(整理)基本初等函数一
基本初等函数知识点归纳
基本初等函数知识点归纳1.常值函数:常值函数是指在定义域上的值始终相同的函数。
常见的常值函数有恒等于0的零函数和恒等于1的单位函数。
常值函数的图像是一条与x轴平行的直线。
2.幂函数:幂函数是指形如y=x^n的函数,其中n是一个实数。
当n 为正偶数时,函数的图像在原点右侧递增;当n为正奇数时,图像在全定义域递增;当n为负数时,图像在全定义域递减。
特殊地,当n为0时,函数为常值函数13.指数函数:指数函数是形如y=a^x的函数,其中a为正实数且a≠1、指数函数的图像可以是递增或递减的曲线,具体取决于底数a的大小关系。
当a>1时,函数递增;当0<a<1时,函数递减。
指数函数特点是它们的图像都经过点(0,1)。
4. 对数函数:对数函数是指形如y = log_a(x)的函数,其中a为正实数且a ≠ 1、对数函数是指数函数的反函数,因此它们的图像是关于y = x对称的。
对数函数的图像在定义域上递增,对数函数的唯一一个特殊点是(1,0)。
5. 三角函数:三角函数包括正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。
这些函数在三角学中起着重要的作用,并且它们的图像都是周期性的。
正弦函数和余弦函数的图像是一条在[-1,1]之间往复的波浪线,而正切函数和余切函数的图像是一条通过原点的无数个波浪线。
6. 反三角函数:反三角函数是三角函数的反函数。
反三角函数包括反正弦函数asin(x)、反余弦函数acos(x)、反正切函数atan(x)等。
它们的定义域和值域与所对应的三角函数的范围正好相反。
反三角函数的图像和所对应的三角函数的图像关于y = x对称。
以上是基本初等函数的主要内容,它们是数学中最常见的函数,不仅在实际问题中有着广泛的应用,而且还在高中数学的教学中起到了重要的作用。
通过对这些函数的学习与理解,可以更好地掌握数学知识,提高数学解题的能力。
基本初等函数
基本初等函数包括以下几种:(1)常数函数y = c(c 为常数)(2)幂函数y = x^a(a 为非0 常数)(3)指数函数y = a^x(a>0, a≠1)(4)对数函数y =log(a) x(a>0, a≠1)(5)三角函数:主要有以下6 个:正弦函数y =sin x余弦函数y =cos x正切函数y =tan x余切函数y =cot x正割函数y =sec x余割函数y =csc x此外,还有正矢、余矢等罕用的三角函数。
(6)反三角函数:主要有以下6 个:反正弦函数y = arcsin x反余弦函数y = arccos x反正切函数y = arctan x反余切函数y = arccot x反正割函数y = arcsec x反余割函数y = arccsc x初等函数是由基本初等函数经过有限次的有理运算和复合而成的函数。
基本初等函数和初等函数在其定义区间内均为连续函数幂函数简介形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
当a取非零的有理数时是比较容易理解的,而对于a取无理数时,初学者则不大容易理解了。
因此,在初等函数里,我们不要求掌握指数为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续统的极为深刻的知识。
特性对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q 次根号下(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数a是负整数时,设a=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。
因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x<0或x>0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数。
(整理)基本初等函数.
函数的概念1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。
记作:y =f (x ),x ∈A 。
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )| x ∈A }叫做函数的值域。
注意:(1)“y =f (x )”是函数符号,可以用任意的字母表示,如“y =g(x )”;(2)函数符号“y =f (x )”中的f (x )表示与x 对应的函数值,一个数,而不是f 乘x 。
2.构成函数的三要素:定义域、对应关系和值域 3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f 。
当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。
因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
4.区间(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示。
5.映射一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射。
记作“f :A →B ”。
映射和函数的区别:映射是两个集合之间的对应关系,集合A 所有元素在B 中有元素对应,集合B 中的元素在A 中不一定有对应的元素。
但是函数,自变量x 所有的值在因变量y 里面都有对应,而因变量y 的所有元素在自变量x 中也有对应; 6.分段函数若一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同,这种函数又称分段函数; 7.复合函数若y =f (u),u=g(x ),x ∈(a ,b ),u ∈(m,n),那么y =f [g(x )]称为复合函数,u 称为中间变量,它的取值范围是g(x )的值域。
基本初等函数(必修1)知识点与练习
第二章 基本初等函数知识点1.指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +>∈且1)n >.0的正分数指数幂等于 .0的负分数指数幂②正数的负分数指数幂的意义是:1()0,,,m m nn a a m n N a -+==>∈且1)n >.(3)分数指数幂的运算性质2指数函数及其性质3对数与对数运算(1)对数的定义.①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N的对数,作 ,其中a 叫做 ,N 叫做 .②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x ax N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法: ②减法: ③数乘: ④log a Na N =⑤loglog (0,)bn a a n M M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且 4对数函数及其性质(5)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于 对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.AB C5幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象,性质6〖补充知识〗二次函数图像及性质第二章 基本初等函数练习题log 1a ------= log a a ------= 12log 2------= 32log 2-------= 3log 27-------= 2log 52------=221log log 612------+= lg 25lg 4------+=2ln e -------=1. 函数y =的定义域是 ( )A .[1,)+∞B .2(,)3+∞C .2[,1]3D .2(,1]32.函数log (32)2a y x =-+的图象必过定点 ( )A .(1,2)B .(2,2)C .(2,3)D .2(,2)33.已知幂函数()y f x =的图象过点,则(4)f 的值为 ( )A .1B . 2C .12D .84. 已知f (x )=(m -1)x 2-2mx +3是偶函数,则在(-∞, 3)内此函数 ( ) A.是增函数 B.不是单调函数 C.是减函数 D.不能确定5. 下列图形表示具有奇偶性的函数可能是 ( )6(2)log (5)x y x -=-的定义域是 ( ) A .(3,4) B .(2,5) C .(2,3)(3,5) D .(,2)(5,)-∞+∞7. 若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(1,0)-和(0,1),则 ( )A .2,2a b == B.2a b = C .2,1a b == D.a b ==8. 函数22log (1)y x x =+≥的值域为 ( )A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞9. 若21025x=,则10x -等于 ( )A 、15B 、15-C 、150D 、162510. 与函数()2xf x =的图像关于直线y x =对称的曲线C 对应的函数为()g x ,则1()2g 的值为 ( )AB .1;C .12; D .1-11. 已知13x x -+=,则22x x -+值为 ( )A 5B 6 C. 7 D. 812. 三个数60.70.70.76log 6,,的大小关系为 ( )A. 60.70.70.7log 66<<B. 60.70.70.76log 6<< C .0.760.7log 660.7<<D. 60.70.7log 60.76<<13. 在统一平面直角坐标系中,函数ax x f =)(与x a x g =)(的图像可能是 ( )14. 已知偶函数f (x )在区间(-∞,0]上为增函数,下列不等式一定成立的是( )A .f (-3)>f (2) B .f (-π)>f (3)C .f (1)>f (a 2+2a +3)D .f (a 2+2)>f (a 2+1)15. 函数log a y x =,log b y x =,log c y x =,log d y x =的图象如图所示,则a ,b ,c ,d 的大小顺序是 ( ).A .1<d <c <a <bB .c <d <1<a <bC .c <d <1<b <aD .d <c <1<a <b二、填空题16,已知函数f (x )=⎪⎩⎪⎨⎧,≤ ,,>,020log 3x x x x 则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛91f f 的值为___ __17,不论a 为何正实数,函数12x y a +=-的图象一定通过一定点,则该定点的坐标是_____ 18,函数log (1)a y x =-恒过 点19.计算:459log 27log 8log 625⨯⨯= .20.若函数()log (01)f x ax a =<<在区间[,2]a a 上的最大值是最小值的3倍,a = .21,已知函数f (x )=a -121+x ,若f (x )为奇函数,则a =___ _____三、解答题22. 计算(1)4160.253216(24()849-+-⨯.(2)125552log 2log log 34e ++21log32-⨯23,函数()(0,1)x f x a a a =>≠在区间[1,2]上的最大值比最小值大2a,求a 的值为25, 设函数421()log 1x x f x x x -⎧<=⎨≥⎩.(Ⅰ)求方程1()4f x =的解. (Ⅱ)求不等式()2f x ≤的解集.26.解不等式2121()x x a a--> (01)a a >≠且.27.设集合2{|log (2)2}S x x =+≤,集合1{|()1,2}2xT y y x ==-≥-求S T ,S T .。
专题0 基本初等函数(Ⅰ)(知识梳理)
专题02基本初等函数(知识梳理)第一节 指数与指数函数1.有理数指数幂 (1)幂的有关概念 ①正分数指数幂: am n=na m (a >0,m ,n ∈N *,且n >1).②负分数指数幂: a -m n=1am n=1n a m(a >0,m ,n ∈N *,且n >1).③0的正分数指数幂等于0,0的负分数指数幂没有意义. (2)有理数指数幂的性质 ①a r a s =a r +s (a >0,r ,s ∈Q); ②(a r )s =a rs (a >0,r ,s ∈Q); ③(ab )r =a r b r (a >0,b >0,r ∈Q). 2.指数函数的图象与性质R1.在进行指数幂的运算时,一般用分数指数幂的形式表示,并且结果不能同时含有根号和分数指数幂,也不能既有分母又含有负指数.2.指数函数y =a x (a >0,a ≠1)的图象和性质跟a 的取值有关,要特别注意区分a >1或0<a <1.[谨记通法]指数幂运算的一般原则(1)有括号的先算括号里的,无括号的先做指数运算. (2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数. (4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答. 考点二 指数函数的图象及应用重点保分型考点——师生共研[典例引领]1.(2018·嘉兴能力测试)若函数f (x )=a x -b 的图象如图所示,则( )A .a >1,b >1B .a >1,0<b <1C .0<a <1,b >1D .0<a <1,0<b <1解析:选D 由f (x )=a x -b 的图象可以观察出,函数f (x )=a x -b 在定义域上单调递减,所以0<a <1,又函数f (x )=a x -b 的图象是在y =a x 的基础上向下平移b 个单位长度得到的,所以0<b <1.2.已知a >0,且a ≠1,若函数y =|a x -2|与y =3a 的图象有两个交点,则实数a 的取值范围是________.解析:①当0<a <1时,作出函数y =|a x -2|的图象,如图a.若直线y =3a 与函数y =|a x -2|(0<a <1)的图象有两个交点,则由图象可知0<3a <2,所以0<a <23.②当a >1时,作出函数y =|a x -2|的图象,如图b ,若直线y =3a 与函数y =|a x -2|(a >1)的图象有两个交点,则由图象可知0<3a <2,此时无解.所以a 的取值范围是⎝⎛⎭⎫0,23. 答案:⎝⎛⎭⎫0,23[由题悟法]指数函数图象的画法及应用(1)画指数函数y =a x (a >0,a ≠1)的图象,应抓住三个关键点:(1,a ),(0,1),⎝⎛⎭⎫-1,1a . (2)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.[即时应用]1.函数f (x )=1-e |x |的图象大致是( )解析:选A 将函数解析式与图象对比分析,因为函数f (x )=1-e |x |是偶函数,且值域是(-∞,0],只有A 满足上述两个性质.2若函数y =|3x -1|在(-∞,k ]上单调递减,求k 的取值范围.解:函数y =|3x -1|的图象是由函数y =3x 的图象向下平移一个单位后,再把位于x 轴下方的图象沿x 轴翻折到x 轴上方得到的,函数图象如图所示.由图象知,其在(-∞,0]上单调递减,所以k 的取值范围是(-∞,0]. 考点三 指数函数的性质及应用题点多变型考点——多角探明[锁定考向]高考常以选择题或填空题的形式考查指数函数的性质及应用,难度偏小,属中低档题. 常见的命题角度有: (1)比较指数式的大小;(2)简单指数方程或不等式的应用; (3)探究指数型函数的性质.[通法在握]应用指数函数性质的常见3大题型及求解策略题型 求解策略比较幂值的大小(1)能化成同底数的先化成同底数幂再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小解简单指数不等式先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解探究指数型函数的性质与研究一般函数的定义域、单调性(区间)、奇偶性、最值(值域)等性质的方法一致[提醒]在研究指数型函数的单调性时,当底数与“1”的大小关系不明确时,要分类讨论.第二节对数与对数函数1.对数概念如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数,log a N 叫做对数式性质对数式与指数式的互化:a x=N⇔x=log a N log a1=0,log a a=1,a log a N=N运算法则log a(M·N)=log a M+log a Na>0,且a≠1,M>0,N>0 log aMN=log a M-log a Nlog a M n=n log a M(n∈R)换底公式换底公式:log a b=log c blog c a(a>0,且a≠1,c>0,且c≠1,b>0)2.对数函数的图象与性质y=log a x a>10<a<1图象性质定义域为(0,+∞)值域为R过定点(1,0),即x=1时,y=0当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>0在区间(0,+∞)上是增函数在区间(0,+∞)上是减函数3.反函数指数函数y=a x(a>0且a≠1)与对数函数y=log a x(a>0且a≠1)互为反函数,它们的图象关于直线y=x对称.1.在运算性质log a Mα=αlog a M中,要特别注意条件,在无M>0的条件下应为log a Mα=αlog a|M|(α∈N*,且α为偶数).2.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值范围.[谨记通法]对数运算的一般思路(1)将真数化为底数的指数幂的形式进行化简;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.如“题组练透”第1题易错.考点二对数函数的图象及应用重点保分型考点——师生共研[典例引领](2018·杭州模拟)设f(x)=|ln(x+1)|,已知f(a)=f(b)(a<b),则()A.a+b>0B.a+b>1C.2a+b>0 D.2a+b>1解析:选A 作出函数f (x )=|ln(x +1)|的图象如图所示,由f (a )=f (b ),得-ln(a +1)=ln(b +1),即ab +a +b =0.所以0=ab +a +b <a +b 24+a +b ,即(a +b )(a +b +4)>0,显然-1<a <0,b >0,∴a +b +4>0.∴a +b >0.故选A.[由题悟法]应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.[即时应用]1.函数f (x )=ln|x -1|的图象大致是( )解析:选B 当x >1时,f (x )=ln(x -1),又f (x )的图象关于x =1对称,故选B.2.(2018·温州适应性训练)若x 1满足2x +2x =5,x 2满足2x +2log 2(x -1)=5,则x 1+x 2=( ) A.52 B .3 C.72D .4解析:选C 2x =5-2x,2log 2(x -1)=5-2x ,即2x -1=52-x ,log 2(x -1)=52-x ,作出y =2x -1,y =52-x ,y =log 2(x -1)的图象(如图). 由图知y =2x-1与y =log 2(x -1)的图象关于y =x -1对称,它们与y =52-x 的交点A ,B 的中点为y =52-x 与y =x -1的交点C ,x C =x 1+x 22=74,∴x 1+x 2=72,故选C.[通法在握]1.解决与对数函数有关的函数的单调性问题的步骤2.比较对数值大小的方法(1)若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.(2)若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.(3)若底数与真数都不同,则常借助1,0等中间量进行比较.第三节幂函数1.五种常见幂函数的图象与性质函数特征性质y=x y=x2y=x3y=x12y=x-1图象定义域R R R{x|x≥0}{x|x≠0}值域R{y|y≥0}R{y|y≥0}{y|y≠0}奇偶性奇偶奇非奇非偶奇单调性增(-∞,0)减,(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1)1.对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.2.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.[小题纠偏]1.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是________. 答案:⎝⎛⎭⎫120,+∞ 2.给出下列命题: ①函数y =2x 是幂函数;②如果幂函数的图象与坐标轴相交,则交点一定是原点; ③当n <0时,幂函数y =x n 是定义域上的减函数; ④二次函数y =ax 2+bx +c ,x ∈[m ,n ]的最值一定是4ac -b 24a. 其中正确的是________(填序号). 答案:②考点一 幂函数的图象与性质基础送分型考点——自主练透[题组练透]1.幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )解析:选C 令f (x )=x α,则4α=2, ∴α=12,∴f (x )=x 12.2.已知幂函数f (x )=(m 2-3m +3)x m +1为偶函数,则m =( ) A .1 B .2 C .1或2D .3解析:选A ∵幂函数f (x )=(m 2-3m +3)x m +1为偶函数,∴m 2-3m +3=1,即m 2-3m +2=0,解得m =1或m =2.当m =1时,幂函数f (x )=x 2为偶函数,满足条件.当m =2时,幂函数f (x )=x 3为奇函数,不满足条件.故选A.3.若(a +1)12<(3-2a )12,则实数a 的取值范围是________. 解析:易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.答案:⎣⎡⎭⎫-1,23 [谨记通法]幂函数的指数与图象特征的关系(1)幂函数的形式是y =x α(α∈R),其中只有一个参数α,因此只需一个条件即可确定其解析式. (2)若幂函数y =x α(α∈R)是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断.(3)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0. 考点二 求二次函数的解析式重点保分型考点——师生共研[典例引领]已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.解:法一:(利用二次函数的一般式) 设f (x )=ax 2+bx +c (a ≠0). 由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.故所求二次函数为f (x )=-4x 2+4x +7. 法二:(利用二次函数的顶点式) 设f (x )=a (x -m )2+n .∵f (2)=f (-1),∴抛物线对称轴为x =2+-12=12. ∴m =12,又根据题意函数有最大值8,∴n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 法三:(利用两根式)由已知f (x )+1=0的两根为x 1=2,x 2=-1,故可设f(x)+1=a(x-2)(x+1),即f(x)=ax2-ax-2a-1.又函数有最大值y max=8,即4a-2a-1-a24a=8.解得a=-4或a=0(舍去),故所求函数解析式为f(x)=-4x2+4x+7.[由题悟法]求二次函数解析式的方法[通法在握]1.二次函数最值问题的3种类型及解题思路(1)类型:①对称轴、区间都是给定的;②对称轴动、区间固定;③对称轴定、区间变动.(2)思路:抓“三点一轴”,三点是指区间两个端点和中点,一轴指的是对称轴.2.由不等式恒成立求参数取值范围的2大思路及1个关键(1)思路:一是分离参数;二是不分离参数.(2)关键:两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否可分离.这两个思路的依据是:a≥f(x)⇔a≥f(x)max,a≤f(x)⇔a≤f(x)min.。
基本初等函数复习课知识总结[1]
⑤在R上是增函数.
⑤在R上是减函数.
底数互为
倒数的两个 指数函数
y = ax, y = (1)x a
的函数图像 关于y轴对称。
2、对数函数y=logax(a>0且a≠1)的图象和性质:
a>1
y
图
象
o
x
0<a<1
y
o
x
①x∈ (0,+∞) ; ② y∈ R;
③过定点(1, 0)
性 ④当x> 1时,y> 0, 质 0< x< 1时, y< 0
A.y3>y1>y2 B.y2>y1>y3 C.y1>y2>y3 D.y1>y3>y2
(2)log323与 log565;
【解析】∵y1=40.9=21.8,y2=80.44=21.32, y3=12-1.5=21.5 ,1.8>1.5>1.32.
∴根据指数函数的性质可得,y1>y3>y2.故选D.
知识结构及知识梳理
指数与指数函数
N次方根及其性质 根式及其性质 指数 分数指数幂 有理数指数幂的运算性质
定义
指数函数
图像及性质
基本初等函数
定义 对数 运算性质
对数与对数函数
换底公式
对数函数 定义 图像和性质
定义 幂函数
图像和性质
根式的性质
(1)当n为奇数时,正数的n次方根是一个正数,负数的n次
方根是一个负数,这时,a的n次方根用符号n a 表示.
(2) 已知 log2 3 = a,log3 7 = b,试用a,b表示 log14 56.
指数函数与对数函数 1、指数函数y=ax(a>0且a≠1)的图象和性质:
(整理)基本初等函数一.
课题:基本初等函数一一、学习目标:理解基本概念、基本性质,熟练掌握基本运算法则、基本性质、基本技巧的运用。
二、自学指导:基础知识梳理:1、指数式、对数式的概念及其运算法则(1)指数式:对数式:(2)运算法则①实数指数幂运算法则(3个)②对数运算法则(3个)③对数换底公式2、指数函数(y=a x、a>0且a≠1)3、对数函数(y=xlog、a>0且a≠1,x>0)a4、指、对函数的关系:(代数方面)、(定义域值域)、(图像方面)5、幂函数(y=xα、α∈R)性质:6、函数的实际应用:有哪些类型?三、合作学习、补充完善:四、基础训练1、计算())(8421221221*-++∈∙⎪⎭⎫ ⎝⎛⋅N n n n n 的结果( )A ,461;B ,22n+5; C ,6222+-n n ;D, 7221-⎪⎭⎫⎝⎛n2、若0<a<1,x>y>1,则a x ,x a ,a y ,y a 从小到大的顺序是3、若3x =4y =36,则yx 12+的值是 4、函数82221++-⎪⎭⎫⎝⎛=x x y 的定义域 值域5、函数)34(log 25.0+-=x x y 的递增区间是课题:基本初等函数三一、学习目标:,熟练掌握基本运算法则、基本性质、基本技巧的综合运用。
二、典型例题研究:例1、已知函数 )(log )(x a a a x f y -==(a>1)(1)求f(x)的定义域、值域、反函数; (2)判断f(x)的单调性并证明。
例2、已知x 满足203log 7log 21221≤++⎪⎪⎭⎫ ⎝⎛x x ,求函数f(x)=log 24x ·log 22x的最大值和最小值。
三、小组合作学习: 四、展示、点拨、总结:五、巩固练习:1、定义在[-1,1]上的奇函数f(x),当x ∈(]1,0时,f(x)=142+x x,(1)求f(x)在[-1,1]上的解析式 (2)判断并证明f(x)在(]1,0上的单调性。
基本初等函数知识总结
基本初等函数知识总结含义:常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数统称为基本初等函数1.常数函数(y=C)(1)定义域: D(f)=(-∞,+∞)(2)值域: Z(f)=C(3) 性质: 它的图像是一条平行于x轴并通过点(0,C)在y轴上截距为C的直线(4 )图像:(5)周期性:常值函数是一个周期函数. 因对于任何x∈(-∞,+∞)和实数T,f(x+T)=f(x)=T,但并无最小正周期【注】常值函数不含自变量且不存在反函数2.幂函数(1)定义:形如y=x^a(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数.(2)性质:在(0,+∞)内总有意义①当α>0时函数图像过点(0,0)和(1,1),在(0,+∞)内单调增加且无界②当α<0时函数图像过点(1,1),在(0,+∞)内单调减少且无界(3)图像:3.指数函数y=a^x(a>0且a≠1)(1)定义域:x∈R(2)值域:(0,+∞)(3)性质:①单调性:1.当0<a<1时,在(-∞,+∞)内单调减少 2.当a >1时,在(-∞,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(4)图像:①由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。
②由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。
③指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低” 如图:(5)运算法则:①②③④4.对数函数y=logax(a>0 且a≠1)(1)定义:如果a^x=N(a>0,且a ≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数一般地,函数y=logax(a>0,且a ≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数(2)定义域:(0,+∞),即x>0(3)值域:R(4)性质:①单调性:1.当0<a<1时,在(0,+∞)内单调减少 2.当a >1时,在(0,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(5)图像:【注】①负数和零没有对数②1的对数是零③底数的对数等于1(6)常用法则/公式:5.三角函数⑴正弦函数y=sin x(1)定义:对边与斜边的比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ(K∈Z)时,Y 取最大值1 2.当X=2Kπ+3π/2(K∈Z时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:奇函数③对称性:对称中心是(Kπ,0),K ∈Z;对称轴是直线x=Kπ+π/2,K ∈Z④单调性:在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减⑤有界性:有界函数(6)图像:(2)余弦函数y=cos x(1)定义:邻边与斜边之比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ +π /2(K∈Z)时,Y取最大值1 2.当X=2Kπ +π (K∈Z)时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:偶函数③对称性:对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z④单调性:在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增⑤有界性:有界函数(6)图像:(3)正切函数y=tan x(1)定义:对边与邻边之比(2)定义域:{x∣x≠Kπ+π/2,K∈Z}(3)值域:R(4)最值:无最大值和最小值(5)性质:①周期性:最小正周期都是πT=π②奇偶性:奇函数③对称性:对称中心是(Kπ/2,0),K∈Z④单调性:在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增⑤有界性:无界函数(6)图像:(4)余切函数y=cot x(1)定义:在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。
基本初等函数讲义(超级全)
一、一次函数之阳早格格创做二、二次函数(1)二次函数剖析式的三种形式 ①普遍式:2()(0)f x ax bx c a =++≠ ②顶面式:2()()(0)f x a x h k a =-+≠ ③二根式:12()()()(0)f x a x x x x a =--≠ (2)供二次函数剖析式的要领 ①已知三个面坐标时,宜用普遍式.②已知扔物线的顶面坐标或者与对付称轴有关或者与最大(小)值有关时,常使用顶面式.③若已知扔物线与x 轴有二个接面,且横线坐标已知时,采用二根式供()f x 更便当.(3)二次函数图象的本量①.二次函数2()(0)f x ax bx c a =++≠的图象是一条扔物线,对付称轴圆程为,2bx a =-顶面坐标是24(,)24b ac b a a-- ②当0a >时,扔物线启心进与,函数正在(,]2ba-∞-上递减,正在[,)2b a-+∞上递加,当2bx a =-时,2min 4()4ac b f x a-=;当0a <时,扔物线启心背下,函数正在(,]2b a -∞-上递加,正在[,)2ba-+∞上递减,当2bx a=-时,2max 4()4ac b f x a-=.三、幂函数(1)幂函数的定义普遍天,函数y x α=喊干幂函数,其中x 为自变量,α是常数.(2)幂函数的图象过定面:所有的幂函数正在(0,)+∞皆有定义,而且图象皆通过面(1,1). 四、指数函数(1)根式的观念:如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 喊干a 的n 次圆根.(2)分数指数幂的观念①正数的正分数指数幂的意思是:0,,,mnaa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的背分数指数幂的意思是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的背分数指数幂不意思.(3)运算本量①(0,,)r s r s a a a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r=>>∈ab a b a b r R (4)指数函数五、对付数函数(1)对付数的定义①若(0,1)x a N a a =>≠且,则x 喊干以a 为底N 的对付数,记做log a x N =,其中a 喊干底数,N喊干真数.②背数战整不对付数. ③对付数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个要害的对付数恒等式log 10a =,log 1a a =,log b a a b =.(3)时常使用对付数与自然对付数时常使用对付数:lg N ,即10log N ;自然对付数:ln N ,即log e N (其中 2.71828e =…).(4)对付数的运算本量 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN +=②减法:log log log a a a MM N N-= ③数乘:log log ()n a a n M M n R =∈④log aNa N =⑤log log (0,)bn a anM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a=>≠且(5)对付数函数(6)反函数的观念设函数()y f x =的定义域为A ,值域为C,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对付于y 正在C 中的所有一个值,通过式子()x y ϕ=,x 正在A 中皆有唯一决定的值战它对付应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=喊干函数()y f x =的反函数,记做1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的供法①决定反函数的定义域,即本函数的值域;②从本函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并证明反函数的定义域. (8)反函数的本量 ①本函数()y f x =与反函数1()y f x -=的图象关于曲线y x =对付称. ②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 正在本函数()y f x =的图象上,则'(,)P b a 正在反函数1()y f x -=的图象上.④普遍天,函数()y f x =要有反函数则它必须为单调函数.例题一、供二次函数的剖析式244y x x =--的顶面坐标是()A .(2,0)B .(2,-2)C .(2,-8)D .(-2,-8)例2.已知扔物线的顶面为(-1,-2),且通过(1,10),则那条扔物线的表白式为()A .()2312y x =-- B .()2312y x =-+C.()2312y x =+- D.()2312y x =-+-例3.扔物线y=222xmx m -++的顶面正在第三象限,试决定m的与值范畴是()A .m <-1或者m >2B .m <0或者m >-1C .-1<m <0D .m <-1()f x 共时谦脚条件:(1)()()11f x f x +=-;(2)()f x 的最大值为15;(3)()0f x =的二根坐圆战等于17供()f x 的剖析式 二、二次函数正在特定区间上的最值问题例5. 当22x -≤≤时,供函数223y x x =--的最大值战最小值. 例6.当0x ≥时,供函数(2)y x x =--的与值范畴.例7.当1t x t ≤≤+时,供函数21522y x x =--的最小值(其中t 为常数).三、幂函数(),0-∞上为减函数的是()A.13y x = B.2y x = C.3y x = D.2y x -={}0x x >的是()A.23y x = B.32y x = C.23y x -= D.32y x-=例10.计划函数y =52x 的定义域、值域、奇奇性、单调性,并绘出图象的示企图. 例10.已知函数y =42215x x --.(1)供函数的定义域、值域; (2)推断函数的奇奇性; (3)供函数的单调区间. 四、指数函数的运算122(2)-⎡⎤-⎣⎦的截止是()A、12C 、— D 、—12例12.44等于()A 、16a B 、8a C 、4a D 、2a53,83==ba,则b a233-=___________五、指数函数的本量例14.{|2},{|xM y y P y y ====,则M∩P ()A.{|1}y y >B. {|1}y y ≥C. {|0}y y >D. {|0}y y ≥ 例15.供下列函数的定义域与值域:(1)442x y -=(2)||2()3x y =()2301x y a a a -=+>≠且的图像必通过面 ()A .(0,1)B .(1,1)C .(2,3)D .(2,4) 例17供函数y=2121x x -+的定义域战值域,并计划函数的单调性、奇奇性.五、对付数函数的运算32a =,那么33log 82log 6-用a 表示是()A 、2a -B 、52a -C 、23(1)a a -+ D 、23a a - 例19.2log (2)log log a a a M N M N -=+,则NM 的值为()A 、41B 、4 C 、1 D 、4或者1732log [log (log )]0x =,那么12x-等于()A 、13B C D 例21.2log 13a <,则a 的与值范畴是()A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪⎪⎝⎭⎝⎭五、对付数函数的本量例22.下列函数中,正在()0,2上为删函数的是()A 、12log (1)y x =+B 、2log y =C 、21log y x=D 、2log (45)y x x =-+2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于()A 、x 轴对付称B 、y 轴对付称C 、本面对付称D 、曲线y x =对付称)()lgf x x=是(奇、奇)函数.课下做业1.已知二次函数y=ax2+bx+c,如果a>b>c,且a+b+c=0,则它的图象大概是图所示的( )2.对付扔物线y=22(2)x --3与y=-22(2)x -+4的道法不精确的是()A .扔物线的形状相共B .扔物线的顶面相共C .扔物线对付称轴相共D .扔物线的启心目标差异3. 二次函数y=221xx --+图像的顶面正在()A .第一象限B .第二象限C .第三象限D .第四象限4. 如图所示,谦脚a >0,b <0的函数y=2ax bx +的图像是()5.如果扔物线y=26x x c ++的顶面正在x 轴上,那么c 的值为()A .0B .6C .3D .96.一次函数y =ax +b 与二次函数y =ax2+bx +c 正在共一坐标系中的图象大概是( )7.正在下列图象中,二次函数y=ax2+bx +c 与函数y=(ab )x 的图象大概是 ()8.若函数f(x)=(a -1)x2+(a2-1)x +1是奇函数,则正在区间[0,+∞)上f(x)是( )A .减函数B .删函数C .常函数D .大概是减函数,也大概是常函数9.已知函数y =x2-2x +3正在关区间[0,m]上有最大值3,最小值2,则m 的与值范畴是( )A .[1,+∞)B .[0,2]C .[1,2]D .(-∞,2]10、使x2>x3创造的x 的与值范畴是( )A 、x <1且x≠0B 、0<x <1C 、x >1D 、x <111、若四个幂函数y =ax ,y=bx ,y =c x ,y =d x 正在共一坐标系中的图象如左图,则a 、b 、c 、d 的大小关系是( ) A 、d >c >b >a B 、a >b >c >d C 、d >c >a >b D 、a >b >d >c12.若幂函数()1m f x x -=正在(0,+∞)上是减函数,则 ( )A .m >1B .m <1C .m =lD .不克不迭决定 13.若面(),A a b 正在幂函数()n y x n Q =∈的图象上,那么下列论断中不克不迭创造的是A .00a b >⎧⎨>⎩B .00a b >⎧⎨<⎩C.00a b <⎧⎨<⎩ D .00a b <⎧⎨>⎩14.若函数f(x)=log 12(x2-6x +5)正在(a ,+∞)上是减函数,则a 的与值范畴是( )A .(-∞,1]B .(3,+∞)C .(-∞,3)D .[5,+∞)15、设集中2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈,则S T 是() A 、∅ B 、T C 、S D 、有限集16、函数22log (1)y x x =+≥的值域为()A 、()2,+∞B 、(),2-∞C 、[)2,+∞D 、[)3,+∞17、设1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则()A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>18、正在(2)log (5)a b a -=-中,真数a 的与值范畴是()A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a <<19、估计lg52lg2)lg5()lg2(22•++等于() A 、0 B 、1 C 、2 D 、320、已知3log 2a =,那么33log 82log 6-用a 表示是() A 、52a - B 、2a - C 、23(1)a a -+ D 、231a a --21、已知幂函数f(x)过面(2,),则f(4)的值为()A 、12B 、 1C 、2D 、81.扔物线y =8x2-(m -1)x +m -7的顶面正在x 轴上,则m =________.23-=xy 的定义域为___________.()()12m f x m x +=-,如果()f x 是正比率函数,则m=____ ,如果()f x 是反比率函数,则m=______,如果f(x)是幂函数,则m=____.14(1)x --蓄意思,则x ∈___________.35x y <=___________.25525x x y ⋅=,则y 的最小值为___________.7、若2log 2,log 3,m n a a m n a +===. 8、函数(-1)log (3-)x y x =的定义域是. 9、2lg 25lg 2lg50(lg 2)++=.1622<-+x x的解集是__________________________.282133x x --⎛⎫< ⎪⎝⎭的解集是__________________________.103,104x y ==,则10x y -=__________________________.13、已知函数3xlog x (x 0)1f (x),f[f ()]2(x 0)9>⎧=⎨≤⎩,则,的值为 14、函数2)23x (lg )x (f +-=恒过定面2、已知幂函数f (x )=23221++-p p x(p ∈Z )正在(0,+∞)上是删函数,且正在其定义域内是奇函数,供p 的值,并写出相映的函数f (x )、222(3)lg 6x f x x -=-,(1)供()f x 的定义域;(2)推断()f x 的奇奇性.a R ∈,22()()21xx a a f x x R ⋅+-=∈+,试决定a 的值,使()f x 为奇函数.5. 已知函数x 121f (x)log[()1]2=-,(1)供f(x)的定义域;(2)计划函数f(x)的删减性.。
必修1基本初等函数(Ⅰ)知识要点
必修1基本初等函数(Ⅰ)知识要点〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的nn 是偶数时,正数a 的正的n表示,负的n次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=. ③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.(Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②0x ->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()mf q = ②02b x a->,则()m f p =.xxxxx x(q)0x xf xfxfxxx。
基本初等函数讲义超级全
一、一次函数 一次函数k ;b 符号图象性质y 随x 的增大而增大 y 随x 的增大而减小二、二次函数1二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠2求二次函数解析式的方法 ①已知三个点坐标时;宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大小值有关时;常使用顶点式. ③若已知抛物线与x 轴有两个交点;且横线坐标已知时;选用两根式求()f x 更方便. 3二次函数图象的性质图像定义域 对称轴顶点坐标 值域单调区间,2b a ⎛⎫-∞- ⎪⎝⎭递减,2b a ⎛⎫-+∞ ⎪⎝⎭递增 ,2b a ⎛⎫-∞- ⎪⎝⎭递增,2b a ⎛⎫-+∞ ⎪⎝⎭递减 ①.二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线;对称轴方程为,2bx a =-顶点坐标是24(,)24b ac b a a-- ②当0a >时;抛物线开口向上;函数在(,]2b a -∞-上递减;在[,)2b a -+∞上递增;当2bx a =-时;2min 4()4ac b f x a -=;当0a <时;抛物线开口向下;函数在(,]2ba -∞-上递增;在[,)2b a -+∞上递减;当2b x a=-时;2max 4()4ac b f x a -=.三、幂函数 1幂函数的定义一般地;函数y x α=叫做幂函数;其中x 为自变量;α是常数. 2幂函数的图象过定点:所有的幂函数在(0,)+∞都有定义;并且图象都通过点(1,1). 四、指数函数1根式的概念:如果,,,1n x a a R x R n =∈∈>;且n N +∈;那么x 叫做a 的n 次方根.2分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mn m naa a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,m m m nn n a a m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 3运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈ 4指数函数 函数名称 指数函数定义函数(0x y a a =>且1)a ≠叫做指数函数图象定义域 值域过定点 图象过定点(0,1);即当0x =时;1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的变化情况xa y =xy(0,1)O1y =x a y =xy(0,1)O1y =a 变化对图象的影响在第一象限内;a 越大图象越高;在第二象限内;a 越大图象越低.五、对数函数 1对数的定义①若(0,1)x a N a a =>≠且;则x 叫做以a 为底N 的对数;记作log ax N =;其中a 叫做底数;N 叫做真数. ②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x ax N a N a a N =⇔=>≠>.2几个重要的对数恒等式log 10a=;log 1aa =;logb aa b =.3常用对数与自然对数 常用对数:lg N ;即10logN ;自然对数:ln N ;即log eN 其中 2.71828e =….4对数的运算性质 如果0,1,0,0a a M N >≠>>;那么①加法:log log log ()a a a M N MN += ②减法:log log log a a a MM N N-=③数乘:log log ()n aan M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b =≠∈⑥换底公式:log log (0,1)log b a bNN b b a=>≠且 5对数函数函数名称 对数函数定义函数log (0ay x a =>且1)a ≠叫做对数函数图象定义域 值域过定点 图象过定点(1,0);即当1x =时;0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的变化情况a 变化对 图象的影响在第一象限内;a 越大图象越靠低;在第四象限内;a 越大图象越靠高.6反函数的概念设函数()y f x =的定义域为A ;值域为C ;从式子()y f x =中解出x ;得式子()x y ϕ=.如果对于y 在C 中的任何一个值;通过式子()x y ϕ=;x 在A 中都有唯一确定的值和它对应;那么式子()x y ϕ=表示x 是y 的函数;函数()x y ϕ=叫做函数()y f x =的反函数;记作1()x fy -=;习惯上改写成1()y f x -=.7反函数的求法①确定反函数的定义域;即原函数的值域;②从原函数式()y f x =中反解出1()x fy -=;③将1()x fy -=改写成1()y f x -=;并注明反函数的定义域.xyO(1,0)1x =log ay x=xyO(1,0)1x =log ay x=8反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上;则'(,)P b a 在反函数1()y fx -=的图象上.④一般地;函数()y f x =要有反函数则它必须为单调函数. 例题一、求二次函数的解析式例1.抛物线244y x x =--的顶点坐标是A .2;0B .2;-2C .2;-8D .-2;-8例2.已知抛物线的顶点为1;2;且通过1;10;则这条抛物线的表达式为A .()2312y x =--B .()2312y x =-+ C. ()2312y x =+- D.()2312y x =-+-例3.抛物线y=的顶点在第三象限;试确定m 的取值范围是A .m <-1或m >2B .m <0或m >-1C .-1<m <0D .m <-1例4.已知二次函数()f x 同时满足条件:1()()11f x f x +=-;2()f x 的最大值为15;3()0f x =的两根立方和等于17求()f x 的解析式 二、二次函数在特定区间上的最值问题例5. 当22x -≤≤时;求函数223y x x =--的最大值和最小值. 例6.当0x ≥时;求函数(2)y x x =--的取值范围.例7.当1t x t ≤≤+时;求函数21522y x x =--的最小值其中t 为常数.--222x mx m -++三、幂函数例8.下列函数在(),0-∞上为减函数的是A.13y x = B.2y x = C.3y x = D.2y x -= 例9.下列幂函数中定义域为{}0x x >的是A.23y x = B.32y x = C.23y x-= D.32y x-=例10.讨论函数y =52x 的定义域、值域、奇偶性、单调性;并画出图象的示意图.例10.已知函数y =42215x x --.1求函数的定义域、值域; 2判断函数的奇偶性; 3求函数的单调区间. 四、指数函数的运算例11.计算122(2)-⎡⎤-⎣⎦的结果是A 、2B 、12C 、—2D 、—12例12.等于 A 、 B 、C 、 D 、例13.若53,83==b a ;则b a 233-=___________五、指数函数的性质例14.{|2},{|1}x M y y P y y x ====-;则M∩PA.{|1}y y > B. {|1}y y ≥ C. {|0}y y > D. {|0}y y ≥44366399a a ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭16a 8a 4a 2a例15.求下列函数的定义域与值域:1442x y -=2||2()3x y =例16.函数()2301x y a a a -=+>≠且的图像必经过点A .0;1B .1;1C .2;3D .2;4例17求函数y=2121x x -+的定义域和值域;并讨论函数的单调性、奇偶性.五、对数函数的运算例18.已知32a =;那么33log 82log 6-用a 表示是A 、2a -B 、52a -C 、23(1)a a -+D 、23a a -例19.2log (2)log log a a a M N M N -=+;则N M的值为A 、41B 、4C 、1D 、4或1例20.已知732log [log (log )]0x =;那么12x-等于A 、13B 、123C 、122D 、133例21.2log 13a <;则a 的取值范围是 A 、()20,1,3⎛⎫+∞ ⎪⎝⎭B 、2,3⎛⎫+∞ ⎪⎝⎭C 、2,13⎛⎫ ⎪⎝⎭D 、220,,33⎛⎫⎛⎫+∞ ⎪⎪⎝⎭⎝⎭五、对数函数的性质例22.下列函数中;在()0,2上为增函数的是 A 、12log (1)y x =+B 、22log1y x =-C 、21log y x=D 、212log (45)y x x =-+例23.函数2lg 11y x ⎛⎫=- ⎪+⎝⎭的图像关于A 、x 轴对称B 、y 轴对称C 、原点对称D 、直线y x =对称例23.求证函数()2()lg 1f x x x =+-是奇、偶函数..课下作业1.已知二次函数y=ax2+bx+c;如果a>b>c;且a+b+c=0;则它的图象可能是图所示的2.对抛物线y=-3与y=-+4的说法不正确的是A .抛物线的形状相同B .抛物线的顶点相同C .抛物线对称轴相同D .抛物线的开口方向相反3. 二次函数y=图像的顶点在A .第一象限B .第二象限C .第三象限D .第四象限4. 如图所示;满足a >0;b <0的函数y=的图像是5.如果抛物线y=的顶点在x 轴上;那么c 的值为A .0B .6C .3D .96.一次函数y =ax +b 与二次函数y =ax2+bx +c 在同一坐标系中的图象大致是7.在下列图象中;二次函数y=ax2+bx +c 与函数y=a bx 的图象可能是8.若函数fx =a -1x 2+a 2-1x +1是偶函数;则在区间0;+∞上fx 是A .减函数B .增函数C .常函数D .可能是减函数;也可能是常函数9.已知函数y =x2-2x +3在闭区间0;m 上有最大值3;最小值2;则m 的取值范围是22(2)x -22(2)x -221x x --+2ax bx +26x x c ++A .1;+∞B .0;2C .1;2D .-∞;2 10、使x2>x3成立的x 的取值范围是A 、x <1且x≠0B 、0<x <1C 、x >1D 、x <111、若四个幂函数y =a x ;y =b x ;y =c x ;y =d x 在同一坐标系中的图象如右图;则a 、b 、c 、d 的大小关系是 A 、d >c >b >a B 、a >b >c >d C 、d >c >a >b D 、a >b >d >c12.若幂函数()1m f x x -=在0;+∞上是减函数;则A .m >1B .m <1C .m =lD .不能确定13.若点(),A a b 在幂函数()n y x n Q =∈的图象上;那么下列结论中不能成立的是A .00a b >⎧⎨>⎩ B .00a b >⎧⎨<⎩C.00a b <⎧⎨<⎩ D .00a b <⎧⎨>⎩14.若函数fx =log 12x 2-6x +5在a ;+∞上是减函数;则a 的取值范围是A .-∞;1B .3;+∞C .-∞;3D .5;+∞ 15、设集合2{|3,},{|1,}x S y y x R T y y x x R ==∈==-∈;则S T 是A 、∅B 、TC 、SD 、有限集16、函数22log (1)y x x =+≥的值域为A 、()2,+∞ B 、(),2-∞ C 、[)2,+∞ D 、[)3,+∞17、设1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭;则A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>18、在(2)log (5)a b a -=-中;实数a 的取值范围是A 、52a a ><或B 、2335a a <<<<或C 、25a <<D 、34a <<19、计算lg52lg2)lg5()lg2(22•++等于A 、0B 、1C 、2D 、320、已知3log 2a =;那么33log 82log 6-用a 表示是A 、52a -B 、2a -C 、23(1)a a -+D 、231a a --21、已知幂函数fx 过点2;22;则f4的值为 A 、12B 、 1C 、2D 、8二、填空题1.抛物线y =8x 2-m -1x +m -7的顶点在x 轴上;则m =________.2.函数23-=x y 的定义域为___________. 3.设()()12m f x m x +=-;如果()f x 是正比例函数;则m=____ ;如果()f x 是反比例函数;则m=______;如果fx 是幂函数;则m=____. 4.若14(1)x --有意义;则x ∈___________.5.当35x y <时;2225309y xy x -+=___________.6.若25525x x y ⋅=;则y 的最小值为___________.7、若2log 2,log 3,m n a am n a +===.. 8、函数(-1)log (3-)x y x =的定义域是..9、2lg 25lg 2lg 50(lg 2)++=..10.不等式1622<-+x x 的解集是__________________________. 11.不等式282133x x --⎛⎫< ⎪⎝⎭的解集是__________________________. 12.若103,104x y ==;则10x y -=__________________________. 13、已知函数3x log x (x 0)1f (x),f[f ()]2(x 0)9>⎧=⎨≤⎩,则,的值为 14、函数2)23x (lg )x (f +-=恒过定点三、简答题1.求下列各式中的x 的值2、已知幂函数fx =23221++-p p x p∈Z 在0;+∞上是增函数;且在其定义域内是偶函数;求p 的值;并写出相应的函数fx 、 3.已知函数222(3)lg 6x f x x -=-;1求()f x 的定义域;2判断()f x 的奇偶性.. 4.设a R ∈;22()()21x x a a f x x R ⋅+-=∈+;试确定a 的值;使()f x 为奇函数.. 5. 已知函数x 121f (x)log [()1]2=-;1求fx 的定义域; 2讨论函数fx 的增减性..。
知识点整理-[高中数学]第三章 基本初等函数(I)
如果 a=1,y=1x=1,是一个常量,对它就没有研究的必要。
为了避免上述各种情况,所以规定 a>0 且 a≠1。
1
③如 y=2·3x,y= 2 x ,y= 3 x2 ,y=3x+1 等函数都不是指数函数,要注意区分。
(2)指数函数的图象和性质
y=ax
0<a<1
a>1
图 象
定义域为 R,值域为(0,+∞)
质对于无理指数幂也适用,这样,指数概念就扩充到了整个实数范围。
(3)利用分数指数进行根式与幂的计算
在进行幂和根式的化简时,一般是先将根式化成幂的形式,并化小数指数幂为分数指
数幂,并尽可能的统一成分数指数幂形式,再利用幂的运算性质进行化简、求值、计算,
以利于运算、达到化繁为简的目的。
对于根式计算结果,并不强求统一的表示形式,一般用分数指数幂的形式来表示,如
a0=1,即 x=0 时,y=1,图像都过点(0,1)
性 a1=a,即 x=1 时,y 等于底数 a,图像都经过点(1,a)
质 在定义域上是单调减函数
在定义域上是单调增函数
x<0 时,ax>1;
x<0 时,0<ax<1;
x>0 时,0<ax<1
x>0 时,ax>1
既不是奇函数,也不是偶函数
4
学习指数函数的图象和性质,需要注意的几个问题: ①当底数 a 大小不定时,必须分“a>1”和“0<a<1”两种情况讨论。 ②当 0<a<1 时,x→+∞,y→0;当 a>1 时,x→-∞,y→0。当 a>1 时 a 的值越大, 图象越靠近 y 轴,递增速度越快;当 0<a<1 时,a 的值越小,图象越靠近 y 轴,递减的 速度越快。(其中“x→+∞”意义是:“x 接近于正无穷大”)。 ③在同一直角坐标系中指数函数图象的位置与底数大小的关系:在 y 轴右侧,图象从 上到下相应的底数由大变小;在 y 轴左侧,图象从下到上相应的底数由大变小。 规律:当 a>1,b>1 时,指数函数 y=ax,y=bx 的图象在同一坐标系中,在直线 x=0 的右边,当 a>b 时,y=ax 的图象在 y=bx 的图象上方,在直线 x=0 的左边正好相反。 当 0<a<1,0<b<1 时,指数函数 y=ax,y=bx 的图象的关系与 a>1,b>1 正好相反。 (3)指数函数的定义域与值域 指数函数 y=ax(a>0 且 a≠1)的定义域是(-∞,+∞),值域是(0,+∞)。 求由指数函数构成的复合函数的定义域时,可能涉及解指数不等式(即未知数在指数 上的不等式)。解指数不等式的基本方法是把不等式两边化为同底的幂的形式,利用指数 函数的单调性脱去幂的形式,从而转化为熟悉的不等式。同时还应注意负数不能开偶次方, 分母不能为零,限制 x 的取值。 求由指数函数构成的复合函数的值域,一般用换元法即可,但应注意在中间变量的值 域以及指数函数的单调性的双重作用下,函数值域的变化情况。 (4)指数函数图象的变换规律 ①平移规律 若已知 y=ax 的图象,则把 y=ax 的图象向左平移 b(b>0)个单位,则得到 y=ax+b 的图 象,向右平移 b(b>0)个单位,则得到 y=ax-b 的图象,向上平移 b(b>0)个单位,则得 到 y=ax+b 的图象,向下平移 b(b>0)个单位,则得到 y=ax-b 的图象。 一般的,把函数 y=f(x)图象向右平移 m 个单位得到函数 y=f(x-m)的图象(m∈R,m< 0,就是向左平移|m|个单位);把函数 y=f(x)的图象向上平移 n 个单位,得函数 g(x)=f(x)+n 的图象(n∈R,n<0,就是向下平移|n|个单位)。
六大基本初等函数图像及性质
六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)0≠C0=C平行于x 轴的直线y 轴本身 定义域R定义域R二、幂函数 αx y = ,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数x y =2x y =3x y =21xy =1-=x y定义域 R R R [0,+∞) {x|x ≠0} 值域 R [0,+∞) R [0,+∞) {y|y ≠0} 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增[0,+∞) 增 增 增(0,+∞) 减 (-∞,0] 减(-∞,0) 减公共点(1,1)xyOxy =2x y =3x y =1-=xy 21xy =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1);4)如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,n 为偶数时,函数的定义域为大于零的一切实数;n 为奇数时,定义域为去除x=0以外的一切实数。
三、指数函数xa y =(x 是自变量,a 是常数且0>a ,1≠a ),定义域是R ;[无界函数]1.指数函数的图象:2.指数函数的性质;性质函数x a y =)1(>ax a y =)10(<<a定义域 R 值域(0,+∞) 奇偶性 非奇非偶公共点过点(0,1),即0=x 时,1=y单调性在),(∞+∞-是增函数 在),(∞+∞-是减函数 1)当1>a 时函数为单调增,当10<<a 时函数为单调减; 2)不论x 为何值,y 总是正的,图形在x 轴上方; 3)当0=x 时,1=y ,所以它的图形通过(0,1)点。
(整理)第一课时基本初等函数
第二课时:基本初等函数 备课教师:许新新教学目标: 使学生熟练掌握指数函数,对数函数,幂函数的定义,图像性质; 教学重点:二次函数根的分布和最值得求法; 教学难点:二次函数根的分布和最值得求法; 教学过程: 1.指数函数1.1指数与指数幂的运算 (1)根式的概念①如果,,,1n x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 表示;当n 是偶数时,正数a 的正的n 次方根用符表示,负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,mm nn a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈ 【2.1.2】指数函数及其性质2对数函数2.1对数与对数运算 (1)对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N=,其中a叫做底数,N 叫做真数. ②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b=.(3)常用对数与自然对数常用对数:lg N ,即10log N;自然对数:ln N ,即l o g e N(其中 2.71828e =…).(4)对数的运算性质如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN +=②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =∈④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈⑥换底公式:log log (0,1)log b a b NN b b a=>≠且2.2对数函数及其性质设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=. (7)反函数的求法①确定反函数的定义域,即原函数的值域; ②从原函数式()y f x =中反解出1()x fy -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域. (8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称. ②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域. ③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上. ④一般地,函数()y f x =要有反函数则它必须为单调函数. 3幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数. (2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qp y x =是奇函数,若p 为奇数q 为偶数时,则qp y x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.4.二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式.③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x a x b x c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a --. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔ ⎩⎪⎨⎪⎧△=b 2-4ac ≥0af (k )>0-b2a >k②x 1≤x 2<k ⇔ ⎩⎪⎨⎪⎧△=b 2-4ac ≥0af (k )>0-b2a <k③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔ ⎩⎪⎨⎪⎧△=b 2-4ac ≥0a >0f (k 1)>0f (k 2)>0k 1<-b 2a <k2或⎩⎪⎨⎪⎧△=b 2-4ac ≥0a <0f (k 1)<0f (k 2)<0k 1<-b 2a <k2⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ ⎩⎪⎨⎪⎧a >0f (k 1)>0f (k 2)<0f (p 1)<0f (p 2)>0或⎩⎪⎨⎪⎧a <0f (k 1)<0f (k 2)>0f (p 1)>0f (p 2)<0此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+.(Ⅰ)当0a >时(开口向上) 最小值若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =-③若2bq a ->,则()m f q =b 2 0 b 2 0 a b x 2最大值若02b x a -≤,则()M f q = ②02b x a ->,则()M f p =(Ⅱ)当0a <时(开口向下) 最大值①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2bM f a =-③若2bq a ->,则()M f q =0 O b 2 0x 0 ab x 2 0x b 20 b 2 0a 2最小值①若02b x a -≤,则()m f q = ②02bx a ->,则()m f p =.ab x20x 0 O b 2 0x。
(完整)六大基本初等函数图像及其性质
标准实用文案大全六大基本初等函数图像及其性质一、常值函数(也称常数函数) y =C (其中C 为常数);常数函数(C y =)≠C 0=C 平行于x 轴的直线y 轴本身定义域R 定义域R二、幂函数αx y=,x 是自变量,α是常数;1.幂函数的图像:2.幂函数的性质;性质函数xy =2xy =3xy =21x y =1-=xy 定义域R R R [0,+[0,+∞∞) {x|x {x|x≠≠0} 值域R [0,+[0,+∞∞) R [0,+[0,+∞∞) {y|y {y|y≠≠0} 奇偶性奇偶奇非奇非偶奇单调性增[0,+[0,+∞∞) ) 增增增增(0,+(0,+∞∞) ) 减减(-(-∞∞,0] ,0] 减减(-(-∞∞,0) ,0) 减减公共点(1,11,1))xyOxy =2x y =3x y =1-=x y 21x y =O=y xCy =Oxyy1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α,他们的图形都经过原点,并当α>1>1时在原点处与x 轴相切。
且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称;2)当α为负整数时。
函数的定义域为除去x=0的所有实数; 3)当α为正有理数nm 时,时,n n 为偶数时函数的定义域为(为偶数时函数的定义域为(0, +0, +0, +∞),∞),∞),n n 为奇数时函数的定义域为(为奇数时函数的定义域为(--∞,+,+∞),函数的图形均经过原点和(∞),函数的图形均经过原点和(∞),函数的图形均经过原点和(1 ,11 ,11 ,1););4)如果m>n 图形于x 轴相切,如果m<n,m<n,图形于图形于y 轴相切,且m 为偶数时,还跟y 轴对称;轴对称;m m ,n 均为奇数时,跟原点对称;5)当α为负有理数时,)当α为负有理数时,n n 为偶数时,函数的定义域为大于零的一切实数;为偶数时,函数的定义域为大于零的一切实数;n n 为奇数时,定义域为去除x=0以外的一切实数。
基本初等函数(一)
指数函数 第一课时:指数与指数幂的运算 一、学习目标:1.理解分数指数幂的概念 ; 2. 掌握有理指数幂的运算性质;3.会对根式、分数指数幂进行互化; 4.能够应用联系观点看问题二,知识要点: 1.根式的概念:一般地,若*),1(N n n a x n ∈>= 则x 叫做a 的n 次方根na 叫做根式,n 叫做根指数,a 叫做被开方数①当n 为奇数时:正数的n 次方根为正数,负数的n 次方根为负数记作: na x =②当n 为偶数时,正数的n 次方根有两个(互为相反数)记作: na x ±=③负数没有偶次方根,④ 0的任何次方根为02,根式的性质:① 当n 为任意正整数时,(n a )n =a.② 当n 为奇数时,n n a =a ;当n 为偶数时,n n a =|a|=⎩⎨⎧<-≥)0()0(a a a a3,分数指数幂:(1)正数的正分数指数幂的意义是)0,,,1m na a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m nm naa m n N n a-*==>∈>.(3),零的正分数指数幂为零,零的负分数指数幂没有意义。
4,有理数指数幂的运算性质: 例题分析:例1.求值: 238, 12100-, 314-⎛⎫ ⎪⎝⎭, 341681-⎛⎫ ⎪⎝⎭. 例2. 用分数指数幂的形式表示下列各式()a o >:2a 3a .例3.计算下列各式的值(式中字母都是正数).(1)211511336622263a b a b a b ⎛⎫⎛⎫⎛⎫-÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)83184m n -⎛⎫ ⎪⎝⎭;课堂小练习:求值:第二课时:指数函数及其性质: 一.教学目标:①通过实际问题了解指数函数的实际背景;②理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质.③ 体会具体到一般数学讨论方式及数形结合的思想;1.指数函数的定义:函数)10(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数定义域是R探究1:为什么要规定a>0,且a ≠1呢①若a=0,则当x>0时,x a =0;当x ≤0时,x a 无意义.②若a<0,则对于x 的某些数值,可使x a 无意义. 如x )2(-,这时对于x=41,x=21,…等等,在实数范围内函数值不存在.③若a=1,则对于任何x ∈R ,x a =1,是一个常量,没有研究的必要性. 为了避免上述各种情况,所以规定a>0且a 1何x ∈R ,x a 都有意义,且x a >0. 因此指数函数的定义域是R ,值域是(0,+∞).探究2:函数x y 32⋅=是指数函数吗指数函数的解析式y=x a 中,x a 的系数是1.有些函数貌似指数函数,实际上却不是,如y=x a +k (a>0且a ≠1,k ∈Z);有些函数看起来不像指数函数,实际上却是,如y=x a - (a>0,且a ≠1),因为它可以化为y=xa ⎪⎭⎫⎝⎛1,其中a 1>0,且a 1≠1 2.指数函数的图象和性质:例题分析:1,考察指数函数概念:若函数y=(a2-3a+3)a x是指数函数,则有()A,a=1或a=2 B,a=1 C,a=2 D,a>0,且a≠1 2,指数函数的图像过定点的问题;函数y=a x-3+3(a>0,且a≠1)的图像过定点___________3,底数a对指数函数图像的影响:如图是指数函数○1y=a x,○2y=b x,○3,y=c x,○4,y=d则a,b,c,d的与1的大小关系为__________________ 4,与指数函数有关的定义域,值域问题:求下列函数的定义域和值域:(1)y=(2)5,比较指数式的大小:(1)3.37.1和1.28.0;(2)7.03.3和8.04.36,解指数不等式:o(1),已知3x 》,求实数x 的取值范围 (2),已知<25,求实数x 的取值范围 ,课堂小练习: 1,函数1218x y -=的定义域是______;值域是______.2,求函数)5,0[,)31(42∈=-x y x x 的值域。
(整理)基本初等函数性质及其图像.
基本初等函数及其性质和图形1.幂函数函数称为幂函数。
如,,,都是幂函数。
没有统一的定义域,定义域由值确定。
如,。
但在内总是有定义的,且都经过(1,1)点。
当时,函数在上是单调增加的,当时,函数在内是单调减少的。
下面给出几个常用的幂函数:的图形,如图1-1-2、图1-1-3。
图1-1-2图1-1-32.指数函数函数称为指数函数,定义域,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。
高等数学中常用的指数函数是时,即。
以与为例绘出图形,如图1-1-4。
图1-1-43.对数函数函数称为对数函数,其定义域,值域。
当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。
与互为反函数。
当时的对数函数称为自然对数,当时,称为常用对数。
以为例绘出图形,如图1-1-5。
图1-1-54.三角函数有,它们都是周期函数。
对三角函数作简要的叙述:(1)正弦函数与余弦函数:与定义域都是,值域都是。
它们都是有界函数,周期都是,为奇函数,为偶函数。
图形为图1-1-6、图1-1-7。
图1-1-6正弦函数图形图1-1-7余弦函数图形(2)正切函数,定义域,值域为。
周期,在其定义域内单调增加的奇函数,图形为图1-1-8图1-1-8(3)余切函数,定义域,值域为,周期。
在定义域内是单调减少的奇函数,图形如图1-1-9。
图1-1-9(4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。
图1-1-10(5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。
图1-1-115.反三角函数反正弦函数,定义域,值域,为有界函数,在其定义域内是单调增加的奇函数,图形如图1-1-12;图1-1-12反余弦函数,定义域为[-1,1],值域为,为有界函数,在其定义域内为单调减少的非奇非偶函数,图形如图1-1-13;图1-1-13反正切函数,定义域,值域为,为有界函数,在定义域内是单调增加的奇函数,图形如图1-1-14;图1-1-14反余切函数,定义域为,值域,为有界函数,在其定义域内单调减少的非奇非偶函数。
基本初等函数知识点归纳
函数及其基本初等函数〖1.1〗函数及其表示 【1.1.1】函数的概念 (1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.(所以进行已知对应关系()f x 的函数,一定先求出函数的定义域)③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <,(前者可以不成立,为空集;而后者必须成立).而且无论闭区间或者开区间,,a b 均称为端点。
(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.例1 已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A 00,()0x R f x ∃∈=B 函数()y f x =的图像是中心对称图形C 若0x 是()f x 的极小值点,则()f x 在区间(-∞,0x )上单调递减D 若0x 是()f x 的极值点,则'()0f x =例2 已知偶函数()f x 在[0,)+∞上单调递减,(2)f =0,若(1)0f x ->,则x 的取值范围是( )例 3 设函数()xf x mπ=,若存在()f x 的极值点0x 满足22200[(()]x f x m +<,则m 的取值范围是( )A (-∞,-6)∪(6,+∞)B (-∞,-4)∪(4,+∞)C (-∞,-2)∪(2,+∞)D (-∞,-1)∪(1,+∞) 例4 下列函数与y=x 有相同图像的一个函数是( )A y =B 2x y x=C log (01)xy aa a =>≠且 D log xa a y =【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系. 图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值 (1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数(判定方法2). (3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M满足:(1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =. 【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)yxo如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算 (1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0) nn a a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mn m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈ 【2.1.2】指数函数及其性质(4)指数函数 函数名称指数函数定义 函数(0xy a a =>且1)a ≠叫做指数函数图象1a > 01a <<xa y =xy(0,1)O1y =xa y =xy(0,1)O1y =〖2.2〗对数函数【2.2.1】对数与对数运算 (1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且【2.2.2】对数函数及其性质 (5)对数函数函数 名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对图象的影响 在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x f y -=改写成1()y f x -=,并注明反函数的定义域(即原函数的值域).(8)反函数的性质①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限. ②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴. ④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则qpy x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则q py x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便. (3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2ba-+∞上递增,当2b x a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2ba -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔x y1x 2x 0>a O ••1k 2k 0)(1>k f 0)(2>k f ab x 2-=xy1x 2x O•<a 1k •2k 0)(1<k f 0)(2<k f a b x 2-=⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合x y1x 2x 0>a O ••1k 2k 0)(1>k f 0)(2<k fxy1x 2x O•<a 1k •2k 0)(1>k f 0)(2<k f⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =f(p) f (q) ()2b f a-f (p)f(q)()2bf a-f (p)f (q)()2b f a-f(p) f (q)()2b f a-0x f(p) f(q)()2b f a-0x(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用〖3.1〗方程的根与函数的零点 一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
基本初等函数讲义(全)
基本初等函数讲义(全)一、一次函数一次函数可以表示为y=kx+b(k不等于0),其中k表示斜率,b表示截距。
当k大于0时,函数图像随着x的增大而增大,当k小于0时,函数图像随着x的增大而减小。
当b大于0时,函数图像在y轴上方,当b小于0时,函数图像在y轴下方。
当b等于0时,函数图像经过原点。
二、二次函数1)二次函数有三种解析式形式:一般式、顶点式和两根式。
一般式为f(x)=ax^2+bx+c(a不等于0),顶点式为f(x)=a(x-h)^2+k(a不等于0),两根式为f(x)=a(x-x1)(x-x2)(a不等于0)。
2)求二次函数解析式的方法有三种情况:已知三个点坐标时,宜用一般式;已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式;若已知抛物线与x轴有两个交点,且横线坐标已知时,选用两根式求f(x)更方便。
3)二次函数的图像是一条抛物线,对称轴方程为x=-b/2a,顶点坐标为(-b/2a。
-Δ/4a)。
当a大于0时,抛物线开口向上,函数在(-∞。
-b/2a)上递增,在[-b/2a。
+∞)上递减,最小值为f(-b/2a);当a小于0时,抛物线开口向下,函数在(-∞。
-b/2a]上递增,在[-b/2a。
+∞)上递减,最大值为f(-b/2a)。
三、幂函数1)幂函数可以表示为y=x^α,其中x为自变量,α是常数。
2)所有的幂函数在(0.+∞)都有定义,并且图像都通过点(1,1)。
四、指数函数1)根式的概念是指,如果xn=a,a属于实数,x属于实数,n大于1,且n属于正整数,那么x叫做a的n次方根。
2)正数的正分数指数幂的意义是,a的n次方根的正分数指数幂等于a的n次方。
正数的负分数指数幂没有意义。
非奇非偶函数指的是在定义域为(0.+∞)上的减函数。
对于loga x,当x>1时,函数值递增;当x<1时,函数值递减;当x=1时,函数值为0.在第一象限内,a越大,函数图像越靠低;在第四象限内,a越大,函数图像越靠高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:基本初等函数一
一、学习目标:理解基本概念、基本性质,熟练掌握基本运算法则、基本性质、基本技
巧的运用。
二、自学指导:基础知识梳理:
1、指数式、对数式的概念及其运算法则
(1)指数式:对数式:
(2)运算法则①实数指数幂运算法则(3个)
②对数运算法则(3个)
③对数换底公式
log、a>0且a≠1,x>0) 2、指数函数(y=a x、a>0且a≠1)3、对数函数(y=x
a
4、指、对函数的关系:(代数方面)、(定义域值域)、(图像方面)
5、幂函数(y=xα、α∈R)性质:
6、函数的实际应用:有哪些类型?
三、合作学习、补充完善:
四、基础训练
1、计算
()
)(842122
1
22
1*-++∈∙⎪
⎭⎫ ⎝⎛⋅N n n n n 的结果( )A ,
46
1;B ,22n+5; C ,6
222
+-n n ;D, 7
221-⎪
⎭
⎫
⎝⎛n
2、若0<a<1,x>y>1,则a x ,x a ,a y ,y a 从小到大的顺序是
3、若3x =4y =36,则
y
x 1
2+的值是 4、函数8
2221++-⎪
⎭
⎫
⎝⎛=x x y 的定义域 值域
5、函数)34(log 25.0+-=x x y 的递增区间是
课题:基本初等函数三
一、学习目标:,熟练掌握基本运算法则、基本性质、基本技巧的综合运用。
二、典型例题研究:
例1、已知函数 )(log )(x a a a x f y -==(a>1)
(1)求f(x)的定义域、值域、反函数; (2)判断f(x)的单调性并证明。
例2、已知x 满足203log 7log 212
21
≤++⎪⎪⎭
⎫ ⎝
⎛
x x ,
求函数f(x)=log 24
x ·log 22x
的最大值和最小值。
三、小组合作学习: 四、展示、点拨、总结:
五、巩固练习:
1、定义在[-1,1]上的奇函数f(x),当x ∈(]1,0时,f(x)=1
42+x x
,
(1)求f(x)在[-1,1]上的解析式 (2)判断并证明f(x)在(]1,0上的单调性。
2、若f(x)=x 2-x+b ,且f (log 2a )=b ,log 2[f(a)]=2 (a ≠1)。
(1)求f(log 2x)的最小值及对应的x 的值,(2)x 取何值时,f(log 2x)>f(1)且log 2[f(x)]<f(1)?
课题:基本初等函数二
一、学习目标:理解基本概念、基本性质,熟练掌握基本运算法则、基本性质、基本技
巧的运用。
二、独立学习与研究:
(一)、选择题:
1、已知函数y=(a 2-3a+3)a x 是指数函数,则有( )
A ,a=1或a=2;
B ,a=1;
C ,a=2;
D ,a>0且a ≠1。
2、已知函数f(x)=)(,21R x x
∈⎪⎭
⎫
⎝⎛,那么f(x)是( )
A 奇函数且在(0,∞+)上是增函数;
B 偶函数且在(0,∞+)上是增函数
C 奇函数且在(0,∞+)上是减函数;
D 偶函数且在(0,∞+)上是减函数
3、设f(x)=3x +9,则f -1(x)的定义域是( )
A ,(0,+∞);
B ,(9,+∞);
C ,(10,+∞);
D ,(-∞,+∞) 4、已知log 7[log 3(log 2x)]=0,那么2
1
-x
等于( )A ,31
;B ,321;C ,221;D ,2
31
5、设P=log 23,Q=log 32,R=log 2(log 32),则( )
A ,R<Q<P; B,P<R<Q; C,Q<R<P; D,R<P<Q
6、函数f(x)=a x +log a (x+1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( )
A ,2
1-
;B ,21
;C ,-2;D ,2。
27、已知函数y=lg(x +2x+a)的值域为R ,实数a 的取值范围为( )
A ,a<1;
B ,a ≤1;
C ,a>1;
D ,a ≥1。
2338、方程log (x -10)=1+log x 的解是( )A ,-2,5;B ,2,-5;C ,-2;D ,5。
9、方程log 2(x+4)=3x 实根的个数是( ) A ,0;B ,1;C ,2;D ,3
10、已知x 1是方程x+lgx=3的一个根,x 2是方程x+10x =3的一个根,那么x 1+x 2的值是( )
A ,6;
B ,3;
C ,2;
D ,1
11、如图,曲线是幂函数y=x n 在第一象限的图像,已知n 取2
1
,2±±四个值,则相应于曲
线C 1,C 2,C 3,C 4的n 依次为( ) A ,2,21,21,2--;B ,2,2
1
,21,2--;
C ,2
1
,2,2,21--;
D ,21,2,21,2--
山东省昌乐二中2007高一数学学案,编号No. 6 班级 姓名 小组
(二)、填空题
11
1235b a b
==+a 、已知求的值 。
2lg 2lg3
13111lg 0.36lg823
+=++、计算
113414(),()135
x x
f x f --=+、已知函数则的值为 15x -2
x 1、函数y=()的单调递减区间是3。
x 216、已知函数y=f(2)的定义域为[-1,1],则函数f(log x)的定义域为
三、合作学习与研究:
四、展示、点拨、总结。
五、学生反刍消化吸收。