植物激素对植物器官发生影响的研究进展

植物激素对植物器官发生影响的研究进展
植物激素对植物器官发生影响的研究进展

植物糖生物学研究进展

植物学报 Chinese Bulletin of Botany 2010, 45 (5): 521–529, https://www.360docs.net/doc/6d980408.html, doi: 10.3969/j.issn.1674-3466.2010.05.001 —————————————————— 收稿日期: 2010-01-18; 接受日期: 2010-03-23 基金项目: 863计划(No.2006AA10A213, No.2007AA091601)和中国科学院知识创新工程重要方向项目(No. KSCX2-YW-G-041) * 通讯作者。E-mail: zxm@https://www.360docs.net/doc/6d980408.html,; dyguang@https://www.360docs.net/doc/6d980408.html, 植物糖生物学研究进展 尹恒, 王文霞, 赵小明*, 杜昱光* 中国科学院大连化学物理研究所辽宁省碳水化合物重点实验室, 大连 116023 摘要 自1988年糖生物学概念提出以来, 国内外科学家在动物、微生物领域取得了大量的研究成果, 但植物糖生物学的研究进展较慢, 目前少见系统的专著或综述。该文围绕植物正常生长时糖信号、逆境时糖信号、糖蛋白及其糖链、重要糖基转移酶及植物凝集素等植物糖生物学的主要问题, 全面阐述植物糖生物学的各个研究分支, 并介绍各领域的最新研究进展。提出了植物糖生物学的概念, 并将其定义为研究植物与糖类互作机制及植物体内糖(糖链与糖分子)结构及生物学功能的科学。 关键词 糖蛋白, 糖基转移酶, 凝集素, 植物糖生物学, 糖信号 尹恒, 王文霞, 赵小明, 杜昱光 (2010). 植物糖生物学研究进展. 植物学报 45, 521–529. 糖类是生物体的重要组成成分, 在自然界中分布广泛, 含量丰富。但直到20世纪上半叶, 糖类仍被视为是缺乏生物特异性的一类惰性化合物, 只是作为代谢能量来源或充当结构保护材料(如植物细胞壁和昆虫的外壳), 在生物体内功能较少。由于糖类物质结构复杂、糖链分析技术缺乏, 科学家们对其研究关注不多, 使得糖类的研究远远落后于另2种生物大分子 ——核酸和蛋白质。 20世纪70年代以来, 随着糖链解析技术水平的提高以及分子生物学的发展, 尤其是人、拟南芥(Arabidopsis thaliana )等模式生物基因组测序的完成, 围绕糖类物质的研究工作日渐增多。越来越多的证据表明, 糖类物质全面参与了生物的生殖发育、生长、应激等过程, 是很多生理和病理过程中分子识别的决定因素。最初, 这些围绕糖的研究工作被认为是糖化学的一个分支, 但很快其中大量的生物学工作远远超出了糖化学的范畴, 因此科学家们提出了糖生物化学的概念, 而随着研究内容的进一步深入, 糖生物化学也不能完全涵盖糖在生物领域的最新研究进展。1988年, 生化领域的著名杂志《生物化学年评》发表了英国牛津大学Rademacher 等人题为“糖生物学(Glycobiology)”的一篇综述文章(Rademacher et al., 1988), 标志着糖生物学这一学科的正式诞生。此后, 围绕着糖链结构及糖的生物学功能, 科学家们在糖链与疾病的关系、天然产物中糖的分离提纯以及功能糖的制备与应用等方面进行了大量的工作, 取得了一定进展。2001年, Science 杂志汇编了Hurtley 等人的7篇综述和6篇简介, 以《灰姑娘的马车来了》为题编辑了一期“糖和糖生物学”专辑, 对糖生物学最新的研究成果及前景进行了综述和展望, 从而将糖生物学的研究推向了一个新的高度(Hurtley et al., 2001)。2006年, Nature 杂志也推出了糖化学与糖生物学的专辑, 全面介绍了糖生物学领域的研究进展。我国糖生物学的开展与国际接轨较快, 1995年金城等人将糖生物学概念引入中国(金城和张树政, 1995), 此后, 我国科学家在糖生物合成和糖链功能解析等领域取得了一定进展。 广义糖生物学的含义是: 研究自然界中广泛分布的糖(糖链或聚糖)的结构、生物合成和生物学意义。但有关糖类结构和生物合成的研究也是已有学科糖化学和糖生物化学的主要研究内容之一, 所以糖生物学研究和讨论的对象更多地聚焦在一些重要的功能糖、生物体内糖缀合物的生物学功能上。实际上, 糖生物学的研究焦点是糖类和其它分子的关系, 有一种观点认为, 蛋白质和糖类的相互作用是糖生物学的基础(王克夷, 2009)。目前糖生物学的工作多围绕动物、 ·特邀综述·

植物的激素调节知识点总结

植物的激素调节知识点总结 一、名词 1、向性运动:是植物体受到单一方向的外界刺激(如光、重力等)而引起的定向运动。 2、感性运动:由没有一定方向性的外界刺激(如光暗转变、触摸等)而引起的局部运动,外界刺激的方向与感性运动的方向无关。 3、激素的特点:①微量而生理作用显著;②其作用缓慢而持久。激素包括植物激素和动物激素。 植物激素:植物体内合成的、从产生部位运到作用部位,并对植物体的生命活动产生显著调节作用的微量有机物。 动物激素:存在动物体内,由特定的分泌细胞分泌,通过体液循环作用于靶细胞和靶器官,并使之产生生理效应的信息分子。产生和分泌激素的器官称为内分泌腺,内分泌腺无管腺;动物激素是由循环系统,通过体液传递至各细胞,并产生生理效应的。 4、胚芽鞘:单子叶植物胚芽外的锥形套状物。胚芽鞘为胚体的第一片叶,有保护胚芽中更幼小的叶和生长锥的作用。胚芽鞘的尖端是产生生长素和感受单侧光刺激的部位,胚芽鞘下面的部分是发生弯曲的部位。 5、琼脂:能携带和传送生长素(生长素不能穿过云母片)。 6、生长素的横向运输:发生在胚芽鞘的尖端,单侧光刺激胚芽鞘的尖端,会使生长素在胚芽鞘的尖端发生从向光一侧向背光一侧的运输,从而使生长素在胚芽鞘的尖端背光一侧生长素分不多。 7、生长素的竖直向下运输:生长素从胚芽鞘的尖端竖直向胚芽鞘下部的运输。 8、生长素对植物生长影响的两重性:这与生长素的浓度高低和植物器官的种类等有关。一般说,低浓度范围内促进生长,高浓度范围内抑制生长。 9、顶端优势:植物的顶芽优先生长而侧芽受到抑制的现象。由于顶芽产生的生长素向下运输,大量地积累在侧芽部位,使这里的生长素浓度过高,从而使侧芽的生长受到抑制的缘故。解除方法为:摘掉顶芽。顶端优势的原理在农业生产实践中的实例是棉花摘心。 10、无子番茄(黄瓜、辣椒等):在没有授粉的番茄(黄瓜、辣椒等)雌蕊柱头上涂上一定浓度的生长素溶液可获得无子果实。要想没有授粉,就必须在花蕾期进行,因为番茄的花是两性花,会自花传粉,所以还必须去掉雄蕊,来阻止传粉和受精的发生。无子番茄体细胞的染色体数目为2N。 二、语句 1、生长素的产生、分布和运输:生长素的化学本质是吲哆乙酸,生长素是在尖端(分生组织)产生的,合成不需要光照,运输方式是主动运输,生长素只能从形态学上端运往下端(如胚芽鞘的尖端向下运输,根尖向侧根运输),而不能反向进行。在进行极性运输的同时,生长素还可做一定程度的横向运输。 2、生长素的作用 ①两重性:对于植物同一器官而言,低浓度的生长素促进生长,高浓度的生长素抑制生长。生长素对生长的促进作用随浓度的增大先升高后降低,再转为抑制作用。 ②同一植株的不同器官对生长素的反应不同 3、生长素类似物的应用 ①在低浓度范围内:促进扦插枝条生根(用一定浓度的生长素类似物溶液浸泡不易生根的枝条,可促进枝条生根成活);促进果实发育;防止落花落果。 ②在高浓度范围内,可以疏花疏果。 4、果实由子房发育而成,发育中需要生长素促进,而生长素正来自正在发育这的种子。 5、赤霉素(主要来自于未成熟的种子、幼根和幼芽合成)、细胞分裂素(主要由根尖合成,促进细胞分裂)、脱落酸(由根冠、萎蔫的叶片等合成,分布在将要脱落的器官或组织中)和乙稀(在植物体的各个部分都可合成,促进果实成熟)。 6、植物的一生,是受到多种激素相互促进作用来调控的。

五种植物激素的比较

五种植物激素的比较 名称产生部位生理作用 对应的生长 调节剂 应用 生长素 幼根、幼芽及发 育的种子 促进生长,促进果 实发育 萘乙酸、2, 4-D ①促进扦插枝条的生根; ②促进果实发育,防止落 花落果;③农业除草剂赤霉素 幼芽、幼根、未 成熟的种子等幼 嫩的组织和器官 ①促进细胞伸长, 引起植株长高;② 促进种子萌发和 果实发育 ①促进植物茎秆伸长;② 解除种子和其他部位休 眠,提早用来播种 细胞分裂素 正在进行细胞分 裂的器官(如幼 嫩根尖) ①促进细胞分裂 和组织分化;②延 缓衰老 青鲜素 蔬菜贮藏中,常用它来保 持蔬菜鲜绿,延长贮存时 间乙烯 植物各部位,成 熟的果实中更多 促进果实成熟乙烯利 处理瓜类幼苗,能增加雌 花形成率,增产 脱落酸 根冠、萎蔫的叶 片等 抑制细胞分裂,促 进叶和果实衰老 与脱落 落叶与棉铃在未成熟前的 大量脱落 多种激素的共同调节:在植物生长发育的过程中,任何一种生理活动都不是受单一激素控制的,而是多种激素相互作用的结果。这些激素之间,有的是相互促进的;有的是相互拮抗的。举例分析如下: (1)相互促进方面的有 ①促进果实成熟:乙烯、脱落酸。 ②促进种子发芽:细胞分裂素、赤霉素。 ③促进植物生长:细胞分裂素、生长素。 ④诱导愈伤组织分化成根或芽:生长素、细胞分裂素。 ⑤延缓叶片衰老:生长素、细胞分裂素。 ⑥促进果实坐果和生长:生长素、细胞分裂素、赤霉素。 (2)相互拮抗方面的有 ①顶端优势:生长素促进顶芽生长,细胞分裂素和赤霉素都促进侧芽生长。 ②防止器官脱落:生长素抑制花朵脱落,脱落酸促进叶、花、果的脱落。 ③种子发芽:赤霉素、细胞分裂素促进,脱落酸抑制。 ④叶子衰老:生长素、细胞分裂素抑制,脱落酸促进。 例1、从某植物长势一致的黄化苗上切取等长幼茎段(无叶和侧芽),将茎段自顶端向下对称纵切至约 3 4 处后,浸没在不同浓度的生长素溶液中。一段时间后,茎段的半边茎会向切面侧弯曲生长形成如图甲所示的弯曲角度(α),且α与生长浓度的关系如图乙所示。请回答问题。 (1)从图乙可知,在两个不同浓度的生长素溶液中,茎段半边茎生长产生的弯曲角度可以相

高考生物复习植物的激素调节知识点总结

2019年高考生物复习植物的激素调节知识 点总结 植物激素是由植物自身代谢产生的一类有机物质,并自产生部位移动到作用部位,以下是植物的激素调节知识点,请考生仔细阅读。名词: 1、向性运动:是植物体受到单一方向的外界刺激(如光、重力等)而引起的定向运动。 2、感性运动:由没有一定方向性的外界刺激(如光暗转变、触摸等)而引起的局部运动,外界刺激的方向与感性运动的方向无关。 3、激素的特点:①量微而生理作用显著;②其作用缓慢而持久。激素包括植物激素和动物激素。植物激素:植物体内合成的、从产生部位运到作用部位,并对植物体的生命活动产生显著调节作用的微量有机物;动物激素:存在动物体内,产生和分泌激素的器官称为内分泌腺,内分泌腺为无管腺,动物激素是由循环系统,通过体液传递至各细胞,并产生生理效应的。 4、胚芽鞘:单子叶植物胚芽外的锥形套状物。胚芽鞘为胚体的第一片叶,有保护胚芽中更幼小的叶和生长锥的作用。胚芽鞘分为胚芽鞘的尖端和胚芽鞘的下部,胚芽鞘的尖端是产生生长素和感受单侧光刺激的部位和胚芽鞘的下部,胚芽鞘下面的部分是发生弯曲的部位。 5、琼脂:能携带和传送生长素的作用;云母片是生长素不能穿过的。 6、生长素的横向运输:发生在胚芽鞘的尖端,单侧光刺激胚芽鞘的尖端,会使生长素在胚芽鞘的尖端发生从向光一侧向背光一侧的运

输,从而使生长素在胚芽鞘的尖端背光一侧生长素分布多。 7、生长素的竖直向下运输:生长素从胚芽鞘的尖端竖直向胚芽鞘下面的部分的运输。 8、生长素对植物生长影响的两重性:这与生长素的浓度高低和植物器官的种类等有关。一般说,低浓度范围内促进生长,高浓度范围内抑制生长。 9、顶端优势:植物的顶芽优先生长而侧芽受到抑制的现象。由于顶芽产生的生长素向下运输,大量地积累在侧芽部位,使这里的生长素浓度过高,从而使侧芽的生长受到抑制的缘故。解出方法为:摘掉顶芽。顶端优势的原理在农业生产实践中应用的实例是棉花摘心。10、无籽番茄(黄瓜、辣椒等):在没有受粉的番茄(黄瓜、辣椒等)雌蕊柱头上涂上一定浓度的生长素溶液可获得无籽果实。要想没有授粉,就必须在花蕾期进行,因番茄的花是两性花,会自花传粉,所以还必须去掉雄蕊,来阻止传粉和受精的发生。无籽番茄体细胞的染色体数目为2N。 语句: 1、生长素的发现:(1)达尔文实验过程:A单侧光照、胚芽鞘向光弯曲;B单侧光照去掉尖端的胚芽鞘,不生长也不弯曲;C单侧光照尖端罩有锡箔小帽的胚芽鞘,胚芽鞘直立生长;单侧光照胚芽鞘尖端仍然向光生长。达尔文对实验结果的认识:胚芽鞘尖端可能产生了某种物质,能在单侧光照条件下影响胚芽鞘的生长。(2)温特实验:A把放过尖端的琼脂小块,放在去掉尖端的胚芽鞘切面的一侧,胚芽鞘向对侧

植物激素脱落酸ABA受体的研究

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 植物激素脱落酸ABA受体的研究 摘要脱落酸ABA(abscisic acid, ABA)是一种重要的植物激素,参与高等植物生长发育、抗逆等诸多生理过程。近些年发现的能与ABA结合并发挥受体功能的有FCA(Flowering Control Locus A)、ABAR/CHLH(Mg离子螯合酶H亚基)、GCR2(G蛋白偶联受体)、GTG1/2(GPCR-type G protein 1/2)和PYR/PYL/RCAR (pyrabactin resistant/PYR-like/regulatory component of ABA),其中PYR/PYL/RCAR被普遍认为是真正的ABA受体蛋白。目前ABA受体的研究主要集中在拟南芥和水稻等几个模式植物中。本文概述了以上几种ABA受体的研究进展,重点介绍以PYR/PYL/RCAR为受体在ABA信号传导途径中的作用模式,旨在为ABA受体及其信号转导通路的相关研究提供参考。 关键词脱落酸;ABA受体;信号转导 Research on Abscisic Acid(ABA)Receptor in plants Abstract Abscisic acid (ABA) is a key plant stress hormone,which involved in many important processes of growth and development in higher plants. Recent years, FCA(Flowering Control Locus A), ABAR/CHLH(H subunit of the chloroplast Mg2+-chelatase), GCR2(G-protein Coupled Receptor)、GTG1/2(GPCR-type G protein 1/2),PYR/PYL/RCAR(pyrabactin resistant /PYR-like/regulatory component of ABA) was found cound bond with ABA and function as ABA Receptor. PYR/ PYL/ RCAR is considered to be the

植物激素受体研究进展

2009年4月JOURNALOFBIOI。OGYApr,2009doi:lO.3969/j.issn.1008—9632.2009.02.043 植物激素受体研究进展 赵丽1,黄海杰2,田维敏 (1.中国热带农业科学院橡胶研究所热带作物栽培生理学重点实验室,海南儋州571737; 2.中国热带农业科学院热带生物技术研究所,海南海口571101)摘要:植物激素对植物的生长发育以及在植物应对逆境方面具有重要的调节作用,植物激素受体是植物激素信号转导途径中的一个关键环节,倍受关注。近年来,由于生物化学与分子生物学和遗传学结合,使得植物激素受体的研究取得了很大进展。综述了5种经典植物激素受体以及油菜素内酯和茉莉酸受体在生物化学、遗传学和分子生物学三个层面上的研究成果,旨在为进一步研究植物激素作用机制提供参考资料。 关键词:植物激素;受体;突变体 中图分类号:Q946.885文献标识码:A文章编号:1008—9632(2009)02—0043—05 植物激素受体是植物激素信号传导途径中的一个至关重要的环节。近年来,采用生物化学、遗传学和分子生物学相结合的研究手段,主要以拟南芥、番茄和烟草等为材料,在植物激素受体的分离鉴定和作用机理方面的研究取得了很大进展。本文综述这方面的研究成果,旨在为迸一步研究植物激素作用机制提供参考资料。 1生长素受体研究进展 虽然早就认识到生长素及其对植物生长发育的调节作用,但直到最近才证明TIRl(Transportinhibitorre-spensel)是生长素的受体。TIRl蛋白是由TIRl基因编码的一种F.box蛋白,含有594个氨基酸残基,由N端的一个F.box模式、一段短的约40个氨基酸残基的间隔区域(spacerregion)、16个简并的LRRs(1eucine—richrepeats)和一个C端约70氨基酸残基的尾巴构成。其中N端的75个氨基酸(包括F—box序列)是TIRl同IAA结合所必需的,推测这段序列直接控制TIRl同IAA和Aux/IAA蛋白的结合。 在模式植物拟南芥中,对TIRl的作用机制做了深入研究。r11IRl与AtCULl(cullinhomologue1)、RBXl(RING—boxprotein1)及类似SKPl的ASKI(Arabidop-sisSkpl—likel)一起形成一个SCFllm复合体,催化激活状态的泛素分子从泛素连接酶E3转移到底物分子。AUX/IAA蛋白作为TIRl识别的底物,经泛素化修饰后进入26S蛋白酶体途径降解。生长素能够促进TIRl与AUX/IAA的相互作用,在低浓度生长素环境中,Aux/IAA蛋白相对稳定并与生长素响应因子ARF(auxin.responsefactor)蛋白结合形成异二聚体,负调控ARF的功能。当细胞内生长素浓度升高时,生长素结合TIRl,促进AUX/IAA蛋白降解,解除对ARF转录因子的抑制,转录因子ARF形成自身二聚体,并通过其N端的DNA结合结构域DBD(DNAbindingdomain)结合生长素早期应答基因启动子区的生长素响应元件(auxin—responseelement,AuxRE),从而触发下游信号转导和基因表达。 最近,Tan等人研究认为拟南芥TIRl.ASKI复合体的可单独存在或与生长素及Aux/IAA底物形成复合体。TIRl中富含亮氨酸重复序列结合有肌醇六磷酸辅因子,该结构域通过一个单一的表面口袋识别生长素和Aux/IAA底物。生长素锚定在rI'IRl口袋的底部,占据结合生长素及其类似物的位点。底物Aux/IAA肽段停泊在生长素的顶端,占领了TIRl口袋的其余空间而完全封闭了激素结合位点。生长素作为一种“分子胶水”通过填充蛋白质内表面的疏水空穴而增强TIRI与底物Aux/IAA的相互作用…。 此外在拟南芥中存在3个与TIRl同源的AFB(auxin—signalingF-boxprotein)蛋白,该蛋白属于F—box蛋白家族,含有LRRs,与TIRl高度同源性。用突变体 收稿日期:2008—04—29;修回日期:2008—10—23 作者简介:赵丽(1980一),女,汉族,硕士研究生,专业方向:植物分子生物学,E—mail:yifanever2007@163.eom; 通讯作者:田维敏,博士,研究员,博士生导师,主要从事植物发育生物学的研究,E—mail:wratian@163.corn。 基金项目:国家重点基础研究发展计划(2006CB08205)资助 43万方数据

论植物凝集素与植物保护

论植物凝集素与植物保护 所在专业:生物科学 作者:林晓丽 学号:2007231226 摘要:植物凝集素是一种含有非催化结构域并能可逆结合到特异单糖或寡糖上的植物(糖)蛋白,广泛分布于植物界。本文主要综述了植物凝集素近年来的研究概况,简要介绍植物凝集素的分类、结构特性、功能及其应用等方面,从中去剖析植物凝集素在植物保护中所起的作用,为以后更好地利用植物凝集素去保护植物,具有重要的意义。 关键词:植物凝集素;植物凝集素作用;生物学功能与应用前景;植物保护 植物凝集素是一类具有高度特异性糖结合活性的蛋白,在动物、植物体内广泛存在,迄今为止,已发现1000多种植物凝集素,其中豆科植物凝集素有600多种[1]。植物凝集素最早发现于1888年,Stillmark在蓖麻籽萃取物中发现了一种细胞凝集因子,它具有凝集红细胞的作用[2]。而1936年,Summer和Howess从刀豆种子纯化的伴刀豆凝集素(ConA)是第一个得到纯化的凝集素,而且是第一个被结晶的植物凝集素,也是第一个用X射线晶体衍射技术确定结构的植物凝集素[3]。1960年Nowell报道了植物细胞凝集素有促进有丝分裂的作用。1975年Becker等研究了刀豆凝集素分子的三级结构,揭开了研究植物凝集素分子空间结构和功能的序幕[4]。从此人们对凝集素的性质、生理功能、基因结构与表达等方面进行了深入研究,并认识到凝集素在生物体内具有重要的生理功能,在医学、农业上具有巨大的应用前景。 1 植物凝集素的分类 植物凝集素它是一类具有特异糖结合活性的蛋白,具有一个或多个可以与单糖或寡糖特异可逆结合的非催化结构域。可以从不同的角度进行分类: 1.1根据植物凝集素亚基的结构特征,可以分为4种类型:部分凝集素(merolectin)、全凝集素(hololectin)、嵌合凝集素(chemerolectin)和超凝集素(superlectin)。 1.2根据凝集素专一识别的糖类的不同,可以分为七个组别:岩藻糖组、半乳糖/N-乙酰半乳糖胺组、N-乙酰葡萄糖胺组、甘露糖组、唾液酸组、复合糖组。 1.3根据氨基酸序列的同源性及其在进化上的相互关系,可以分为七个家族:豆科凝集素、几丁质结合凝集素、单子叶甘露糖结合凝集素、2型核糖体失活蛋白、木菠萝素家族、葫芦

植物激素的种类及作用特点

植物激素---植物生长调节剂的种类及特点 植物生长调节剂(plant growth regulator)是指人工合成(或从微生物中提取)的,由外部施用于植物,可以调节植物生长发育的非营养的化学物质。 植物生长调节剂的种类很多,但根据其来源、作用方式、应用效果等大体分为以下几类: 1.生长素类 生长素类是农业上应用最早的生长调节剂。最早应用的是吲哚丙酸(indole propionic acid,IPA)和吲哚丁酸(indole butyric acid,IBA),它们和吲哚乙酸(indole-3-acetic acid,IAA)一样都具有吲哚环,只是侧链的长度不同。 以后又发现没有吲哚环而具有萘环的化合物,如α-萘乙酸(α-naphthalene acetic acid,NAA)以及具有苯环的化合物,如2,4-二氯苯氧乙酸(2, 4-dichlorophenoxyacetic acid,2,4-D)也都有与吲哚乙酸相似的生理活性。 另外,萘氧乙酸(naphthoxyacetic acid,NOA)、2,4,5一三氯苯氧乙酸(2,4,5-trichlorophenoxyacetic acid,2,4,5-T)、4-碘苯氧乙酸(4-iodophenoxyacetie acid,商品名增产灵)等及其衍生物(包括盐、酯、酰胺,如萘乙酸钠、2,4-D 丁酯、萘乙酰胺等)都有生理效应。目前生产上应用最多的是IBA、NAA、2,4-D,它们不溶于水,易溶解于醇类、酮类、醚类等有机溶剂。生长素类的主要生理作用为促进植物器官生长、防止器官脱落、促进坐果、诱导花芽分化。在园艺植物上主要用于插枝生根、防止落花落果、促进结实、控制性别分化、改变枝条角度、促进菠萝开花等。 2.赤霉素类 赤霉素种类很多,已发现有121种,都是以赤霉烷(gibberellane)为骨架的衍生物。商品赤霉素主要是通过大规模培养遗传上不同的赤霉菌的无性世代而获得的,其产品有赤霉酸(GA3)及GA4和GA7的混合物。还有些化合物不具有赤霉素的基本结构,但也具有赤霉素的生理活性,如长孺孢醇、贝壳杉酸等。目前市场供应的多为GA3,又称920,难溶于水,易溶于醇类、丙酮、冰醋酸等有机溶剂,在低温和酸性条件下较稳定,遇碱中和而失效,所以配制使用时应加以注意。赤霉素类主要的生理作用是促进细胞伸长、防止离层形成、解除休眠、打破块茎和鳞茎等器官的休眠,也可以诱导开花、增加某些植物坐果和单性结实、增加雄花分化比例等。 3.细胞分裂素类 细胞分裂素类是以促进细胞分裂为主的一类植物生长调节剂,都为腺嘌呤的衍生物。常见的人工合成的细胞分裂素有:激动素(KT)、6-苄基腺嘌呤(6-benzyl adenine,BA.6-BA)和四氢吡喃苄基腺嘌呤(tetrahydropyranyl benzyladenine,又称多氯苯甲酸,简称PBA)等。有的化学物质虽然不具有

专题10 植物激素调节(高考题分类)

专题10 植物激素调节 1.(2017?新课标Ⅰ卷.3)通常,叶片中叶绿素含量下降可作为其衰老的检测指标。 为研究激素对叶片衰老的影响,将某植物离体叶片分组,并分别置于蒸馏水、细 胞分裂素(CTK)、脱落酸(ABA)、CTK+ABA溶液中,再将各组置于光下。一段时 间内叶片中叶绿素含量变化趋势如图所示。据图判断,下列叙述错误的是 A.细胞分裂素能延缓该植物离体叶片的衰老 B.本实验中CTK对该植物离体叶片的作用可被ABA削弱 C.可推测ABA组叶绿体中NADPH合成速率大于CTK组 D.可推测施用ABA能加速秋天银杏树的叶由绿变黄的过程 2.(2017?江苏卷.13)研究小组探究了萘乙酸(NAA)对某果树扦插枝条生根的影 响,结果如下图。下列相关叙述正确的是 A.自变量是NAA,因变量是平均生根数B.不同浓度的NAA 均提高了插条生根率 C.生产上应优选320 mg/ L NAA 处理插条D.400 mg/ L NAA 具有增加生根数的 效应 3.(2017?海南卷.26)(9分)为探究植物生长素对枝条生根的影响,研究人员在 母体植株上选择适宜的枝条,在一定部位进行环剥去除树皮(含韧皮部),将一定浓度的生长素涂抹于环剥口上 生长素用量(mg/枝)处理枝条数第90天存活枝条数第90天存活时的生根枝条数首次出根所需天数 0 50 50 12 75 0.5 50 50 40 30 1.0 50 50 43 25 1.5 50 50 41 30 2.0 50 43 38 30 3.0 50 37 33 33 回答下列问题:(1)据表可知,生长素用量为0时,有些枝条也生根。其首次出根需要天数较多的原因是_______________________________________________________________________。 (2)表中只提供了部分实验结果,若要从表中所列各生长素用量中确定促进该植物枝条生根效果最佳的用量,你认为需要提供的根的观测指标还有_______________________________________________(答出两点即可)。(3)从激素相互作用的角度分析,高浓度生长素抑制植物生长的原因是_______________________________ ________________________________________________________________________。 4.(2017?新课标Ⅲ卷.30)(9分)干旱可促进植物体内脱落 酸(ABA)的合成,取正常水分条件下生长的某种植物的野生 型和ABA缺失突变体幼苗,进行适度干旱处理,测定一定时间 内茎叶和根的生长量,结果如图所示: 回答下列问题: (1)综合分析上图可知,干旱条件下,ABA对野生型幼苗的 作用是_______________________________________。 (2)若给干旱处理的突变体幼苗施加适量的ABA,推测植物 叶片的蒸腾速率会_________________________,以对环境的变化作出反应。

植物激素脱落酸ABA受体的研究

植物激素脱落酸ABA受体的研究 摘要脱落酸ABA(abscisic acid, ABA)是一种重要的植物激素,参与高等植物生长发育、抗逆等诸多生理过程。近些年发现的能与ABA结合并发挥受体功能的有FCA(Flowering Control Locus A)、ABAR/CHLH(Mg离子螯合酶H亚基)、GCR2(G蛋白偶联受体)、GTG1/2(GPCR-type G protein 1/2)和PYR/PYL/RCAR(pyrabactinresistant/PYR-like/regulatory component of ABA),其中PYR/PYL/RCAR被普遍认为是真正的ABA受体蛋白。目前ABA受体的研究主要集中在拟南芥和水稻等几个模式植物中。本文概述了以上几种ABA受体的研究进展,重点介绍以PYR/PYL/RCAR为受体在ABA信号传导途径中的作用模式,旨在为ABA受体及其信号转导通路的相关研究提供参考。 关键词脱落酸;ABA受体;信号转导 Research on Abscisic Acid(ABA)Receptor in plants Abstract Abscisic acid (ABA) is a key plant stress hormone,which involved in many important processes of growth and development in higher plants. Recent years, FCA (Flowering Control Locus A), ABAR/CHLH(H subunit of the chloroplast Mg2+-chelatase), GCR2(G-protein Coupled Receptor)、GTG1/2(GPCR-type G protein 1/2),PYR/PYL/RCAR(pyrabactin resistant/PYR-like/regulatory component of ABA) was found cound bond with ABA and function as ABA Receptor.PYR/ PYL/ RCAR is considered to be the most widely studied ABA receptor .Currently, most research focuses on several model plants such as Arabidopsis and rice.This paper describes the research progressof several kind of ABA receptor above, highlighting the PYR / PYL / RCAR as ABA receptors in the mode of action of the ABA signal transduction pathway,To research for the ABA receptor and its signal transduction pathway. Key words abscisic acid, ABA receptor, signal transduction. 1 ABA激素的发现

雪花莲凝集素转基因抗虫植物的研究进展

雪花莲凝集素转基因抗虫植物的研究进展 摘要:近年来雪花莲凝集素(GNA)基因已成为国内外在植物抗虫基因工程中应用较为广泛的基因。目前已在小麦、大豆、水稻等农作物上的研究获得成功,并有相当规模的种植。另外在烟草、马铃薯、地瓜、莴苣、棉花、甘蔗、油菜等经济作物也已经试验成功.GNA转基因抗虫植物的培育为减少杀虫剂的使用和提高产量以及环境保护方面起到了巨大的作用。本文就GNA的分布、来源、杀虫机理、GNA转基因抗虫植物的发展况以及种植GNA抗虫植物的安全性进行了概述。 关键词:GNA基因;转基因植物;抗虫;安全 Research advances in GNA transgenic anti-insect plants Abstract:in recent years the snowdrops lectin gene(GNA)become insect-resistant genes in plants at home and abroad in engineering application a wide range of genes. Currently on wheat,soy and rice crops in research,and has won initial success of comparable size planting.Other tobacco potatoes sweet potato lettuce in economic crops such as cotton and sugar cane rape trial has success.GNA genetically modified insect resistance plant cultivation to reduce the use of pesticides and increase production and environmental protection has played a great role.This paper the distribution insecticidal mechanism GNA GNA genetically modified insect resistance plant development status and planting GNA insect resistance plant impact on environment were summarized. Keywords:GNA genes;transgenic plants;anti-insect;safety 雪花莲凝集素(Galanthus nivalis agglutinin简称GNA)是植物外源激素的一种,成熟的GNA是四聚体蛋白,且蛋白质分子未被糖基化,同时含有12个甘露糖专一性结合位点,属整体凝集素类。可特异性地结合糖蛋白末端甘露糖残基[1]。因其能结合到昆虫消化道上皮细胞糖蛋白受体上,对昆虫产生局部或系统的毒害作用,从而抑制其生长,甚至将其杀死;它还能在昆虫消化道内诱发病灶,促进消化道中细菌的繁殖,对害虫本身造成伤害,抑制害虫生长发育繁殖,抑制逆转录病毒和老鼠小肠中的大肠杆菌的繁殖等研究表明GNA分子对蚜虫飞虱叶蝉粉虱等刺吸式害虫及线虫有强烈的毒性,对鳞翅目等咀嚼式口器的害虫具有中等毒性,但对高等动物安全。 目前,转雪花莲凝集素基因的小麦水稻和大豆已经在国内外较为广泛地进行了种植,效果很好。其他新的转基因抗虫植物也在研究中,一些也在逐渐推广种

植物激素检测技术研究进展

生命科学 Chinese Bulletin of Life Sciences 第22卷 第1期2010年1月 Vol. 22, No. 1 Jan., 2010 文章编号 :1004-0374(2010)01-0036-09 收稿日期:2009-08-03 基金项目:国家自然科学基金项目(90717002; 20805001)*通讯作者: E-mail: yu.bai@https://www.360docs.net/doc/6d980408.html, 植物激素检测技术研究进展 白 玉,杜甫佑,白 玉*,刘虎威 (北京大学化学与分子工程学院,北京 100871) 摘 要:植物激素是植物体内合成的一系列痕量有机化合物,它们在植物的生长发育和环境应答过程中 具有非常重要的作用,其超微定量及原位测定技术仍是制约植物激素研究的瓶颈问题之一。该文着重介绍了近年来茉莉酸及其甲酯、脱落酸、生长素、赤霉素和多肽激素等植物激素分析检测技术的最新研究进展,并对植物激素超微量、高灵敏检测技术研究中存在的问题和发展前景进行了简要的讨论。关键词:植物激素;分析检测;进展 中图分类号:Q946.855;Q94-334 文献标识码:A Recent development in determination of plant hormones BAI Yu, DU Fu-you, BAI Yu*, LIU Hu-wei (College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China) Abstract: Phytohormones, a series of trace organic compounds synthesized in plants, play important roles in plant growth, development and environmental response. The ultrasensitive and in-situ detection of phytohormones has been a crucial issue in the plant research. This paper mainly presents the recent development in determina-tion of jasmonic acid, methyl jasmonate, abscisic acid, auxin, gibberellin and peptide hormones, and discusses the challenges and prospects in this topic. Key words: phytohormones; determination; progress 植物激素是植物体内合成的一系列痕量有机化合物,它在植物的某一部位产生,运输到另一个或一些部位,在极低的浓度下便可引发生理反应,几乎参与了调控植物从种子休眠、萌发、营养、生长和分化到生殖、成熟和衰老的每个生命过程,既可调控植物自身的生长发育,又通过与植物所生存的外部环境互相作用调节其对环境的适应[1, 2]。通过调控如细胞分裂素、油菜素内酯和生长素等植物激素的代谢可显著地改良作物的株型结构和产量构成,从而大幅度提高作物产量和品质[3,4]。因此,国家自然科学基金委员会按照国家粮食发展需要、中长期科学和技术发展规划以及我国在植物激素研究方面所具有的知识积累和坚实的工作基础,在1997年启动了“植物激素作用的分子机理”重大研究计划,其中“植物激素成分分析、超微定量检测和原位检测”成为该重大研究计划中的六个核 心科学问题之一[5]。 植物激素主要包括生长素(a u x i n )、赤霉素(gibberellin, GA)、细胞分裂素(cytokinin, CTK)、脱落酸(abscisic acid, ABA)、油菜素甾醇类(brassinosteroids,BRs)、茉莉酸(jasmonic acid, JA)及其甲酯(MeJA)、水杨酸类(salicylic acids, SA)、乙烯(ethylene)和多肽激素(peptide hormones)等,它们在植物体内的含量极低(通常在ng/g ,甚至pg/g 水平上),且周围共存的基体成分非常复杂,几乎不可能同时分析所有植物激素[6, 7]。此外,多数植物激素的性质不稳定,对温度等外界条件敏感,在各器官中呈现一定的动态分布。因此,如何精确可靠地对超微量的植物激

糖生物学作业-植物凝集素概述

植物凝集素概述 摘要:植物凝集素是来源于植物的一类能凝集细胞和沉淀单糖或多糖复合物的非免疫来源的非酶蛋白质。植物凝集素具有细胞凝集、抗病毒、抗真菌及诱导细胞凋亡或自噬等多种能力,因此在生命科学、医学及农业方面均有较好的研究价值和应用前景。本文综述了植物凝集素近年来的研究概况,介绍了凝集素的定义,植物凝集素的结构特性、分类、分离纯化、功能及其应用。 1凝集素的发现及定义 目前已经发现了近 1 000 种植物凝集素,并在生理生化及分子生物学方面对它们进行了许多研究,其中豆科植物凝集素有600多种。植物中,不仅种子中存在凝集素,根、茎、叶、皮、果汁中也发现有凝集素。1888年Herman和Sti11mark首次在蓖麻萃取物中发现了凝集素,它具有凝集红细胞的作用。Renkonnen 发现它们对血细胞凝集时具有选择性。随着对红细胞凝集反应中血型特异性认识程度的逐渐深入, Watkin 和Morgan 建立了人类ABO 血型系统凝集反应中严格的糖特异性结合理论。Go1dstein 给出了凝集素的第一个较确切的定义:凝集素是自然界广泛存在的一类能凝集细胞、多糖或糖复合物的非源于免疫反应的糖蛋白。现在研究表明,它还能够特异性识别并可逆结合复杂糖复合物中的糖链,而不改变所结合糖基的共价键结构。 另外,1980 年,Nature 杂志发表了5 位凝集素研究方面著名科学家的联名信,提出了当时较有权威性的凝集素定义:凝集素是指非免疫来源的糖结合蛋白或糖蛋白,并应有使细胞凝集或糖复合物沉淀的能力。此定义包含三个要点:(1)凝集素是蛋白质或糖蛋白;(2)凝集素必须有专一的与糖基结合的特性,但是排除了免疫来源的针对糖基的抗体;(3)因为规定了能使细胞凝集或是糖复合物沉淀的特性,所以凝集素分子必须具有两个或更多糖结合位点,这样把一些虽有糖结合能力但是糖结合位点仅有一个的酶、转运蛋白、激素、毒素等排除在外。 2植物凝集素的结构特性 目前已经获得纯化的凝集素中,阐明氨基酸序列的并不多,多数是对甘露糖(或葡萄糖)专一的凝集素。从已分离的凝集素看,分子量变化范围约为10 kDa~100 kDa ,亚基数目为2~4 个。关于亚基产生的分子机制,有三种解释:(1)不同亚基是不同基因编码的产物;(2)不同亚基由统一基因编码,但经翻译过程形成分子量相同或不同的肽链;(3)翻译后不同程度的修饰导致。 现己知道,凝集素与糖的结合是通过其分子中肽链的活性部位,即专一结合糖的区域实现的,与凝集素分子中共价结合的糖无关。凝集素至少应该具有2 个与糖结合的位点,而且结合是可逆的。它有以共价键相连接的蛋白质和糖2 个部分。其中前者占较大的比例,一般是几个单糖构成寡糖链,再以2种方式与蛋白质肽链相连,分别构成N-连接糖蛋白和O-连接糖蛋白。现已知的糖肽连接键主要有三种:(1)血清型糖蛋白,亦称天冬酰胺2连接或N-连接的糖蛋白;(2)粘蛋白型糖蛋白,糖链与肽链由Ga1NAcα1-Ser/ Thr 连接;(3)真菌中的Man-Thr 连接。凝集素不仅可以识别不同的单糖而且也可以特异结合不同的寡糖。此外,凝集素2糖互作也较好地解释了细胞识别系统的机制。基于细胞表面含有大量的凝集素和糖复合物,使细胞以凝集素为桥梁进行相互作用成为可能。凝集素除了有与糖结合的位点外,还可以与其它生物大分子几丁质、糖脂和多糖等结合。 凝集素一般为二聚体或四聚体结构,其分子由一个或多个亚基组成,每一个亚基有一个与糖分子特异结合的专一点。豆科植物凝集素至少有一个非催化结构域,并可逆地结合到特异单糖或寡糖上。结构域的数量由凝集素的复合体数目来决定。二体或多体凝集素可以形成多种结构的蛋白糖复合体。单体凝集素不能形成这种复合结构(Ron 等,1992)。通过豆科植物凝集素晶

相关文档
最新文档