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键,注意:①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变;:②不等式的性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式的性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.2.B解析:B【分析】不等式组整理后,利用有解的条件确定出m的范围即可.【详解】不等式组整理得:33xx m<⎧⎨>⎩,由不等式组有解,得到3m<3,解得:m<1.故选:B.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.3.C解析:C【解析】解:5335x xx a-+⎧⎨⎩>①<②,由①得:x>4.∵不等式组无解,∴a≤4.故选C.点睛:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).4.D解析:D【分析】根据不等式的性质,可得答案.【详解】A、不等式的两边都减1,不等号的方向不变,故A错误;B、当a<0时,不等式两边乘负数,不等号的方向改变,故B错误;C、当c<0时,ac<bc,故C错误;D、不等式两边乘(或除以)同一个正数,不等号的方向不变,故D正确;故选:D.【点睛】本题考查了不等式的基本性质.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.5.D解析:D 【分析】求出方程的解,根据已知得出a-3≥0,求出即可. 【详解】解:解方程a-x=3得:x=a-3, ∵方程的解是非负数, ∴a-3≥0, 解得:a≥3, 故选:D . 【点睛】本题考查了一元一次方程的解,解一元一次不等式,解一元一次方程的应用,关键是得出一个关于a 的不等式.6.B解析:B 【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围. 【详解】解不等式x ﹣m <0,得:x <m , 解不等式7﹣2x ≤2,得:x ≥52, 因为不等式组有解,所以不等式组的解集为52≤x <m , 因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5, 所以5<m ≤6. 故选:B . 【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.7.B解析:B 【分析】 结合题意,得12x k =,22x k-=;结合1x <2x ,根据不等式的性质,得k 0<;再结合1y kx =-与y 轴的交点,即可得到答案.∵一次函数1y kx =-的图像经过点A (1x ,1)和点B (2x ,-3) ∴111kx =-,231kx -=- ∴12x k =,22x k-= ∵1x <2x∴22k k -< ∴k 0<∴选项A 和C 错误 当0x =时,1y =- ∴选项D 错误 故选:B . 【点睛】本题考查了一次函数、不等式的知识;解题的关键是熟练掌握一次函数图像和不等式的性质,从而完成求解.8.D解析:D 【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值. 【详解】解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩,解不等式1x a -<-得:1x a <-, 解不等式113x-≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-, 由数轴知该不等式组有3个整数解, 所以这3个整数解为-2、-1、0, 则11a -=, 解得:2a =, 故选:D . 【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.9.B【分析】联立两直线解析式,解关于x 、y 的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可. 【详解】联立12y x y x a =+⎧⎨=-+⎩,解得:1323a x a y -⎧=⎪⎪⎨+⎪=⎪⎩,∵交点在第一象限,∴103203a a -⎧>⎪⎪⎨+⎪>⎪⎩,解得:1a >. 只有3a =符合要求. 故选:B . 【点睛】本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a 看作常数表示出x 、y 是解题的关键.10.B解析:B 【分析】根据运行程序,第一次运算结果小于等于95,第二次运算结果大于95列出不等式组,然后求解即可. 【详解】解:由题意得,()2195221195x x +≤⎧⎪⎨++⎪⎩①>②解不等式①得,47x ≤, 解不等式②得,23x >, ∴2347x ≤<, 故选:B . 【点睛】本题考查了一元一次不等式组的应用,读懂题目信息,理解运行程序并列出不等式组是解题的关键.11.C【分析】根据函数图象可以直接判断本题的答案. 【详解】解:结合图象,当3x >时,函数1y kx b =+在函数2y x a =+的下方, 即不等式kx b x a ++<的解集是3x >; 故选:C . 【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,一元一次不等式的解集就是确定直线=+y kx b 在另一条直线(或者x 轴)上(或下)方部分所有点的横坐标的集合;这是数形结合的典型考查.12.C解析:C 【分析】由基本不等式a >b ,根据不等式的性质,逐一判断. 【详解】 解:A 、∵a >b , ∴-a <-b ,故本选项不符合题意; B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意; C 、∵a >b , ∴a+b >2b ,故本选项符合题意; D 、∵a >b ,且a >0时, ∴a 2>ab ,故本选项不符合题意; 故选:C . 【点睛】本题考查了不等式的性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变. (2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变.二、填空题13.−5【分析】设被污染的数为a表示出不等式的解集根据已知解集确定出a 的值即可【详解】解:设被污染的数为a不等式为1−3x<a解得:x>由已知解集为x>2得到=2解得:a=−5故答案为:−5【点睛】此题解析:−5【分析】设被污染的数为a,表示出不等式的解集,根据已知解集确定出a的值即可.【详解】解:设被污染的数为a,不等式为1−3x<a.解得:x>1-3a,由已知解集为x>2,得到1-3a=2,解得:a=−5,故答案为:−5【点睛】此题考查了不等式的解集,熟练掌握运算法则是解本题的关键.14.0【分析】求出不等式组的解集确定出最小整数解即可【详解】不等式组整理得:不等式组的解集为:-1<x≤2最小的整数解为0故答案为:0【点睛】本题主要考查一元一次不等式组的整数解掌握一元一次不等式组的求解析:0【分析】求出不等式组的解集,确定出最小整数解即可.【详解】不等式组整理得:21 xx≤⎧⎨>-⎩,∴不等式组的解集为:-1<x≤2,∴最小的整数解为0.故答案为:0.【点睛】本题主要考查一元一次不等式组的整数解,掌握一元一次不等式组的求解是解题关键.15.【分析】首先通过解不等式得出的解集和的解集然后根据题意建立一个关于m的不等式从而确定m的范围即可【详解】解得解得∵不等式的解集中的每一个值都能使关于的不等式成立解得【点睛】本题主要考查不等式的解集掌解析:35 m<-【分析】首先通过解不等式得出25123xx+-≤-的解集和3(1)552()x x m x-+>++的解集,然后根据题意建立一个关于m 的不等式,从而确定m 的范围即可.【详解】25123x x +-≤-, 解得45x ≤. 3(1)552()x x m x -+>++, 解得12m x -<. ∵不等式25123x x +-≤-的解集中x 的每一个值,都能使关于x 的不等式3(1)552()x x m x -+>++成立,1425m -∴>, 解得35m <-. 【点睛】本题主要考查不等式的解集,掌握解不等式的方法是解题的关键.16.3≤a <4【分析】求出每个不等式的解集根据找不等式组解集的规律找出不等式组的解集根据已知不等式组有四个整数解得出不等式组-4<-a≤-3求出不等式的解集即可得答案【详解】解不等式①得:x≥-a 解不等解析:3≤a <4【分析】求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知不等式组有四个整数解得出不等式组-4<-a≤-3,求出不等式的解集即可得答案.【详解】0122x a x x +≥⎧⎨->-⎩①② 解不等式①得:x≥-a ,解不等式②x <1,∴不等式组得解集为-a≤x <1,∵不等式组恰有四个整数解,∴-4<-a≤-3,解得:3≤a <4,故答案为:3≤a <4【点睛】本题考查了解一元一次不等式(组),不等式组的整数解,能根据不等式组的解集得出关于a 的不等式组是解题关键.17.【分析】先解不等式组得到解集为:<此时的整数解有且只有4个结合数轴分析可得到的取值范围【详解】解:由①得:<由②得:所以不等式组的解集为:<不等式组的整数解有且只有4个如图不等式组的整数解为<故答案 解析:56m <≤【分析】先解不等式组,得到解集为:2x ≤<m ,此时的整数解有且只有4个,结合数轴分析可得到m 的取值范围.【详解】解:0521x m x -<⎧⎨-≤⎩①②由①得:x <m ,由②得:24,x -≤-2,x ∴≥所以不等式组的解集为:2x ≤<m ,不等式组的整数解有且只有4个,如图,不等式组的整数解为2,3,4,5,5∴< 6.m ≤故答案为:56m <≤.【点睛】本题考查的是不等式组的整数解问题,掌握利用数轴分析得出不等式组中字母的取值范围是解题的关键.18.【分析】先解关于关于xy 的二元一次方程组的解集其解集由a 表示;然后将其代入再来解关于a 的不等式即可【详解】由①+②得4x+2y=4+∴由得解得故答案为【点睛】考查解一元一次不等式解二元一次方程组熟练解析:2m <-【分析】先解关于关于x ,y 的二元一次方程组313x y m x y +=+⎧⎨+=⎩的解集,其解集由a 表示;然后将其代入21x y +<,再来解关于a 的不等式即可.【详解】31 3,x y m x y +=+⎧⎨+=⎩①②由①+②得4x +2y =4+m ,422m x y ++=, ∴由21x y +<,得 41,2m +<, 解得,2m <-.故答案为2m <-.【点睛】考查解一元一次不等式, 解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键. 19.m >﹣2【分析】首先解关于x 和y 的方程组利用m 表示出x+y 代入x+y >0即可得到关于m 的不等式求得m 的范围【详解】解:①+②得2x+2y =2m+4则x+y =m+2根据题意得m+2>0解得m >﹣2故答解析:m >﹣2【分析】首先解关于x 和y 的方程组,利用m 表示出x +y ,代入x +y >0即可得到关于m 的不等式,求得m 的范围.【详解】解:2133x y m x y -=+⎧⎨+=⎩①②, ①+②得2x +2y =2m +4,则x +y =m +2,根据题意得m +2>0,解得m >﹣2.故答案是:m >﹣2.【点睛】此题考查解二元一次方程组,求不等式的解集,正确计算是解题的关键.20.101【分析】根据图示可知此题需要分两种情况讨论:①假设输入正整数x 为偶数时由题意得:;②假设输入的正整数x 为奇数时由题意得:5x-23>100分别解出不等式的解集再确定x 的值【详解】解:①假设输入解析:101【分析】根据图示可知此题需要分两种情况讨论:①假设输入正整数x 为偶数时,由题意得:1891002x ;②假设输入的正整数x 为奇数时,由题意得:5x-23>100,分别解出不等式的解集,再确定x 的值.【详解】解:①假设输入正整数x 为偶数时,由题意得:1891002x , 解得:x >22,∵x 为偶数,∴x=24,当x=24时,对应的y=124891012; ②假设输入的正整数x 为奇数时,由题意得:5x-23>100,解得:x >24.6,∵x 为奇数,∴x=25,当x=25时,对应的y=5×25-23=102;∵24<25,∴首次大于100时对应的x=24,y=101,故答案为:101.【点睛】此题主要考查了一元一次不等式的应用,关键是看懂题意与图示,根据题目中的条件列出不等式,注意要分两种情况进行计算.三、解答题21.(1)0 1.5a <<;(2)36c <<【分析】(1)根据23a b+=可得23b a -=,再根据三角形三边关系得2b >a ,即可求出a 的取值范围;(2)用含a 的代数式表示c ,再根据a 的取值范围和不等式的性质即可求得c 的取值范围.【详解】解:(1)∵23a b+=, ∴23b a -=,∵a ,b 是某一等腰三角形的底边长与腰长,∴b+b=2b >a >0∴3a a ->>0,解得:0 1.5a <<;(2)∵32ca b +=,23a b +=, ∴32c a b +==3323a a a +-=+∵0 1.5a <<,∴3236a <+<,即36c <<.【点睛】本题考查等式的性质、不等式的性质、解一元一次不等式、三角形的三边关系,掌握不等式的性质,以及三角形的三边关系是解答的关键.22.(1)180,620;(2)5800y x =-+;(3)690元【分析】(1)A 文具的单价:120÷8=15元,B 文具的单价:640÷32=20元,计算12×15,31×20填入表格中即可;(2)根据总费用=A 费用+B 费用计算即可;(3)把A 种文具的费用不大于B 种文具的费用转化为不等式,后利用一次函数的增减性求最值即可.【详解】(1)设购进A 种文具x 件,则B 种文具数量为()40x -件,∴()1520405800y x x x =+-=-+;(3)∵()152040x x ≤-,∴6227x ≤, ∵5800y x =-+,50k =-<,∴y 随着x 的增大而减小,∴当22x =时,522800690y =-⨯+=最小值,答:总费用最少为690元.【点睛】本题考查了一次函数的解析式,一次函数的增减性,不等式的构造与求解,熟练运用生活经验,把生活问题准确转化为函数模型求解是解题的关键.23.(1)y =−2x +1,图像见详解;(2)x≥12;(3)14【分析】(1)建立平面直角坐标系,描出A (−3,7)、B (2,−3)两点,画直线AB 即可,可设一次函数的表达式为y =kx +b ,进而利用方程组求得k 、b 的值,即可得到函数解析式; (2)由直线在x 轴下方部分所对应的y≤0,进而即可求解;(3)求出直线与x ,y 轴的交点坐标,结合三角形的面积公式,即可求解.【详解】(1)一次函数图像如图所示:设一次函数的表达式为y =kx +b ,由题意,得:3723k b k b -+⎧⎨+-⎩==,解得:21k b ==-⎧⎨⎩, ∴一次函数的表达式为y =−2x +1;(2)令y=0,代入y =−2x +1得:x=12, ∴直线与x 轴的交点坐标为(12,0), ∵直线在x 轴下方部分所对应的y≤0, ∴当0y ≤时x 的取值范围:x≥12; (3)令x=0,则y=1,∴直线与y 轴的交点坐标为(0,1),∴一次函数的图象与坐标轴所围成的三角形的面积=1111224⨯⨯=. 【点睛】本题主要考查一次函数的图像和性质以及待定系数法,画出函数图像,理解函数图像上的点的坐标特征,是解题的关键.24.(1)45元, 27元.(2)15120元.【分析】(1)设采购的无线鼠标单价为x 元,有线鼠标单价为y 元,根据“采购12个无线鼠标和16个有线鼠标共花费972元,采购25个无线鼠标比采购8个有线鼠标多花费909元”列出二元一次方程组求解即可;(2)设采购的无线鼠标的个数为a 个,则采购的有限鼠标的个数为(420-a)个,根据题意求出a 的取值范围,根据(1)中无线鼠标和有线鼠标的单价得出W 与a 的函数关系式,根据一次函数的性质解答即可.【详解】解:(1)设采购的无线鼠标单价为x 元,有线鼠标单价为y 元,根据题意得1216972258909x y x y +=⎧⎨-=⎩解得4527x y =⎧⎨=⎩答:采购的无线鼠标单价为45元,采购的无线鼠标单价为27元.(2)设采购的无线鼠标的个数为a 个,则采购的有限鼠标的个数为(420-a)个,根据题意得 a≥420-a解得a≥210,∵W=45a+27(420-a)=18a+11340,∴当a 取最小值时,W 取最小值,∴当a=210时,W 取最小值W 最小值=18×210+11340=15120,∴W 的最小值为15120元.【点睛】本题考查了一次函数的实际应用,一元一次不等式,实际问题与二元一次方程组.解(1)题的关键是根据题意找出等量关系建立方程组;解(2)题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和不等式的性质解答.25.(1)至少购入什锦套菜礼盒75盒;(2)15m =.【分析】(1)设购进什锦套菜礼盒x 盒,则购进奉节脐橙礼盒(200-x )盒,根据总价值不低于15000元,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论; (2)根据销售总价=销售单价×销售数量结合题意可得出关于m 的一元一次方程,解之即可得出结论.【详解】(1)设购进什锦套菜礼盒x 盒,则购进奉节脐橙礼盒(200-x )盒,根据题意得:()6020010015000x x -+≥,解得:75x ≥.答:至少购入什锦套菜礼盒75盒;(2)根据题意得:()()5810080%751%6020075140%150002350215m m ⎛⎫⎛⎫⨯⨯++--+=+ ⎪ ⎪⎝⎭⎝⎭, 整理得:1708503m =, 解得:15m =.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元一次方程.26.2x ≥-,在数轴上表示见解析【分析】利用不等式的性质解一元一次不等式的解集,然后将解集表示在数轴上即可.【详解】解:3(1)57x x +≤+,去括号,得: 3357x x +≤+,移项、合并同类项,得:24x -≤ ,化系数为1,得:2x ≥- ,∴不等式的解集为2x ≥-,不等式的解集在数轴上表示为:【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握一元一次不等式的解法步骤,会在数轴上表示不等式的解集是解答的关键,特别注意不等号的方向和端点的空(实)心.。
北师大版初2数学8年级下册 第2章 一元一次不等式与一元一次不等式组 单元测试(二)(含答案)
第二章《一元一次不等式与一元一次不等式组》章测试(二)一、选择。
1.已知4<m<5,则关于x的不等式组420x mx-<⎧⎨-<⎩的整数解共有( )A.1个B.2个C.3个D.4个2.若关于x的不等式组530xx m-≥⎧⎨-≥⎩有实数解,则实数m的取值范围()A.53m≥B.53m<C.53m>D.53m≤3.不等式组110320xx⎧+>⎪⎨⎪-⎩…的解集在数轴上可表示为( )A.B.C.D.4.下列说法正确的有()①x=4是x−3>1的解;②不等式x−3<0的解有无数个;③x>5是不等式x+2>3的解集;④x=3是x+2>1的解;⑤不等式x+2<5有无数个正整数解;A.1个B.2个C.3个D.4个5.某款捷安特自行车进价是每辆1000元,标价是每辆1500元,店庆期间,商场为了答谢顾客,进行打折促销活动,若要保证利润不低于20%,则最多可打()折.A.6B.7C.8D.96.据天气预报2018年4月12日大田县的最高气温是32℃,最低气温是21℃,则当天大田县气温t (℃)的变化范围是( )A .t >21B .t <32C .21<t <32D .21≤t≤327.若关于x 的方程5x -2m =-4-x 的解在2与10之间(不包括2和10),则m 的取值范围是( )A .m>8B .m<32C .8<m<32D .m<8或m>328.若某人要完成2.1千米的路程,并要在18分钟内到达,已知他每分钟走90米,若跑步每分钟可跑210米,问这人完成这段路程,至少要跑多少分钟?设要跑x 分钟,则列出的不等式为( )A .21090(18)2100x x +-≥B .90210(18)2100x x +-≤C .21090(18) 2.1x x +-≤D .21090(18) 2.1x x +->9.若关于x 的方程3m(x +1)+5=m(3x -1)-5x 的解是负数,则m 的取值范围是( )A .m >-54B .m <-54C .m >54D .m <5410.正五边形广场 ABCDE 的边长为 80 米,甲、乙两个同学做游戏,分别从 A 、 C 两点处同时出发,沿 A B C D E A ----- 的方向绕广场行走,甲的速度为 50/米分,乙的速度为 46/米分,则两人第一次刚走到同一条边上时 ()A .甲在顶点 A 处B .甲在顶点 B 处C .甲在顶点C 处D .甲在顶点D处二、填空。
北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组单元测试卷含答案
北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组单元测试卷一、选择题(共10题;共30分)1.若m>n,则下列不等式正确的是()A. m﹣2<n﹣2B.C. 6m<6nD. ﹣8m>﹣8n2.下列不等式组中,无解的是()A. B. C. D.3.下列不等关系中,正确的是()A. a不是负数表示为a>0B. x不大于5可表示为x>5C. x与1的和是非负数可表示为x+1>0D. m与4的差是负数可表示为m-4<04.用不等式表示图中的解集,其中正确的是( )A. x>-3B. x<-3C. x≥-3D. x≤-35.不等式组的解集是()A. x≥2B. ﹣1<x≤2C. x≤2D. ﹣1<x≤16.不等式4﹣5x≥4x﹣6的非负整数解的个数是()A. 2个B. 3个C. 4个D. 5个7.一元一次不等式组的解集在数轴上表示正确的是()A. B. C. D.8.如图,一次函数()的图像与正比例函数()的图像相交于点,已知点的横坐标为1,则关于的不等式的解集为()A. B. C. D.9.小明拿40元钱购买雪糕和矿泉水,已知每瓶矿泉水2元,每支雪糕1.5元,他买了5瓶矿泉水,x支雪糕,则所列关于x的不等式正确的是()A. B. C. D.10.若整数同时满足不等式与,则该整数x是()A. 1B. 2C. 3D. 2和3二、填空题(共6题;共24分)11.不等式5x﹣3<3x+5的非负整数解是________.12.一次数学知识竞赛中,竞赛题共30题.规定:答对一道题得4分,不答或答错一道题倒扣2分,甲同学答对25道题,答错5道题,则甲同学得________分;若得分不低于60分者获奖,则获奖者至少应答对________道题.13.按如图所示的程序进行运算时,发现输入的整数x恰好经过3次运算输出,则输入的x的最小整数值是________.14.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价________元商店老板才能出售.15.若不等式的解集是x>3,则a的取值范围是________ .16.若不等式组的解集为3≤x≤4,则不等式ax+b<0的解集为________.三、解答题(共7题;共46分)17.解不等式组,并把它的解集在数轴上表示出来.18.小明解不等式的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.19.2018年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行.本届论坛期间,中国同30多个国家签署经贸合作协议.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品的销售收入相同,3件甲种商品比2件乙种商品的销售收入多1500元.(1)甲种商品与乙种商品的销售单价各多少元?(2)若甲、乙两种商品的销售总收入不低于5400万元,则至少销售甲种商品多少万件?20.已知关于x的不等式组恰好有两个整数解,求实数a的取值范围.21.已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.22.若关于x、y的二元一次方程组的解满足x+y>﹣,求出满足条件的m的所有正整数值.23.自学下面材料后,解答问题.分母中含有未知数的不等式叫分式不等式.如:等.那么如何求出它们的解集呢?根据我们学过的有理数除法法则可知:两数相除,同号得正,异号得负.其字母表达式为:(1)若a>0,b>0,则>0;若a<0,b<0,则>0;(2)若a>0,b<0,则<0;若a<0,b>0,则<0.反之:(1)若>0,则或(2)<0,则____________.根据上述规律,求不等式>0的解集.答案与解析一、选择题1. B【解答】A、将m>n两边都减2得:m﹣2>n﹣2,不符合题意;B、将m>n两边都除以4得:,符合题意;C、将m>n两边都乘以6得:6m>6n,不符合题意;D、将m>n两边都乘以﹣8,得:﹣8m<﹣8n,不符合题意,故答案为:B.2. C【解答】解出不等式组的解集分别是:A、其解集为x<-4;B、其解集为-4<x<2;C、无解;D、其解集为x>2根据口诀可判断C中无解。
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(标准困难)(含答案解析)
北师大版初中数学八年级下册第二单元《一元一次不等式与一元一次不等式组》(标准困难)(含答案解析)考试范围:第二单元; 考试时间:120分钟;总分:120分,第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 给出下列数学表达式: ①−3<0; ②4x+3y>0; ③x=5; ④x2−xy+y2; ⑤x+2>y−7.其中不等式的个数是.( )A. 5B. 4C. 3D. 12. 下列不等关系表示正确的是.( )A. a是负数可表示为a>0B. x不大于3可表示为x>3C. m与4的差是负数可表示为m−4<0D. x与2的和为非负数可表示为x+2>03. 已知2m>4m,那么.( )A. m一定是正数B. m是0或负数C. m是非负数D. m一定是负数4. 设a,b,c表示三种不同物体的质量,用天平称两次,情况如图所示,则这三种物体的质量从小到大排序正确的是.( )A. c<b<aB. b<c<aC. c<a<bD. b<a<c5. 等式√x−3√x+1=√x−3x+1成立的x的取值范围在数轴上可表示为( )A. B. C. D.6. 已知关于x的不等式(1−a)x>1的解集为x<11−a,则a的取值范围是( )A. a≥1B. 0≤a<1C. a>1D. 0<a≤17. 欲用甲、乙两种运输车将46t抗旱物资运往灾区,甲种运输车载质量为5t,乙种运输车载质量为4t,若安排车辆不超过10辆,则甲种运输车至少应安排.( )A. 4辆B. 5辆C. 6辆D. 7辆8. 某商店老板销售一种商品,他要以不低于进价20%的利润才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若小李想买下标价为360元的这种商品,商店老板让价的最大限度为.( )A. 160元B. 120元C. 100元D. 82元9. 函数y =kx +b(k,b 为常数,且k ≠0)的图象如图所示,则关于x 的不等式kx +b >0的解集为.( )A. x >0B. x <0C. x <2D. x >210. 如图,一次函数y =kx +b(k,b 为常数,且k ≠0)与正比例函数y =ax (a 为常数,且a ≠0)的图象相交于点P ,则不等式kx +b >ax 的解集是.( )A. x >1B. x <1C. x >2D. x <211. 用若干辆载重量为6吨的货车运一批货物,若每辆货车只装4吨,则剩下18吨货物;若每辆货车装6吨,则最后一辆车装的货物不足5吨,若设有x 辆货车,则x 应满足的不等式组是( )A. {6x −(4x +18)>06x −(4x +18)≤5B. {(4x +18)−6(x −1)>0(4x +18)−6(x −1)≤5C. {6(x −1)−(4x +18)⩾06(x −1)−(4x +18)<5D. {(4x +18)−6(x −1)⩾0(4x +18)−6(x −1)<5 12. 若关于x 的不等式组{2x +3>12x −a ≤0恰有3个整数解,则实数a 的取值范围是( ) A. 7<a <8 B. 7<a ≤8 C. 7≤a <8 D. 7≤a ≤8第II 卷(非选择题)二、填空题(本大题共4小题,共12.0分)13. 当x________时,代数式x+32−5x−16的值是非负数.14. 如图,一次函数y=x+b与一次函数y=kx+4的图象相交于点P(1,3),则关于x的不等式x+b>kx+4的解集是.15. 不等式组╔╔ \ begin{cases}3x+1 .16. 我们定义|a bc d |=ad−bc,例如|2345|=2×5−3×4=−2,则不等式组1<|1x34|<3的解集是.三、解答题(本大题共9小题,共72.0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册《一元一次不等式与不等式组》单元检测卷考试时间120 分钟,总分120 分)一、选择题(每小题 3 分,共30 分)1.不等式a<b 如下四种变形,其中错误的是( )11A.a-1<b- 1 B.-a>- b C. a> b D.2a+1<2b+ 1 222.一个关于x 的一元一次不等式组的解集在数轴上的表示如图的解集是( )图1A.x>1 B.x≥1 C.x>3 D.x≥33x +1>2x- 1 ,3.不等式组的整数解的和是( )1-x>-1A.- 2 B.0 C. 1 D.24.小华和爸爸、妈妈三人玩跷跷板,三人的体重一共为150 千克,爸爸坐在跷跷板的一端,体重只有妈妈一半的小华和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小华的体重应小于( )A.24千克B.25千克C.49千克D.50 千克5.如果2m,m,1-m这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是( )图21 所示,则此不等式组A .m >0B . m >123观察图 3 中函数 y 1 和 y 2的图象,当 x =2时,两个函数值的大小关系为 y 1>y 2 B . y 1<y 2 C .y 1=y 2 D . y 1≥y 2如图 4,直线 y =kx +b 经过点 A (3, 1)和点 B (6 ,0) ,则不等式组 0<kx +b <31x 的 解集为 ( )A .x <0B . 0<x <3C .3<x <6D .x >6C . 1m <0 D . 0< m <26. 已知方程组y -2x =m ,的解 x , y 满足 2x +y ≥0,则 m 的取值范围是A . 4m ≥- 3 B . 4m ≥ 3C . m≥1 4D .- 3≤ m ≤17. 若关于 x 的 元一次不等式组x - 2m<0, 有解,则 m 的取值范围为( x +m>2A . 2m >- 3 B .22 m ≤3 C .m > 3 2D .m ≤- 38. A .9.图310.今年校团委举办了“中国梦”歌咏比赛,李老师为鼓励同学们,带了50 元钱去购买甲、乙两种笔记本作为奖品.已知甲种笔记本每本7元,乙种笔记本每本 5 元,每种笔记本至少买 3 本,则李老师购买笔记本的方案共有()A.3 种B.4 种C.5 种D.6 种第Ⅱ卷(非选择题共70 分)二、填空题(每小题4分,共24 分)11.若关于x 的方程(1-m)x=1-2x 的解是一个负数,则m的取值范围是_____ .2x -1>0,12.不等式组 1 的解集是_________________ .-(x+2)<0213.小张说他知道一个两位数,如果将这个两位数加上36 后,正好等于将两个数字交换位置后所得的两位数,同时这个两位数的个位数字与十位数字之和大于10. 你知道这个两位数是多少吗?试试看,将它找出来写在这里: _________________ .4x + a 2x+114.若关于x 的不等式3 >1 的解都是不等式-3 <0 的解,则 a 的取值范围是a b 1 b15.对于整数a,b,c,d,符号表示运算ac -bd. 已知1< <3,则b+dd c d 4的值是____ .x>3,16.某班数学兴趣小组对不等式组进行讨论得到以下结论:x≤a①若a=5,则不等式组的解集为3<x≤5;②若a=2,则不等式组无解;③若不等式组无解,则 a 的取值范围为a<3;④若不等式组只有两个整数解,则 a 的值可以为 5.1.其中,正确结论的序号是____________ .三、解答题(共66 分)17.(6 分)解不等式2(x+1)-1≥3x+2,并把它的解集在图5中的数轴上表示出来.18.(6 分)放学时,小明问小东今天的数学作业是哪几道题,小华回答说:“不等式组x - 2 +3≥x+1,2的整数解就是今天数学作业的题号.”聪明的你知道他们今天的数学1-3(x-1)<8-x 作业是哪几道题吗?19.(8 分)函数y=kx+b和函数y=ax+m的图象如图 6 所示,求下列不等式(组)的解(1) 不等式kx +b<ax +m的解集是____________________________________;(2) 不等式组kx +b<0,ax +m>0的解集是______;(3) 不等式组kx +b>0,ax +m<0的解集是______;(4) 不等式组kx +b<0,ax +m<0的解集是______.x 6m- 1 5m- 1x 的方程6-3=x-2的解大于1?21.(8 分)已知关于x,y 的方程组5x+2y=11a+18,的解满足x > 0,y> 0,求实数2x-3y=12a-8a 的取值范围.20.(8 分) 当m取何值时,关于图622.(8 分)根据下列对话,解答问题:图7王女士购物超过多少元时在乙商场购物比在甲商场购物优惠?23.(10 分) 新年来临之际,某中学准备添置一些祝福祖国的“幸运结”挂在教室.现有两种方案供选择:若到商店去批量购买,每个“幸运结”需要10 元;若组织一些同学自己制作,每个“幸运结”的成本是 4 元,无论制作多少,还需付场地租金200 元.亲爱的同学们,请你帮该校出个主意,用哪种方案添置“幸运结”的费用较少?24.(12 分) 某生态农业园种植的青椒除了运往市区销售外,还可以让市民亲自去生态农业园购买.已知今年5月份青椒在市区、园区的销售价格分别为6元/千克、4元/千克,今年 5 月份一共销售了3000 千克,总销售额为16000 元.(1) 今年 5 月份该生态农业园在市区、园区各销售了多少千克青椒?(2)6 月份是青椒的产出旺季,为了促销,生态农业园决定区 6 月份将该青椒在市区、园的销售价格均在今年 5 月份价格的基础上降低a%,预计这种青椒在市区、园区的销量将在今年 5 月份的基础上分别增长30%,20%.要使 6 月份该青椒的总销售额不低于18360 元,则a 的最大值是多少?1.C 2 .C 3. B 4.B 5.C 6.A 7.C 8.B9.C 10.D 11. m>3112.x>213.48或59 14. a≤515.3或- 3 16. ①②④17.解:去括号,得2x+2-1≥3x+ 2.移项,得2x-3x≥2-2+1.合并同类项,得-x≥1.系数化为1,得x≤- 1.把这个不等式的解集表示在数轴上如图所示.x- 2+3≥x+1,①18.解:21-3(x-1)<8-x,②解不等式①,得x≤2;解不等式②,得x>- 2.∴原不等式组的解集是-2<x≤ 2.∵作业的题号为正整数,∴x=1,2,∴他们今天的数学作业是第1,2 题.19.(1) x<1 (2) x<- 2 (3) x>3(4) -2<x<320.[解析]先解关于x 的方程,用含m的代数式表示x,然后将这个代数式转化为不等式,从而求出m的值.解:由原不等式得x-2(6 m-1)=6x-3(5 m-1),x-12m+2=6x-15m+3,1 x=5(3m-1).1 依题意有(3 m-1)>1,3m>6,m>2.5x 6m- 1 5m- 1 ∴当m> 2 时,关于x 的方程-=x-的解大于 1.6 3 25x+2y=11a+18,①21.解:2x-3y=12a-8,②①×3,得15x+6y=33a+54,③②×2,得4x-6y=24a-16,④③+④,得19x=57a+38,解得x=3a+ 2.把x=3a+2 代入①,得5(3 a+2)+2y=11a+18,解得y=-2a+4,x=3a+2,∴方程组的解是y =-2a+ 4.∵x>0,y>0,3a+2>0,① ∴-2a+4>0,②2由①得a>-3,由②得a< 2,2∴a 的取值范围是-3<a<2.322.解:设王女士购物 x ( x > 100) 元时在乙商场购物比在甲商场购物优惠.根据题意, 得100+ 0.8( x - 100) < 50+ 0.9( x -50) ,解得 x > 150.答:王女士购物超过 150 元时在乙商场购物比在甲商场购物优惠.23.解:设该校需要“幸运结” x 个,则直接购买需 10x 元,自制需 (4 x + 200) 元.分 两种情况:1(1) 若 10x < 4x + 200,解得 x <333,即该校需要的“幸运结”少于或等于 33 个时,到商店去批量购买的费用较少;1(2) 若 10x > 4x + 200,解得 x >333,即该校需要的“幸运结”多于 33 个时,组织同学自己制作的费用较少.24.解: (1) 设今年 5 月份该生态农业园在市区销售了 x 千克青椒,在园区销售了 y 千 答:今年 5月份该生态农业园在市区销售了 2000千克青椒, 在园区销售了 1000千克青 椒.(2) 由题意,得 6(1-a %)×2000×(1+ 30%)+4(1 -a %)×1000×(1+20%)≥18360,解得 a ≤10.则 a 的最大值为 10. 克青椒.由题意,得x +y =3000, 6x +4y =16000, 解得 x = 2000, y = 1000.。