toll样受体信号通路
Toll样受体信号通路与脑缺血中风
T l样受体信 号通路 与脑缺血 中风 水 o l
周赛男 刘柏 炎 蔡 光 先
( . 南 中医药大 学 , 南 长沙 4 0 0 ;. 南 中医药 大学省部 共 建 中医 内科 学教 育部 重 点 1湖 湖 1 0 7 2湖
“ 中风 ” 病 源 于 《 经 》 病 名 有 大 厥 、 击 、 枯 等 称 , 一 内 , 仆 偏 如
《 问 ・ 经论 》中风 也 称 脑 卒 中 , 中缺 血 性 脑 卒 中约 占中 风患 者 的 8 %…。 代 医家 认 为 其 0 历
质 。L s 于 I TR 属 型跨 膜糖 蛋 白 , 由胞 外 区 、 膜 区及 胞 内 区 3部 跨 分 组 成 。 目前 在 哺乳 动 物 中至 少 发 现 1 成 员 , 为 一 类 同源 3个 作 模 式 识 别 受 体 ,' s主 要 通 过 特 异 识 别 病 原 相 关 分 子 模 式 tR I L (A s和 损 伤 相 关分 字 模 式 ( A s来 启 动 免 疫 反 应 , 先 P MP ) D MP ) 是 天 性 免 疫 系 统 的 重 要 组 成 部 分 及 连 接 获 得 性 免 疫 与 先 天 性 免 疫 的“ 梁 ” ] 今 . 桥 [。 3至 已确 认 的 ' s I R 家族 成 员 在 人 类 中 有 1 L O个 (L I 1 )T R 可分 为几 个 子 族 , T R 一 0 ,L 8 每个 子族 识 别 相 应 的P MP A s 和 D MPE。 L 1T R A s T R 、L 2和 T R L 6子族 主要 识 别脂 质 。 Ⅱ 3 而 、 T R 、 L 8和 T R L 7T R L 9子 族 主 要 识 别 核 酸 。 同 L 不 r R家 族 成 员 都
Toll样受体
TLRs在肿瘤细胞的表达
• 研 究 表明,肿瘤细胞表达 TLRs ,并且 TLRs 信号有助于肿瘤的免疫逃逸和发展。 用 RT-PCR 筛选了不同组织来源的鼠源肿 瘤 细 胞株中 TLRs 的表达,包括 MC26 ( 肠 癌), 4T1( 乳腺癌 ) , RM1( 前列腺 癌 ) , B16( 黑色素瘤 ) , LLC1 (肺癌), 这 些 肿瘤细胞系都表达多种 TLRs 。一些 有 关 人胃癌细胞、前列腺癌TLR 能结合机体自 身产生的一些内源性分子 ( 即内源 性配体 ) 。免疫佐剂可增强抗肿瘤 免疫,其分子和细胞机制得到进一 步阐明 TLR 也在其中扮演重要角色。 由于肿瘤发展过程中可以产生一些 能被 TLR 识别的内源性配体,所以 TLR 在肿瘤免疫监视中可能发挥了 一定作用
• 定义1:果蝇Toll受体同源物,属固有免疫中的 模式识别受体(PRR)。胞外结构域由多个亮氨酸 重复序列组成,识别病原体相关分子模式;胞内 段为TIR结构域,参与启动信号转导。 • 定义2:果蝇Toll受体同源物。是一类细胞表面 和细胞内受体。可识别各种微生物产物,与配体 结合后可起始信号传递途径,因不同细胞而引起 不同反应。
Toll样受体的分布
TLRs分布的细胞多达20余种, 在对人类白细胞的研究中发现, TLR1能在包括单核细胞,多形核细 胞,T、B淋巴细胞及NK细胞等多种 细胞中表达,TLR2、TLR4、TLR5 只在髓源性细胞(如单核巨噬细胞) 上表达,而TLR3只特异性表达于树 突状细胞
Toll样受体的结构
Toll样受体在获得性免疫系统中作用
• 首先, Toll 样受体在获得性免疫中 的具有识别作用。机体最强的抗原 呈递细胞——树突细胞可表达 TLR 。 借助 TLR ,使树突细胞被活化而成熟, 提供获得性免疫的共刺激信号。因 此 TLR 是微生物成分引起树突细胞活 化的桥梁。
Toll样受体及其激动剂的研究进展
Toll样受体及其激动剂的研究进展王嘉雯 李永祥 江青艳 王丽娜△(广东省动物营养调控重点实验室,华南农业大学动物科学学院,广州510000)摘要 Toll样受体(Toll likereceptors,TLRs)是在各种生物的各器官都广泛表达的一系列模式识别受体。
微生物、病毒及一些原虫等病原体相关分子模式都能作为TLRs的激动剂介导机体产生先天性免疫反应,TLRs也能活化细胞因子介导适应性免疫反应。
TLRs在细胞增殖,存活,凋亡和血管生成过程中起到重要作用。
小鼠上现已发现13种TLRs,其中有11种以上存在于人类机体中。
随着对TLRs研究的深入,人们发现激活TLRs能够产生一系列具有抗肿瘤,抗病毒作用的细胞因子,为疾病的治疗开拓了新的道路。
本文对TLRs家族及其激动剂的最新研究进展做一综述。
关键词 TLRs;信号通路;激动剂;功能中图分类号 S858 一、TLRs及其信号通路TLRs(Toll likereceptors,TLRs)作为机体内广泛存在的模式识别受体,能够感知一系列病原体如微生物、病毒、原虫等,以此介导机体的免疫应答。
TLRs在上皮细胞、树突状细胞及巨噬细胞都有表达,广泛分布于机体各个部位,为机体对病原体的防御起到重要作用。
1996年Lemaitre等[1]发现,果蝇的Toll样信号通路突变会显著降低真菌感染后的果蝇生存率,证明Toll受体与真菌的检测与防御有关。
随后在1997年Medzhitov等[2]发现并克隆了果蝇Toll蛋白的人类同源物,且这种同源物能在成年果蝇诱发先天免疫反应,这种在哺乳动物中果蝇Toll蛋白的同源物被定义为Toll样受体。
TLRs是一种Ⅰ型跨膜糖蛋白,由胞外区,跨膜区和胞内信号转导区组成。
TLRs胞外区富含亮氨酸重复,在每个亮氨酸重复中,保守的氨基酸残基形成了基本结构,而可变残基与病原相关分子结合。
TLRs胞内区含有Toll和白介素受体同源的结构域(Toll/interleukin 1receptordomian,TIR)信号区,当配体引起TLRs生成二聚体为TIR区信号传导募集接头蛋白,如髓样分化因子88(myeloiddifferentiationprimaryresponsegene88,MyD88);TIR结构域衔接蛋白(TIRdo main containingadaptorinducing,TRIF);桥联适配分子(bridgingadaptor,MAL);TRIF相关接头分子(Trif relatedadaptormolecule,TRAM);SARM(ster ileα andarmadillo motif containingprotein)[3],最后激活核因子κB(nuclearfactor kappaB,NF κB);C Jun氨基末端激酶(C Junamino terminalkinase,JNK);胞外信号调节激酶和干扰素调节因子进入细胞核调控促炎因子基因表达。
Toll样受体2和4信号通路在炎症治疗中的作用和意义
Toll样受体2和4信号通路在炎症治疗中的作用和意义詹雪灵;高杰;吴补领【摘要】脂多糖(LPS)在细菌破坏细胞的过程中起着重要的作用.Toll样受体(TLR)2对LPS的识别是通过与TLR1和TLR6构成异源二聚体来完成的,TLR2识别LPS后介导的细胞内免疫反应遵循髓样分化因子(MyD) 88依赖性通路.MyD88的死亡结构域募集下游的白细胞介素-1受体相关激酶1和4,肿瘤坏死因子受体相关因子6和转化生长因子-β 1活化激酶等信号分子,促使核因子-κB、激活蛋白1和P38促丝裂原激活蛋白激酶活化,继而导致促炎症细胞因子相关基因转录.MyD88非依赖性通路分别募集和激活下游分子受体相互作用蛋白1或肿瘤坏死因子受体相关因子3,通过核因子-κB、激活蛋白1和干扰素调节因子3,诱导Ⅰ型干扰素的产生.CD14和MyD2是LPS与TLR4结合的关键蛋白,控制CD14或MyD2可阻止LPS和TLR4的结合,将炎症反应阻断在信号转导的上游.TLR2和TLR4对LPS的识别是引发炎症反应的关键,限制细胞对TLR2和TLR4的表达是进行炎症控制最直接有效的方法.调控TLR2和TLR4信号通路,有望给予牙周炎、炎症性肠炎、心血管疾病及和自身免疫性疾病等更有效和更安全的临床治疗.【期刊名称】《国际口腔医学杂志》【年(卷),期】2014(041)003【总页数】5页(P304-308)【关键词】Toll样受体;信号通路;转导抑制;炎症治疗【作者】詹雪灵;高杰;吴补领【作者单位】南方医科大学南方医院口腔科;南方医科大学口腔医学院广州510515;【正文语种】中文【中图分类】Q51Toll样受体(Toll-like receptor,TLR)是一种存在于哺乳动物的跨膜蛋白,通过识别病原相关分子模式(pathogen associated molecular pattern,PAMP)参与机体的先后天免疫应答。
其中,TLR2和TLR4参与了细菌脂多糖(lipopolysaccharide,LPS)的识别和信号转导,在 LPS激发的炎症免疫中起着至关重要的作用,是细菌破坏细胞的关键途径。
Toll样受体4_核因子-κB信号途径在冠心病中的研究进展
catalase.J Bid
Toll样受体4/核因子一KB信号途径
在冠心病中的研究进展
福建医科大学省立临床医学院(350001)
马乔炎综述
陈德伟审校
摘要Toll样受体是天然免疫系统识别病原微生物的主要受体,在天然免疫反应中具有重要作用。近年研究Toll样 受体之一Toll样受体4及其介导的信号转导途径与冠心病的发生发展密切相关。 关键词Toll样受体4;冠心病;信号转导
+鼠骨髓移植,结果显示动脉粥样硬化的病变形成 没有差异。然而,接受骨髓移植的C3H/HeJ鼠与 野生B6小鼠比较,动脉粥样病变部位聚集的巨噬 细胞数量较少。结果提示有TLR4缺陷的C3H/ HeJ鼠,单核细胞在动脉壁的聚集过程受到影响。
3.4
TLR与冠心病斑块 炎症细胞因子的合成与释放在冠心病的斑块的
形成起着重要作用。Edfeldt等¨副发现在动脉粥样 硬化斑中TLR4的表达显著提高,并证实是通过 TLR4的识别功能激活NF—KB导致一系列与冠状 动脉粥样硬化的炎症相关的细胞因子的合成与释
放¨¨。Shiraki掣18’首先发现急性冠状动脉综合征
患者血栓中血小板表达TLRl和TLR6,干扰素1 上调TLRl和TLR6的表达。张瑞萍等¨引研究证实 在不稳定性心绞痛和急性心肌梗死患者循环单核细 胞中,TLR4及其下游炎症因子表达明显增多,提 示TLR4激活是斑块发展的分子机制。他汀药物可 抑制,ILR4及其下游炎症因子表达。在尸体解剖获 得冠状动脉斑块组织中也发现有TLR4的表达,而 正常冠状动脉内膜没有TLR4表达。功能性TLR4 在人粥样硬化的冠状动脉外膜纤维母细胞和巨噬细 胞上均有表达。免疫应答在冠心病的发生发展中起 重要作用,特别是最近对天然免疫在冠心病中作用 的研究成为新的研究热点。 4问题与展望 近年有报道脚。外周血中单个核细胞TLR2—5 表达的阳性率均与冠心病危险因素积分呈正相关。 Erridge等忙u发现在颈动脉粥样斑块形成过程中 TLR2、TLR4、TLR5和TLR9均有不同程度的增 高,那么冠心病患者中TLRs各个亚型之问是否存 在相互作用,它们之间是否存在必然联系,这些问 题仍需要我们进一步深入研究。TLR4是细菌感染 和动脉粥样硬化炎症形成之间的一个桥梁,能调节 先天与获得性免疫而在宿主抗微生物感染及抗机体 内源性配体中起重要作用。TLR4参与冠状动脉粥 样硬化的起始、进展、斑块不稳定乃至破裂等不同 时期,应用TLR4拮抗剂抑制局部的炎症反应可预 防血管支架内再狭窄,应用RNA干扰或基因治疗 可能抑TLR4表达和内源性配体表达陋】。相信对 冠心病与TLR4/NF—KB信号传导途径之间联系的 深入研究,会为临床疾病的治疗带来新的思路。 TLR4很可能成为动脉粥样硬化防治的靶标。
Toll样受体4与冠状动脉粥样硬化关系的研究进展
万方数据 万方数据-328·除TLR3外所有的TI。
Rs都可以通过MyD88介导下游的信号转导,通过MyD88和IRAK家族相互作用而募集TRAF6.最终导致NF—KB,或MAPK如p42/44.或JNK的激活.此信号通路称为MyD88依赖信号通路.可诱导一些细胞因子如TNF及其他前炎症因子的产生。
MyD88依赖信号通路中TLR2和TLR4信号通路需要特殊的接头分子MAI。
以帮助MyD88的募集。
TLR3的信号通路是MyD88非依赖的信号通路,通过TRIF(TolI/IL一1domaincontai—ningadaptorproteininducingIFN—B)激活TBKl(TRAF-family—member-associatedNF—KBactivator-bindingkinase),进而促进IRF3的激活.诱导IFN-B等基因的表达。
图lTLIb信号通路巨噬细胞,外膜成纤维细胞也表达TLR4。
Vink等1r应用LPS刺激小鼠动脉外膜成纤维细胞能够诱导新生内膜形成。
与野生型小鼠比较,TLR4分子点突变的C3H/HeJ鼠的内膜病变面积减少了60%。
应用TLR4配体刺激AS的小鼠模型,形成的斑块面积增加,提示TLR4激动刺激斑块形成。
万方数据 万方数据Toll样受体4与冠状动脉粥样硬化关系的研究进展作者:陈煌峰, 王永明, 王少钦, 黄恩泽, 陈新山作者单位:陈煌峰(武汉市公安局刑事侦查局,武汉,430019), 王永明(武汉市公安局东湖新技术开发区分局刑侦大队), 王少钦(灿头市公安局濠江分局刑警大队), 黄恩泽,陈新山(华中科技大学同济医学院法医病理教研室)刊名:临床心血管病杂志英文刊名:JOURNAL OF CLINICAL CARDIOLOGY年,卷(期):2008,24(5)被引用次数:1次1.ADACHI O;KAWAI T;TAKEDA K Targeted disruption of the MyD88 gene results in loss of IL-1 and IL-18-mediated function[外文期刊] 19982.SANTORO A;MANCINI E Cardiac effects of chronic inflammation in dialysis patients[外文期刊]2002(Z8)INE P;KAARTINEN M;PENTTILA A Association between myocardial infarction and the mast cells in the adventitia of the infarct-related coronary artery[外文期刊] 1999(3)4.EDFELDT K;SWEDENBORG J;HANSSON G K Expression of Toll-like receptor in human atherosclerotic lesions:a possible pathway for plaque activation[外文期刊] 2002(10)5.TAKEDA K;KAISHO T;AKIRA S Toll-like receptors[外文期刊] 2003(0)6.HACKER H;REDECKE V;BLAGOEV B Specificity in Toll-like receptor signalling through distincteffector functions of TRAF3 and TRAF6[外文期刊] 2006(7073)7.KAISHO T;AKIRA S Toll-like receptor function and signaling[外文期刊] 20068.LIEW F Y;XU D;BRINT E K Negative regulation of Toll-like receptor-mediated immune responses[外文期刊] 2005(6)9.O'NEILL L A TLRs:Professor Mechnikov,sit on your hat[外文期刊] 2004(12)10.MUZIO M;BOSISIO D;POLENTARUTTI N Differential expression and regulation of Toll-like receptors (TLR) in human leukocytes:selective expression of TLR3 in dendritic cells 200011.AKIRA S;TAKEDA K Toll-like receptor signaling[外文期刊] 200412.马克娟;马克威;赵利华Toll样受体4和肿瘤坏死因子α mRNA在动脉粥样硬化中表达的相关性研究[期刊论文]-中华心血管病杂志 2004(10)13.郭爱桃;韦立新基质金属蛋白酶1与冠状动脉粥样硬化斑块破裂的关系[期刊论文]-中华病理学杂志 2000(04)14.SHAH P K Mechanisms of plaque vulnerability and rupture[外文期刊] 2003(4 suppl s)15.XU X H;SHAH P K;FAURE E Toll-like receptor-4 is expressed in murine and human lipidrich atherosclerotic plaques and up regulated by oxidized LDL[外文期刊] 2001(25)16.WALTON K A;HSIEH X;GHARAVI N Receptors involved in the oxidizedl-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine-mediated synthesis of interleukin-8[外文期刊] 2003(32)17.VINK A;SCHONEVELD A H;VAN DERMEER J J In vivo evidence for a role of Toll-like receptor 4 in the development of intimal lesions[外文期刊] 2002(15)18.ZEUK E S;ULMERA J;KUSUMOTO S TLR4-mediated inflammatory activation of human coronary artery endothelial cells by LPS[外文期刊] 2002(1)19.COLLINS T;READ M A;NEISH A S Transcrip tional regulation of endothelial cell adhesion molecules:NF-kB and cytokine inducible enhancers 199520.ROSS R Atherosclerosis:an inflammatory disease[外文期刊] 1999(2)21.KAWAI T;AKIRA S TLR signaling[外文期刊] 2006(5)22.KAWAI T;ADACHI O;OGAWA T Unresponsiveness of MyD88-deficient mice to endotoxin[外文期刊] 1999(1)23.MEDZHITOV R;PRESTON-HULBURT P;JANEAY Jr C A A human homologue of the Drosophila Toll protein signals activation of adaptive immunity[外文期刊] 1997(6640)1.李若谷.方唯一.曲新凯.杨栓锁.沙慧芳.包国良福辛普利拉对脂多糖诱导的单核细胞TLR4表达的抑制作用[期刊论文]-上海交通大学学报(医学版) 2010(4)本文链接:/Periodical_lcxxgbzz200805003.aspx。
Toll样受体信号通路的研究进展
Toll样受体信号通路的研究进展Toll样受体信号通路的研究进展摘要Toll样受体(Toll-like receptor,TLR)是近年来发现的一类模式识别受体,通过识别病原相关分子模式(pathogen-associated molecular pattern,PAMP)激活天然免疫。
而髓样分化因子(myeloid differentiation factor 88,MyD88)是TLR信号通路中的一个关键接头分子,在传递上游信息和疾病发生发展中具有重要的作用。
本文对Toll样受体、髓样分化因子88的分子结构和基本功能,及T oll样受体的信号传导通路进行了综述。
关键词T oll样受体;髓样分化因子88;信号通路;负调控机制免疫系统识别“非我”和“自我”的过程是依赖于不同的受体来完成的,作为先天性免疫系统的重要组成部分及连接获得性免疫与先天性免疫的“桥梁”, TLRs 是生物的一种模式识别受体(pattern recognition receptor, PRR),它主要通过识别病原相关分子模式PAMPs来启动免疫反应。
而MyD88是Toll受体信号通路中的一个关键接头分子,是第一个被鉴定的含TIR结构域的接头蛋白分子,在传递上游信息和疾病发生发展中具有重要的作用。
1TLR的结构与基本功能Toll样受体一词来自对果蝇的研究,是决定果蝇背腹分化的基因所编码的一种跨膜受体蛋白,同时还参与果蝇的免疫反应,具有介导抗真菌感染信号转导的功能[1]。
后来在哺乳动物也发现有与Toll受体同源的受体分子,统称为称为Toll 样受体TLRs。
TLRs是广泛分布在免疫细胞尤其非特异免疫细胞以及某些体细胞表面的一类模式识别受体,它们可以直接识别结合某些病原体或其产物所共有的高度保守的特定分子结构,即病原相关分子模式。
迄今为止,已经发现哺乳动物至少有13种toll样受体,其中人的toll样受体鉴定出11种(TLR1-TLR11) [2]。
TLR及信号通路课件(Toll样受体及其信号转导)
TLR发现
Discovery of Toll / TLRs
Toll mutation
TLRs 发现/研究进展 /潜在应用:
TLR基因克隆和功能鉴定; TLR信号传导通路鉴定; TLR在发育、抗感染免疫和 其他生物学过程中的作用; TLR: 疾病干预的靶点。
人类与果蝇Toll / TLR进化树比较
Impaired responses to CpG ODN in TLR9-/- cells. (Peritoneal macrophages)
Resistance to CpG ODN-induced shock in TLR9-/- mice
dh$
SS M¶D88-D9 cI9ht
hb t'0 ih "
M\088
TIRAP
HF-«B
TRAM TRJ F
HF-«B Ty[w I IFLI
NF-<B
•••@• klyDBB•dependo‹›I pet:hway Inflammatory cytokines
TLR
Virus-infected cells
Plesma membrane
Endolysosome
?
Alignment of human and mice toll like receptor 9
Identity of 75.5% + Conserved LRR
Alignment of the cytoplasmic domains of human TLR family members
Conserved TIR domain
LRR
23 LRR ; Dimer: LRR12 /20 LRR20: 参与配体结合
toll样受体及其研究进展
Toll样受体、信号通路及其免疫的研究Toll样受体最早是在研究果蝇胚胎发育过程中发现的,它不仅是果蝇胚胎发育过程中的必需蛋白,而且在免疫应答过程中具有重要作用[1]。
Toll 样受体(TLRs)是一个模式识别受体家族,它们在进化上高度保守,从线虫到哺乳动物都存在TLRs,它能识别病原微生物进化中保守分子,如脂多糖(LPs)、肽聚糖、酵母多糖以及病原微生物的核酸等等.脂多糖受体TLR4是发现的第一个TLRs,至今在动物中已经发现15种TLRs(在人体已经发现11个成员,即TLRl~TLRl0和TLRl4,小鼠不表达TLR10,但发现了TLR11—13[2],在鸡中发现了TLR15[3]。
哺乳动物的TLRs同果蝇的TLRs 一样,同属于I型跨膜蛋白,主要由3个功能区构成:胞外区、跨膜区和胞内区。
胞外区具有富含亮氨酸的重复序列,能够特异识别病原微生物进化中保守的抗原分子——病原相关分子模式(pathogen-associated molecular patterns,PAMPs)[4]。
为了有效地抵抗入侵的病原体,机体需要对多种PAMPs产生适当的免疫应答, TLRs可以通过识别PAMPs诱发抵抗病原体的免疫反应。
而且TLRs也参与识别有害的内源性物质.1. Toll样受体1.1 Toll样受体的发现Toll是在昆虫中发现的一个受体蛋白,参与昆虫胚胎发育时背腹肌极性的建立。
进一步研究发现,Toll胞内区与哺乳动物中自介素-1受体(IL-1R)的胞内区具有很高的同源性,下游的信号转导通路通过NF—kB样因子发挥作用。
IL-1R是免疫相关分子,而且昆虫中抗微生物的多肽基因上游大多有NF—kB样因子结合位点,是否Toll蛋白也参与昆虫的天然免疫反应调控?研究证实Toll 参与昆虫的抗真菌免疫.真菌感染时果蝇Toll 通路被激活,诱导大量的抗真菌肽Drosomycin,Toll的突变导致果蝇极易受到真菌的感染[1]。
Toll样受体介导的细胞内信号通路及其免疫调节功能
Toll样受体介导的细胞内信号通路及其免疫调节功能Toil样受体(TLR)通过富亮氨酸重复序列识别不同病原体表面共有且进化高度保守的特定分子结构,引发细胞内信号传导及炎症递质释放,启动宿主的免疫反应,而TLR介导的牙髓细胞内信号通路对机体的免疫反应具有重要的调控作用。
本文就TLR在牙髓组织中的表达,TLR信号通路,TLR在牙髓炎症治疗中的应用前景等研究进展作一综述,以期丰富牙髓炎的发生机制,为牙髓炎的临床药物研发提供新的思路。
标签:Toll样受体;免疫调节;牙髓炎【文献标志码】AToll样受体(Toll-likereceptor,TLR)是一类重要的天然免疫识别受体,属于I型跨膜糖蛋白,由富含亮氨酸重复片段的细胞外区(leucine-richrepeat,LRR)、跨膜区和细胞内区(Toll/inter-leukin-1receptor domain,TIR)三部分组成。
TLR通过LRR识别不同病原体表面共有且进化高度保守的病原相关分子模式,如细菌胞壁成分脂磷壁酸(lipoteichoic acid,LTA)和脂多糖(lipopolysac-charide,LPS)等,引发细胞内信号传导及炎症递质释放,启动宿主的免疫反应。
TLR一旦与特异的病原相关分子模式结合后,将会改变自身的异构形态,以利于TIR 结合衔接分子。
TLR通过磷酸化和遍在蛋白化或蛋白质与蛋白质间的交互作用激活下游信号通路,最大程度地激活炎性转录因子,调节炎性基因表达,参与介导宿主炎症或免疫防御反应。
迄今为止,已发现10个TLR家族成员。
1TLR在牙髓组织中的表达人体各器官包括口腔组织均存在着TLR,且TLR与牙髓炎密切相关。
Staquet 等通过反转录聚合酶链反应和基因测序证实,TLR-2、3和4均表达于牙髓组织内的成牙本质样细胞和成纤维细胞,其表达水平与LTA、双链RNA和LPS等特异性细菌产物相关。
牙髓细胞受革兰阳性细菌感染后,细胞内TLR-2mRNA 表达上调,在9h达最高水平,至72h表达水平持续降低,故TLR-2在牙髓炎症早期发挥调控作用。
细胞信号通路
细胞信号通路细胞信号通路是指细胞内外的信号通过一系列的分子组分和反应传递到细胞内部,从而引发特定的细胞行为或功能变化的一种分子通讯系统。
细胞信号通路在生物体内起着至关重要的作用,调控细胞生长、分化、凋亡等多种生物学过程。
本文将介绍细胞信号通路的基本原理、主要组分以及一些常见的信号通路。
一、细胞信号通路的基本原理细胞信号通路的基本原理是信息的传递和调控。
外界的刺激物质,如荷尔蒙、生长因子、细胞因子等,会与细胞膜上的受体结合,激活受体,并通过受体激活内部的信号分子,最终引发细胞内的生物学响应。
这个过程通常可以分为三个步骤:信号的传导、信号的放大和信号的传递。
1. 信号的传导:外界刺激物质与细胞膜上的受体结合,形成受体-激活态复合物。
这个过程是通过受体的构象变化或受体内的酶活性激活来完成的。
2. 信号的放大:激活的受体在细胞内部会引发一系列的酶活化反应,从而放大信号。
这些反应通常包括酶的磷酸化、级联反应等。
3. 信号的传递:放大后的信号将通过一系列的分子相互作用传递到细胞内部的效应器上,触发特定的生物学响应。
效应器可以是细胞核、细胞质或细胞膜上的一些酶和受体。
二、细胞信号通路的主要组分细胞信号通路涉及多种组分,包括受体、信号分子、效应器等。
1. 受体:受体是细胞信号通路中的关键组分,它们位于细胞表面或细胞内部。
受体可以分为膜受体和细胞内受体两类。
膜受体通常是跨膜蛋白质,受体的外部结构与信号分子结合,激活内部的酶活性或与其他蛋白质产生相互作用。
细胞内受体则位于细胞内部,通常是转录因子,可以直接激活或抑制目标基因的表达。
2. 信号分子:信号分子是将外界刺激传递到细胞内部的关键介质。
信号分子可以是荷尔蒙、神经递质、生长因子、细胞因子等。
它们通过与受体结合激活信号通路,从而引发细胞内的生物学响应。
3. 效应器:效应器是细胞信号通路中的最终执行者,它们负责将信号转化为具体的生物学效应。
效应器可以是细胞核内的转录因子,调控基因表达;也可以是细胞膜上的酶和受体,介导细胞对外界刺激的响应;还可以是细胞质中的酶,参与代谢过程。
TLR4介导的信号通路在感染性炎症中的作用
TLR4介导的信号通路在感染性炎症中的作用作者:刘瑾来源:《中国科技博览》2016年第22期[摘 ;要]Toll样受体4(TLR4)属于模式受体家族,他们是高度保守的受体家族,识别保守病原体相关分模式,因此代表防御的第一道防线。
TLR4被认为是革兰氏阳性细菌脂多糖的识别受体。
此外,它还链接由炎症损伤引起的内源性分子。
因此,TLR4是在感染性刺激介导由外源和内源配体促炎反应引发的一种关键受体。
具有炎症反应放大器的关键作用。
本综述集中于关于TLR4激活在感染性炎症中的作用和TLR4信号传导在一些病理状况中的研究进展。
[关键词]Toll样受体4,感染性炎症中图分类号:TD327.3 文献标识码:A 文章编号:1009-914X(2016)22-0347-011、前言TLR4的首要功能是识别来自病原体的外源分子,特别是革兰氏阳性菌分子。
如LPS[1]。
最近TLR4已经被广泛证明参与识别由受损组织和坏死细胞引起释放的内源性分子。
这些分子称为损伤相关分子模式分子(DAMP),这些分子通过与TLR4相互作用诱导强的促炎反应激活[2]。
这是一个复杂的协同过程,然后诱导恢复组织完整性和功能的解决途径。
然而,在一些情况下,过度或调节不良的炎症反应可能对机体有害。
在几种具有微生物或非微生物病因中,在某些情况下,TLR4激活的参与可以有助于疾病的进展。
2、 TLR4信号通路TLR4由608个残基的细胞外结构域和参与细胞内信号传导级联的187个残基的细胞内结构域组成。
现已证明,T LR4与细胞表面上的骨髓分化2(MD2)物理缔合是配体诱导的活化所必需的[3]。
并通过与LPS的相互作用与TLR4的胞外结构域非共价结合,形成TLR4/MD2受体复合物。
MD2缺乏跨膜和胞内结构域,LPS结合蛋白(LBP)和CD14将LPS单体转移到MD2和TLR4。
LPS结合后,发生两个TLR4 / MD2复合物的二聚化,导致TLR4同二聚体的构象变化,诱导包含Toll /白细胞介素-1受体样(TIR)结构域的衔接蛋白的募集。
免疫细胞的信号通路及其调节机制
免疫细胞的信号通路及其调节机制引言免疫系统作为人体防御外部病原体入侵的重要机制,依赖于免疫细胞的协同作用和信号通路的精确调节。
免疫细胞主要包括巨噬细胞、T细胞、B细胞、自然杀伤细胞等多种类型,它们通过分子信号通路传递信息,调控细胞增殖、分化和功能,从而实现对外界病原体的有效清除。
本文将重点介绍免疫细胞的信号通路及其调节机制,旨在深入探讨免疫系统的基本原理和调控机制。
免疫细胞的信号通路1. Toll样受体通路Toll样受体(TLR)是一类跨膜蛋白,广泛表达于免疫细胞表面,如巨噬细胞和树突状细胞。
TLR能够感知外界微生物的分子模式,并通过细胞内信号通路传递信息,诱导免疫细胞的炎症反应和免疫应答。
TLR信号通路主要包括以下几个步骤:•识别外界微生物:TLR通过其结构域与特定的微生物分子模式相互作用,如TLR4与脂多糖结合,TLR9与CpG-DNA结合等。
•激活信号传导:TLR结合微生物分子模式后,与适配器蛋白相互作用,形成信号复合物。
这些适配器蛋白可以激活下游信号分子,如MyD88、TRIF等,从而引发细胞内信号传导。
•下游信号传导:TLR信号通过激活下游信号分子,如细胞内激酶IKK 和MAPK等,引发一系列信号传导级联反应。
最终,这些信号分子调控基因表达、细胞因子释放和免疫细胞的活化。
2. T细胞受体信号通路T细胞是免疫系统中的重要细胞类型,负责识别和杀伤感染的细胞和异常细胞。
T细胞受体(TCR)是T细胞表面的一类受体,能够与特定的抗原结合,并启动细胞内信号传导。
TCR信号通路主要包括以下几个步骤:•抗原结合:TCR与抗原结合时,会发生结构变化,以便与其他信号分子相互作用。
•CD3复合物激活:TCR与CD3复合物相互作用,形成稳定的复合物。
这个复合物包括CD3ε、CD3δ、CD3γ和CD3ζ四个链的组合。
CD3复合物在细胞膜上形成信号复合物,激活细胞内的下游信号分子。
•下游信号传导:CD3复合物通过激活下游信号分子,如Lck、ZAP-70等,引发信号传导级联反应。
免疫细胞信号通路中Toll样受体的作用
免疫细胞信号通路中Toll样受体的作用在人体的免疫系统中,Toll样受体是非常重要的受体之一。
它们起到了很多关键的作用,包括了对细菌、病毒等入侵性微生物的识别及抵御,以及在攻击机体自身细胞的自身免疫疾病中的调节作用。
Toll样受体(Toll-like receptors,简称TLRs)是一类跨膜受体,它们可以识别自然界中许多不同种类的微生物,包括细菌、病毒、真菌和寄生虫。
TLRs的识别是基于它们结构上包含的不同种类的受体区域。
这些受体区域与微生物表面上的不同种类的分子配对,并且会激活免疫反应。
TLRs主要存在于人类的免疫细胞膜上,包括单核细胞、巨噬细胞、树突细胞、B淋巴细胞和T淋巴细胞。
当这些免疫细胞接触到入侵性微生物时,TLRs就会被激活,并且这一过程会引发一系列的复杂的信号通路,最终导致免疫反应的启动。
TLRs的激活也会启动多种信号通路,其中最为重要的是NF-κB信号通路。
在这一信号通路中,TLRs的激活会引发多种分子的相互作用,最终导致一个叫做IKK的酶复合体的激活。
这个酶复合体会进一步磷酸化IKB蛋白,这个蛋白本来是很重要的一种抑制子,可以防止NF-κB进入细胞核并启动免疫反应。
但是磷酸化后,IKB蛋白就被降解了,这样NF-κB就可以进入细胞核启动基因表达,从而启动免疫反应。
另外,TLRs的激活也会启动另一种信号通路,即介导型线粒体通路(mitochondrial mediated pathway)。
这一信号通路的激活和NF-κB信号通路密切关联,但是它的产物和生物学功能却不同。
这一通路的激活会引发线粒体的DNA释放,后者会作为一个PAMP(pathogen-associated molecular pattern)进入到免疫细胞中,从而引发一个线粒体介导的激光自杀反应,这个反应的作用主要是杀死入侵性微生物,并且可以加强对这些微生物的识别和记忆。
尽管TLRs在人体免疫反应中扮演了非常重要的角色,但是在一些自身免疫疾病中它们的过度激活也会导致不良后果。
Toll样受体的信号转导与免疫调节
Toll样受体的信号转导与免疫调节一、本文概述Toll样受体(Toll-like receptors,TLRs)是一类在免疫系统中起着至关重要作用的蛋白质受体。
自发现以来,TLRs已成为生物学和医学研究领域的一个热点。
它们能够识别多种病原体相关的分子模式(Pathogen-Associated Molecular Patterns,PAMPs),从而启动先天免疫反应,并在适应性免疫应答中发挥关键作用。
本文旨在深入探讨TLRs的信号转导机制以及它们在免疫调节中的重要作用,从而为理解人体免疫防御体系提供新的视角和思路。
我们将概述TLRs的基本结构和特性,包括它们的分布、配体识别能力以及信号转导通路。
随后,我们将重点讨论TLRs信号转导的具体过程,包括配体与受体结合后的信号传递、关键信号分子的激活以及下游基因的表达调控。
在此基础上,我们将进一步探讨TLRs在免疫调节中的功能,包括它们在炎症反应、免疫细胞活化和分化以及适应性免疫应答中的作用。
我们将总结TLRs在免疫系统中的重要性,以及它们在疾病发生和发展过程中的潜在作用。
通过深入研究TLRs的信号转导与免疫调节机制,我们有望为开发新型免疫疗法和药物提供理论依据和实践指导,为改善人类健康水平做出贡献。
二、Toll样受体的结构与分类Toll样受体(Toll-like receptors,TLRs)是一类在进化上高度保守的模式识别受体,它们在免疫系统中起着至关重要的作用。
TLRs通过识别微生物特有的病原体相关分子模式(Pathogen-Associated Molecular Patterns,PAMPs)来启动和调节先天免疫反应。
它们还能识别损伤相关分子模式(Damage-Associated Molecular Patterns,DAMPs),从而在组织损伤和炎症反应中发挥作用。
结构上,TLRs是一类跨膜蛋白,由胞外区、跨膜区和胞内区三部分组成。
胞外区富含亮氨酸重复序列(Leucine-Rich Repeats,LRRs),这些重复序列使得TLRs能够识别多种不同类型的PAMPs和DAMPs。
Toll样受体信号转导通路简介
Toll样受体信号转导通路简介TLRs(Toll-like Receptors)属于固有免疫病原模式识别受体,可以识别⼊侵机体的病原微⽣物的蛋⽩质、核酸和脂类及其在反应过程中合成的中间产物和代谢产物,如⾰兰阴性细菌的脂多糖(LPS)、⾰兰阳性菌的肽多糖和病毒的双链RNA等,这些都是属于分⼦结构⾼度保守的PAMP(Pathogen-associated molecular pattern,病原相关分⼦模式)。
TLR通过对PAMP的识别,快速激活包括接头蛋⽩、信号复合体和转录因⼦复合体负责的细胞内信号级联反应,最终导致机体产⽣促炎性细胞因⼦、抗炎症细胞因⼦及趋化因⼦。
TLR通过不同的识别途径活化多种免疫细胞,启动⾮特异性免疫应答并激起适应性免疫应答以清除病原体。
它们是抵御病原体⼊侵的第⼀道防线,在炎症、免疫细胞调控、存活和增殖⽅⾯发挥着关键作⽤。
TLR的结构和分⼦特征⽬前为⽌,已经在哺乳动物中发现的TLR有13种,其中TLR1-9为⼈、⼤⿏和⼩⿏共有,TLR10存在于⼈类、⼤⿏和负⿏,TLR11存在于⼩⿏。
TLR属于I型跨膜蛋⽩,可分为胞膜外区、跨膜区和胞内区三部分。
TLR1、TLR2、TLR4、TLR5、TLR6、TLR10和TLR11位于细胞膜上,TLR3、TLR7、TLR8和TLR9位于细胞内的细胞器膜上。
TLR的信号转导通路TLR家族的信号转导⽅式主要有两种:⼀种是髓样分化因⼦88(MyD88)依赖型TLR信号转导通路;另⼀种是MyD88⾮依赖型/TRIF(IFN-β)依赖型信号转导通路。
MyD88是TLR信号转导通路中的⼀个关键的接头蛋⽩,除TLR3以外,在所有的TLR的信号通路中起作⽤。
MyD88依赖型TLR信号转导通路TLR信号转导通路的激活来源于细胞浆Toll/IL-1受体(TIR)的结构域,该结构域与TIR结构域包含的接头蛋⽩MyD88发⽣相互作⽤。
经过配体的刺激,通过两个分⼦死亡结构域的相互作⽤,MyD88将IL-1受体相关激酶-4(IRAK-4)吸引到TLRs。
TLR信号通路
Toll样受体(TLR)家族成员能识别保守的微生物结构,如细菌脂多糖(LPS)和病毒双链RNA,并且能够激活一些信号通路,引起抗微生物感染的免疫应答.所有的TLRs都能够激活MyD88依赖性的通路诱发炎症反应.但是,不同个体的TLRs也能诱导只对特定微生物感染的免疫应答.因此,TLRs既参与了先天性免疫又参与了获得性免疫。
这些反应的机制和组成成分现在了解的还不是很清楚。
已知TLRs在宿主防御中起重要作用,因此对它们激活通路的研究就变成了一个研究的焦点。
TLR家族是一个受体家族,参与免疫系统对微生物的识别。
TLRs识别病原体相关分子模式,这种模式体现了特定种类微生物的保守分子特征。
例如,革兰氏阴性细菌的脂多糖是TLR4配体,而双链RNA(病毒侵染过程中产生)是TLR3配体。
这个微生物识别系统的最重要的特征就是TLRs能够激活一些信号通路,这些信号通路对诱导特定微生物侵染产生的免疫应答来说是十分重要的。
TLRs将微生物的识别与抗原递呈细胞、参与T淋巴细胞活化和引起获得性免疫的分化细胞的活化联系起来。
现在很热门的一个领域就是由TLRs诱导的信号通路。
尽管有一些通路在所有的TLRs中都是一样的,现在已知还是有不同个体的TLR家族成员刺激产生的信号通路以及基因表达模式是有很大的不同的。
所有的TLRs激活一种共同的信号通路,最终引起NF—κB(核转录因子)、MAPKs(丝裂原活化蛋白激酶)、ERK(胞外信号调节激酶)、p38和JNK(c—Jun N端激酶)活化[见TLR 通路(2)和图1].与这个信号通路最接近的事件部分依赖于模式信号结构域的一系列相互反应。
其中的一个结构域就是TIR( Toll/IL—1受体)结构域,存在于所有TLRs和IL-1受体家族的胞内区.TIR结构域除控制TLRs之间的异源二聚化和同源二聚化外,还控制TLRs和含TIR结构域接头蛋白之间的结合.这种蛋白模式会让人联想起其它的信号通路,例如调亡和有丝分裂信号通路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Toll 样受体(TLRs)是一个模式识别受体家族,它们在进化上高度保守,从线虫到哺乳
动物都存在TLRs,目前在哺乳动物中已发现 12 个成员[1].TLRs 主要表达于抗原递
呈细胞及一些上皮细胞,为玉型跨膜蛋白,胞外区具有富含亮氨酸的重复序列,能够
特异识别病原微生物进化中保守的抗原分子———病原相关分子模式 (pathogen-associatedmolecular patterns, PAMPs)[2].为了有效地抵抗入侵的病原体,机体需要对多种 PAMPs 产生适当的免疫应答,TLRs 可以通过识别 PAMPs 诱发抵抗病原体的免疫反应.而且 TLRs 也参与识别有害的内源性物质.TLRs 的激活可诱导很强的免疫反应,有利于机体抵抗病原体感染或组织损伤,但是过度的免疫反应也会带来不利影响,如产生内毒素休克、自身免疫性疾病等.为了保证 TLRs 介导正确的免疫应答,机体
存在精密的负调控机制,及时抑制 TLRs 信号,维持机体的免疫平衡[3]TLR 家族成员(TLR3 除外)诱导的炎症反应都经过一条经典的信号通路(图 1),该通路起始于TLRs 的一段胞内保守序列———Toll/IL-1 受体同源区(Toll/IL-1 receptor homologous region,TIR).TIR可激活胞内的信号介质———白介素 1 受体相关蛋白激酶 (IL-1R associated kinase, IRAK) IRAK-1 和IRAK-4、肿瘤坏死因子受体相关因子 6(TNFR-associated factor 6, TRAF-6)、促分裂原活化蛋白激酶(mitogen activated protein kinase,MAPK)和 I资B激酶 (I资B kinase, I资K ),进而激活核因子资
B(nuclear factor 资B,NF-资B),诱导炎症因子的表达.TLRs 信号通路上的许多接头蛋白都具有 TIR结构域:髓系分化因子 88(myeloid differentiationfactor 88, MyD88)、MyD88- 接头蛋白相似物(MyD88-adaptor like,Mal)、含有 TIR 结构能诱导干扰
素茁的接头分子 (TIR domain-containingadaptor inducing interferon 茁,TRIF)、TRIF 相关接头分子(TRIF-related adaptor molecule,TRAM)和SARM (sterile 琢 and armadillo motif-containingprotein)[4].它们参与 TLRs 所介导的信号转导,其中
MyD88 最重要,参与了除 TLR3 外所有 TLRs介导的信号转导.MyD88 首先通过 TIR 与 TLRs 相结合,接着募集下游信号分子 IRAK-4,IRAK-4 磷酸化激活IRAK-1,随后
活化 TRAF6.活化的 TRAF6 具有泛素连接酶(E3)的活性,能够结合泛素结合酶(E2),进而泛素化降解 IKK-酌.这种泛素化降解可以活化TGF-茁激酶(TGF-茁 activated kinase 1, TAK1) 和TAK1 结合蛋白 (TAK1 binding protein, TAB1、TAB2、
TAB3).活化的 TAK1 会催化 IKK-茁磷酸化,最终激活 NF-资B,促使炎症因子的表达.除了共同的 NF-资B 激活通路,不同的 TLRs 还存在着其特有的信号通路,一些TLRs 具有募集 Mal、TRAM 和 TRIF 的作用.不同的接头分子在信号传导中发挥的作
用不同[5],TRIF 在脂多糖(LPS)激活的 TLR4 途径和 Poly(I∶C)激活的 TLR3 途径中都起到了重要的作用,而 TRAM 仅在 TLR4 的途径中发挥作用.TLRs 的激活是一把双刃剑,它可以通过刺激先天性免疫应答和提高获得性免疫反应来保护机体,但是它所引
起的持续性炎症反应也会对机体产生损伤,自身免疫、慢性炎症和感染性疾病都与它
有一定关系.例如LPS 持续刺激TLR4 就可以引起严重的败血病和感染性休克,此外,类风湿性关节炎、慢性阻塞性肺心病、结肠炎、哮喘、心肌病、狼疮和动脉粥样硬化
的发生也与 TLRs 的激活有关.因此 TLRs 的激活必须受到严格的负调控,以保持免疫系统的稳定.对于负调控机理的研究是近几年免疫学的热点,以下将介绍 TLRs 负调控的研究进展(图 1).。