低热矿渣硅酸盐水泥

低热矿渣硅酸盐水泥
低热矿渣硅酸盐水泥

附件2

企业核查时准备书面材料清单

附件2-1企业生产水泥产品主要工艺流程图

附件2-2企业生产水泥产品生产设施和检验设施表

附件2-3企业生产水泥产品生产场所示意图

附件2-4企业生产水泥产品生产设备表

附件2-5企业生产水泥产品检验设备表

附件2-6企业生产水泥产品原材料明细表

附件2-7关键岗位专业技术人员表

附件2-8产品技术文件和工艺文件清单

附件2-9水泥企业生产线、关键设备确认表

企业名称:(盖章)

企业代表签字:年月日

审查组确认签字:年月日

注:本清单内所有书面材料经实地核查确认后一式四份,企业加盖骑缝章。企业、地方工业产品生产许可证主管部门、水泥产品审查部、全国工业产品生产许可证审查中心各一份。

附件2-1

企业生产水泥产品主要工艺流程图

(企业填写)

中热硅酸盐水泥与低热硅酸盐水泥性能

中热硅酸盐水泥与低热硅酸盐水泥 中热硅酸盐水泥与低热硅酸盐水泥,低热矿渣水泥是水化放热较低的品种,适用于浇制水工大坝、大型构筑物和大型房屋的基础等,常称为大坝水泥。 由于混凝土的导热率低,水泥水化时放出的热量不易散失,容易使混凝土内部最高温度达60℃以上。由于混凝土外表面冷却较快,就使混凝土内外温差达几十度。混凝土外部冷却产生收缩,而内部尚未冷却,就产生内应力,容易产生微裂缝,致使混凝土耐水性降低。采用低放热量和低放热速率的水泥就可降低大体积混凝土的内部温升。 降低水泥的水化热和放热速率,主要是选择合理的熟料矿物组成,粉磨细度以及掺入适量混合材。 根据国家标准规定,中低热硅酸盐水泥有三个品种,即中热硅酸盐水泥(简称中热水泥),低热硅酸盐水泥(简称低热水泥)和低热矿渣硅酸盐水泥(简称低热矿渣水泥,水泥中含有粒化高炉矿渣20-60%)。 中热水泥和低热水泥强度等级为42.5,低热矿渣水泥强度等级为32.5。水泥的强度等级和各龄期强度见表2。 表2 水泥的强度等级和各龄期强度Mpa 中热水泥、低热硅酸盐水泥、低热矿渣水泥的各龄期水化热的上限值列于表3。 水泥熟料中氧化镁含量不得超过5%,指标与用于生产普通硅酸盐水泥的熟料相同。其三氧化硫含量不得超过 3.5%。中热水泥和低热水泥熟料中的碱含量,以Na2O当量(Na2O+0.658K2O)表示不得超过0.6%。在生产低热矿渣水泥时,允许放宽到1.0%。熟料中的游离氧化钙含量不得超过1.2%。 中热水泥、低热水泥和低热矿渣水泥的初凝不得早于60min,终凝不得超过12h。 中热硅酸盐水泥主要适用于大坝溢流面的面层和水位变动区等要求较高的耐磨性和抗冻

硅酸盐水泥熟料的煅烧:什么是硅酸盐水泥

硅酸盐水泥熟料的煅烧 §5-1 生料在煅烧过程中的物理化学变化 §5-2 熟料形成的热化学 §5-3 矿化剂、晶种对熟料煅烧和质量的影响 §5-4 挥发性组分及其他微量元素的作用 §5-5 水泥熟料的煅烧方法及设备 【掌握内容】 1、硅酸盐水泥熟料的形成过程名称、反应特点、影响反应速度的因素; 2、熟料的形成热、热耗的定义、一般数值、影响因素 3、挥发性组分对新型干法水泥生产的影响 4、悬浮预热器窑及预分解窑的组成、工作过程

5、影响窑产、质量及消耗的因素 【理解内容】 1、C3S的形成机理,形成条件; 2、影响熟料形成热的因素,形成热与实际热耗的区别,降低热耗的措施; 3、回转窑的结构、组成、及工作过程; 4、回转窑内“带”的划分方法,预分解窑内“带”的划分。 【了解内容】 1、水泥熟料的煅烧方法及设备类型; 2、矿化剂、晶种定义、类型、作用、使用; 3、湿法窑的组成,工作过程 合格生料在水泥窑内经过连续加热,高温煅烧至部分熔融,经过一系列的物理化学反应,得以硅酸钙为主要成分的硅酸盐水泥熟料的工艺过程叫硅酸盐水泥

熟料的煅烧,简称煅烧。结合目前生产现状及学生的就业去向,主要介绍与回转窑尤其是新型干法回转窑有关的知识,立窑有关知识留给学生自学。 第一节生料在煅烧过程中的物理化学变化 生料在加热过程中,依次进行如下物理化学变化 一、干燥与脱水 (一)干燥 入窑物料当温度升高到100~150℃时,生料中的自由水全部被排除,特别是湿法生产,料浆中含水量为32~40%,此过程较为重要。而干法生产中生料的含水率一般不超过0%。 (二)脱水 当入窑物料的温度升高到450℃,粘土中的主要组成高岭土 (Al2O3·2SiO2·2H2O)发 生脱水反应,脱去其中的化学结合水。此过程是吸热过程。 Al2O3·2SiO2·2H2 Al2O3 + 2SiO2 + 2H2 (无定形)(无定形)

土木工程材料课件(水泥)4

湖南高速铁路职业技术学院 教 案 授课日期 2012-10-12 2012-10-12 计划序号 第 九 讲 授课班级 城轨1103 城轨1104 室主任审阅 课 题: 第2章 无机胶凝材料 2.3 其它水泥 能力目标 知识目标 目 标要 求 掌握其它水泥的应用 掌握水泥质量的出厂检验内容与验收 了解道路水泥、白水泥、 低热水泥、抗硫酸盐水泥、膨胀水泥、铝酸盐水泥的特性 教学重点:其它水泥的特性、应用及水泥的验收 教学难点:其它水泥的特性及应用 教学组织设计(分教学步骤列出内容、时间安排、教学方法、训练项目、素材等) 1、复习上两节课所讲的内容 10′ 2、道路硅酸盐水泥的特性与应用 15′ 3、白色硅酸盐水泥的特性与应用 10′ 4、 低热硅酸盐水泥的特性与应用 10′ 5、 抗硫酸盐硅酸盐水泥的特性与应用 10′ 6、 低热微膨胀水泥的特性与应用 10′ 7、 铝酸盐水泥的特性与应用 10′ 8、水泥质量的检验与验收 10′ 9、讨论题:不同品种同一强度等级以及同品种但不同强度等级的水泥能否掺混使用? 5′ 模 具 现场参观 挂 图 现场演练 电视录像、电影 上机训练 C A I 听力训练 教学手段采 用:打“√” 录 音 其 他 √ 作业布置 参考资料 《建筑材料》 付刚斌 主编 中国铁道出版社 《道路硅酸盐水泥》GB 13693-2005、《白色硅酸盐水泥》GB/T 2015-2005 《中热硅酸盐水泥、低热硅酸盐水泥、低热矿渣硅酸盐水泥》GB 200-2003 《抗硫酸盐硅酸盐水泥 GB 748-2005、《低热微膨胀水泥》GB 2938-2008 《铝酸盐水泥》GB 201-2000 课后记要

外文翻译低热硅酸盐水泥混凝土的抗裂性能

外文翻译 Anti-Crack Performance of Low-Heat Portland Cement Concrete Abstract: The properties of low-heat Portland cement concrete(LHC) were studied in detail. The experimental results show that the LHC concrete has characteristics of a higher physical mechanical behavior, deformation and durability. Compared with moderate-heat Portland cement(MHC), the average hydration heat of LHC concrete is reduced by about 17.5%. Under same mixing proportion, the adiabatic temperature rise of LHC concrete was reduced by 2 ℃-3℃,and the limits tension of LHC concrete was increased by 10×10-6-15×10-6than that of MHC. Moreover, it is indicated that LHC concrete has a better anti-crack behavior than MHC concrete. Key words: low-heat portland cement; mass concrete; high crack resistance; moderate-heat portland cement 1 Introduction The investigation on crack of mass concrete is a hot problem to which attention has been paid for a long time. The cracks of the concrete are formed by multi-factors, but they are mainly caused by thermal displacements in mass concrete[1-3]. So the key technology on mass concrete is how to reduce thermal displacements and enhance the crack resistance of concrete. As well known, the hydration heat of bonding materials is the main reason that results in the temperature difference between outside and inside of mass concrete[4,5]. In order to reduce the inner temperature of hydroelectric concrete, several methods have been proposed in mix proportion design. These include using moderate-heat portland cement (MHC), reducing the content of cement, and increasing the Portland cement (OPC), MHC has advantages such as low heat of hydration, high growth rate of long-term strength, etc[6,7]. So it is more reasonable to use MHC in application of mass concrete. Low-heat portland cement (LHC), namely highbelite cement is currently attracting a great deal of interest worldwide. This is largely due to its lower energy consumption and CO2 emission in manufacture than conventional Portland cements.

低热硅酸盐水泥在水电工程中的应用

中国水科院 第十届青年学术交流会
低热硅酸盐水泥 低热硅酸 水泥 在水电工程中的应用
计涛
结构企
2010-11-25

汇报提纲 1 研究背景
2 3 4 5 低热硅酸盐水泥的性能特点 试验概 试验概况 试验结果与分析 结论

1 研究背景
1 1 温控防裂 1.1 ?掺粉煤灰和矿渣等掺和料 ?加大粗骨料粒径和优选骨料级配 ?采用低水化热水泥 ?限制浇注层高度和层间间歇期,合理分块 ?采用预冷骨料或加冰水拌和以降低混凝土浇 注温度 ?通水冷却

1 2 节能环保 1.2
18 16 14 水泥产量(亿吨) 12 10 8 6 4 2 0 2000 2001 2002 2003 2004 2005 年份 2006 2007 2008 2009
2000年以来我国水泥历年产量

水泥工业作为能源和资源消耗密集型产业 水泥工业作为能源和资源消耗密集型产业, 消耗大量不可再生资源和能源,如石灰石、粘 土 煤等 同时水泥窑尾排放大量的CO2、NOx 土、煤等;同时水泥窑尾排放大量的 和SO2等废气,环境污染严重。生产1t熟料直接 或间接排放的CO2约为1t 1 。而低热硅酸盐水泥是 而低热硅酸盐水泥是 以C2S为主晶相,熟料的煅烧温度较低,对环境 的污染较少 符合国家节能减排和可持续发展 的污染较少,符合国家节能减排和可持续发展 的战略目标。

1 研究背景
2 低热硅酸盐水泥的性能特点
3 试验概况 4 试验结果与分析 试 结果与分析 5 结论

各种水泥的优缺点修订稿

各种水泥的优缺点 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

六大通用水泥各自有优缺点 1 硅酸盐水泥(硅水) 代号; 特点:早强高,水化放热大,结构密实,干缩小,抗冻好;但耐硫酸盐腐蚀和软水腐蚀差; 应用:高强混凝土、预应力混凝土和有早强要求的混凝土工程;受冻融循环的混凝土工程和有耐磨要求的混凝土工程。 2 普通硅酸盐水泥(普水) 代号; 特点:与硅水差的不多,只是在成分中有6~15%的混合材,所以成本小,强度和水化热有所减小。 应用:与硅水基本相同。 3 矿渣水泥代号; 特点: 有20~70%的矿渣替代了熟料。因此早强底,后期强度高;水化放热小,耐热性好,耐腐蚀性好,抗冻性差,干缩大,抗渗差,抗碳化能力差。 应用:大体积混凝土工程;有耐热要求的混凝土工程;有耐硫酸盐腐蚀的工程,蒸汽养护的预制构件;一般地上、地下河水中的混凝土和钢筋混凝土工程。

4 火山灰水泥代号; 特点:有20~50%的火山灰替代了熟料。耐热性差,抗渗性好,干缩大,其他性能同矿渣水泥。 应用:地下、水中的大体积混凝土工程;蒸汽养护构件;有耐腐蚀性和抗渗要求的混凝土工程;一般的混凝土工程。不适宜用于干燥地区。 5 粉煤灰水泥代号; 特点:有20~50%的粉煤灰替代了熟料。耐热性差,干缩小,抗裂好。 应用:地下、水中的大体积混凝土工程;蒸汽养护构件;有耐腐蚀性要求的混凝土工程;一般的混凝土工程。粉煤灰分三个等级,每个等级配置的混凝土应用是有区别的。 6 复合硅酸盐水泥:由硅酸盐水泥熟料、20%~50%两种或两种以上规定的混合材料和适量石膏磨细制成的水硬性胶凝材料,称为复合硅酸盐水泥(简称复合水泥),代号。 7:以适当成分的硅酸盐水泥熟料、加入适量石膏磨细制成的具有中等水化热的水硬性胶凝材料。

开题报告:年产500万吨粉煤灰硅酸盐水泥生产线的工艺设计

科技学院 毕业设计(论文)开题报告 题目年产500万吨粉煤灰硅酸盐水泥生产线的工艺设计学院冶金学院 专业班级无机非金属材料工程2011-01 学生姓名学号 20114 指导教师 2014 年 12 月 20 日

开题报告填写要求 1.开题报告作为毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。此报告应在指导教师指导下,由学生在毕业设计(论文)工作开始后2周内完成,经指导教师签署意见及系主任审查后生效。 2.开题报告内容必须用黑墨水笔工整书写或按教务处统一设计的电子文档标准格式(可从教务处网址上下载)打印,禁止打印在其它纸上后剪贴,完成后应及时交给指导教师签署意见。 3.学生查阅资料的参考文献理工类不得少于10篇,其它不少于12篇(不包括辞典、手册)。 4.“本课题的目的及意义,国内外研究现状分析”至少2000字,其余内容至少1000字。

毕业设计(论文)开题报告 1.本课题的目的及意义,国内外研究现状分析 1.1本设计的目的和意义 据我国目前的电力系统来看,我国目前火力发电仍是占主要的地位,粉煤灰是其发展过程中不可避免的排放量大的工业废料。不仅是火力发电厂,各种依靠煤粉燃烧获得热源等的企业都是粉煤灰的主要产源。粉煤灰不仅需要占大量的土地来存放,而且对环境的污染也很大,因此对粉煤灰加以利用是解决当前问题的首选。 我国目前正处于高速发展阶段,各行各业的发展都离不开建筑,因此对水泥的需求仍处于上升阶段。虽然我国是水泥生产大国,但是由于水泥行业的高二氧化碳排放量以及粉尘、有害气体等的排放,致使水泥行业的发展受到了限制。要降低这些废气等的排放,就要减少水泥生产中熟料的使用。早在1990年,美国就提出了绿色混凝土的概念。绿色高性能混凝土的特征有:更多地节约熟料水泥,降低能耗与环境污染;更多地掺加工业废料为主的细掺料;更大的发挥混凝土的高性能优势,减少水泥与混凝土的用量[1]。粉煤灰在水泥熟料矿物水化产物氢氧化钙的激发下具有水化活性而形成一定的强度组分,能与水泥浆硬化体晶格坚固地结合起来,进而提高了混凝土的长龄期强度和混凝土的耐久性[2]。因此,用粉煤灰部分替代水泥熟料具有重要的意义。 但是,根据前人的研究,粉煤灰能与水泥水化产生的Ca(OH) 发生二次水 2 化反应在常温下反应过程非常缓慢,使水泥早期强度过低,造成其利用率一直很低[3]。按照GB1344-92规定,粉煤灰硅酸盐水泥中粉煤灰掺入量按重量百分比计为20%~40%,而目前我国大多水泥窑生产的粉煤灰水泥掺入量只有不到30%,且达不到应有的强度等级[4-5]。 究其根本原因,是因为粉煤灰的活性在前期并不理想,致使粉煤灰水泥没有具有应有的早期强度。因此想要提高粉煤灰的掺入量,提高粉煤灰水泥的性能,就应该从改善粉煤灰的活性着手。粉煤灰活性影响因素可分为:化学成分、晶体组成和玻璃相含量与结构[6]。万雪峰[7]等人对激发粉煤灰活性的措施物理法、物理化学法以及化学法做出了对比研究,认为化学法的活化程度高,且不限粉煤灰的掺入量,是一种可行的简单的方法。化学法主要是通过添加各种早强剂、诱导剂、激发剂等,使粉煤灰水泥的水化反应速度缩短,从而改善粉煤灰水泥的早期强度不足和初凝时间过长的缺陷,提高粉煤灰的掺入量[8-10]。物理法可以通过在研磨粉煤灰时填入助磨剂,改善粉煤灰的粒度,从而提高粉煤灰水泥的水化速度。焦晓飞[11]通过对粉煤灰掺入粒径的研究得到粉煤灰颗粒,粒度集中在10μm~20μm的粉煤灰活性最佳,水化速度最快,

A9中热硅酸盐水泥-低热硅酸盐水泥-低热矿渣硅酸盐水泥资料

GB200—2003 中热硅酸盐水泥低热硅酸盐水泥低热矿渣硅酸盐水 泥 作者:佚名出处:水泥商情网更新时间:2006-6-17 12:43:59 热★★★ 前言 本标准中第5 章、第6.1条、第6.3条至第6.9、第8章为强制性的,其余为推荐性的。 本标准参考JSI R5210-1997《波竺兰水泥》(中热波特兰水泥、低热波特兰水泥)和DIN1164:2000-11《特种水泥》(低热水泥)。 本标准代替GB200-1989《中热硅酸盐水泥、低热矿渣硅酸盐水泥》。 本标准与GB200-1989相比主要变化如下: ——新增加了低热硅酸盐水泥品种(见第1章); ——水泥标号改为强度等级,每一品种设一强度等级(1989年版的第4章;本版第5章); ——水泥筛余细度指标改为比表面指标(1989年版的5.6;本版的6.5); ——水泥强度检验方法用GB/T17671-1999《水泥胶砂强度检验方法(ISO法)》代替GB/T177-1985《水泥胶砂强度检验方法》(1989年版的6.6,本版的7.5); ——水泥水化热试骊方法保留GB/T2022-1980《水泥水化热试验方法(直接法)》,同时增加了 GB/T12959-1991《水泥水化热测定方法(溶解热法)》。从本标准实施之日起,两年内采用直接法仲裁,两年后采用溶解热法仲裁(1989年版的6.7;本版的7.6)。 本标准由中国建材工业协会提出。 本标准由全国水泥标准化委员会(CSBTS/TC184)归口。 本标准负责起草单位:中国建筑材料科学研究院水泥科学与新型建筑材料研究所。 本标准参加起草单位:中国长江三峡工程开发总公司、葛洲坝股份有限公司水泥厂、云南红塔滇西水泥股份有限公司、抚顺水泥股份有限公司、华新水泥股份有限公司、甘肃祁连山水泥股份有限公司、四川嘉华企业(集团)股份有限公司、湖南霸道特种水泥股份有限公司、四川金沙泥股份有限公司。 本标准主要起草人:岳云德、江云安、刘克忠、王晶、成然弼、张秋英、倪竹君、霍春明。 本标准所代替标准的历次版本发布情况为: ——GB200-1963、GB200-1980、GB200-1989。 1 范围

42、中低热水泥的生产及性能特点

中低热水泥的生产及性能特点 根据GB200-2003国家标准规定,中低热硅酸盐水泥有三个品种,即中热硅酸盐水泥(简称中热水泥),低热硅酸盐水泥(简称低热水泥)和低热矿渣硅酸盐水泥(简称低热矿渣水泥,水泥中含有粒化高炉矿渣20%~60%)。 由于混凝土的导热率低,水泥水化时放出的热量不易散失,容易使混凝土内部最高温度达60℃以上。由于混凝土外表面冷却较快,就使混凝土内外温差达几十度。混凝土外部冷却产生收缩,而内部尚未冷却,就产生内应力,容易产生微裂缝,致使混凝土耐水性降低。采用低放热量和低放热速率的水泥就可降低大体积混凝土的内部温升。 降低水泥的水化热和放热速率,主要是选择合理的熟料矿物组成、粉磨细度以及掺入适量混合材。 由于C 3A 、C 3S 的水化热和放热速率高于 C 4AF 、C 2S ,故要降低水泥的水化热和放热速率,必须降低熟料中C 3A 和C 3S 的含量,相应提高 C 4AF 和C 2S 的含量。但是,C 2S 的早期强度很低,所以不宜增加过多,C 3S 含量也不应过少,否则,水泥强度发展过慢。因此,在设计中热硅酸盐水泥熟料和低热水泥熟料矿物组成时,首先应着重减少C 3A 的含量,相应增加C 4AF 的含量。按GB 200-2003要求,中热硅酸盐水泥熟料中,C 3S 含量应不超过55%,C 3A 含量应不超过6%,游离氧化钙含量应不超过1.0%;在低热硅酸盐水泥熟料中,C 2S 含量应不小于40%,C 3A 含量应不超过6%,游离氧化钙含量应不超过1.0%;在低热矿渣硅酸盐水泥熟料中,C 3A 含量应不超过8%,游离氧化钙含量应不超过1.2%,MgO 的含量不宜超过5.0%,如果水泥经压蒸安定性试验合格,则MgO 的含量允许放宽到6.0%。 中热水泥和低热水泥熟料中的碱含量,以Na 20当量(Na 20+0.658K 20)表示不得超过0.6%。在生产低热矿渣水泥时,允许放宽到1.0%。 中热水泥、低热水泥和低热矿渣水泥的初凝不得早于60min ,终凝不得超过12h 。水泥中三氧化硫含量不得超过3.5%。 增加水泥粉磨细度,水化热也增加,尤其是增加早期水化热;但水泥磨得过粗,强度下降,单位体积混凝土中的水泥用量要增加,水泥的水化热虽下降,但混凝土的放热量反而增加。所以中热水泥细度一般与普通硅酸盐水泥相近。 水泥中掺入混合材,如粒化高炉矿渣,可使水化热按比例下降。例如,掺加50%矿渣,使水泥的3天水化热下降45%,7天水化热下降37%。掺入矿渣,水泥强度虽有所下降,但下降的程度远较水化热的降低为小。 中热水泥和低热水泥强度等级为42.5,低热矿渣水泥强度等级为32.5。水泥的强度等级和各龄期强度见表2-2-16。各龄期水化热的上限值列于表2-2-17。 表2-2-17 水泥强度等级的各龄期水化热 J/g

硅酸盐水泥和普通水泥的区别

硅酸盐水泥和普通水泥的区别 硅酸盐水泥和普通硅酸盐水泥(简称普通水泥) 共同特点: 早期强度较高;凝结硬化速度快(前者比后者还要快) 2、水化热较大(前者比后者还要大得多) 3、耐冻性差 4、耐热性较差 5、耐腐蚀及耐水性较差 适用范围:前者适用于快硬早强的工程、高强度等级砼。不适用于大体积砼工程(发热量比普通水泥大得多,不用)、受化学侵蚀、压力水(软水)作用及海水侵蚀的工程。后者适用于地上、地下及水中的大部分砼结构工程。不适用于大体积砼(实际施工时一般视这个大体积到底有多大以及它的重要性,或者采取控温措施后还是经常用的,至少西南地区是这样)、受化学侵蚀、压力水(软水)作用及海水侵蚀的工程。 复合硅酸盐水泥主要特征:早期强度低,耐热性好,抗酸性差。采用粉煤灰和煤矸石做为混合材,系绿色建材产品,享受国家税收优惠,早期和后期强度稳定,水化热低,适用于一般工业与民用建筑,是一种经济型水泥。 普通硅酸盐水泥主要特征:早期强度高,水化热高,耐冻性好,耐热性差,耐腐蚀性差,干缩性较小。适用范围:制造地上、地下及水中的混凝土,钢筋混凝土及预应力混凝土结构,受循环冻融的结构及早期强度要求较高的工程,配制建筑砂浆。不适用于大体积混凝土工程和受化学及海水侵蚀的工程。 凡由硅酸盐水泥熟料、6%-15%的混合材料及适量石膏磨细制成的水硬性胶凝材料,称为普通硅酸盐水泥,简称普通水泥。国家标准对普通硅酸盐水泥的技术要求有:(1)细度筛孔尺寸为80μm的方孔筛的筛余不得超过10%,否则为不合格。(2)凝结时间初凝时间不得早于45分钟,终凝时间不得迟于10小时。(3)标号根据抗压和抗折强度,将硅酸盐水泥划分为325、425、525、625四个标号。 普通硅酸盐水泥由于混合材料掺量较少,其性质与硅酸盐水泥基本相同,略有差异,主要表现为:(1)早期强度略低(2)耐腐蚀性稍好(3)水化热略低(4)抗冻性和抗渗性好(5)抗炭化性略差(6)耐磨性略差 复合硅酸盐水泥凡由硅酸盐水泥熟料、两种或两种以上规定的混合材料、适量石膏磨细制成的水硬性胶凝材料,称为复合硅酸盐水泥(简称复合水泥)。水泥中混合材料总掺加量按质量百分比应大于15%,不超过50%。水泥中允许用不超过8%的窑灰代替部分混合材料;掺矿渣时混合材料掺量不得与矿渣硅酸盐水泥重复。 水泥一般分普通硅酸盐水泥、掺混合材料的硅酸盐水泥和特殊水泥。普通硅酸盐水泥:由石灰石、粘土、铁矿粉按比例磨细混合,这时候的混合物叫生料。然后进行煅烧,一般温度在1450度左右,煅烧后的产物叫熟料。然后将熟料和石膏一起磨细,按比例混合,才称之为水泥。 掺混合材料的硅酸盐水泥是在普通硅酸盐水泥里按比例和一定的加工程序加入其他物质以达到特殊效果,如矿渣水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥、复合硅酸盐水泥等等。这些水泥的原料就比原来的普通硅酸盐水泥要多一些活性混合材料或非活性混合材料。特殊水泥在材料阶段和制作工艺上有些不同,如高铝水泥(铝酸盐水泥)的材料是铝矾土、石灰石经过煅烧得到熟料,然后磨细成为铝酸盐水泥的。其他有一些特性水泥用途较小,如白色水泥,主要用于装饰工程,材料是纯高岭土、纯石英砂、纯石灰石,在合适的温度煅

《通用硅酸盐水泥》的标准

前言 本标准第6.1、6.3、8.3条为强制性条款,其余为推荐性条款。 本标准参照欧洲水泥试行标准ENV 197-1:2000《通用波特兰水泥》修订。 本标准代替GB175-1999《硅酸盐水泥、普通硅酸盐水泥》、GB1344-1999《矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥》、GB12958-1999《复合硅酸盐水泥》三个标准。与GB175-1999、GB1344-1999、GB12958-1999相比,主要变化如下: ——全文强制改为条文强制(本版前言); ——增加通用硅酸盐水泥的定义(本版第3.1条); ——将各品种水泥的定义取消(原版GB175-1999、GB1344-1999、GB12958-1999第3章);——将组成与材料合并为一章,材料中增加了硅酸盐水泥熟料(原版GB175-1999、GB1344-1999、GB12958-1999第4章,本版第4章); ——普通硅酸盐水泥中“掺活性混合材料时,最大掺量不超过15%,其中允许用不超过水泥质量5%的窑灰或不超过水泥质量10%的非活性混合材料来代替”改为“活性混合材料掺加量为>5%,≤20%,其中允许用不超过水泥质量5%符合本标准第4.2.5条的窑灰或不超过水泥质量8%符合本标准第4.2.4条的非活性混合材料代替”。(原版GB175-1999中第3.2条,本版第4.1条); ——将矿渣硅酸盐水泥中矿渣掺加量由“20%~70%”改为“>20%,≤70%”(原版GB1344-1999中第3.1条,本版第3.4条、4.1条); ——将火山灰质硅酸盐水泥中火山灰质混合材料掺量由“20%~50%”改为“>20%,≤40%”(原版GB1344-1999中第3.2条,本版第4.1条); ——将粉煤灰硅酸盐水泥中粉煤灰掺量由“20%~40%”改为“>20%,≤40%”(原版GB1344-1999中第3.3条,本版第4.1条); ——将复合硅酸盐水泥中混合材料总掺加量由“应大于15%,但不超过50%”改为“>20%,≤50%”(原版GB12958-1999中第3章,本版第4.1条); ——材料中增加了粒化高炉矿渣粉(本版第4.2.2、4.2.3条); ——取消了粒化精铬铁渣、粒化增钙液态渣、粒化碳素铬铁渣、粒化高炉钛矿渣等混合材料以及符合附录A新开辟的混合材料,并将附录A取消(原版GB12958-1999中第4.2条、第4.3条和附录A) ——增加了M类混合石膏(原版GB175-1999、GB1344-1999和GB12958-1999中第3章,本版第4.2.2.1条); ——助磨剂允许掺量由“不超过水泥质量的1%”改为“不超过水泥质量的0.5%”(原版GB175-1999、GB1344-1999和GB12958-1999中第4.5条,本版第4.2.6条); ——普通水泥强度等级中取消32.5和32.5R(原版GB175-1999中第5章,本版第5章);——增加了氯离子含量的要求,即水泥中氯离子含量不大于0.06%(本版第6.1条);——取消了细度指标要求,但要求在试验报告中给出结果(原版GB175-1999第 6.5条、GB1344-1999、GB12958-1999中第6.3条,本版8.4条); ——将复合硅酸盐水泥的强度等级改为和矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥一致(原版GB12958-1999中第6.6条,本版第6.3.3条) ——增加了水泥组分的试验方法(本版第7.1条); ——强度试验方法中增加了“掺火山灰混合材料的普通硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥在进行胶砂强度检验时,其用水量按0.50水灰比和胶砂流动度不小于180mm 来确定。当流动度小于180mm时,须以0.01的整倍数递增的方法将水灰比调整至胶砂流动度不小于180mm”(原版GB1344-1999第7.5条,本版第7.5条); ——将“水泥出厂编号按水泥厂年生产能力规定”改为“水泥出厂编号按单线年生产能力规

硅酸盐水泥生产工艺

硅酸盐水泥生产工艺 水泥生产工艺要点:两磨一煅烧 一、硅酸盐水泥生产方法分类 (一)按生料制备方法分

立窑生产工艺过程

硅酸盐水泥生产的原料 1.硅酸盐水泥的主要成分 硅酸三钙(3CaO·SiO2)、硅酸二钙(2CaO·SiO2)、铝酸三钙(3CaO·AI2O3)、 铁铝酸四钙(4CaO·AI2O3·Fe2O3) 其中:CaO 62~67%;SiO220~24%;AI2O34~7%;Fe2O32~6%。 2.硅酸盐水泥生产的主要原料 (1)石灰质原料: 以碳酸钙为主要成分的原料,是水泥熟料中CaO的主要来源。如石灰石、白垩、石灰质泥灰岩、贝壳等。一吨熟料约需1.4~1.5吨石灰质干原料,在生料中约占80%左右。 石灰质原料的质量要求 (2)粘土质原料: 含碱和碱土的铝硅酸盐,主要成分为SiO2,其次为AI2O3,少量Fe2O3,是水泥熟料中SiO2、AI2O3、Fe2O3的主要来源。粘土质原料主要有黄土、粘土、页岩、泥岩、粉砂岩及河泥等。一吨熟料约需0.3~0.4吨粘土质原料,在生料中约占11~17%。 粘土质原料的质量要求 223 (3)主要原料中的有害成分 ①MgO:影响水泥的安定性。水泥熟料中要求MgO<5%,原料中要求MgO<3%。 ②碱含量(K2O、Na2O):对正常生产和熟料质量有不利影响。水泥熟料中要求R2O<1.3%,原 料中要求R2O<4%。 ③P2O5:水泥熟料中含少量的P2O5对水泥的水化和硬化有益。当水泥熟料中P2O5含量在0.3%时, 效果最好,但超过1%时,熟料强度便显著下降。P2O5含量应限制。 ④TiO2:水泥熟料中含有适量的TiO2,对水泥的硬化过程有强化作用。当TiO2含量达0.5~1.0%, 强化作用最显著,超过3%时,水泥强度就要降低。如果含量继续增加,水泥就会溃裂。因此在石灰石原料中应控制TiO2<2.0%。 3. 硅酸盐水泥生产的辅助原料 (1)校正原料 ①铁质校正原料:补充生料中Fe2O3的不足,主要为硫铁矿渣和铅矿渣等。 ②硅质校正原料:补充生料中SiO2的不足,主要有硅藻土等。 ③铝质校正原料:补充生料中AI2O3的不足,主要有铝钒土、煤矸石、铁钒土等。

矿渣水泥和普通硅酸盐水泥的优缺点

矿渣水泥和普通硅酸盐水 泥的优缺点 Prepared on 22 November 2020

矿渣水泥和普通硅酸盐水泥的优缺点矿渣硅酸盐水泥: 优点:凝结时间稳定,初凝一般在2:30~4:00小时;终凝一般在4:30~6:30小时,强度稳定,水化热低,耐水性和抗碳酸盐性能与硅酸盐水泥相近,在淡水和硫酸盐水泥中的稳定性优于硅酸盐水泥,耐热性较好,与钢筋的粘结力也很好。 缺点:抗大气性及抗冻性不及硅酸盐水泥;和易性较差,泌水量大,所以不宜于冬天露天施工使用,因此在施工中要采取相应措施:加强保潮养护,严格控制加水量,低温施工时采用保温养护等,也可以加入一些外加剂。如:减水剂、元明粉(Na2SO4)、明矾石粉、三乙醇胺等,以提高矿渣水泥的早期强度。 根据上述矿渣水泥的性能特点,矿渣水泥可代替硅酸盐水泥广泛使用于地面及地下建筑,制造各种混凝土和钢筋混凝土制品构件。由于抗蚀性较好,可用于水工及海工建筑;由于水化热低,可用于大体积混凝土工程;由于耐热性较好,可用于高温车间,温度达300~400℃的热气体通道等。普通硅酸盐水泥: 优点:早期强度高,凝结时间早于矿渣硅酸盐水泥,抗大气性及抗冻性优于矿渣水泥,泌水量小,因此冬季使用较矿渣水泥好。由于凝结时间快、早期强度发挥好,适用于高层建筑及大体积砼工程、重要工程等。运输、贮存当中应注意的事项: 由于水泥是水硬性胶凝材料,因此在运输和贮存中要注意防淋、防潮、要妥善保管,施工现场库存量不易太多,存放时间不易过

长,检验合格存放期达一个月后,应经复检合格再使用,以免超期变质、强度降低、凝结时间变长,给施工质量带来不必要的损失。 石膏矿渣水泥砂浆、砼表面易起砂、石灰矿渣水泥强度低、碱—矿渣水泥易吸湿性、施工不方便问题、Na+易产生碱骨料反应问题、在空气中干缩大等用矿渣等工业废渣与碱性和硫酸盐激发剂,磨制成的碱—矿渣水泥(或称碱—矿渣胶凝材料)。它有一些优良性能和节能特点,但却存在一些难以克服的缺点,例如碱骨料反应问题、干缩性大的问题、水泥本身的易吸湿性问题,施工中由于其砂浆和砼粘性大、难以操作问题,对人身和设备的腐蚀问题以及原材料(工业废渣)的来源问题等,故不可能广泛地推广生产和使用。

2019矿渣硅酸盐水泥

矿渣硅酸盐水泥、火山灰质硅酸盐水泥及粉煤灰硅酸盐水泥 【发布单位】 【标准编号】GB 1344-1999 【发布日期】 【实施日期】1999.12.01 1 范围 本标准规定了矿渣硅酸盐水泥、火山灰质硅酸盐水泥和粉煤灰硅酸盐水泥的定义与代号、材料要求、强度等级、技术要求、试验方法、检验规则、包装、标志、运输与贮存。 本标准适用于矿渣硅酸盐水泥、火山灰质硅酸盐水泥和粉煤灰硅酸盐水泥。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 176-1996 水泥化学分析方法(eqv ISO 680:1990) GB/T 203-1994 用于水泥中的粒化高炉矿渣(neq ГOCT 3476:1974) GB/T 750-1992 水泥压蒸安定性试验方法 GB/T 1345-1991 水泥细度检验方法(80 μm筛筛析法) GB/T 1346-1989 水泥标准稠度用水量、凝结时间、安定性检验方法(neq ISO/DIS 9597) GB/T 1596-1991 用于水泥和混凝土中的粉煤灰 GB/T 2419-1994 水泥胶砂流动度测定方法 GB/T 2847-1996 用于水泥中的火山灰质混合材料(neq ISO 863:1990) GB/T 5483-1996 石膏和硬石膏(neq IS01587:1975) GB 9774-1996 水泥包装袋 GB l2573-1990 水泥取样方法 GB/T 17671-1999 水泥胶砂强度检验方法(ISO法)(idt ISO 679:1989) JC/T 667-1997 水泥粉磨用工艺外加剂 JC/T 742-1984(19965 掺入水泥中的回转窑窑灰

矿渣水泥和普通硅酸盐水泥的优缺点

矿渣水泥和普通硅酸盐 水泥的优缺点 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

矿渣水泥和普通硅酸盐水泥的优缺点矿渣硅酸盐水泥: 优点:凝结时间稳定,初凝一般在2:30~4:00小时;终凝一般在4:30~6:30小时,强度稳定,水化热低,耐水性和抗碳酸盐性能与硅酸盐水泥相近,在淡水和硫酸盐水泥中的稳定性优于硅酸盐水泥,耐热性较好,与钢筋的粘结力也很好。 缺点:抗大气性及抗冻性不及硅酸盐水泥;和易性较差,泌水量大,所以不宜于冬天露天施工使用,因此在施工中要采取相应措施:加强保潮养护,严格控制加水量,低温施工时采用保温养护等,也可以加入一些外加剂。如:减水剂、元明粉(Na2SO4)、明矾石粉、三乙醇胺等,以提高矿渣水泥的早期强度。 根据上述矿渣水泥的性能特点,矿渣水泥可代替硅酸盐水泥广泛使用于地面及地下建筑,制造各种混凝土和钢筋混凝土制品构件。由于抗蚀性较好,可用于水工及海工建筑;由于水化热低,可用于大体积混凝土工程;由于耐热性较好,可用于高温车间,温度达300~400℃的热气体通道等。普通硅酸盐水泥: 优点:早期强度高,凝结时间早于矿渣硅酸盐水泥,抗大气性及抗冻性优于矿渣水泥,泌水量小,因此冬季使用较矿渣水泥好。由于凝结时间快、早期强度发挥好,适用于高层建筑及大体积砼工程、重要工程等。运输、贮存当中应注意的事项: 由于水泥是水硬性胶凝材料,因此在运输和贮存中要注意防淋、防潮、要妥善保管,施工现场库存量不易太多,存放时间不易过

长,检验合格存放期达一个月后,应经复检合格再使用,以免超期变质、强度降低、凝结时间变长,给施工质量带来不必要的损失。 石膏矿渣水泥砂浆、砼表面易起砂、石灰矿渣水泥强度低、碱—矿渣水泥易吸湿性、施工不方便问题、Na+易产生碱骨料反应问题、在空气中干缩大等用矿渣等工业废渣与碱性和硫酸盐激发剂,磨制成的碱—矿渣水泥(或称碱—矿渣胶凝材料)。它有一些优良性能和节能特点,但却存在一些难以克服的缺点,例如碱骨料反应问题、干缩性大的问题、水泥本身的易吸湿性问题,施工中由于其砂浆和砼粘性大、难以操作问题,对人身和设备的腐蚀问题以及原材料(工业废渣)的来源问题等,故不可能广泛地推广生产和使用。

硅酸盐水泥的生产原料、工艺流程参考模板

硅酸盐水泥生产的原料 聚煤网2014-05-23 15:12:12 浏览11 1.硅酸盐水泥的主要成分 硅酸三钙(3CaO?SiO2)、硅酸二钙(2CaO?SiO2)、铝酸三钙(3CaO?AI2O3)、铁铝酸四钙(4CaO?AI2O3?Fe2O3)其中:CaO 62~67%; SiO2 20~24%; AI2O3 4~7%; Fe2O3 2~6%。 2.硅酸盐水泥生产的主要原料 (1) 石灰质原料: 以碳酸钙为主要成分的原料,是水泥熟料中CaO的主要来源。如石灰石、白垩、石灰质泥灰岩、贝壳等。一吨熟料约需1.4~1.5吨石灰质干原料,在生料中约占80%左右。石灰质原料的质量要求 品位 CaO(%) MgO(%) R2O(%) SO3(%)燧石或石英(%) 一级品>48 <2.5 <1.0 <1.0 <4.0 二级品 45~48 <3.0 <1.0 <1.0 <4.0 (2)粘土质原料: 含碱和碱土的铝硅酸盐,主要成分为SiO2,其次为AI2O3,少量Fe2O3,是水泥熟料中SiO2、AI2O3、Fe2O3的主要来源。粘土质原料主要有黄土、粘土、页岩、泥岩、粉砂岩及河泥等。一吨熟料约需0.3~0.4吨粘土质原料,在生料中约占11~17%。粘土质原料的质量要求 品位硅酸率铁率 MgO(%) R2O(%) SO3(%)塑性指数 一级品 2.7~3.5 1.5~3.5 <3.0 <4.0 <2.0 >12 二级品 2.0~2.7或3.5~4.0 不限<3.0 <4.0 <2.0 >12 一般情况下SiO2含量60~67%,AI2O3含量14~18%。 (3)主要原料中的有害成分 ① MgO:影响水泥的安定性。水泥熟料中要求MgO<5%,原料中要求MgO<3%。 ②碱含量(K2O、Na2O):对正常生产和熟料质量有不利影响。水泥熟料中要求R2O<1.3%,原料中要求R2O<4%。 ③ P2O5:水泥熟料中含少量的P2O5对水泥的水化和硬化有益。当水泥熟料中P2O5含量在 0.3%时,效果最好,但超过1%时,熟料强度便显著下降。P2O5含量应限制。 ④ TiO2:水泥熟料中含有适量的TiO2,对水泥的硬化过程有强化作用。当TiO2含量达0.5~ 1.0%,强化作用最显著,超过3%时,水泥强度就要降低。如果含量继续增加,水泥就会溃裂。因此在石灰石原料中应控制TiO2< 2.0%。 3. 硅酸盐水泥生产的辅助原料 (1)校正原料

矿渣水泥和普通硅酸盐水泥的优缺点

矿渣水泥和普通硅酸盐水泥的优缺点 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

矿渣水泥和普通硅酸盐水泥的优缺点矿渣硅酸盐水泥: 优点:凝结时间稳定,初凝一般在2:30~4:00小时;终凝一般在4:30~6:30小时,强度稳定,水化热低,耐水性和抗碳酸盐性能与硅酸盐水泥相近,在淡水和硫酸盐水泥中的稳定性优于硅酸盐水泥,耐热性较好,与钢筋的粘结力也很好。缺点:抗大气性及抗冻性不及硅酸盐水泥;和易性较差,泌水量大,所以不宜于冬天露天施工使用,因此在施工中要采取相应措施:加强保潮养护,严格控制加水量,低温施工时采用保温养护等,也可以加入一些外加剂。如:减水剂、元明粉(Na2SO4)、明矾石粉、三乙醇胺等,以提高矿渣水泥的早期强度。 根据上述矿渣水泥的性能特点,矿渣水泥可代替硅酸盐水泥广泛使用于地面及地下建筑,制造各种混凝土和钢筋混凝土制品构件。由于抗蚀性较好,可用于水工及海工建筑;由于水化热低,可用于大体积混凝土工程;由于耐热性较好,可用于高温车间,温度达300~400℃的热气体通道等。普通硅酸盐水泥: 优点:早期强度高,凝结时间早于矿渣硅酸盐水泥,抗大气性及抗冻性优于矿渣水泥,泌水量小,因此冬季使用较矿渣水泥好。由于凝结时间快、早期强度发挥好,适用于高层建筑及大体积砼工程、重要工程等。运输、贮存当中应注意的事项: 由于水泥是水硬性胶凝材料,因此在运输和贮存中要注意防淋、防潮、要妥善保管,施工现场库存量不易太多,存放时间不易过长,检验合格存放期达一个月后,应经复检合格再使用,以免超期变质、强度降低、凝结时间变长,给施工质量带来不必要的损失。

矿渣硅酸盐水泥

矿渣硅酸盐水泥 水泥袋上应清楚标明:工厂名称、生产许可证编号、品种名称、代号、标号、包装年、月、日和编号。掺火山灰质混合材的矿渣水泥还应标上“掺火山灰”的字样。包装袋两侧应印有水泥名称和标号,矿渣水泥的印刷采用绿色,火山灰水泥和粉煤灰水泥采用黑色。散装运输时应提交与袋装标志相同内容的卡片。 目录 1概况 2引用标准 3代号 4材料要求 5标号 6技术要求 7试验方法 8检验规则 9贮存条件 10附加说明 1概况 本标准规定了矿渣硅酸盐水泥、火山灰质硅酸盐水泥和粉煤灰硅酸盐水泥的定义、组分材料、技术要求、试验方法和检验规则等。 本标准适用于矿渣硅酸盐水泥、火山灰质硅酸盐水泥和粉煤灰硅酸盐水泥的生产和检验。 胶板。 2引用标准 GB 176 水泥化学分析方法 GB 177 水泥胶砂强度检验方法

GB 203 用水泥中的粒化高炉矿渣 GB 750 水泥压蒸安定性试验方法 GB 1345 水泥细度检验方法(≤μm筛筛析法) GB 1346水泥标准稠度用水量、凝结时间、安定性检验方法 GB 1596 用于水泥和混凝土中的粉煤灰 GB 2847 用于水泥中的火山灰质混合材料 GB 5483 用于水泥中的石膏和硬石膏 GB 9774 水泥包装用袋 GB 12573 水泥取样方法 ZB Q12 001掺入水泥中的回转窑窑灰 3代号 3.1 矿渣硅酸盐水泥 3.2 凡由硅酸盐水泥熟料和粒化高炉矿渣、适量石膏磨细制成的水硬性胶凝材料称为矿渣硅酸盐水泥(简称矿渣水泥),代号P·S。水泥中粒化高炉矿渣掺加量按重量百分比计为20% ̄70%。允许用石灰石、窑灰、粉煤灰和火山灰质混合材料中的一种材料代替矿渣,代替数量不得超过水泥重量的8%,替代后水泥中粒化高炉矿渣不得少于20%。 凡由硅酸盐水泥熟料和火山灰质混合材料、适量石膏磨细制成的水硬性胶凝材料称为火山灰质硅酸盐水泥(简称火山灰水泥),代号P·P。水泥中火山灰质混合材料掺加量按重量百分比计为20% ̄50%。 3.3 粉煤灰硅酸盐水泥:凡由硅酸盐水泥熟料和粉煤灰、适量石膏磨细制成的水硬性胶凝材料称为粉煤灰硅酸盐水泥(简称粉煤灰水泥),代号P·F。水泥中粉煤灰掺加量按重量百分比计为20% ̄40%。 4材料要求 4.1 石膏 天然石膏:应符合GB5483的规定。 工业副产石膏:工业生产中以硫酸钙为主要成分的副产品。采用工业副产石膏时,应经过试验,证明对水泥性能无害。 4.2 粒化高炉矿渣、火山灰质混合材料、粉煤灰符合GB203的粒化高炉矿渣,符合GB2847的火山灰质混合材料和符合B1596的粉煤灰。

相关文档
最新文档