高考数学提分秘籍系列数形结合思想

合集下载

高考数学秘籍18法数形结合思想在解题中的应用试题

高考数学秘籍18法数形结合思想在解题中的应用试题

高考数学秘籍18法数形结合思想在解题中的应用制卷人:歐陽文化、歐陽理複;制卷時間:二O二二年二月七日一、知识整合1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。

所谓数形结合,就是根据数与形之间的对应关系,通过数与形的互相转化来解决数学问题的一种重要思想方法。

数形结合思想通过“以形助数,以数解形〞,使复杂问题简单化,抽象问题详细化可以变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵敏性的有机结合。

2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或者代数式的构造含有明显的几何意义。

22214如等式()()-+-=x y3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数〞。

4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能防止复杂的计算与推理,大大简化理解题过程。

这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。

二、例题分析例1.的取值范围。

之间,求和的两根都在的方程若关于k k kx x x 310322-=++分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >,()()02bf f k a-=-<10(10)k k -<<∈-同时成立,解得,故,例2. 解不等式x x +>2 解:法一、常规解法:原不等式等价于或()()I x x x x II x x ≥+≥+>⎧⎨⎪⎩⎪<+≥⎧⎨⎩02020202解,得;解,得()()I x II x 0220≤<-≤<综上可知,原不等式的解集为或{|}{|}x x x x x -≤<≤<=-≤<200222法二、数形结合解法:令,,则不等式的解,就是使的图象y x y x x x y x 121222=+=+>=+在的上方的那段对应的横坐标,y x 2=如下图,不等式的解集为{|}x x x x A B ≤<而可由,解得,,,x x x x x B B A +===-222故不等式的解集为。

高中数学解题方法谈 解读高考中的数形结合思想

高中数学解题方法谈 解读高考中的数形结合思想

解读高考中的数学思想——数形结合篇数形结合是一种重要的数学思想方法,其应用大致可以分为两种情形:一是借助形的生动和直观来表明数之间的联系,即“以形助数”;二是借助于数的精确和严密来阐明形的某些属性,即“以数辅形”.这种思想方法在求解选择题和填空题的时候非常有用,对寻找解答题的求解思路也很有帮助.以下举例说明.一、用数形结合思想解决集合问题处理集合与集合的关系,借助图形进行直观思考,不仅可以使各集合之间的相互关系直观明了,而且也便于将各元素的归属确定下来,使抽象的集合问题,形象直观的得解. 例1 设22{()|(1)1}{()|0}A x y x y B x y x y m =+-==++,,,≥,则使A B ⊆成立的实数m 的取值范围是_____.解析:由于集合A ,B 都是点的集合,故可结合图形进行分析.集合A 是圆22(1)1x y +-=上的点的集合,集合B 是不等式0x y m ++≥表示的平面区域内的点的集合,要使A B ⊆,则应使圆被平面区域所包含(如图1),知直线0x y m ++=应与圆相切或相离且在圆的下方,即0m >.1=,解得1m =,故m的取值范围是1m . 评述:如果所给集合是点的集合,那么在研究它们之间的关系时,可以借助数形结合思想,将问题转化为函数图象或曲线之间的关系求解.二、用数形结合思想解决方程问题在研究某些方程的根的个数问题、根的大小问题以及根的取值范围等问题时,都可以将方程进行恰当的变形,通过引进函数,转化为两个或几个函数图象之间的关系来解决. 例2 已知函数()()()2()f x x a x b a b =--+<,若()αβαβ<,是方程()0f x =的两个根,则实数a b αβ,,,之间的大小关系是( ).(A )a b αβ<<< (B )a b αβ<<<(C )a b αβ<<< (D )a b αβ<<<解析:若令()()()g x x a x b =--,显然函数()g x 的两个零点是a 、b ,函数()f x 的两个零点是αβ,,而函数()f x 的图象是由函数()g x 的图象沿y 轴向上平移两个单位得到的,结合图象可知a b αβ<<<,故应选(B ).例3 若方程240x x m --=恰有4个不同的实数根,则实数m 的取值范围为_____. 解析:将方程化为24x x m -=,构造函数2()4()f x x x g x m =-=,,则方程240x x m --=恰有4个不同的实数根,亦即两个函数()f x 与()g x 的图象恰好有4个不同的交点,如图2,易知当-4<m <0时方程有4个根.三、用数形结合思想解决函数问题我们学过的一些初等函数,如:正比例、反比例函数、一次函数、二次函数、指数函数、对数函数、三角函数等都蕴含着丰富的数形结合的思想,因此,在处理函数问题时,要充分联系函数图象.例4 (2006年辽宁高考题)已知函数11()(sin cos )sin cos 22f x x x x x =+--,则()f x 的值域是( ).(A )[11]-, (B)12⎡⎤-⎢⎥⎣⎦(C )12⎡-⎢⎣⎦, (D)12⎡--⎢⎣⎦, 解析:cos (sin cos )11()(sin cos )sin cos sin (sin cos )22x x x f x x x x x x x x ⎧=+--=⎨<⎩≥,,,即等价于min {sin cos }x x ,,因此在同一坐标系下分别画出函数sin cos y x y x ==,的图象,在两个图象的每两个交点之间取位于下方的图象,就是函数()f x 的图象,从而容易得到()f x 的值域是12⎡-⎢⎣⎦,,故答案为(C ). 四、数形结合思想解决数列问题由于数列的通项公式和前n 项和公式都可以看成n 的函数,因此,许多数列问题可以借助函数的图象解决.例5 设{}()n a n *∈N 是公差为d 的等差数列,n S 是前n 项的和,且56678S S S S S <=>,,则下列结论错误的是( ). (A )0d < (B )70a =(C )95S S > (D )6S 和7S 均为n S 的最大值解析:可以把等差数列的前n 项和2122n d d S n a n ⎛⎫=+- ⎪⎝⎭看成是关于n的二次函数,结合图形可知,答案为(C ).例6 已知在等差数列{}n a 中,312a =,前n 项和为n S ,且121300S S ><,.则当n S 取到最值时,n 等于( )(A )6 (B )7 (C )12 (D )13解析:由于121300S S ><,,所以130a <,而3120a =>,所以数列的公差d <0,即数列是递减数列.则2(0)n S an bn a b a =+∈<R ,,,如图3,可以把n S看成关于n 的二次函数,其图象是一条抛物线,经过原点,开口向下,又121300S S ><,,所以若设抛物线和x 正半轴的交点为(0)M m ,,则12<m <13,于是抛物线的对称轴为(66.5)2m x =∈,,因此当n =6时n S 取到最大值,选(A ). 编者注:数列的有关问题用函数的观点来解决是一种较好的方法,但要注意,他们并非真正意义上的一次、二次函数!五、用数形结合思想解决不等式问题例7 如图4,请你观察图形以及图形中线段的位置关系及其数量关系,说明如何通过该图形来说明不等式2a b +成立.你还能构造另外的图形来说明这个不等式成立吗?解析:在圆O 中,AB 是一条直径,M 是圆上任意一点,过M 点作MC ⊥AB 交AB 于C ,令CA =a ,CB =b ,则容易得到2a b MC MO +==,由于在Rt △MCO 中,MO 是斜边,MC是直角边,所以有2a b +>C 点与O点重合时,有2a b +=2a b +.由于问题的本质上是在Rt △AMB 中处理问题,所以可构造类似的图形如图5所示(注:CN a BN b ==,.). 评述:几何图形的直观解释和证明,真正体现了代数和几何的有机统一,可谓“无字的证明”.六、用数形结合思想解决最值或范围问题例8 已知a 、b 、c 是某一直角三角形的三边的长,其中c 为斜边,若点(m ,n )在直线ax +by +2c=0上,则22m n +的最小值等于_____.解析:令d ==d 表示点(m ,n )与坐标原点之间的距离.由于点(m ,n )在直线ax +by +2c =0上,所以d 的最小值就是坐标原点到直线ax +by +2c =022c c==,即22m n +的最小值等于4. 例9 在区间[01],上给定曲线2y x =,试在此区间内确定点t的值,使图6中的阴影部分的面积1S 与2S 之和最小.解:1S 面积等于边长为t 与2t 的矩形的面积去掉曲线2y x =与x 轴、直线x t =围成的面积,即22312023tS t t x dx t S =-=⎰;的面积等于曲线2y x =与x 轴、1x t x ==,围成的面积去掉矩形面积,矩形边长分别为2(1)t t -,,即12232221(1)33t S x dx t t t t =--=-+⎰. 所以阴影部分面积S 为:321241(01)33S S S t t t =+=-+≤≤ 由21()42402S t t t t t ⎛⎫'=-=-= ⎪⎝⎭,得 t =0,或12t =. 经验证知,当12t =时,S 最小.。

高考数学专题复习数形结合思想

高考数学专题复习数形结合思想

高考冲刺:数形结合圍编稿:林景飞审稿:张扬责编:辛文升热点分析閨高考动向園数形结合应用广泛,不仅在解答选择题、填空题中显示出它的优越性,而且在解决一些抽象数学问题中常起到事半功倍的效果。

髙考中利用数形结合的思想在解决选、填题中十分方便,而在解答题中书写应以代数推理论证为主,几何方法可作为思考的方法。

数形结合的重点是研究“以形助数",但“以数解形"在近年高考试题中也得到了加强,其发展趋势不容忽视。

历年的高考都有关于数形结合思想方法的考查,且占比例较大。

知识升华國数形结合是通过“以形助数"(将所研究的代数问题转化为研究其对应的几何图形)或'以数助形"(借助数的精确性来阐明形的某种属性),把抽象的数学语言与直观的图形结合起来思考,也就是将抽象思维与形象思维有机地结合起来,是解决问题的一种数学思想方法。

它能使抽象问题具体化,复杂问题简单化,在数学解题中具有极为独特的策略指导与调肖作用。

具体地说,数形结合的基本思路是:根据数的结构特征,构造出与之相应的几何图形, 并利用图形的特性和规律,解决数的问题;或将图形信息全部转化成代数信息,使解决形的问题转化为数量关系的讨论。

选择题,填空题等客观性题型,由于不要求解答过程,就某些题目而言,这给学生创造了灵活运用数形结合思想,寻找快速思路的空间。

但在解答题中,运用数形结合思想时,要注意辅之以严格的逻辑推理,“形”上的直观是不够严密的。

1.高考试题对数形结合的考査主要涉及的几个方面:園(1)集合问题中Venn图(韦恩图)的运用:(2)数轴及直角坐标系的广泛应用:(3)函数图象的应用:(4)数学概念及数学表达式几何意义的应用:(5)解析几何、立体几何中的数形结合。

2.运用数形结合思想分析解决问题时,要遵循三个原则:國(1)等价性原则。

要注意由于图象不能精确刻画数屋关系所带来的负而效应:(2)双方性原则。

既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错:(3)简单性原则。

高考数学解题思想之数形结合思想

高考数学解题思想之数形结合思想

高考数学解题思想之数形结合思想数形结合思想中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。

数形结合可以使复杂问题简单化,抽象问题具体化、立体化,它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

例5已知函数f(x)=lgx,若0A.(2■,+∞)B.[2■,+∞)C.(3,+∞)D.[3,+∞)分析:本题可直接用代数知识求解,但如果能画出函数f(x)的图像,便可直观地看出a,b的取值范围,达到快速求解的目的。

解:画出函数f(x)=lgx的草图(图略),可以看出01,故f(a)=f(b)可化为-lga=lgb,即lga+lgb=0,ab=1,所以a+2b=a+■,a∈(0,1),而函数u=a+■是(0,1)上的单调递减函数,所以a3,选D。

例6设关于x的方程■=2x+a的解集为A,且A∩R-=Φ,求实数a的取值范围。

分析:由A∩R-=Φ可知原问题?圳方程■=2x+a在区间(-∞,0)上无解?圳函数f(x)=■与函数g(x)=2x+a的图像在y轴的左侧无交点。

我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。

特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。

高考数学中的数形结合思维训练

高考数学中的数形结合思维训练

高考数学中的数形结合思维训练数学作为一门科学,一直以来都被认为是一门干燥的学科,需要靠死记硬背来掌握。

但是,数学的实际运用却是非常广泛的,如果我们只是一味地灌输知识而缺乏对其应用的理解和体验,那么学习和应用数学都将变得毫无意义。

为了提高学生数学思维能力和数学应用能力,高考数学试卷中经常会出现数形结合的题目,因此,学会数形结合思维的训练,对于提高高考数学成绩具有重要作用。

数形结合指的就是在数学学科中,通过绘制图形的方式,能够更好地理解和解决问题。

这样可以让学生把数学中抽象的理论知识转化为具体的形象,从而达到更好的理解和应用。

数形结合训练的重点在于培养学生的立体思维和想象力,从而更好地进行推理和解决问题。

那么,在高考数学的试卷中,数形结合思维训练有哪些常见的形式和应用呢?下面我们就来介绍一下。

1.几何图形中的数量关系几何图形中的数量关系是数形结合的一种常见形式。

举一个例子,如果要求解一个正方体的底面积及体积,我们可以通过在底面绘制一个性质相同但数量不同的小正方形或小立方体,从而分别计算出底面积和体积。

这种方法既可以使学生进一步掌握几何图形的特性,也可以提高学生计算量的速度和准确度。

2.利用图像解决问题图像问题也是数形结合的一个经典例子。

通过对图形进行观察和分析,可以从中发现很多关于数值的规律。

通过对图像和数值关系的分析,可以让学生更好地理解问题和掌握解决问题的方法。

例如,通过让学生观察一个三角形的高与其底边的比例情况,可以让学生更好地理解三角形的面积公式。

3.解析几何与向量的运用解析几何和向量是数学中重要的概念。

通过数形结合的方法,可以方便地进行分析和推导。

例如,在计算两个坐标的距离时,如果将坐标点标在平面直角坐标系上,我们可以利用勾股定理得到一个解析式,从而解决问题。

以上只是数形结合在高考数学中的几种形式,还有很多其他的应用形式,例如平面几何中的计算、立体几何中的体积和表面积计算等等。

同时,还可以通过巧妙利用数形结合思维,解决其他学科中的问题,如物理中的运动问题,化学中的化学式和分子量计算等等。

高考数学复习之数形结合答题思路

高考数学复习之数形结合答题思路

2019高考数学复习之数形结合答题思路作者:佚名中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。

数形结合可以使复杂问题简单化,抽象问题具体化、立体化,它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

例5已知函数f(x)=lgx,若0A.(2■,+∞)B.[2■,+∞)C.(3,+∞)D.[3,+∞)分析:本题可直接用代数知识求解,但如果能画出函数f(x)的图像,便可直观地看出a,b的取值范围,达到快速求解的目的。

解:画出函数f(x)=lgx的草图(图略),可以看出01,故f(a)=f(b)可化为-lga=lgb,即lga+lgb=0,ab=1,所以a+2b=a+■,a∈(0,1),而函数u=a+■是(0,1)上的单调递减函数,所以a3,选D。

例6设关于x的方程■=2x+a的解集为A,且A∩R-=Φ,求实数a的取值范围。

“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。

只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。

《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。

其实《国策》中本身就有“先生长者,有德之称”的说法。

可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。

看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。

称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。

分析:由A∩R-=Φ可知原问题?圳方程■=2x+a在区间(-∞,0)上无解?圳函数f(x)=■与函数g(x)=2x+a的图像在y轴的左侧无交点。

高考数学“数形结合”解题思想方法、知识点及题型整理

高考数学“数形结合”解题思想方法、知识点及题型整理

高考数学总复习第三讲:数形结合一、专题概述 ---什么是数形结合的思想数形结合的思想,就是把问题的数量关系和空间形式结合起来加以考察的思想.恩格斯说:“纯数学的对象是现实世界的空间形式和数量关系.”“数”和“形”是数学中两个最基本的概念,它们既是对立的,又是统一的,每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述,数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的性质,解决几何的问题.实现抽象概念与具体形象的联系和转化,化难为易,化抽象为直观.数形结合包括:函数与图象、方程与曲线、复数与几何的结合;几何语言叙述与几何图形的结合等.二、例题分析1.善于观察图形,以揭示图形中蕴含的数量关系.观察是人们认识客观事物的开始,直观是图形的基本特征,观察图形的形状、大小和相互位置关系,并在此基础上揭示图形中蕴含的数量关系,是认识、掌握数形结合的重要进程.例1.函数的图象的一条对称轴方程是:(A)(B)(C)(D)分析:通过画出函数的图象,然后分别画出上述四条直线,逐一观察,可以找出正确的答案,如果对函数的图象做深入的观察,就可知,凡直线x=a通过这一曲线的一个最高点或一个最低点,必为曲线的一条对称轴,因此,解这个问题可以分别将代入函数的解析式,算得对应的函数值分别是:,其中只有–1是这一函数的最小值,由此可知,应选(A)2.正确绘制图形,以反映图形中相应的数量关系.观察图形,既要定性也要定量,借助图形来完成某些题时,仅画图示“意”是不够的,还必须反映出图形中的数量关系.例2.问:圆上到直线的距离为的点共有几个?分析由平面几何知:到定直线L:的距离为的点的轨迹是平行L的两条直线.因此问题就转化为判定这两条直线与已知圆的交点个数.将圆方程变形为:,知其圆心是C(-1,-2),半径,而圆心到定直线L的距离为,由此判定平行于直线L且距离为的两条直线中,一条通过圆心C,另一条与圆C相切,所以这两条直线与圆C共有3个公共点(如图1)启示:正确绘制图形,一定要注意把图形与计算结合起来,以求既定性,又定量,才能充分发挥图形的判定作用.3.切实把握“数”与“形”的对应关系,以图识性以性识图.数形结合的核心是“数”与“形”的对应关系,熟知这些对应关系,沟通两者的联系,才能把握住每一个研究对象在数量关系上的性质与相应的图形的特征之间的关联,以求相辅相成,相互转化.例3.判定下列图中,哪个是表示函数图象.分析由=,可知函数是偶函数,其图象应关于y轴对称,因而否定(B)、(C),又,的图象应当是上凸的,(在第Ⅰ象限,函数y单调增,但变化趋势比较平缓),因而(A)应是函数图象.例4.如图,液体从一圆锥形漏斗注入一圆柱形桶中,开始时,漏斗盛满液体,经过3分钟注完.已知圆柱中液面上升的速度是一个常量,H是圆锥形漏斗中液面下落的距离,则H与下落时间t(分)的函数关系用图象表示只可能是().分析由于圆柱中液面上升的速度是一个常量,所以H与t的关系不是(B),下落时间t越大,液面下落的距离H应越大,这种变化趋势应是越来越快,图象应当是下凸的,所以只可能是(D).例5.若复数z满足,且,则在复平面上对应点的图形面积是多少?分析满足的复数z对应点的图形是:以C(1,1)为圆心,为半径的圆面,该圆面与图形的公共部分为图中所示阴影部分(要注意到∠AOC=45°)因此所求图形的面积为:4.灵活应用“数”与“形”的转化,提高思维的灵活性和创造性.在中学数学中,数形结合的思想和方法体现最充分的是解析几何,此外,函数与图象之间,复数与几何之间的相互转化也充分体现了数形结合的思想和方法.通过联想找到数与形之间的对应关系是实现转化的先决条件,而强化这种转化的训练则是提高思维的灵活性和创造性的重要手段.例6.已知C<0,试比较的大小.分析这是比较数值大小问题,用比较法会在计算中遇到一定困难,在同一坐标系中,画出三个函数:的图象位于y轴左侧的部分,(如图)很快就可以从三个图象的上、下位置关系得出正确的结论:例7 解不等式解法一(用代数方法求解),此不等式等价于:解得故原不等式的解集是解法二 (采用图象法) 设即对应的曲线是以为顶点,开口向右的抛物线的上半支.而函数y=x+1的图象是一直线.(如图) 解方程可求出抛物线上半支与直线交点的横坐标为2,取抛物线位于直线上方的部分,故得原不等式的解集是.借助于函数的图象或方程的曲线,引入解不等式(或方程)的图象法,可以有效地审清题意,简化求解过程,并检验所得的结果.例8 讨论方程的实数解的个数.分析:作出函数的图象,保留其位于x 轴上方的部分,将位于x 轴下方的部分沿x 轴翻折到x 轴上方,便可得到函数的图象.(如图)再讨论它与直线y=a 的交点个数即可. ∴当a <0时,解的个数是0;当a=0时或a >4时,解的个数是2;当0<a <4时,解的个数是4;当a=4时,解的个数是3.9.已知直线和双曲线有且仅有一个公共点,则k 的不同取值有()(A )1个(B )2个(C )3个 (D )4个分析:作出双曲线的图象,并注意到直线是过定点()的直线系,双曲线的渐近线方程为∴过()点且和渐近线平行的直线与双曲线有且仅有一个公共点,此时k取两个不同值,此外,过()点且和双曲线相切的直线与双曲线有且仅有一个公共点,此时k取两个不同的值,故正确答案为(D)例9.已知直线和双曲线有且仅有一个公共点,则k的不同取值有()(A)1个(B)2个(C)3个(D)4个分析:作出双曲线的图象,并注意到直线是过定点()的直线系,双曲线的渐近线方程为∴过()点且和渐近线平行的直线与双曲线有且仅有一个公共点,此时k取两个不同值,此外,过()点且和双曲线相切的直线与双曲线有且仅有一个公共点,此时k取两个不同的值,故正确答案为(D)例10.设点P(x,y)在曲线上移动,求的最大值和最小值.解曲线是中心在(3,3),长轴为,短轴为的椭圆.设,即y=kx为过原点的直线系,问题转化为:求过原点的直线与椭圆相切时的斜率.(如图所示)消去y得解得:故的最大值为,最小值为例11.求函数(其中a,b,c是正常数)的最小值.分析采用代数方法求解是十分困难的,剖析函数解析式的特征,两个根式均可视为平面上两点间的距离,故设法借助于几何图形求解.如图设A(0,a),B(b,-c)为两定点,P(x,0)为x轴上一动点,则其中的等号在P为线段AB与x轴的交点外,即时成立.故y的最小值为例12.P是椭圆上任意一点,以OP为一边作矩形O P Q R(O,P,Q,R依逆时针方向排列)使|OR|=2|OP|,求动点R的轨迹的普通方程.分析在矩形O P Q R中(如图),由∠POR=90°,|OR|=2|OP|可知,OR是OP逆时针旋转90°,并将长度扩大为原来的2倍得到的.这一图形变换恰是复数乘法的几何意义,因此,可转化为复数的运算,找到R和P的两点坐标之间的关系,以求得问题的解决.解,设R点对应的复数为:,P点对应的复数为则故即由点在椭圆上可知有:整理得:就是R点的轨迹方程,表示半长轴为2a,半短轴为2b,中心在原点,焦点在y轴上的椭圆.三解题训练1.求下列方程实根的个数:(1)(2)(3)2.无论m取任何实数值,方程的实根个数都是()(A)1个(B)2个(C)3个(D)不确定3.已知函数的图象如右图则()(A)b∈(-∞,0)(B)b∈(0,1)(C)b∈(1,2) (D)b∈(2,+ ∞)4.不等式的解集是()(A)(0,+∞)(B)(0,1)(C)(1,+∞)(D)(–∞,0)5.不等式一定有解,则a的取值范围是()(A)(1,+∞)(B)[1,+ ∞](C)(-∞,1)(D)(0,1]6.解下列不等式:(1)(2)7.复平面内点A、B分别对应复数2,2+i,向量绕点A逆时针方向旋转至向量,则点C对应的复数是_______.8.若复数z满足|z|<2,则arg(z-4)的最大值为___________9.若复数z满足10.函数的图象是平面上两定点距离之差的绝对值等于定长的点的轨迹,则这两定点的坐标是( )(A)(–,–)(,)(B)(–,)(,–)(C)(–2,2)(2,2)(D)(2,–2)(–2,2)11.曲线与直线的交点个数是().(A)0(B)1 (C)2(D)312.曲线与直线有两个交点,则实数k的取值是()(A)(B)(C)(D)13.已知集合,满足,求实数b的取值范围.14.函数的值域是()(A)(B)(C)(D)四、练习答案1.(1)2个(2)63个(3)2个提示:分别作出两个函数的图象,看交点的个数.2.B、提示:注意到方程右式,是过定点(,0)的直线系.3.A、提示:由图象知f(x)=0的三个实根是0,1,2这样,函数解析式可变形学习好资料欢迎下载f(x)=ax(x-1)(x-2),又从图象中可以看出当x∈(0,1)∪(2,+∞)时,f(x)>0.而当x>2时,x,(x-1),(x-2)均大于0,所以a>0,而可知b=-3a<0,故选(A)4.A5.A6.(可以利用图象法求解)(1)x≤-1或0<x≤3(2)x≤-17.18.210°9.10.A11.D 提示:在曲线方程中,分x≥0或x<0两种情形讨论,作出图形即可.12.C13.14.A 提示:f(x)可以视作:A(cosx,sinx),B(1,2),则f(x)=k AB,而A点为圆x2+y2=1上的动点。

高考数学专题复习一数形结合思想

高考数学专题复习一数形结合思想

1
2
3
4 真题感悟
当4个交点横坐标有两个小于1,两个大于1时, y=x2+3x, 有两组不同解 x3,x4. y=ax-1 消去y得x2+(3-a)x+a=0,故Δ=a2-10a+9>0, 且x3+x4=a-3>2,x3x4=a>1,联立可得a>9,
真题与押题
真题感悟 押题精练
1
2
3
4 真题感悟
1.(2013· 重庆)已知圆 C1:(x-2)2+(y-3)2=1,圆 C2: (x-3) +(y-4) =9, M, N 分别是圆 C1, C2 上的动点,
2 2
P 为 x 轴上的动点,则|PM|+|PN|的最小值为( A.5 2-4 C.6-2 2 B. 17-1 D. 17
x- 2y+1≥0, (2)已知点 P(x,y)的坐标 x,y 满足 ห้องสมุดไป่ตู้|x|- y- 1≤0,
则 x2+y2-6x+9 的取值范围是( A.[2,4] C.[4,10] B.[2,16] D.[4,16]
)
解析 画出可行域如图,所求的x2+y2-
6x+9=(x-3)2+y2是点Q(3,0)到可行域上
)
1
2
3
4 真题感悟
解析
设 P(x,0) , 设 C1(2,3) 关 于 x 轴 的 对 称 点 为
C1′(2,-3),
那么|PC1|+|PC2|=|PC1′|+|PC2|≥|C1′C2| = 2-3 +-3-4 =5 2.
而|PM|+|PN|=|PC1|+|PC2|-4≥5 2-4.
2 2
x-y+1=0, 联立 得 A(1,2), y=2,
2- 0 y 所以 kOA= =2.所以 的最小值为 2. x 1- 0

高考数学核心思想方法技巧之(四)数形结合 直观快捷

高考数学核心思想方法技巧之(四)数形结合 直观快捷

高考数学核心思想方法技巧之(四)数形结合直观快捷结束第二部分板块(一)数形结合直观快捷应用一应用二应用三构建解析几何模型并应用模型的几何意义求最值或范围.3构建函数模型并结合其图象研究量与量之间的大小关系、求参数的取值范围或解不等式.2构建函数模型并结合其图象研究方程根或函数零点的范围.1(四)数形结合直观快捷[应用体验]1.函数f(x)=3-x+x2-4的零点个数是________.[应用体验]数形结合思想的含义数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.数形结合思想的应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质;(2)“以数定形”,把直观图形数量化,使形更加精确.数形结合思想在解题中的应用[典例]若关于x的方程=kx2有四个不同的实数解,则k的取值范围为________.[解析]当x=0时,显然是方程的一个实数解;当x≠0时,方程=kx2可化为=(x+4)|x|(x≠-4),设f(x)=(x+4)|x|(x≠-4且x≠0),y=,原题可以转化为两函数有三个非零交点.用图象法讨论方程(特别是含参数的指数、对数、根式、三角等复杂方程)的解(或函数零点)的个数是一种重要的方法,其基本思想是先把方程两边的代数式看作是两个熟悉的函数表达式(不熟悉时,需要作适当的变形转化为两个熟悉的函数),然后在同一坐标系中作出两个函数的图象,图象的交点个数即为方程解(或函数零点)的个数.[技法领悟]解析:令f(x)=0,则x2-4=-x,分别作出函数g(x)=x2-4,h(x)=-x的图象,由图可知,显然h(x)与g(x)的图象有2个交点,故函数f(x)的零点个数为2.数形结合思想在求解不等式或参数范围中的应用[典例](2015·全国卷Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是 ()A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)(1)本例利用了数形结合思想,由条件判断函数的单调性,再结合f(-1)=0可作出函数的图象,利用图象即可求出x的取值范围.(2)求参数范围或解不等式问题经常用到函数的图象,根据不等式中量的特点,选择适当的两个(或多个)函数,利用两个函数图象的上、下位置关系转化为数量关系来解决问题,往往可以避免繁琐的运算,获得简捷的解答.[技法领悟][应用体验]3.设A={(x,y)|x2+(y-1)2=1},B={(x,y)|x+y+m≥0},则使A?B成立的实数m的取值范围是________.解析:集合A是一个圆x2+(y-1)2=1上的点的集合,集合B是一个不等式x+y+m≥0表示的平面区域内的点的集合,要使A?B,则应使圆被平面区域所包含(如图),如直线x+y+m=0应与圆相切或相离(在圆的下方),而当直线与圆相切时有=1,又m>0,所以m=-1,故m的取值范围是[-1,+∞).答案:数形结合思想在解析几何中的应用[典例](2017·成都二诊)设双曲线C:-=1(a>0,b>0)的左、右顶点分别为A1,A2,左、右焦点分别为F1,F2,以F1F2为直径的圆与双曲线左支的一个交点为P.若以A1A2为直径的圆与直线PF2相切,则双曲线C的离心率为 ()A. B.C.2 D.[解析]如图所示,设以A1A2为直径的圆与直线PF2的切点为Q,连接OQ,则OQ⊥PF2.又PF1⊥PF2,O为F1F2的中点,所以|PF1|=2|OQ|=2A.又|PF2|-|PF1|=2a,所以|PF2|=4A.在Rt△F1PF2中,|PF1|2+|PF2|2=|F1F2|2?4a2+16a2=20a2=4c2?e==.(1)在解析几何的解题过程中,通常要数形结合,这样使数更形象,更直白,充分利用图象的特征,挖掘题中所给的代数关系式和几何关系式,避免一些复杂的计算,给解题提供方便.(2)应用几何意义数形结合法解决问题需要熟悉常见的几何结构的代数形式,主要有:①比值——可考虑直线的斜率;②二元一次式——可考虑直线的截距;③根式分式——可考虑点到直线的距离;④根式——可考虑两点间的距离.[技法领悟]5.已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0).若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7B.6C.5 D.46.已知P是直线l:3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,则四边形PACB面积的最小值为________.解析:由题意知圆的圆心C(1,1),半径为1,从运动的观点看问题,当动点P沿直线3x+4y+8=0向左上方或右下方无穷远处运动时,直角三角形PAC的面积S△PAC=·|PA|·|AC|=|PA|越来越大,从而S四边形PACB也越来越大;当点P从左上、右下两个方向向中间运动,S四边形PACB变小,显然,当点P到达一运用数形结合思想分析解决问题的3个原则(1)等价性原则在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞,有时,由于图形的局限性,不能完整地表现数的一般性,这时图形的性质只能是一种直观而浅显的说明.[总结升华](2)双向性原则在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的.(3)简单性原则找到解题思路之后,至于用几何方法还是用代数方法或者兼用两种方法来叙述解题过程,则取决于哪种方法更为简单.[总结升华]数形结合思想在解决方程的根或函数零点问题中的应用则f(x)=(x+4)|x|=的大致图象如图所示,由图,易得0<<4,解得k>.所以k的取值范围为.[答案]答案:22.(2017·成都一诊)已知函数f(x)是定义在R上的偶函数,且f(-x-1)=f(x-1),当x∈[-1,0]时,f(x)=-x3,则关于x的方程f(x)=|cosπx|在上的所有实数解之和为________.解析:因为函数f(x)为偶函数,所以f(-x-1)=f(x+1)=f(x-1),所以函数f(x)的周期为2.又当x∈[-1,0]时,f(x)=-x3,由此在同一平面直角坐标系内作出函数y=f(x)与y=|cosπx|的图象如图所示.由图象知关于x的方程f(x)=|cosπx|在上的实数解有7个.不妨设x1<x2<x3<x4<x5<x6<x7,则由图得x1+x2=-4,x3+x5=-2,x4=-1,x6+x7=0,所以方程f(x)=|cosπx|在上的所有实数解的和为-4-2-1+0=-7.答案:-7[解析]设y=g(x)=(x≠0),则g′(x)=,当x>0时,xf′(x)-f(x)<0,∴g′(x)<0,∴g(x)在(0,+∞)上为减函数,且g(1)=f(1)=-f(-1)=0.∵f(x)为奇函数,∴g(x)为偶函数,∴g(x)的图象的示意图如图所示.当x>0时,由f(x)>0,得g(x)>0,由图知0当x<0时,由f(x)>0,得g(x)<0,由图知x∴使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).[答案]A4.若不等式|x-2a|≥x+a-1对x∈R恒成立,则a的取值范围是________.解析:作出y=|x-2a|和y=x+a-1的简图,依题意知应有2a≤2-2a,故a≤.答案:[答案]D解析:根据题意,画出示意图,如图所示,则圆心C的坐标为(3,4),半径r=1,且|AB|=2m,因为∠APB=90°,连接OP,易知|OP|=|AB|=m.要求m的最大值,即求圆C上的点P到原点O的最大距离.因为|OC|==5,所以|OP|max=|OC|+r=6,即m的最大值为6.答案:B个最特殊的位置,即CP垂直于直线l时,S四边形PACB应有唯一的最小值,此时|PC|==3,从而|PA|==2,所以(S四边形PACB)min=2××|PA|×|AC|=2.答案:27.已知抛物线的方程为x2=8y,F是其焦点,点A(-2,4),在此抛物线上求一点P,使△APF的周长最小,此时点P的坐标为________.解析:因为(-2)2<8×4,所以点A(-2,4)在抛物线x2=8y的内部,如图,设抛物线的准线为l,过点P作PQ⊥l于点Q,过点A作AB⊥l于点B,连接AQ,由抛物线的定义可知△APF的周长为|PF|+|PA|+|AF|=|PQ|+|PA|+|AF|≥|AQ|+|AF|≥|AB|+|AF|,当且仅当P,B,A三点共线时,△APF的周长取得最小值,即|AB|+|AF|.因为A(-2,4),所以不妨设△APF的周长最小时,点P的坐标为(-2,y0),代入x2=8y,得y0=,故使△APF的周长最小的点P的坐标为.答案:。

高考数学解题思想方法 数形结合思想方法

高考数学解题思想方法 数形结合思想方法

第二章高中数学常用的数学思想一、数形结合思想方法中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。

数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。

”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。

“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。

华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。

数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。

在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。

数学中的知识,有的本身就可以看作是数形的结合。

如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

Ⅰ、再现性题组:1.设命题甲:0<x<5;命题乙:|x-2|<3,那么甲是乙的_____。

高考数学复习考点题型解题思路与方法专题讲解45 数形结合思想

高考数学复习考点题型解题思路与方法专题讲解45 数形结合思想

高考数学复习考点题型解题思路与方法专题讲解数形结合思想 思想概述数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.数形结合思想的应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质;(2)“以数定形”,把直观图形数量化,使形更加精确.方法一 利用数形结合求解函数与方程、不等式问题利用函数图象可直观研究函数的性质,求解与函数有关的方程、不等式问题.例1 已知函数f (x )=⎩⎨⎧|x |,x ≤m ,x 2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________.思路分析 方程f (x )=b 有三个不同的根→函数y =f (x )的图象和直线y =b 有三个交点→画函数图象答案 (3,+∞)解析 作出f (x )的图象如图所示,当x >m 时,x 2-2mx +4m =(x -m )2+4m -m 2. 要使方程f (x )=b 有三个不同的根,则有4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.批注 正确作出两个函数图象是解题关键,直观是本解法的最大优势. 例2 当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,则底数a 的取值范围为________. 答案 {a |1<a ≤2}解析 设y =(x -1)2,y =log a x ,在同一坐标系中作出它们的图象,如图所示.若0<a <1,则当x ∈(1,2)时,(x -1)2<log a x 是不可能的,所以a 应满足⎩⎨⎧a >1,log a 2≥1,解得1<a ≤2, 所以底数a 的取值范围为{a |1<a ≤2}.方程解的个数问题可通过构造函数,转化为函数图象的交点个数问题;f (x )<g (x )可转化为函数y =f (x )和函数y =g (x )图象的位置关系问题.方法二 利用数学概念、表达式的几何意义求解最值、范围问题向量、复数、圆锥曲线等数学概念具有明显的几何意义,可利用图形观察求解有关问题;灵活应用一些几何结构的代数形式,如斜率、距离公式等.例3 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2 C. 2 D.22思路分析 求|c |的最大值→考虑向量a ,b ,c 的几何关系→通过几何意义观察|c |的最值 答案 C解析 如图,设OA→=a ,OB →=b ,OC →=c ,则CA →=a -c ,CB →=b -c . 由题意知CA→⊥CB →, ∴O ,A ,C ,B 四点共圆.∴当OC 为圆的直径时,|c |最大,此时,|OC→|= 2. 例4 设P 是抛物线y 2=4x 上的一个动点,则点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值为________.答案 5解析 如图,易知抛物线的焦点为F (1,0),准线是x =-1,由抛物线的定义知点P 到直线x =-1的距离等于点P 到F 的距离.于是,问题转化为在抛物线上求一点P ,使点P 到点A (-1,1)的距离与点P 到F (1,0)的距离之和最小,显然,连接AF 与抛物线相交的点即为满足题意的点,此时最小值为[1-(-1)]2+(0-1)2= 5.应用几何意义法解决问题需要熟悉常见的几何结构的代数形式,主要有:①比值——可考虑直线的斜率;②二元一次式—可考虑直线的截距;③根式分式——可考虑点到直线的距离;④根式——可考虑两点间的距离.方法三 几何动态问题中的数形结合对一些几何动态中的代数求解问题,可以结合各个变量的形成过程,找出其中的相互关系求解.例5 已知抛物线的方程为x 2=8y ,点F 是其焦点,点A (-2,4),在抛物线上求一点P ,使△APF 的周长最小,求此时点P 的坐标.思路分析 △APF 的周长最小→结合抛物线定义转化|PF |=|PQ |→结合图形观察三边关系求最值解 因为(-2)2<8×4,所以点A (-2,4)在抛物线x 2=8y 的内部,如图,设抛物线的准线为l ,过点P 作PQ ⊥l 于点Q ,过点A 作AB ⊥l 于点B ,连接AQ .则△APF 的周长为|PF |+|P A |+|AF |=|PQ |+|P A |+|AF |≥|AQ |+|AF |≥|AB |+|AF |,当且仅当P ,B ,A 三点共线时,△APF 的周长取得最小值,即|AB |+|AF |.因为A (-2,4),所以不妨设△APF 的周长最小时,点P 的坐标为(-2,y 0),代入x 2=8y ,得y 0=12.故使△APF 的周长最小时点P 的坐标为⎝ ⎛⎭⎪⎫-2,12. 批注 通过定义转化|PF |=|PQ |,利用三角形两边之和大于第三边,两次放缩,图形间的关系是解题关键.几何图形有关的最值问题,若通过代数方法计算则小题大做,计算繁杂,解题时要充分考虑几何关系,充分利用“三角形两边之和大于第三边”、“两点之间线段最短”等几何结论.。

高考数学突破提分技巧:数形结合法

高考数学突破提分技巧:数形结合法

高考数学突破提分技巧:数形结合法
由于多年从事高考试题的研究,尤其对高考数学我有自己的一套考试技巧,我知道无论是什么科目的考试,都有它固有的漏洞和具体的解决办法,我把它总结为:6大漏洞、8大法则。

“6大漏洞”是指:有且只有一个正确答案;不问过程只问结果;题目有暗示;答案有暗示;错误答案有严格标准;正确答案有严格标准;“8大原则”是指:选项唯一原则;范围最大原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的精确度原则。

经过高考频道的培训,很多的学生的高考题甚至1分都不丢。

数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学提分秘籍系列【专题一】数形结合思想【考情分析】在高考题中,数形结合的题目出现在高中数学知识的方方面面上,把图象作为工具、载体,以此寻求解题思路或制定解题方案,真正体现数形结合的简捷、灵活特点的多是填空小题。

从近三年新课标高考卷来看,涉及数形结合的题目略少,预测可能有所加强。

因为对数形结合等思想方法的考查,是对数学知识在更高层次的抽象和概括能力的考查,是对学生思维品质和数学技能的考查,是新课标高考明确的一个命题方向。

1.数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。

它可以使抽象的问题具体化,复杂的问题简单化。

“数缺形时少直观,形少数时难入微”,利用数形结合的思想方法可以深刻揭示数学问题的本质。

2.数形结合的思想方法在高考中占有非常重要的地位,考纲指出“数学科的命题,在考查基础知识的基础上,注重对数学思想思想方法的考查,注重对数学能力的考查”,灵活运用数形结合的思想方法,可以有效提升思维品质和数学技能。

3.“对数学思想方法的考查是对数学知识在更高层次的抽象和概括的考查,考查时要与数学知识相结合”,用好数形结合的思想方法,需要在平时学习时注意理解概念的几何意义和图形的数量表示,为用好数形结合思想打下坚实的知识基础。

4.函数的图像、方程的曲线、集合的文氏图或数轴表示等,是“以形示数”,而解析几何的方程、斜率、距离公式,向量的坐标表示则是“以数助形”,还有导数更是数形形结合的产物,这些都为我们提供了“数形结合”的知识平台。

5.在数学学习和解题过程中,要善于运用数形结合的方法来寻求解题途径,制定解题方案,养成数形结合的习惯,解题先想图,以图助解题。

用好数形结合的方法,能起到事半功倍的效果,“数形结合千般好,数形分离万事休”。

纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。

【知识归纳】数形结合的数学思想:包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质.。

应用数形结合的思想,应注意以下数与形的转化:数形结合思想解决的问题常有以下几种:(1)构建函数模型并结合其图象求参数的取值范围;(2)构建函数模型并结合其图象研究方程根的范围;(3)构建函数模型并结合其图象研究量与量之间的大小关系;(4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;(5)构建立体几何模型研究代数问题;(6)构建解析几何中的斜率、截距、距离等模型研究最值问题;(7)构建方程模型,求根的个数;(8)研究图形的形状、位置关系、性质等.常见适用数形结合的两个着力点是:以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合。

数形结合思想是解答高考数学试题的一种常用方法与技巧,特别是在解选择题、填空题时发挥着奇特功效,这就要求我们在平时学习中加强这方面的训练,以提高解题能力和速度.具体操作时,应注意以下几点:(1)准确画出函数图象,注意函数的定义域;(2)用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先要把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出两个函数的图象,由图求解.这种思想方法体现在解题中,就是指在处理数学问题时,能够将抽象的数学语言与直观的几何图象有机结合起来思索,促使抽象思维和形象思维的和谐复合,通过对规范图形或示意图形的观察分析,化抽象为直观,化直观为精确,从而使问题得到简捷解决。

1.数形结合的途径(1)通过坐标系形题数解借助于建立直角坐标系、复平面可以将图形问题代数化。

这一方法在解析几何中体现的相当充分(在高考中主要也是以解析几何作为知识载体来考察的);值得强调的是,形题数解时,通过辅助角引入三角函数也是常常运用的技巧(这是因为三角公式的使用,可以大大缩短代数推理)实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。

4)1()2(22=-+-y x 如等式。

常见方法有:①解析法:建立适当的坐标系(直角坐标系,极坐标系),引进坐标将几何图形变换为坐标间的代数关系。

②三角法:将几何问题与三角形沟通,运用三角代数知识获得探求结合的途径。

③向量法:将几何图形向量化,运用向量运算解决几何中的平角、垂直、夹角、距离等问题。

把抽象的几何推理化为代数运算。

特别是空间向量法使解决立体几何中平行、垂直、夹角、距离等问题变得有章可循。

(2)通过转化构造数题形解许多代数结构都有着对应的几何意义,据此,可以将数与形进行巧妙地转化.例如,将a >0与距离互化,将a 2与面积互化,将a 2+b 2+ab=a 2+b 2-2)12060(cos ︒=︒=θθθ或b a 与余弦定理沟通,将a≥b≥c>0且b+c >a 中的a 、b 、c 与三角形的三边沟通,将有序实数对(或复数)和点沟通,将二元一次方程与直线、将二元二次方程与相应的圆锥曲线对应等等.这种代数结构向几何结构的转化常常表现为构造一个图形(平面的或立体的)。

另外,函数的图象也是实现数形转化的有效工具之一,正是基于此,函数思想和数形结合思想经常借助于相伴而充分地发挥作用。

常见的转换途径为:①方程或不等式问题常可以转化为两个图象的交点位置关系的问题,并借助函数的图象和性质解决相关的问题。

②利用平面向量的数量关系及模AB 的性质来寻求代数式性质。

(3)构造几何模型。

通过代数式的结构分析,构造出符合代数式的几何图形,如将2a 与正方形的面积互化,将abc 与勾股定理沟通等等。

(4到直线的距离d =,直线的斜率,直线的截距)、定义等来寻求代数式的图形背景及有关性质。

2.数形结合的原则(1)等价性原则在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,但它同时也是抽象而严格证明的诱导。

(2)双向性原则在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的。

例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖掘利用图形的几何特征,将会使得复杂的问题简单化。

(3)简单性原则就是找到解题思路之后,至于用几何方法还是用代数方法、或者兼用两种方法来叙述解题过程,则取决于那种方法更为简单.而不是去刻意追求一种流性的模式——代数问题运用几何方法,几何问题寻找代数方法。

【考点例析】(1)(2012高考真题重庆理10)设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为( )(A )34π (B )35π (C )47π (D )2π解析:D ;由0)1)((≥--x y x y 可知⎪⎩⎪⎨⎧≥-≥-010x y x y 或者⎪⎩⎪⎨⎧≤-≤-01x y x y ,在同一坐标系中做出平面区域如图,由图象可知B A 的区域为阴影部分,根据对称性可知,两部分阴影面积之和为圆面积的一半,所以面积为2π,选D.题型1:数轴、韦恩图在集合中的应用例1.(1)(2012高考真题浙江理1)设集合A={x|1<x <4},集合B ={x|2x -2x-3≤0}, 则A ∩(C R B )=( )A .(1,4)B .(3,4)C ..(1,3)D .(1,2)∪(3,4)解析:B ; B ={x|2x -2x-3≤0}=}31|{≤≤-x x ,A ∩(C R B )={x|1<x <4} }3,1|{>-<x x x 或=}43|{<<x x 。

故选B.点评:不等式型集合的交、并集通常可以利用数轴进行,解题时注意验证区间端点是否符合题意。

(2)(2011湖南文1)设全集{1,2,3,4,5},{2,4},U U M N MC N ===则N =( )A .{1,2,3}B .{1,3,5} C.{1,4,5} D.{2,3,4} 解析:B ;解析:画出韦恩图,可知N ={1,3,5}。

点评:本题主要利用数轴、韦恩图考查集合的概念和集合的关系。

题型2:函数图像的价值例2.(1)(2012高考真题江西理10)如右图,已知正四棱锥S ABCD -所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分,记(01),SE x x =<<截面下面部分的体积为(),V x 则函数()y V x =的图像大致为( )解析:A ;(定性法)当102x <<时,随着x 的增大,观察图形可知,()V x 单调递减,且递减的速度越来越快;当112x ≤<时,随着x 的增大,观察图形可知,()V x 单调递减,且递减的速度越来越慢;再观察各选项中的图象,发现只有A 图象符合.故选A.【点评】对于函数图象的识别问题,若函数()y f x =的图象对应的解析式不好求时,作为选择题,没必要去求解具体的解析式,不但方法繁琐,而且计算复杂,很容易出现某一步的计算错误而造成前功尽弃;再次,作为选择题也没有太多的时间去给学生解答;因此,使用定性法,不但求解快速,而且准确节约时间.(2)(2012高考真题山东理12)设函数21(),()(,,0)f x g x ax bx a b R a x==+∈≠,若()y f x =的图象与()y g x =图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是( )A.当0a <时,12120,0x x y y +<+>B. 当0a <时,12120,0x x y y +>+<C. 当0a >时,12120,0x x y y +<+<D. 当0a >时,12120,0x x y y +>+> 解析:B ;在同一坐标系中分别画出两个函数的图象,当0<a 时,要想满足条件,则有如图,做出点A关于原点的对称点C,则C 点坐标为),(11y x --,由图象知,,2121y y x x >-<-即0,02121<+>+y y x x ,同理当0>a 时,则有0,02121>+<+y y x x ,故答案选B.另法:32()1F x x bx =-+,则方程()0F x =与()()f x g x =同解,故其有且仅有两个不同零点12,x x .由()0F x '=得0x =或23x b =.这样,必须且只须(0)0F =或2()03F b =,因为(0)1F =,故必有2()03F b =由此得b =.不妨设12x x <,则223x b ==.所以21()()(F x x x x =-,比较系数得1x -=,故1x =120x x +>,由此知12121212110x x y y x x x x ++=+=<,故答案为B. 点评:数学中考查创新思维,要求必须要有良好的数学素养,考查新定义函数的理解、解绝对值不等式,中档题,借形言数。

相关文档
最新文档