文科概率与统计(学生版)
高考概率统计文科知识点
高考概率统计文科知识点在文科高考中,概率统计是一个重要的考试内容。
理解和掌握概率统计的知识点对于应对考试至关重要。
下面将介绍一些高考概率统计的文科知识点。
一、概率的基本概念概率是指在某个事物中某个事件发生的可能性大小。
在高考文科中,概率的基本概念主要包括样本空间、随机事件、事件的概率等。
1.1 样本空间样本空间是指一个试验所有可能结果的集合。
例如,一次掷骰子的样本空间为S={1,2,3,4,5,6}。
1.2 随机事件随机事件是指在试验中可能发生的事件。
在样本空间中取一个子集,就表示一个随机事件。
例如,掷骰子出现奇数点数可以表示为A={1,3,5}。
1.3 事件的概率事件的概率是指事件发生的可能性大小。
事件A的概率可以用P(A)表示。
例如,在掷骰子实验中,掷出1的概率为P(A)=1/6。
二、基本概率公式高考文科中,基本概率公式主要包括加法公式和乘法公式。
2.1 加法公式加法公式是指对于两个不相容事件A和B,它们的概率之和等于事件A或B发生的概率。
公式如下:P(A∪B) = P(A) + P(B),其中∪表示并集。
2.2 乘法公式乘法公式是指对于两个独立事件A和B,它们同时发生的概率等于事件A发生的概率乘事件B发生的概率。
公式如下:P(A∩B) = P(A) * P(B),其中∩表示交集。
三、条件概率和独立性在概率统计中,条件概率和独立性是两个重要的概念。
3.1 条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
设A和B是两个事件,且P(A)>0,那么B在A发生的条件下的概率记作P(B|A),计算公式为:P(B|A) = P(A∩B) / P(A)。
3.2 独立性两个事件A和B相互独立,是指事件A的发生与否不影响事件B的发生与否。
具体而言,如果满足以下条件,则称事件A和B是独立事件:P(A∩B) = P(A) * P(B)。
四、排列组合在高考概率统计中,排列组合是非常重要的知识点。
文科统计概率知识点总结
文科统计概率知识点总结统计学是一门研究数据的收集、分析、解释和展示的学科。
统计学是一种通过数学方法来分析数据的学科,它有着广泛的应用领域,包括经济学、心理学、社会学和政治学等。
统计学的应用范围也非常广泛,涵盖从商业到医学的各个领域。
而概率是统计学中一个非常重要的概念,它可以帮助我们预测和理解各种现象发生的可能性。
本文将对文科统计学中的概率知识点进行总结和分析。
一、概率的概念概率是一个用来描述事件发生可能性的数学概念。
在统计学中,概率通常用来描述随机事件发生的可能性大小。
概率的取值范围是0到1之间,其中0表示事件不可能发生,1表示事件一定会发生。
在现实生活中,我们经常会面临各种不确定性,比如天气预报、投资风险、疾病传播等。
概率可以帮助我们对这些不确定性进行量化和分析。
二、概率的性质概率有一些基本的性质,这些性质对于理解和计算概率都非常重要。
其中包括:1. 互斥事件的概率:两个事件互斥指的是它们不能同时发生。
如果A和B是互斥事件,那么它们的概率满足P(A∪B) = P(A) + P(B)。
2. 独立事件的概率:两个事件独立指的是它们的发生不会相互影响。
如果A和B是独立事件,那么它们的概率满足P(A∩B) = P(A) × P(B)。
3. 补事件的概率:对于一个事件A,它的补事件指的是A不发生的情况。
补事件的概率满足P(A') = 1 - P(A)。
4. 加法法则:对于两个事件A和B,它们的概率和满足P(A∪B) = P(A) + P(B) - P(A∩B)。
5. 乘法法则:对于两个独立事件A和B,它们的概率乘积等于它们各自的概率。
这些性质可以帮助我们在实际问题中计算概率,而理解这些性质也对于我们理解概率的本质有很大帮助。
三、离散型随机变量的概率分布在统计学中,随机变量是一个可以随机取不同值的变量。
离散型随机变量是指其可能取值是有限的或者可数的,而不是连续的。
1. 离散型随机变量的概率质量函数:对于一个离散型随机变量X,其概率质量函数P(X=x)描述了X取各个可能值的概率。
必修3概率与统计复习导学(文)
概率与统计复习一、典型问题与方法(一)随机抽样:简单随机抽样、系统抽样、分层抽样简单随机抽样:各个个体被抽中的机会都相等,不放回抽取,常有抽签法、随机数法。
系统抽样:用简单随机抽样确定一个个体,再按一定规则(加间隔)抽取。
分层抽样的比较:已知总体内部组成结构,各层按比例抽取。
例1.1.为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是()A.1000名运动员是总体B.每个运动员是个体C.抽取的100名运动员是样本D.样本容量是1002.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k小组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是3.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生()A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人4.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②. 则完成①、②这两项调查宜采用的抽样方法依次是()A.分层抽样法,系统抽样法B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法D.简单随机抽样法,分层抽样法基础训练1.某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是( ).A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除一人,然后分层抽样2.某学校为了了解高一年级学生对教师教学的意见,打算从高一年级2007名学生中抽取50名进行抽查,若采用下面的方法选取:先用简单随机抽样从2007人中剔除7人,剩下2000人再按系统抽样的方法进行,则每人入选的机会()A. 不全相等B. 均不相等C. 都相等D. 无法确定3.有20位同学,编号从1至20,现在从中抽取4人作问卷调查,用系统抽样方法确定所抽的编号为()A.5,10,15,20B.2,6,10,14C.2,4,6,8D.5,8,11,144.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。
概率统计文科知识点总结
概率统计文科知识点总结概率统计的知识点涉及很多,包括基本概率论、统计学基础、抽样调查、推断统计、多元统计分析等等。
同时,概率统计还包括了一系列数学工具和模型,如随机变量、概率分布、统计推断和假设检验等内容。
下面我们来具体总结一下文科领域中概率统计的知识点。
1.基本概率论概率论是概率统计的基础,在文科领域中,基本概率论的内容包括了概率的定义、事件的概率、条件概率、独立事件、概率分布等内容。
了解基本概率论可以让文科学生更好地理解概率统计的相关知识,对于后续的学习具有重要的作用。
2.统计学基础统计学基础是概率统计的另一个重要内容,包括了统计量、样本集中趋势、样本离散程度、概率分布等内容。
统计学基础是文科领域中概率统计的重要组成部分,它主要用来描述和分析文科数据的规律和特征。
3.抽样调查抽样调查是文科领域中概率统计的一个重要应用,它主要用来获取文科数据样本。
在实际的文科研究中,抽样调查是获取数据的常用方法,通过对抽样调查的了解可以帮助文科学生更好地进行文科研究和分析。
4.推断统计推断统计是文科领域中概率统计的一个重要内容,它主要用来从样本数据中推断总体数据的特征和规律。
推断统计包括了点估计、区间估计、假设检验等内容,通过推断统计可以帮助文科学生更好地分析文科数据。
5.多元统计分析多元统计分析是文科领域中概率统计的一个拓展内容,它主要用来分析多个变量之间的关系。
在文科研究中,多元统计分析可以帮助文科学生更好地理解文科数据之间的关系,对于文科研究具有重要的意义。
除了上述内容之外,文科领域中概率统计还包括了一系列数学工具和模型,如随机变量、概率分布、统计推断和假设检验等内容。
这些内容都是文科学生在概率统计学习中需要重点掌握的知识点。
总的来说,概率统计在文科领域中有着重要的地位,它不仅可以帮助文科学生更好地理解文科数据的规律和特征,还可以帮助文科学生更好地进行文科研究和分析。
因此,文科学生在学习概率统计的过程中需要重点掌握上述知识点,通过理论学习和实际应用,不断提高自己的概率统计分析能力。
专题七-统计与概率-数学(文科)-全国卷地区专用
P1=2145,则小波
不去唱歌的概率⑥ 为________.
—— 体验高
考 —[答—案]
11 15
核心知识聚焦
⇒ 互斥事件的 概率 关键词:3 互斥事件、
对立事件,如⑤⑥.
——主干知识 — —
[解析] P=1-P1=1-145=1115.
第16讲 统计
—— 基础知识必备 — —
第16讲 统计
► 考向一 古典概型
(2)要使 S4=2,需出现 3 个 1,1 个-1,所以基本事 件的总数是 2×2×2×2=16,满足 S4=2 的基本事件有 4 个,所以 S4=2 的概率为146=14.
第16讲 统计
► 考向二 几何概型
考向:从基本事件的无限性构建几何模型.
考例:2010 年 T14,近五年新课标全国卷共考查了 1 次.
第16讲 统计
规范解答 8.高考中常见的概率问题 解:(1)第 3 组的人数为 0.3×100=30,第 4 组的人数 为 0.2×100=20,第 5 组的人数为 0.1×100=10.(2 分) 因为第 3,4,5 组共有 60 名志愿者,所以利用分层抽 样的方法在 60 名志愿者中抽取 6 名志愿者,每组抽取的人 数1600分×别6=为1命:.所题第以考3应向组从探,究第36003×,64=,35;组第中4各组抽,取2600×3 名6=,22;名第,51组名, 志愿者.(4 分) (2)根据频率分布直方图,样本的平均数的估计值为: 22.5×(0.01×5)+27.5×(0.07×5)+32.5×(0.06×5)+ 37.5×(0.04×5)+42.5×(0.02×5)=6.45×5=32.25(岁). 所以这 100 名志愿者样本的平均数为 32.25 岁.(6 分)
暑期班第14讲概率初步与统计文科学生版
随机抽取某中学甲乙两班各 名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图.
⑴根据茎叶图判断哪个班的平均身高较高;
⑵计算甲班的样本方差.
⑶现从乙班这 名同学中随机抽取两名身高不低于 的同学,求身高为 的同学被抽中的概率.
【例15】(2009年福建12)
某校开展“爱我海西、爱我家乡”摄影比赛, 位评委为参赛作品 给出的分数如茎叶图所示,记分员在去掉一个最高分和一个最低分后,算得平均分为 ,复核员在复核时,发现有一个数字(茎叶图中的 )无法看清.若记分员计算无误,则数字 应该是.
作品
8
9
8 9 9
2 3 2 1 4
板块二:概率初步
典例分析:
【例16】(2008江苏2)
若将一颗质地均匀的骰子(一种各面上分别标有 六个点的正方体形玩具)先后抛掷 次,则出现向上的点数之和为 的概率为.
【例17】(2008江苏6)
在平面直角坐标系 中,设 是横坐标与纵坐标的绝对值均不大于 的点构成的区域, 是到原点的距离不大于 的点构成的区域,向 中随机投一点,则所投的点落入 中的概率是.
A. B. C. D.
【例22】(2008海南宁夏19)
为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校 名学生进行问卷调查, 人得分情况如下: .把这 名学生的得分看成一个总体.
⑴求该总体的平均数;
⑵用简单随机抽样方法从这 名学生中抽取 名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过 的概率.
表 :
生产能力分组
人数
表 :
生产能力分组
人数
①先确定 , ,再在答题纸上完成下列频率分布直方图.就生产能力而言, 类工人中个体间的差异程度与 类工人中个体间的差异程度哪个更小?(不用计算,可通过观察直方图直接回答结论)
高二数学--概率与统计-(1)
高二数学 概率与统计考试要求1.统计(1)随机抽样① 理解随机抽样的必要性和重要性.② 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法. (2)总体估计① 了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.② 理解样本数据标准差的意义和作用,会计算数据标准差. ③ 能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释. ④ 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.⑤ 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题. (3)变量的相关性① 会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系. ② 了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程. 不要求记忆线性回归方程系数公式()()()1122211,nniiiii i nniii i x ynx y xxyyb a y bxxnxxx-------===---∑∑∑∑用最小二乘法求线性回归方程系数公式:7.概率(1)事件与概率① 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.② 了解两个互斥事件的概率加法公式. (2)古典概型①理解古典概型及其概率计算公式.②会计算一些随机事件所含的基本事件数及事件发生的概率. (3)随机数与几何概型①了解随机数的意义,能运用模拟方法估计概率. ②了解几何概型的意义.1.课本概念与定理详解(1)随机抽样①简单随机抽样特点为从总体中逐个抽取,适用范围:总体中的个体数较少. ②系统抽样特点是将总体均分成几部分,按事先确定的规则在各部分中抽取,适用范围:总体中的个体数较多.③分层抽样特点是将总体分成几层,分层进行抽取,适用范围:总体由差异明显的几部分组成.(2)众数、中位数、平均数①众数:在样本数据中,出现次数最多的那个数据.②中位数:在样本数据中,将数据按大小排列,位于最中间的数据.如果数据的个数为偶数,就取中间两个数据的平均数作为中位数.在直方图中取频率为0.5处的频数。
概率和统计文科
概率和统计文科1 / 51、某班甲、乙两名学同参加100米达标训练,在相同条件下两人10次训练的成绩(单位:秒)如下(1)请作出样本数据的茎叶图;如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩的稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论).(2)从甲、乙两人的10次训练成绩中各随机抽取一次,求抽取的成绩中至少有一个比12.8秒差的概率.(3)经过对甲、乙两位同学的多次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.2、某校对高二年段的男生进行体检,现将高二男生的体重()kg 数据进行整理后分成6组,并绘制部分频率分布直方图(如图所示).已知第三组[)65,60的人数为200.根据一般标准,高二男生体重超过65kg 属于偏胖,低于55kg 属于偏瘦.观察图形的信息,回答下列问题:(1)求体重在[)6560,内的频率,并补全频率分布直方图; (2)用分层抽样的方法从偏胖的学生中抽取6人对日常生活习惯及体育锻炼进行调查,则各组应分别抽取多少人?(3)根据频率分布直方图,估计高二男生的体重的中位数与平均数.3、某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),,[90,100]后得到如图的频率分布直方图.(1)求图中实数a 的值;(2)若该校高一年级共有学生1000人,试估计该校高一年级期中考试数学成绩不低于60分的人数.(3)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这2名学生的数学成绩之差的绝对值大于10的槪率.4、某班一次期中考试之后,从全班同学中随机抽出5位,这5位同学的数学、物理分数见下表:先完成下面(1)~(2)的统计分析,将结果直接写在题中横线上,然后解答第(3)小题.(1)研究变量y 与x 的相关关系时,计算得0.94r ≈,这说明y 与x 的相关程度是.(2)求得y 与x 的线性回归方程之后,该方程所表示的直线一定过点.(3)求y 与x 的线性回归方程,并估计该班本次考试数学成绩为60分的学生的物理成绩.5、某校对高一年级学生寒假参加社区服务的次数进行了统计,随机抽取了M 名学生作为样本,得到这M 名学生参加社区服务的次数,根据此数据作出了频率分布统计表和频率分布直方图如下:(Ⅰ)求表中n,p 的值和频率分布直方图中a 的值,并根据频率分布直方图估计该校高一学生寒假参加社区服务次数的中位数;(Ⅱ)如果用分层抽样的方法从样本服务次数在[10,15)和[25,30)的人中共抽取6人,再从这6人中选2人,求2人服务次数都在[10,15)的概率.6、如图,茎叶图记录了甲组3名同学寒假假期中去A 图书馆学习的次数和乙组4名同学寒假假期中去B 图书馆学习的次数,乙组记录中有一个数据模糊,无法确认,在图中以x 表示. 学生编号 1 2 3 4 5数学分数x 70 75 80 85 90物理分数y 73 77 80 88 86概率和统计文科3 / 5(1)如果7x =,求乙组同学去图书馆学习次数的平均数和方差;(2)如果9x =,从学习次数大于8的学生中等可能地选2名同学,求选出的2名同学恰好分别在两个图书馆学习且学习的次数和大于20的概率.7、下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据:(1)请画出上表数据的散点图;(2)根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程y =b x +a ;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?8、截至2014年11月27目,我国机动车驾驶人数量突破3亿大关,年均增长超过两千万.为了解某地区驾驶预考人员的现状,选择A ,B,C 三个驾校进行调查.参加各驾校科目一预考人数如下:驾校 驾校A 驾校B 驾校C人数 150 200 250若用分层抽样的方法从三个驾校随机抽取24人进行分析,他们的成绩如下: 87 97 91 92 93 99 97 86 92 98 9294 87 89 99 92 99 92 93 76 70 90 92 64(I )求三个驾校分别应抽多少人?(II )补全下面的茎叶图,并求样本的众数和极差;(Ⅲ)在对数据进一步分析时,满足|x -96.5|≤4的预考成绩,称为具有M 特性.在样本中随机抽取一人,求此人的预考成绩具有M 特性的概率.9、为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对30名六年级学生进行了问卷调查得到如下列联表:常喝 不常喝 合计肥胖 2不肥胖 18合计 30已知在全部30人中随机抽取1人,抽到肥胖的学生的概率为4 15.(1)请将上面的列表补充完整(2)是否有99.5%的把握认为肥胖与常喝碳酸饮料有关?说明你的理由(3)4名调查人员随机分成两组,每组2人,一组负责问卷调查,另一组负责数据处理,求工作人员甲分到负责收集数据组,工作人员乙分到负责数据处理组的概率.参考数据:2()P K k0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.7063.8415.0246.6357.879 10.828概率和统计文科1 / 5。
概率与统计(解答题)(文科专用)(原卷版)五年(2018-2022)高考数学真题分项汇编(全国通用)
专题16 概率与统计(解答题)(文科专用)1.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k 2.7063.8416.6352.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =i n i=1i √∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.3.【2021年甲卷文科】甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++4.【2021年乙卷文科】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥认为有显著提高).5.【2020年新课标1卷文科】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务6.【2019年新课标1卷文科】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.【2019年新课标2卷文科】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.8.【2018年新课标1卷文科】某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)。
概率统计(文科)
文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率P(A)e(0,1)(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1•某校高一年级有900名学生,其中女生400名•按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为.2•某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取名学生.3.某校老年、中年和青年教师的人数见右表,米用分层抽样的方法调查教类另U人数师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年老年教师900教师人数为中年教师1800 4.已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是青年教师1600 5•若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为•合计4300 6•重庆市2013年各月的平均气温(°C)数据的茎叶图如右图:o吕9则这组数据的中位数是•1252003127•某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国豕,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9组,制成了如图的频率分布直方图.(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(III)估计居民月均用水量的中位数.0Q.511622.533.544.6月满意度评分低于70分 70分到89分不低于90分 满意度等级不满意满意非常满意A 地区用户满意度评分的频率分布直方司为了解用户对其产品的满意度,从A,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.(II) 根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(I) 应收集多少位女生的样本数据?(II) 根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(&10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;满意度评分分组 [50,60) [60,70) [70,80) [80,90) [90,100] 频数 2 8 14 10 6B 地区用户满意度评分的频数分布表 (I)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分 的平均值及分散程度(不要求计算出具 体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(III)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体 育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间 与性别有关”.n (ad 一bc\附:尺2步畝+d 儿+枫+d )P (2>k)0.10 0.05 0.01 0.005 k2.7063.8416.6357.8799.(2015全国II 文)某公03511.(2014全国I文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(I)在下表中作出这些数据的频率分布直方图: 12.(2014广东文)某车间20名工人年龄数据如下表: 年皤7舁工人執7人1912日329330531斗323401昔讦20(I)求这20名工人年龄的众数与极差;(II)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(III)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.14.___________________________________________________ 从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(II)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是.(III)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95 16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是.的产品至少要占全部产品80%”的规定?17. (2016天津文)甲、乙两人下棋,两人下成和棋的概率为1,甲获胜的概率是-,则甲不23输的概率为.18. 已知5件产品中有2件次品,其余为合格品•现从这5件产品中任选2件,恰有一件次品 的概率为.24. 如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴19.某单位N 名员工参加“社区低碳你我他”活动•他们的年龄在25岁至50岁之间.按年龄分组并得到的频率分布直方图如图所示.下表是年龄的频数分布表.区间 [25,30) [30,35) [35,40) [40,45) [45,50] 人数25 ab5丰25. 为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174 176 176 176 178 儿子身高y (cm )17517517617717722. ____________________________________________ 在区间[-2,3]上随机选取一个数x ,则x <1的概率为23. ___________________________________ 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是.(I )求y 关于t 的回归方程y =bt+a ;(II )利用(I )中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情4550年龄/驴(I )求正整数a ,b ,N 的值;(II )现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(III )在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率. 20.(2016全国丨文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( A.1B.1C.-D.- 21.(2016全国II 文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒•若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()10 B.5D.—10 则y 对X 的线性回归方程为()A .y =x 一1B .y =x +1C .y =88+-x广告费用x (万元)4 2 35 销售额y (万元)4926395426.某产品的广告费用x 与销售额y 的统计数据如下:D .y =176根据上表可得回归方程y =bx+a 中的b 为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元B .65.5万元C .67.7万元D .72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长•设某地区城乡居民人民币储蓄存款(年 底余额)如下表:年份 2011 2012 2013 2014 2015 时间代号t1 2 3 4 5 储蓄存款y (千亿兀)567810年(1=6)的人民币储蓄存款.V--‘’ty-nty _‘附:回归方程$=几+<2中,,a=y-bt.乙/2-nt 2i=l28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:乙校:(1)计算兀y 的值;况,并 预测 该地 区 2016P^Ki>k)0.10 0.05 0.010 k2.7063.8416.635参考数据与(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)由以上统计数据填写下面2X2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.公式:由列联表中数(a+b)(?+d)C+c)a+d),临界值表:29.—次考试中,5名学生的数学、物理成绩如下表所示:学生 A B C D E 数学成绩兀(分) 89 91 93 95 97 物理成绩y (分)8789899293(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90 分的概率;(2 )性回归100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.0.08°1—r---—r方程(系数精确到0.01).''''(1)求频率分布表中a、b的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标II)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:附:回归直线的方程是:y=bx+a上年度出险次数0 1 2 3 4 >5保费0.85a a 1.25a 1.5a 1.75a2a其中b=㈠(j——,a=y-b x;设该险种一续保人一年内出险次数与相应概率如下:ii=130•为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取一年内出险次数0 1 2 3 4 >5 概率0.30 0.15 0.20 0.20 0.10 0.05(I)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为.33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答•试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.34.某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(I)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);A地区B帥反4567S9。
完整版)统计概率高考文科复习专题
完整版)统计概率高考文科复习专题高考文科复专题:统计与概率知识点梳理1.随机抽样简单随机抽样的特点是从总体中逐个抽取,适用于总体中个体较少的情况。
系统抽样的特点是将总体均分成几部分,按照事先确定的规则在各部分中抽取,适用于总体中个体数较多的情况。
分层抽样的特点是将总体分成几层,分层进行抽取,适用于总体由差异明显的几部分组成的情况。
2.常用的统计图表频率分布直方图的特点是小长方形的面积等于组距乘以频率,各小长方形的面积之和等于1,小长方形的高等于频率,所有小长方形的高的和为组距。
茎叶图在样本数据较少时,用茎叶图表示数据的效果较好。
3.用样本的数字特征估计总体的数字特征众数是样本数据中出现次数最多的数据,中位数是将数据按大小依次排列,处于中间位置的一个数据或最中间两个数据的平均数,平均数是样本数据的算术平均数。
频率分布直方图的最高小长方形底边中点的横坐标是众数,将频率分布直方图划分左右两个面积相等的分界线与x轴交点的横坐标是中位数,每个小矩形的面积乘以小矩形底边中点的横坐标之和是平均数。
4.变量的相关性与最小二乘法线性回归方程相关关系包括正相关和负相关,相关系数用来衡量变量之间的相关程度。
最小二乘法是对于给定的一组样本数据(x1,y1),(x2,y2),…,(xn,yn),得到线性回归方程y=bx+a的方法。
5.独立性检验对于取值分别是{x1,x2}和{y1,y2}的分类变量X和Y,其样本频数列联表可以用K2检验来检验其独立性。
例题:某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查。
I)应从小学、中学、大学中分别抽取2、2、2所学校。
II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,所有可能的抽取结果为21种。
2.(2012·___为了解某地区观众对某类体育节目的收视情况,随机抽取了100名观众进行调查,其中女性有55名。
下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图。
概率与统计文科讲义(学霸版)
概率与统计文科讲义(学霸版)课程简介:即PPT(第1页):概率与统计,首先要做一个小说明,为什么有文科版和理科版?因为我们不只是讲解必修三的概率与统计,还要加入一些选修的内容。
其中文科生会加入选修1-2的统计案例。
而理科生会加入选修2-3里面的更多内容。
这样组合成我们文理科不同的概率与统计的知识树。
必修三是不分文理科的,文理科这里的区别在于选修内容不同而已。
(以上提到的课本都是针对人教A版)概率与统计我们需要识记的东西比较多,尤其统计那里不是很容易懂,我更希望你能够懂得统计到底在做什么,而不是只会根据题目给的公式代数计算,这个是小学生的工作,不是高中生的。
这节课我们学习:1、概率与统计的知识树构建;2、如何运用知识树解题。
概率与统计属于CBA方法中的C——Common Sense类,概率会出小题,比较简单。
统计问题会出现在18或19题的位置,12分。
所以这一章的内容不难,但是分值比重却很大。
曾经的统计大题非常简单,大家都是看着题目里给出的公式,然后直接代数计算就结束了。
但是这样的日子很可能一去不复返,我们的统计题不能总是那么考了,现在的重点是要求你能理解为什么在统计,越来越接近真实的统计,所以题目文字量越来越大,有时光是读题就已经头大了,但是,真实的统计就是这样的。
计算谁不会?就算你我不会,计算机也会呀,所以要重新审视一下统计题目的地位了。
好了,摆正心态,不要认为今天的内容非常简单,让我们开始今天的学习吧。
PPT(第2页):我们依然不像B类一样过多介绍知识点特点,因为知识点都是识记类的。
我们直接来看对应模块一般怎么出题,以及应对策略。
1、概率会怎么出题?概率我们文科生就相对简单很多,古典概型和几何概型都不难,古典概型会数数就好,几何概型会算面积就可以了。
记得考虑问题要全面,数数的时候手指头要掰得开,嘿嘿。
2、统计题目又怎么考?刚刚介绍过,必考大题。
而现在也越来越难,与其说越来越难,不如说越来越像真正的统计。
概率统计(文科).pdf
文科数学《统计与概率》核心知识点与参考练习题一、统计(核心思想:用样本估计总体)1.抽样(每个个体被抽到的概率相等)(1)简单随机抽样:抽签法与随机数表法(2)系统抽样(等距抽样)(3)分层抽样2.用样本估计总体:(1)样本数字特征估计总体:众数、中位数、平均数、方差与标准差(2)样本频率分布估计总体:频率分布直方图与茎叶图3.变量间的相关关系:散点图、正相关、负相关、回归直线方程(最小二乘法)4.独立性检验二、概率(随机事件发生的可能性大小)1.基本概念(1)随机事件A的概率1,0AP(2)用随机模拟法求概率(用频率来估计概率)(3)互斥事件(对立事件)2.概率模型(1)古典概型(有限等可能)(2)几何概型(无限等可能)三、参考练习题1.某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______ .2.某学校高一、高二、高三年级的学生人数之比是3:3:4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则该从高二年级抽取_____名学生.3.某校老年、中年和青年教师的人数见右表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为_______ .4.已知一组数据5.5,4.5,1.5,8.4,7.4,则该组数据的方差是_____.5.若1,2,3,4,m这五个数的平均数为3,则这五个数的标准差为____.6.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图:则这组数据的中位数是________.7.某高校调查了200名学生每周的晚自习时间(单位:小时),制成了如图所示的频率分布直方图,其中晚自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.1408.(2016四川文)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查. 通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照 [0,0.5),[0.5,1),…,[4,4.5] 分成9组,制成了如图的频率分布直方图. (Ⅰ)求直方图中a的值;(Ⅱ)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(Ⅲ)估计居民月均用水量的中位数.类别人数老年教师900中年教师1800青年教师1600合计43009.(2015全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.A 地区用户满意度评分的频率分布直方图B 地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数2814106(Ⅰ)作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);B地区用户满意度评分的频率分布直方图(Ⅱ)根据用户满意度评分,将用户的满意度分为三个等级:试估计哪个地区用户的满意度等级为不满意的概率大?说明理由.10.(2014安徽文)某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).(Ⅰ)应收集多少位女生的样本数据?(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12].估计该校学生每周平均体育运动时间超过4小时的概率;(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:db c a d cb a bcd a n K22满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意2k KP 0.10 0.05 0.01 0.005 0k 2.7063.8416.6357.87911.(2014全国Ⅰ文)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125] 频数 6 26 38 22 8(Ⅰ)在下表中作出这些数据的频率分布直方图:(Ⅱ)估计这种产品质量指标值的平均数和方差(同一组中的数据用该组区间的中点值作代表);(Ⅲ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?12.(2014广东文)某车间20名工人年龄数据如下表:(Ⅰ)求这20名工人年龄的众数与极差;(Ⅱ)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(Ⅲ)求这20名工人年龄的方差.13.(2016江苏)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是_______ .14.从甲、乙等5名学生中随机选出2人,则甲被选中的概率为_______ .15.(2016全国乙卷文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是______ .16.(2016全国丙卷文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M、I、N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________ .17.(2016天津文)甲、乙两人下棋,两人下成和棋的概率为21,甲获胜的概率是31,则甲不输的概率为_________ . 18.已知5件产品中有2件次品,其余为合格品.现从这5件产品中任选2件,恰有一件次品的概率为_________ .19.某单位N 名员工参加“社区低碳你我他”活动.他们的年龄在25岁至50岁之间.按年龄分组并得到的频率分布直方图如图所示.下表是年龄的频数分布表.区间[25,30)[30,35)[35,40)[40,45)[45,50]人数25ab(Ⅰ)求正整数a ,b ,N 的值;(Ⅱ)现要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,则年龄在第1,2,3组的人数分别是多少?(Ⅲ)在(2)的条件下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人在第3组的概率.20.(2016全国Ⅰ文)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A.31 B.21 C.32 D.4321.(2016全国Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.107 B.85 C.83 D.10322.在区间[-2,3]上随机选取一个数x ,则1x 的概率为_____ .23.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是_______ .24.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为_________ .25.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:则y 对x 的线性回归方程为()A.1?x yB.1?x yC.xy 2188? D.176?y26.某产品的广告费用x 与销售额y 的统计数据如下:根据上表可得回归方程axb y ???中的b ?为9.4,据此模型预报广告费用为6万元时销售额为A.63.6万元B.65.5万元C.67.7万元D.72.0万元27.随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份2011 2012 2013 2014 2015 时间代号t 1 2 3 4 5 储蓄存款y (千亿元)567810(Ⅰ)求y 关于t 的回归方程at by ???;(Ⅱ)利用(Ⅰ)中的回归方程,分析2011年至2015年该地区城乡居民储蓄存款的变化情父亲身高x (cm )174 176 176 176 178 儿子身高y (cm )175175176177177广告费用x (万元) 4 2 3 5 销售额y (万元)49263954况,并预测该地区2016年(t =6)的人民币储蓄存款.附:回归方程at b y ???中,t by atn t yt n y t b ni ini ii ??,?1221. 28.甲、乙两所学校高三年级分别有1200人、1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样的方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:分组[70,80)[80,90)[90,100)[100,110)频数 3 4 8 15 分组[110,120)[120,130)[130,140)[140,150]频数15x32乙校:分组[70,80)[80,90)[90,100)[100,110)频数 1 2 8 9 分组[110,120)[120,130)[130,140)[140,150]频数1010y3(1)计算y x,的值;(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率;(3)由以上统计数据填写下面2×2列联表,并判断是否有90%的把握认为两所学校的数学成绩有差异.参考数据与公式:由列联表中数据计算db c a d cb abcadn K22;临界值表:29.一次考试中,5名学生的数学、物理成绩如下表所示:学生 A B C D E 数学成绩x (分)89 91 93 95 97 物理成绩y (分)8789899293(1)要从5名学生中选2人参加一项活动,求选中的学生中至少有一人的物理成绩高于90分的概率;甲校乙校总计优秀非优秀总计2k KP 0.10 0.05 0.010 0k 2.7063.8416.635(2)根据上表数据作散点图,求y 与x 的线性回归方程(系数精确到0.01).附:回归直线的方程是:ax b y ???,其中x byaxx y y x x b ni ini i i??,?121;90,93y x ,30,4051251yy x x xx ii i i i.30.为调查市民对汽车品牌的认可度,在秋季车展上,从有意购车的500名市民中,随机抽取100名市民,按年龄情况进行统计得到下面的频率分布表和频率分布直方图.(1)求频率分布表中a 、b 的值,并补全频率分布直方图,再根据频率分布直方图估计有意购车的这500名市民的平均年龄;31.(2016新课标Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数0 1 2 3 4 5保费0.85aa1.25a1.5a 1.75a 2a设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数0 1 2 3 4 5 概率0.300.150.200.200.100.05(Ⅰ)求一续保人本年度的保费高于基本保费的概率;32.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机分组(岁)频数频数[20,25) 5 0.050 [25,30) 200.200 [30,35) a0.350 [35,40) 30 b [40,45] 10 0.100 合计1001.000摸出2只球,则这2只球颜色不同的概率为____________ .33.现有6道题,其中4道甲类题,2道乙类题,某同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.A,两地区分别随机调查了20个用户,得到用34.某公司为了解用户对其产品的满意度,从B户对产品的满意度评分如下:A地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);。
大学文科数学之线性代数与概率统计课件
概率是满足 1) 非负性; 2) 归一性; 3) 可列可加性; 的集函数。
概率的性质
P() 0
显然有= .., . P() P(), k 1
由概率非负性即得
由P() 0及完全(可列)可加性 即得
若A1, A2,...An F,且Ai Aj= (i j), 则
n
n
P( Ak ) P(Ak )
练习
• Page 153 3
第三讲 概率的公理化定义
• 柯尔莫哥洛夫 前的一些概率定义方式
• 公理化定义 • 概率的性质 • 概率的计算
1.古典概型
A
P( A)
( A) ()
A中的样本点数目 中的样本点数目
隐含了等可能条件
2.几何概型
P(
A)
A点集的面积 点集的面积
隐含了等可能条件
• 3 统计概率
公理化定义
概率空间(, F, P)
当 AB 时,P(A+B)=P(A)+P(B)
加法公式:对任意两事件A、B,有 P(AB)=P(A)+P(B)-P(AB)
该公式可推广到任意n个事件A1,A2,…,An的情形;
• 例4 某学生凭猜测答两道是非题,求该生答 对一道题的概率。
• 设 E: 答对一道题
• A={对,对} B={对,错} C={错,对} D={错,错}
设E是随机试验, Ω是它的样本空间,对 于 F 中的每一个事件A,赋予一个实数, 记为P(A) ,称为事件A的概率,如果集合 函数 P( . ) 满足下述三条公理:
公理1(非负性 ) 0 P( A) 1
公理2(归一性) P(Ω)=1
(2)
公理3(可列可加性)若事件A1, A2 ,… 两两互不相容,则有 P( A1 A2 ) P( A1) P( A2 ) (3)
概率与统计(文科)
第二讲 概率——古典概型与几何概型
概率知识的考查是近几年新课改后高考命题的一大热点,高 考每年在选择、填空或解答题中都有所体现,由于文科数学后续 课程不再学习概率,文科数学将重点考查概率的意义、古典概型 与几何概型的掌握和运用.在处理概率问题时主要有两种思路:正 向思路和逆向思路.正向思考可对复杂问题进行分解;逆向思考常 使一些复杂问题得到简化.要学会将实际问题转化为古典概型和
[典题例析]
(2014·广东高考)为了解 1 000 名学生的学习情况,采用系统抽
样的方法,从中抽取容量为 40 的样本,则分段的间隔为( )
A.50
B.40
C.25
D.20
解析:由1 40000=25,可得分段的间隔为 25.故选 C.
2.(人教 B 版教材习题改编)某工厂平均每天生产某种机器零件 大约 10 000 件,要求产品检验员每天抽取 50 件零件,检查 其质量状况,采用系统抽样方法抽取,若抽取的第一组中的 号码为 0010,则第三组抽取的号码为___0_4_1_0__.
几何概型来解决.
古典概型
基础梳理
1. 基本事件
(1) 基本事件的定义:
(2) 一次试验中可能出现的试验结果称为一个基本事件.所有的基本事件都 有有限个,而且是试验中不能再分的最简单的随机事件.
(3)(2) 基本事件的特点:
(4)① 任何两个基本事件互是斥的;
(5)② 任何事件都可以表示成 基本事的件和.
73 58 07 44 39 52 38 79,33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 解析:由随机数表,可以看出前 4 个样本的个体的编号是 331,572,455,068.于是,第 4 个样本个体的编号是 068.
高三文科数统计概率归纳总结(超详细)(精华版)
统计概率考点总结【考点一】分层抽样01,交通治理部门为明白机动车驾驶员(简称驾驶员)对某新法规的知晓情形,对甲,乙,丙,丁四个社N ,其中甲社区有驾驶员区做分层抽样调查;假设四个社区驾驶员的总人数为96 人;如在甲,乙,N 丙,丁四个社区抽取驾驶员的人数分别为12,21,25,43,就这四个社区驾驶员的总人数为()A ,101 B,808 C,1212 D ,202102,某个年级有男生560 人,女生420 人,用分层抽样的方法从该年级全体同学中抽取一个容量为280 的样本,就此样本中男生人数为.03,一支田径运动队有男运动员56 人,女运动员42 人;现用分层抽样的方法抽取如干人,如抽取的男运动员有8 人,就抽取的女运动员有人;04,某单位有840 名职工, 现采纳系统抽样方法抽取42 人做问卷调查, 将840 人按1, 2, , 840 随机,编号, 就抽取的42 人中, 编号落入区间[481, 720] 的人数为()A .11B .12 C.13 D .1405,将参与夏令营的600 名同学编号为:001,002,600,采纳系统抽样方法抽取一个容量为50 的样本,且随机抽得的号码为003.这600 名同学分住在三个营区,从001 到300 在第Ⅰ营区,从301 到495 住在第Ⅱ营区,从496 到600 在第Ⅲ营区,三个营区被抽中的人数依次为()A .26, B.25,17,8 C.25,16,9 D .24,17,916, 8【考点二】频率分布直方图(估量各种特点数据)01,从某小区抽取100 户居民进行月用电量调查, 发觉其用电量都在50 到350 度之间, 频率分布直方图所示.x 的值为;(I) 直方图中(II) 在这些用户中, 用电量落在区间100,250 内的户数为.02,下图是样本容量为200 的频率分布直方图;依据样本的频率分布直方图估量,样本数据落在[6 ,10]内的频数为,数据落在(2,10)内的概率约为03,有一个容量为200 的样本,其频率分布直方图如下列图,依据样本的频率分布直方图估量,样本数据落在区间10,12 内的频数为A .18B .36 C.54 D .7204,如上题的频率分布直方图,估量该组试验数据的众数为,中位数为,平均数为【考点三】数据特点01,抽样统计甲,乙两位设计运动员的 5 次训练成果( 单位: 环), 结果如下:运动员甲乙第 1 次8789第 2 次9190第 3 次9091第 4 次8988第 5 次9392就成果较为稳固( 方差较小) 的那位运动员成果的方差为.02,某单位200 名职工的年龄分布情形如图2,现要从中抽取40 名职工作样本,用系统抽样法,将全体职工随机按1-200 编号,并按编号次序平均分为40 组(1-5 号,6-10 号,196-200 号).如第5 组抽出的号码为22,就第8 组抽出的号码应是;如用分层抽样方法,就40 岁以下年龄段应抽取人.03,在某次测量中得到的 A 样本数据如下:82,84,84,86,86,86,88,88,88,88.如 B 样本数据恰好是 A 样本数据都加 2 后所得数据,就A,B 两样本的以下数字特点对应相同的是(A) 众数(B) 平均数(C)中位数(D) 标准差04,总体由编号为,19,2的020 个个体组成;利用下面的随机数表选取 5 个个体,选取方法是从随01,02,机数表第 1 行第5 列和第6 列数字开头由左到右依次选取两个数字,就选出的第 5 个个体编号为A .08B .07 C.02 D.0105,容量为20 的样本数据,分组后的频数如下表就样本数据落在区间[10,40] 的频率为A B C D06,小波一星期的总开支分布图如图1 所示,一星期的食品开支如图2 所示,就小波一星期的鸡蛋开支占总开支的百分比为% % % D. 不能确定07,对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),就该样本的中位数,众数,极差分别是( )A .46,45,56B . 46,45,53C . 47,45,56D .45,47,5308,考察某校各班参与课外书法小组人数, 在全校随机抽取 5 个班级 , 把每个班级参与该小组的人数作为样本数据. 已知样本平均数为 7, 样本方差为 4, 且样本数据相互不相同 , 就样本数据中的最大值为【考点四】求回来直线,相关系数,相关指数 依据一组样本数据 (x i , 01,设某高校的女生体重y (单位: kg )与身高 x (单位: cm )具有线性相关关系, y y i )(i=1 ,2, , n ),用最小二乘法建立的回来方程为 ,就以下结论中不正确选项A.y 与 x 具有正的线性相关关系 x , )y B. 回来直线过样本点的中心( C.如该高校某女生身高增加 1cm ,就其体重约增加D.如该高校某女生身高为170cm ,就可肯定其体重必为x, y 有观测数据理力争( x 1 , y 1 )( i=1,2, 02,对变量 ,10),得散点图如下左图;对变量 u ,v 有观测数据( u 1 , v 1 )( i=1,2, , 10) ,得散点图如下右图 . 由这两个散点图可以判定; ( A )变量 与 正相关, 与 正相关 x y u v ( B )变量 与 正相关, 与 负相关 x y u v ( C )变量 与 负相关, 与 正相关 x y u v ( D )变量 与 负相关, 与 负相关x y u vx 和y 的n 个样本点,直线l 是由这些样本点通过03,设(x1,y1),(x2,y2),,(x n,y n)是变量最小二乘法得到的线性回来直线(如图),以下结论中正确选项x 和y 的相关系数为直线l 的斜率A .x 和y 的相关系数在B .0 到1 之间C.当n 为偶数时,分布在l两侧的样本点的个数肯定相同D .直线l 过点( x, y)x1,y1),(x2,y2),,(x n,y n)(n≥2,x1,x2, ,x n 不全相等)的散点图中,如所04,在一组样本数据(1有样本点(x i,y i)( i=1,2 ,, n) 都在直线y= x+1 上,就这组样本数据的样本相关系数为2(C)12(A )-1 (B)0 (D)105,如表供应了某厂节能降耗技术改造后生产甲产品过程中记录的产量x ( 吨) 与相应的生产能耗y ( 吨标准煤) 的几组对比数据;请依据表格供应的数据,用最小二乘法求出y 关于x 的线性回来方程为:ny xx i y i nx y ^b^,a^b x ,i 1y343546) (n22x i nxi 106,某产品的广告费用x 与销售额广告费用y 的统计数据如下表x(万元) 4235销售额y(万元) 49 26 39 54 依据上表可得回来方程^y=b^x+a中的b^^,据此模型预报广告费用为 6 万元时销售额为()A .万元B.万元C.万元D.万元07,某地2021 年其次季各月平均气温x (℃)与某户用水量y (吨)y 关于月平均如下表,依据表中数据,用最小二乘法求得用水量气温x 的线性回来方程是A . y.B. y.x C. y.x D . y.5x x08,( 2021 年全国 I 18 题)某公司为确定下一年度投入某种产品的宣扬费,需明白年宣扬费 x(单位:千元 )对年销售量 y(单位:t)和年利润 z(单位:千元 )的影响.对近 8 年的年宣扬费 x i 和年销售量 y i (i = 1,2, , 8)数据作了初步处理,得到下面的散点图及一些统计量的值. ( 1)依据散点图判定, y =a + bx 与 y = c + d x 哪一个相宜作为年销售量 y 关于年宣扬费 x 的回来方程类型? (给出判定即 可,不必说明理由 )( 2)依据 (1) 的判定结果及表中数据, 建立 y 关于 x 的回来方程; ( 3)已知这种产品的年利润z 与 x , y 的关系为 z = - x.依据 (2) 的结果回答以下问题:①年宣扬费 x = 49 时,年销售量及年利润的预报值是多少? ②年宣扬费 x 为何值时,年利润的预报值最大?888822( x ix)( w iw)(w iw)( y iy)( x ix)( y i y)x y wi 1i 1i 1i 15631 46981 附: ( 1)在下 表中 w i = x i , w =w i8 i1( 2)对于一组数据 (u 1, v 1), (u 2,v 2), n, (u n , v n ),其回来直线 v = α+ βu 的斜率和截距的最小二乘法 ( u iu)( v i v) ^ ,α= v -β^运算公式分别为u i 1n2(u iu)i 1【考点五】独立性检验01,通过随机询问 110 名性别不同的高校生是否爱好某项运动,得到如下的列联表:男 40 20 60女 20 30 50总计6050 110爱好 不爱好 总计22n c 2ad d k)bc a 110 40 30 20 20由 算得,.22KK a b P(Kc b d60 50 60 500. 050 0. 010 0. 001 3. 8416. 63510. 828k参照附表,得到的正确结论是 A .再犯错误的概率不超过 0.1% 的前提下,认为“爱好该项运动与性别有关” B .再犯错误的概率不超过0.1% 的前提下,认为“爱好该项运动与性别无关”C .有 99%以上的把握认为“爱好该项运动与性别有关”D .有 99%以上的把握认为“爱好该项运动与性别无关”【考点六】古典概型——列举法( 6 选 3, 5 选 3)1 14, 就 n01,从 n 个正整1,2, n 中任意取出两个不同的数 5 的概率为, 如取出的两数之和等于 m , n ( m 7 , n 9 ) 可以任意选取 , 就 m ,n 都取到奇数的概02,现在某类病毒记作X m Y n , 其中正整数 率为 .03,从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0 的概率是4 91 3291 9A.B.C.D.22x y 3的概率是 ( )04,某同学同时掷两颗骰子,得到点数分别为a ,b ,就椭圆 + b = 1 的离心率 e> 2 2a 21 51 1 A .18B . 36C . 6D . 305,一袋中装有 10 个球 , 其中 3 个黑球 , 7 个白球 , 先后两次从袋中各取一球 (不放回 ). 就其次次取出的是黑球的概率是;已知第一次取出的是黑球 ,就其次次取出的仍是黑球的概率是.06,从装有1A.103 个红球,2 个白球的袋中任取 3 个球,就所取的 3 个球中至少有 1 个白球的概率是()339D.10B.10C.507,从长度分别为2,3,4,5 的四条线段中任意取出三条,就以这三条线段为边可以构成三角形的概率是【考点七】几何概型(显性,隐性)1 2,01,小波通过做嬉戏的方式来确定周末活动,他随机的往单位圆内投掷一点,如此点到圆心的距离大于14就周末去看电影;如此点到圆心的距离小于,就去打篮球;否就,在家看书. 就小波周末不在家看书的概率为.a, 就时间“3a 10 ”发生的概率为02,利用运算机产生0~1 之间的匀称随机数03,在长为12cm 的线段AB 上任取一点 C.现作一矩形,令边长分别等于线段AC ,CB 的长,就该矩形面32cm2 的概率为积小于1 6132345(A) (B) (C) (D)1x , 使得x 1 x 2 1 成立的概率为3,304,在区间上随机取一个数3 05,如图,在圆心角为直角的扇形OAB 中,分别以OA,OB 为直径作两个半圆. 在扇形A .OAB 内随机取一点,就此点取自阴影部分的概率是B.C. D .2π121π2π1π1RT BAC 中, 06,在 A, AB = 1 , BC = 2211 2D ,就 ΔABD 的面积比 ΔABC 的面积的( 1)在 BC 上取一点 仍大的概率为 211 2BC 交于点 D ,就 ΔABD 的面积比 ΔABC 的面积的( 2)过 A 作射线与 仍大的概率为 314A ,B ,C ,就 ΔABC 为锐角三角形的概率为 07,在一个圆上任取三点答案:有注明讲的题目为下次上课必讲对象 【考点一】 5(讲) 【考点二】 4(讲) 702. 643. B 【考点三】 1. 22. 37, 203. D4. D5. B6. C7. A8. 10 【考点四】1. D 8( 讲)2. C3. D4. D5.6. B7 .D【考点五】 1. C 20 633 10 2 9【考点六】 1. 82.4. C5.7.13 16 2 3【考点七】1. 4 讲 6 讲7 讲2. 5. A。
文科高考概率统计知识点
文科高考概率统计知识点在文科高考中,概率统计是一个重要的数学知识点,它涉及到了随机事件的发生规律以及对数据的分析和归纳能力。
掌握好概率统计的知识,对于学生在高考数学中的成绩起着至关重要的作用。
下面,本文将从概率的基本概念、事件的概率、独立事件、条件概率和统计与分布等角度,详细阐述文科高考中的概率统计知识点。
概率的基本概念是概率统计的基础,要了解概率,首先需要明白什么是随机事件。
随机事件是在一定条件下可能发生的结果,它有唯一确定的结果,但在每次实验中的结果却是不确定的。
概率则是对随机事件发生可能性的量化。
概率的计算方法多种多样,常用的有古典概型、几何概型和统计概型等。
几何概型中,概率等于事件所包含的有利结果个数与总结果个数之比。
统计概型中,概率可以通过大量实验的结果频率来估算。
在考试中,经常会遇到求多个事件同时发生的概率问题。
这时,我们需要使用事件的乘法定理。
乘法定理表明,多个事件同时发生的概率等于各事件单独发生的概率相乘。
在解决问题时,需要根据题目条件进行筛选和计算。
对于互不影响的事件,可以直接将各个事件的概率相乘;对于有依赖关系的事件,需要利用条件概率的概念。
条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
条件概率的计算是通过主事件和次事件的交集的概率与主事件的概率之比来得出的。
在考试中,条件概率的应用非常广泛,可以用来解决很多实际问题。
例如,某班级男生与女生的比例问题,或者某地区某种疾病的发病率问题等等。
独立事件是指两个事件之间没有任何联系,即一个事件的发生与另一个事件的发生没有任何影响。
在概率计算中,如果两个事件是独立事件,那么它们同时发生的概率就等于各个事件单独发生的概率的乘积。
判断两个事件是否独立需要根据题目的具体条件进行分析和推理。
在解题实践过程中,要善于运用事件独立性的概念,确定事件之间的关系。
在高考中,概率统计的应用不仅仅停留在概率的计算上,还需要对数据进行统计和分析。
概率与统计(选择、填空题)(文科专用)(解析版)-五年(18-22)高考数学真题分项汇编(全国通用)
专题15概率与统计(选择题、填空题)(文科专用)1.【2022年全国甲卷】某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%+75%2>70%,所以A错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%−80%=20%,讲座前问卷答题的正确率的极差为95%−60%=35%>20%,所以D错.故选:B.2.【2022年全国甲卷】从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23【答案】C【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为615=25.故选:C.3.【2022年全国乙卷】分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6【答案】C【解析】【分析】结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.【详解】对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52=7.4,A选项结论正确.对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.116=8.50625>8,B选项结论正确.对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616=0.375<0.4,C选项结论错误.对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316=0.8125>0.6,D选项结论正确.故选:C4.【2021年甲卷文科】为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【解析】【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+⨯==,故B 正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++⨯==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.02⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于⨯频率组距组距.5.【2021年甲卷文科】将3个1和2个0随机排成一行,则2个0不相邻的概率为()A .0.3B .0.5C .0.6D .0.8【答案】C 【解析】【分析】利用古典概型的概率公式可求概率.【详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610,故选:C.6.【2021年乙卷文科】在区间10,2⎛⎤⎥⎝⎦随机取1个数,则取到的数小于13的概率为()A .34B .23C .13D .16【答案】B【分析】根据几何概型的概率公式即可求出.【详解】设Ω=“区间10,2⎛⎫ ⎪⎝⎭随机取1个数”,对应集合为:102x x ⎧⎫<<⎨⎬⎩⎭,区间长度为12,A =“取到的数小于13”,对应集合为:103x x ⎧⎫<<⎨⎬⎩⎭,区间长度为13,所以()()()10231302l A P A l -===Ω-.故选:B .【点睛】本题解题关键是明确事件“取到的数小于13”对应的范围,再根据几何概型的概率公式即可准确求出.7.【2020年新课标1卷文科】设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为()A .15B .25C .12D .45【答案】A 【解析】【分析】列出从5个点选3个点的所有情况,再列出3点共线的情况,用古典概型的概率计算公式运算即可.【详解】如图,从O A B C D ,,,,5个点中任取3个有{,,},{,,},{,,},{,,}O A B O A C O A D O B C {,,},{,,},{,,},{,,}O B D O C D A B C A B D {,,},{,,}A C D B C D 共10种不同取法,3点共线只有{,,}A O C 与{,,}B O D 共2种情况,由古典概型的概率计算公式知,取到3点共线的概率为21105=.【点晴】本题主要考查古典概型的概率计算问题,采用列举法,考查学生数学运算能力,是一道容易题.8.【2020年新课标3卷文科】设一组样本数据x 1,x 2,…,xn 的方差为0.01,则数据10x 1,10x 2,…,10xn 的方差为()A .0.01B .0.1C .1D .10【答案】C 【解析】【分析】根据新数据与原数据关系确定方差关系,即得结果.【详解】因为数据(1,2,,)i ax b i n +=L ,的方差是数据(1,2,,)i x i n =L ,的方差的2a 倍,所以所求数据方差为2100.01=1⨯故选:C 【点睛】本题考查方差,考查基本分析求解能力,属基础题.9.【2019年新课标1卷文科】某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是A .8号学生B .200号学生C .616号学生D .815号学生【答案】C 【解析】【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案.【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意;若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C .【点睛】本题主要考查系统抽样.10.【2019年新课标2卷文科】生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35C .25D .15【答案】B 【解析】【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种,所以恰有2只做过测试的概率为63105=,选B .【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.11.【2019年新课标3卷文科】两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14C .13D .12【答案】D 【解析】男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D .【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.12.【2018年新课标2卷文科】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A .0.6B .0.5C .0.4D .0.3【答案】D 【解析】【详解】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.详解:设2名男同学为12,A A ,3名女同学为123,,B B B ,从以上5名同学中任选2人总共有12111213212223121323,,,,,,,,,A A A B A B A B A B A B A B B B B B B B 共10种可能,选中的2人都是女同学的情况共有121323,,B B B B B B 共三种可能则选中的2人都是女同学的概率为30.310P ==,故选D.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件A ;第二步,分别求出基本事件的总数n 与所求事件A 中所包含的基本事件个数m ;第三步,利用公式()mP A n=求出事件A 的概率.13.【2018年新课标3卷文科】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A .0.3B .0.4C .0.6D .0.7【答案】B 【解析】【详解】分析:由公式()()()()P A B P A P B P AB ⋃=++计算可得详解:设事件A 为只用现金支付,事件B 为只用非现金支付,则()()()()P A B P A P B P AB 1⋃=++=因为()()P A 0.45,P AB 0.15==所以()P B 0.4=,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题.14.【2022年全国乙卷】从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为C 53=10甲、乙都入选的方法数为C 31=3,所以甲、乙都入选的概率=310故答案为:31015.【2018年新课标3卷文科】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样.【解析】【详解】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为分层抽样.点睛:本题主要考查简单随机抽样,属于基础题.。
概率与统计测试题文科
概率与统计测试题(文科)一、选择题(共10题,每小题均只有一个正确答案,每小题5分,共50分)1. 某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对2.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为( ).A.7 B.15C.25 D.353.在一次教师联欢会上,到会的女教师比男教师多12人,从到会教师中随机挑选一人表演节目.如果每位教师被选中的概率相等,而且选中男教师的概率为920,那么参加这次联欢会的教师共有( ).A.360人B.240人C.144人D.120人4.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是则样本中净重大于或等于98克并且小于104克的产品的个数是( )A.90B.75C. 60D.455.设矩形的长为a ,宽为b ,其比满足b ∶a =618.0215≈-,这种矩形给人以美感,称为黄金矩形。
黄金矩形常应用于工艺品设计中。
下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是( )A. 甲批次的总体平均数与标准值更接近B. 乙批次的总体平均数与标准值更接近C. 两个批次总体平均数与标准值接近程度相同D. 两个批次总体平均数与标准值接近程度不能确定6.甲、乙两人各抛掷一次正方体骰子(六个面分别标有数字1,2,3,4,5,6),设甲、乙所抛掷骰子朝上的面的点数分别为x 、y ,则满足复数i x y +的实部大于虚部的概率是( )A .16 B .512 C .712 D .137.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率与统计
轻工校区张毅
知识清单
一.分类加法计数原理、分步乘法计数原理 二.随机事件
1.必然事件:我们把在条件S 下,一定会发生的事件,叫作相对于条件S 的必然事件, 2.不可能事件:我们把在条件S 下,一定不会发生的事件,叫作相对于条件S 的不可能 事件,
3.随机事件:我们把在条件S 下,可能发生也可能不发生的事件,叫作相对于条件S 的 随机事件 三.古典概型
1.一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中 的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有
n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等, 那么每一基本事件的概率都是
n
1. 如果某个事件A 包含的结果有m 个,那么事件A 的概率=)(A P n
m . 2.古典概型的两大特点:
①试验中所有可能出现的基本事件只有有限个 ②每个基本事件出现的可能性相等 3.古典概型的概率计算公式:总的基本事件个数
包含的基本事件
A A p =)(
四.几何概型
如果每个事件发生的概率只与构成该事件区域的长度和面积成比例,则称这样的概率模型 为几何概型.
几何概型中,事件A 的概率计算公式为
P(A)=构成事件A 的区域的几何度量(长度、面积或体积)
试验的所有结果所构成的区域的几何度量(长度、面积或体积)
五.互斥事件
对于事件A 和事件B :若A ∩B 为不可能事件,则称A 、B 为互斥事件;若A 、B 为互斥事件且
A ∪
B 为必然事件,则称A 、B 为对立事件,通常A 的对立事件记作.
互斥事件有一个发生的概率:
若事件A 与B 互斥,则P(A ∪B)=P(A)+P(B). 六.随机抽样
1.总体、个体、样本、样本容量的概念:统计中所考察对象的全体构成的集合看做总体,构 成总体的每个元素作为个体,从总体中抽取的一部分个体所组成的集合叫作样本,样本中 个体的数目叫作样本容量.
2.简单随机抽样:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取个个体作为样 本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫 作简单随机抽样.最常用的简单随机抽样的方法有两种:抽签发、随机数表法
3.系统抽样:当总体中的个体比较多时,首先把总体分成均衡的若干部分,然后按照预先定 出的规则,从每一部分中抽取一个个体,得到所需要的样本,这种抽样方法叫作系统抽样. 4.分层抽样:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层 独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层 抽样.
七.用样本的数字特征估计总体的数字特征
1.众数:一组数据中出现次数最多的数.
2.中位数:将数据从小到大排列,若有奇数个数,则最中间的数是中位数;若有偶数个数,则中间两数的平均数是中位数. 3.平均数:n
x x x x x n
+⋅⋅⋅+++=
321,反映了一组数据的平均水平.
4.标准差:(
)()
[]
22221)(1
x x x x x x n
S n -+⋅⋅⋅+-+-=
,反映了样本数据的离散程度. 5.方差:(
)()
[]
22221)(1
x x x x x x n
S n -+⋅⋅⋅+-+-=,反映了样本数据的离散程度.
课程内容
一.随机事件
例1.下列说法正确的是( ).
A .一个人打靶,打了10发子弹,有7发子弹中靶,因此这个人中靶的概率为710
B .一个同学做掷硬币试验,掷了6次,一定有3次“正面朝上”
C .某地发行福利彩票,其回报率为470/0.有个人花了100元钱买彩票,一定会有47元的回报
D .大量试验后,可以用频率近似估计概率 二.古典概型和几何概型
例2.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ). A.12B .13 C.14 D .16
例3.如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.
例4.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
例5.甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去.求两人能会面的概率. 三.互斥事件和对立事件
例6.先后掷骰子(骰子的六个面分别标有1、2、3、4、5、6个点)两次落在水平桌面后,记正面朝上的点数分别为x 、y ,记事件A 为“x +y 为偶数”,事件B 为“x 、y 中有偶数,且x ≠y ”,则概率P(B|A)=( ).
A.12B .13 C.14 D .2
5
例7.已知甲射手射中目标的概率为0.9,乙射手射中目标的概率为0.8,如果甲乙两射手的射击相互独立,那么甲乙两射手同时瞄准一个目标射击,目标被射中的概率为( ).
A .0.9
B .0.9
C .0.96
D .0.98
例8.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为().A.0.648 B.0.432C.0.36 D.0.312
练习9.从5张10元,3张20元,2张100元的人民币中任取3张,则所取3张中至少有2张面值相同的概率为________.
练习10.盒子装有4只产品,其中有3只一等品,1只二等品,从中取产品两次,每次任取一只,作不放回抽样.设事件A为“第一次取到的是一等品”,事件B为“第二次取到的是一等品”,则条件概率P(B|A)=________.
练习11.某位选手参加科普知识竞赛,需回答3个问题,竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.
(1)求这位选手得300分的概率;
(2)求这位选手至少得300分的概率.
四.随机抽样
例12.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( ).A.抽签法B.系统抽样法C.分层抽样法D.随机数法
练习13.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( ).
A.90 B.100 C.180 D.300
练习.14在一次马拉松比赛中,35名运动员的成绩(单位:分钟)
的茎叶图如图所示.若将运动员按成绩由好到差编为1~35号,再用
系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员
人数是( ).
A.3B.4C.5D.6
反思小结
课后作业
1.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( ).
A.15B .25 C.35D .45
2.如图,大正方形的面积是34,四个全等直角三角形围成一个小正方形,直角三角形的较短边长为3,向大正方形内抛撒一枚幸运小花朵,则小花朵落在小正方形内的概率为( ).
A.117B .217 C.317D .417
3.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( ).
A.15B .25 C.35D .45
4.甲、乙两人下象棋,甲获胜的概率为400/0,甲不输的概率为900/0,则甲、乙两人下成和棋的概率为( ).
A .600/0
B .300/0
C .100/0
D .
500/0
5.袋中有5个球(3个白球,2个黑球),现每次取一个,无放回地抽取两次,则在第一次抽到白球的条件下,第二次抽到白球的概率为().
A.3
5B.
3
4C.
1
2D.
3
10
6.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为().A.100 B.150 C.200 D.250
7.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为().
A.93 B.123C.137 D.167
8.重庆市2013年各月的平均气温(℃)数据的茎叶图如右图,则这组数据的中位数是().
A.19 B.20C.21.5 D.23
9.根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是().
A.逐年比较,2008年减少二氧化硫排放量的效果最显著
B.2007年我国治理二氧化硫排放显现成效
C.2006年以来我国二氧化硫年排放量呈减少趋势
D.2006年以来我国二氧化硫年排放量与年份正相关
10.为比较甲、乙两地某月14时的气温情况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:
①甲地该月14时的平均气温低于乙地该月14时的平均气温;
②甲地该月14时的平均气温高于乙地该月14时的平均气温;
③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;
④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据茎叶图能得到的统计结论的编号为().
A.①③B.①④C.②③D.②④。