药物的生殖毒性作用

合集下载

苯并[a]芘对生殖系统的毒性作用及其机制研究进展

苯并[a]芘对生殖系统的毒性作用及其机制研究进展

生态毒理学报Asian Journal of Ecotoxicology第19卷第2期2024年4月V ol.19,No.2Apr.2024㊀㊀基金项目:国家自然科学基金项目(31960154);中央引导地方科技发展资金项目(2023ZY0004);内蒙古自治区 草原英才 工程青年创新创业人才项目(Q2022085);内蒙古自治区高等学校科学研究项目(NJZZ23017);内蒙古自治区自然科学基金项目(2023QN03047);内蒙古医科大学面上项目(YKD2022MS033)㊀㊀第一作者:王惠增(1997 ),女,硕士研究生,研究方向为生殖毒理㊁分子诊断,E -mail:******************* ㊀㊀*通信作者(Corresponding author ),E -mail:*********************.cnDOI:10.7524/AJE.1673-5897.20230413002王惠增,刘秉春,陈红,等.苯并[a]芘对生殖系统的毒性作用及其机制研究进展[J].生态毒理学报,2024,19(2):165-183Wang H Z,Liu B C,Chen H,et al.Research progress on toxic effects of benzo(a)pyrene on reproductive system and its mechanism [J].Asian Journal of Ecotoxicology,2024,19(2):165-183(in Chinese)苯并[a ]芘对生殖系统的毒性作用及其机制研究进展王惠增1,刘秉春2,陈红1,徐沛欣1,郭鑫1,袁建龙1,*1.内蒙古医科大学附属医院检验科,呼和浩特0100502.内蒙古医科大学附属医院干细胞实验室/内蒙古自治区肿瘤细胞基因检测应用与研究工程实验室,呼和浩特010050收稿日期:2023-04-13㊀㊀录用日期:2023-11-02摘要:苯并[a]芘(benzo(a)pyrene,BaP)作为多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的成员,是最早发现也是最具有代表性的环境污染物,通过空气㊁食物㊁水源等途径进入人体,引起细胞氧化应激损伤㊁DNA 损伤和基因异常表达导致细胞死亡㊂研究表明雄性与雌性动物经BaP 染毒后,其生殖器官㊁生殖细胞甚至激素水平均会受到影响,进而影响受精卵形成和胚胎发育,造成不良妊娠结局㊂因此,近年来BaP 的生殖毒性受到广泛关注,其作用机制包括改变胞内活性氧水平㊁诱导细胞DNA 损伤以及调控生殖发育相关基因㊁类固醇合成相关基因和促凋亡基因影响生殖发育㊂BaP 作为环境毒物,不仅可以影响生态环境的稳定性,还可以影响生物的生殖发育,损害生态环境中的物种多样性,从长远来看,BaP 的不良影响不但会威胁到陆地与海洋生物种群的稳定,还会破坏陆地和海洋生态系统的功能㊂本文将从生殖健康㊁配子与合子形成以及胚胎发育的角度,详细阐述BaP 染毒对生殖系统的毒性作用与机制,为预防BaP 引起的生殖危害㊁减少不良妊娠结局提供理论依据,旨在为BaP 的环境毒性行为和对生物的毒性研究提供有效借鉴,为合理预防和缓解因接触BaP 等环境毒物而带来的健康影响提供参考㊂关键词:苯并[a]芘(BaP);生殖细胞;生殖毒性;生殖器官;激素;细胞毒性文章编号:1673-5897(2024)2-165-19㊀㊀中图分类号:X171.5㊀㊀文献标识码:AResearch Progress on Toxic Effects of Benzo (a )pyrene on Reproductive System and Its MechanismWang Huizeng 1,Liu Bingchun 2,Chen Hong 1,Xu Peixin 1,Guo Xin 1,Yuan Jianlong 1,*1.Department of Laboratory Medicine,The Affiliated Hospital of Inner Mongolia Medical University,Hohhot 010050,China2.Stem Cell Research Center,The Affiliated Hospital of Inner Mongolia Medical University/Inner Mongolia Autonomous Region Tumor Cell Gene Detection Application and Research Engineering Laboratory,Hohhot 010050,ChinaReceived 13April 2023㊀㊀accepted 2November 2023Abstract :Benzo(a)pyrene (BaP),as a member of the polycyclic aromatic hydrocarbons (PAHs),is the earliest dis -covered and most representative environmental pollutant.It enters the human body through the air,food,and water,causing cellular oxidative stress damage,DNA damage,and abnormal gene expression,leading to cell death.Studies have shown that when male and female animals are exposed to BaP,their reproductive organs,cells,and hormone166㊀生态毒理学报第19卷levels are affected,which in turn will affect the formation of fertilized eggs and embryonic development,resulting in adverse pregnancy outcomes.Hence,the reproductive toxicity of BaP has received more attention in recent years.Its mechanism of action on reproductive development includes alteration of intracellular reactive oxygen species levels,induction of cellular DNA damage,and modulation of genetic changes related to reproductive development,steroid synthesis and pro-apoptosis.BaP,as an environmental toxicant,could influence the stability of the ecological environment,the reproductive development of organisms and destroy the diversity of species in the ecosystems.In this review,we will detailly elaborate on the toxic effects and mechanisms of BaP on the reproductive system,and provide a theoretical evidence for prevention reproductive harm caused by BaP and the reduction of adverse pregnancy outcomes,with the aim to providing an effective reference for the study of BaP s toxicity to the environment and organisms,and for the rational prevention and mitigation of the health effects of exposure to BaP or other environmental toxins.Keywords:benzo(a)pyrene;germ cell;reproductive toxicity;genital organ;hormone;cytotoxicity㊀㊀PAHs是由2个或2个以上的稠环芳烃组成的有机化合物[1],由于其化学性质稳定且具有疏水性[2],因此多环芳烃可以在环境中稳定存在,是常见的环境污染物,广泛存在于油炸烧烤食物㊁香烟烟雾[3]㊁汽车尾气[4]㊁煤炭燃烧[5]等中㊂人类可以通过空气㊁饮用水㊁食物等不同方式暴露于多环芳烃[6]㊂此外,多环芳烃的亲脂性有利于它们在水生生物的脂肪中积累[7],并随着食物链进入人体,对人类健康产生威胁㊂BaP是多环芳烃中最具有代表性也是毒性最大的致癌物[8],可以诱发肺癌[9]㊁乳腺癌[10]等癌症,危害人类健康㊂BaP广泛存在于人类生活环境中,2019年公布的美国毒物和疾病登记机构物质优先清单中,BaP被列为第8名,在污染的空气[11]㊁土壤[12]㊁水源[13]㊁食物[14]中均可以检测到BaP㊂近年来,越来越多研究表明BaP与胚胎畸形[15]和不良妊娠[16]有着密切的联系㊂在妊娠早期暴露于BaP会导致小鼠胎儿畸形率增高[17]㊂此外,一项病例对照研究表明,接触BaP与早孕流产之间存在联系,妊娠女性发生流产的风险与血中BaP-DNA加合物的浓度成正比,这进一步说明BaP除了致癌性也具有生殖毒性㊂目前对于BaP的研究多聚焦于其诱发癌症[18-19]尤其是肺癌[20]这一方面,虽有研究表明BaP 具有生殖毒性,其生殖毒性机理尚未研究透彻㊂本综述的目的是总结BaP生殖毒性相关文章,讨论BaP导致生殖毒性的潜在分子机制㊂1㊀BaP在生殖方面的主要致毒途径(The main toxic pathway of BaP in reproduction)近些年研究发现,BaP发挥其致毒作用主要有3种途径:(1)通过氧化应激影响细胞正常代谢;(2)BaP可以与DNA形成加合物,进而导致DNA损伤;(3)BaP可以通过调控基因表达,发挥其毒性作用㊂BaP致毒途径是多种机制相辅相成㊂由于生殖对繁育后代具有重要意义,因此研究BaP的生殖毒性已成为科学家们的研究重点,下文将重点总结BaP的生殖毒性机制㊂1.1㊀氧化应激(Oxidative stress)BaP进入细胞后,通过AHR途径诱导细胞发生氧化应激反应,其主要过程为:BaP刺激细胞质中的一种转录因子 芳香族化合物受体(aryl hydrocar-bon receptor,AHR)[21],使其转入到细胞核后,再与芳香族化合物受体核转运蛋白(aryl hydrocarbon recep-tor nuclear transporter,ARNT)结合形成异二聚体[22],结合在下游靶基因上,激活细胞色素P450目标基因的异常表达,包括细胞色素P4501A1(cytochrome P450family1subfamily A member1,CYP1A1)㊁细胞色素P4501A1(cytochrome P450family1subfamily A member2,CYP1A2)㊁细胞色素P4501B1(cyto-chrome P450family1subfamily B member1, CYP1B1)[21,23],进而引起细胞产生大量活性氧(reac-tive oxygen species,ROS),使机体发生氧化应激反应,如果体内的活性氧产生过多,超出了细胞的清除能力,会影响细胞的正常代谢甚至会破坏细胞结构㊂低㊁高剂量的BaP均可导致小鼠卵母细胞功能障碍,降低精卵结合与融合率,这与线粒体ROS水平增加和卵膜脂质过氧化密切相关[24]㊂Zhang等[25]发现BaP可以削弱雌鼠的繁殖能力,通过增加雌鼠卵母细胞中ROS,扰乱纺锤体组装,染色体配对,阻滞卵母细胞减数分裂过程㊂BaP诱导的氧化应激不仅仅通过产生ROS这一条途径,还可以通过降低过氧第2期王惠增等:苯并[a]芘对生殖系统的毒性作用及其机制研究进展167㊀化氢酶(catalase,CAT)㊁抗坏血酸过氧化物酶(ascor-bate peroxidase,AP)㊁谷胱甘肽过氧化物酶(glutathione peroxidase,GPX)㊁超氧化物歧化酶(superoxide dis-mutase,SOD)㊁谷胱甘肽还原酶(glutathione reductase, GR)等抗氧化酶的活性[26-27]以及促进炎症细胞因子表达[28]导致氧化应激的发生,最终引起细胞功能受损㊂1.2㊀BPDE引起DNA损伤(BPDE induces DNA damage)BaP进入体内经过一系列氧化代谢反应,生成二羟环氧苯并[a]芘(BaP-7,8-dihydrodiol-9,10-epoxide, BPDE),进而发挥其毒性,Penning[29]认为生成BPDE 的主要途径是在细胞色素P450酶的催化下,BaP末端的苯环上发生单加氧化反应,生成BaP-7,8-环氧化物(BaP-7,8epoxide),在环氧化物水解酶作用下转化为BaP-7,8-二氢二醇(BaP-7,8diol),该过程循环往复最终形成致癌物 BPDE[30-32]㊂BPDE可以与DNA共价结合形成加合物,造成DNA损伤㊂Shiizaki等[33]提出一个关于BaP-DNA加合物成因的假设,即CYP1A1是BaP被激活形成BPDE反应中的关键酶,这与Bukowska等[32]提出的观点一致㊂Einaudi等[34]通过建立BaP染毒的雌性小鼠模型,发现BaP可以导致卵母细胞与卵丘细胞DNA损伤,并且他们认为导致DNA断裂的主要原因是由于细胞中的修复机制对BPDE-DNA加合物切除和修复导致的㊂Zhan等[35]研究表明BaP形成的DNA加合物可以干扰DNA复制,进一步引起胚胎的DNA损伤,影响胚胎的发育㊂Zhan等[35]进一步研究发现DNA加合物与ROS共同造成基因组严重损伤,还可以引起卵裂球的端粒功能障碍,最终引起胚胎的异常㊂Miao等[36]发现BaP会引起猪卵母细胞纺锤体组装缺陷进一步引起减数分裂停滞,而导致这一结果的原因可能是DNA加合物引起的㊂Zhang 等[25]将小鼠卵母细胞暴露于BaP后,发现纺锤体的组装㊁染色体的排列和着丝点-微管附着均被破坏,这可能与DNA加合物的形成有关联,与Miao的设想一致㊂1.3㊀基因表达调控(Regulation of gene expression)基因表达调控是生物学研究的重要内容之一,在细胞分化发育的不同时期,基因表达的种类和强度各不相同,共同决定着细胞的形态与功能;细胞为了适应环境变化改变自身的基因表达有利于生存,因而基因表达调控十分重要㊂海洋污染问题日趋严重,BaP具有水生生物生殖毒性,是造成海洋污染的重要原因之一,受到广泛关注㊂有研究发现BaP生殖毒性的潜在分子机制是通过调控相关基因表达㊂数字基因表达技术表明BaP对雄性栉孔扇贝睾丸中的生殖基因有影响,其中热休克蛋白90㊁细胞色素P4503A㊁凋亡抑制蛋白3个基因的改变会引起睾丸组织损伤,此外BaP与性激素合成和睾丸发育相关基因有密切联系[37]㊂Albornoz-Abud等[38]研究表明苯并芘可以通过调控GH/IGF轴发挥其生殖毒性,急性暴露于BaP会导致尼罗罗非鱼睾丸中内分泌相关基因:胰岛素样生长因子1(insulin-likegrowth factor1,IGF1)和生长激素受体基因1(growth hormone receptor1,GHR1)基因表达降低,并造成发育问题㊂BaP通过基因调控引起的生殖毒性不仅仅在海洋生物中体现,陆地生物也同样受这一机制调控㊂BaP通过影响父本基因,最终影响胚胎发育㊂用BaP染毒的雄性小鼠进行体外受精后,发现在8-细胞期和囊胚期存在基因表达异常,包括调控细胞周期以及DNA修复的基因[39]㊂妊娠黄体可以分泌雌孕激素,在生殖系统中发挥重要作用,黄体的发育与血管内皮生成因子有着密切联系[40]㊂苯并芘可以使血管内皮生成因子相关基因,如血管生成素-1(an-giopoietin-1,Ang-1)㊁血管内皮细胞生长因子受体(vascular endothelial growth factor,VEGFR)㊁内皮细胞TEK酪氨酸激酶表达下调,并增加抗血管生成因子血小板反应蛋白(recombinant thrombospondin1, THBS1)的表达,还影响了对黄体血管系统建立至关重要的基因Notch1㊁DLL4㊁Jag1和Hay2的表达,破坏了黄体血管网络系统的形成,最终影响了妊娠过程中黄体的内分泌功能[41]㊂综上所述,在3种BaP发挥致毒作用的机制中(图1),BaP诱导生殖发育相关基因表达异常或提高促凋亡基因表达起主导作用,也是目前研究较为透彻的机制(图2),下面将从雄性生殖㊁雌性生殖以及胚胎发育3个角度详述BaP的毒性机制㊂2㊀BaP的雄性生殖毒性(Male reproductive toxici-ty of BaP)2.1㊀BaP对雄性激素的毒性(Toxicity of BaP to an-drogens)BaP作为内分泌干扰物主要影响睾酮水平[42],睾酮主要是由睾丸间质细胞合成分泌的,其主要成分为类固醇㊂BaP可以降低睾酮的转化率[43]和(或)睾酮的浓度[44]㊂有研究表明睾丸巨噬细胞分泌的白介素1β(interleukin-1β,IL-1β)和肿瘤坏死因子α168㊀生态毒理学报第19卷(tumor necrosis factor α,TNF α)通过抑制类固醇生成急性调节蛋白(steroidogenic acute regulatory protein,STAR)表达进一步抑制间质细胞合成睾酮[45]㊂Zheng 等[46]发现BaP 通过增加IL -1β的表达,显著抑制雄性大鼠睾酮的产生,他们还发现BaP 可以改变睾丸巨噬细胞亚群,激活ED2+睾丸巨噬细胞并促进了IL -1β的产生,最终抑制雄性大鼠睾酮合成㊂此外,3β-羟基类固醇脱氢酶(3β-hydroxysteroid dehy -drogenase,3β-HSD)与细胞色素P450胆固醇侧链裂解酶(cholesterol side -chain lyase P450scc,P450scc)在间质细胞合成睾酮中起着重要作用[47],其表达改变时会影响睾酮水平;STAR 表达的下调也可以导致睾酮合成减少[48-49]㊂雄性大鼠用BaP 灌胃90d 后,检测到BaP 下调间质细胞中的STAR ㊁3β-HSD 以及细胞色素P45017A1(cytochrome P450family 17subfamily A member 1,CYP17A1)表达,并上调P450scc 表达,进而降低大鼠睾丸间质细胞生成睾酮的能力[50]㊂Sheweita 等[51]发现BaP 降低类固醇合成酶CYP17A1和17β-羟基类固醇脱氢酶(17β-hydroxysteroid dehydrogenase,17β-HSD)蛋白表达,使大鼠血浆睾酮浓度降低㊂Banerjee 等[52]进一步验证了BaP 通过抑制类固醇生成蛋白表达,如细胞色素P450ⅡA1(cytochrome P450family Ⅱsubfamily A member 1,CYP ⅡA1)㊁STAR ㊁3β-HSD ㊁17β-HSD ,进一步降低血清睾酮水平,2021年Daoud 等[53]再一次证实了上述观点㊂Yang 等[54]发现BaP 也可以通过影响3β-HSD ㊁CYP17和17β-HSD 表达进一步扰乱雄性栉孔扇贝的激素水平㊂Booc 等[55]研究发现BaP 可降低雄性底鳉的睾酮水平,与其他动物不同的是BaP 并非通过调控类固醇相关基因表达造成这一结果,而是可能通过精原细胞包囊大小进而影响睾酮水平㊂综上所述,BaP 主要通过改变类固醇生成相关基因与酶的表达,抑制睾酮的生成,对雄性的生殖发育产生不利影响㊂epoxide(BPDE)图1㊀BaP 致毒途径机制注:AHR 表示芳香族化合物受体,ARNT 表示芳香族化合物受体核转运蛋白,HSP90表示热休克蛋白90,CYP450表示细胞色素P450,CYP17A1表示细胞色素P45017A1,STAR 表示类固醇生成急性调节蛋白,3β-HSD 表示3β-羟基类固醇脱氢酶,17β-HSD 表示17β-羟基类固醇脱氢酶,Caspase -3表示半胱氨酸蛋白酶-3,Caspase -9表示半胱氨酸蛋白酶-9,Bax 表示Bcl -2相关X 蛋白㊂Fig.1㊀Mechanism of BaP toxicity pathwayNote:AHR represents aryl hydrocarbon receptor,ARNT represents aryl hydrocarbon receptor nuclear transporter,HSP90represents heat shock protein 90,CYP450represents cytochrome P450family,CYP17A1represents cytochrome P450family 17subfamily A member 1,STAR represents steroidogenic acute regulatory protein,3β-HSD represents 3β-hydroxysteroid dehydrogenase,17β-HSD represents 17β-hydroxysteroid dehydrogenase,and Bax represents Bcl -2associated X protein.第2期王惠增等:苯并[a]芘对生殖系统的毒性作用及其机制研究进展169㊀图2㊀BaP通过基因调控引起生殖毒性注:GnRH2表示促性腺激素释放激素,GnRH3表示促性腺激素释放激素,IL-1β表示白介素1β,CYP17A1表示细胞色素P45017A1,STAR表示类固醇生成急性调节蛋白,3β-HSD表示3β-羟基类固醇脱氢酶,17β-HSD表示17β-羟基类固醇脱氢酶,CYP1A1代表细胞色素P4501A1, P450scc代表细胞色素P450胆固醇侧链裂解酶,Adcy-PKA代表上游腺苷环化酶-蛋白激酶,Caspase-3表示半胱氨酸蛋白酶-3,Caspase-9表示半胱氨酸蛋白酶-9,Bax表示Bcl-2相关X蛋白,Hsp90aB1代表90kDa热休克蛋白aB1,VTG代表卵黄蛋白原,CD34代表分化簇34, AMH代表抗缪勒管激素,CCND2代表细胞周期蛋白D2,FOXO1代表叉头框蛋白O1,HoxA10代表同源盒基因,BMP2代表骨形态发生蛋白-2,IBA1代表离子钙结合衔接分子1,SNCA代表重组人α-突触核蛋白,CYP19a代表细胞色素P450家族19亚家族a㊂Fig.2㊀BaP causes reproductive toxicity through gene regulationNote:GnRH2represents gonadotropin-releasing hormone2,GnRH3represents gonadotropin-releasing hormone3,IL-1βrepresents interleukin-1β, CYP17A1represents cytochrome P450family17subfamily A member1,STAR represents steroidogenic acute regulatory protein,3β-HSD represents3β-hydroxysteroid dehydrogenase,17β-HSD represents17β-hydroxysteroid dehydrogenase,CYP1A1represents cytochrome P450family1subfamily A member1,P450scc represents cholesterol side-chain lyase P450scc,Adcy-PKA represents adenylate cyclase-protein kinase,Bax represents Bcl-2associated X protein,Hsp90aB1represents recombinant heat shock protein90kDa alpha B1, VTG represents vitellogenin,CD34represents cluster designation34,AMH represents anti-Müllerian hormone, CCND2represents cyclin-D2,FOXO1represents forkhead box O1,HoxA10represents homeobox A10,BMP2represents bone morphogenetic protein-2,IBA1represents ionized calcium-binding adapter molecule1,SNCA representsrecombinant human alpha-synuclein,CYP19a represents cytochrome P450family19subfamily a.2.2㊀BaP对精子的毒性(Toxicity of BaP to sperm) 2.2.1㊀BaP减少精子生成(BaP reduces spermato-genesis)哺乳动物雄性生殖器官主要有睾丸㊁附睾㊁输精管等,其中睾丸的主要作用是生成精子和产生雄性激素,BaP主要通过损害睾丸进一步影响精子生成㊂BaP通过氧化应激或基因调控介导睾丸细胞凋亡,影响睾丸功能受损,减少精子数量㊂Banerjee等[52]证实BaP激活P38蛋白激酶(P38mitogen activated protein kinase,P38MAPK)通路来增加睾丸细胞内ROS,并降低细胞中的抗氧化酶活性[56],使睾丸细胞氧化应激损伤,减少精子的生成㊂Sheweita等[51]研究发现BaP通过降低睾丸组织中抗氧化酶CAT㊁SOD㊁GPX的活性,增加ROS水平,导致睾丸细胞线粒体膜破裂,进而引起睾丸组织凋亡㊂BaP还可通过AHR途径降低睾丸中CAT㊁SOD活性,升高H2O2含量,诱导睾丸细胞氧化应激,影响睾丸功能[57]㊂上述均为BaP对小鼠的生殖毒性,Tian等[58]发现BaP通过可引起雄性栉孔扇贝精巢氧化应激损伤,进一步减少精子生成㊂此外,BaP可以通过基因调控诱导睾丸细胞凋亡,提高睾丸细胞内的凋亡蛋白半胱氨酸蛋白酶-3(Caspase-3)和半胱氨酸蛋白170㊀生态毒理学报第19卷酶-9(Caspase-9)表达;促进细胞色素C转位到细胞质,启动线粒体凋亡途径,导致睾丸细胞凋亡,进一步导致精子生成减少[52,59]㊂BaP不仅通过影响睾丸功能减少精子生成,而且可以直接影响精子生成过程㊂Verhofstad等[60]的研究表明在精子发育各个阶段均可以检测到BPDE 导致的精子DNA损伤,这也是精子数量减少的原因之一㊂BaP可以导致雄鼠精子功能缺陷以及生育能力下降,并且Mohamed等[61]的实验证明了BaP的生殖毒性具有遗传性,但毒性随着子代数增加逐渐减弱㊂BaP可以减少精母细胞和次级精母细胞进入中晚期粗线期,阻止减数分裂过程的完成,导致精子生成减少[62]㊂此外,BaP诱导的氧化应激会降低精原细胞的存活率,并且通过下调基质金属蛋白酶(matrix metalloproteinase,MMP)水平以及上调促凋亡因子Caspase-3和Caspase-9表达促进精原细胞凋亡[63]㊂BaP作为广泛存在于生态系统中的环境污染物,不仅使陆地雄性动物精子生成异常,还影响水生生态系统中的雄性动物的精子生成㊂BaP可以通过基因调控扰乱雄性栉孔扇贝的精子发生相关基因:细胞周期蛋白D2(cyclin-D2,CCND2),联会复合体3㊁核呼吸因子1和水通道蛋白9,进一步减少精子生成[54]㊂斑马鱼胚胎暴露于BaP后,其睾丸中生殖细胞特异基因的启动子发生甲基化上调,进一步下调相关基因表达,最终抑制精子生成,影响雄性斑马鱼的生殖能力[64]㊂2.2.2㊀BaP降低精子活力(BaP reduces sperm motility)BaP可以损害睾丸和附睾的内分泌功能,从而导致储存的精子活力下降[65-67]㊂睾丸的质量和大小与精子的数量和活力成正比[68],雄性小鼠用BaP连续灌胃60d,检测到小鼠的睾丸质量明显降低,精子的活力也随之降低[69]㊂小鼠暴露于BaP后,其睾丸支持细胞和间质细胞均凋亡,进而影响精子发生过程,最终导致精子活力减弱[69]㊂畸形精子的活力及存活率显著低于正常精子,BaP暴露会导致精子形态异常,畸形精子大幅增加,主要异常表现为无尾㊁双头㊁中段弯曲[57]㊂Xu等[59]验证了BaP可导致精子活动力降低,精子头㊁尾部畸形率以及总畸形率均显著升高㊂最新研究表明BaP改变睾丸激素水平引起雄性交配强度减弱,降低精子质量,引起畸形精子增多[70-71]㊂有研究表明精子短端粒可能是导致男性不育的原因之一[72],Ling等[73]研究发现BaP可以使精子端粒变短,且与剂量成反比㊂3㊀BaP的雌性生殖毒性(Female reproductive toxicity of BaP)3.1㊀BaP对雌性激素的毒性(Toxicity of BaP to es-trogen)BaP作为一种常见的环境污染物,是海洋环境污染原因之一,影响水生动物的繁殖㊂雌孕激素对雌性发育有不可或缺的作用,而BaP作为内分泌干扰物可以降低水生动物血浆中的孕酮㊁雌激素和催乳素浓度[74]㊂为进一步探究其发生机制,Tian等[58]用不同浓度的BaP处理雌性栉孔扇贝,发现BaP可以导致类固醇合成相关酶(3β-HSD㊁CYP17㊁17β-HSD)表达下降,并呈剂量依赖性;高浓度的BaP还可抑制AHR㊁ARNT㊁CYP1A1以及17β-雌二醇-雌激素受体转录,2种机制相辅相成,共同抑制雌孕激素的生成㊂BaP通过干扰激素膜受体降低三疣梭子蟹的雌二醇(estradiol,E2)浓度[75]㊂斑马鱼胚胎暴露于BaP会导致成年雌鱼卵巢中E2水平下降,其机制为雌鱼脑中促性腺激素释放激素(gonadotropin-releasing hormone,GnRH)基因中的GnRH3的甲基化水平显著升高,并下调GnRH3mRNA表达,从而影响E2的产生[76]㊂与斑马鱼报道相反的是BaP可促进雌性海马GnRH2和GnRH3mRNA的表达,并导致血浆中E2水平显著下降[77]㊂2种相反结果可能与BaP的浓度㊁作用时间以及实验对象不同有关㊂Yang等[78]发现BaP抑制雌性栉孔扇贝的上游腺苷环化酶-蛋白激酶(adenylate cyclase-protein ki-nase,Adcy-PKA)信号通路,下调促性腺激素受体转录水平,如促卵泡激素受体(follicle-stimulating hor-mone receptor,FSHR)和黄体生成素/绒毛膜促性腺激素受体(luteinizing hormone/choriogonadotropin re-ceptor,LHCGR),导致类固醇生成酶(3β-HSD㊁CYP17㊁17β-HSD)表达减少,最终引起抗雌激素效应㊂Kennedy和Smyth[79]发现雌鲑鱼体内E2的减少并非是通过常规的BaP作用于类固醇机制,而是通过其他内分泌干扰机制来对抗雌激素的方式改变了血浆E2的浓度,这种机制有待进一步研究㊂综上所述,BaP主要通过基因表达调控这一途径降低雌性体内E2和孕酮水平,进而影响雌性的生殖发育㊂3.2㊀BaP对卵巢的毒性(Toxicity of BaP to ovary)卵巢是雌性生殖发育中最重要的生殖器官,具有排卵和内分泌功能,对维持雌性激素水平至关重要,暴露于BaP会扰乱卵巢的结构与功能,进一步第2期王惠增等:苯并[a]芘对生殖系统的毒性作用及其机制研究进展171㊀影响生育㊁妊娠㊂高剂量的BaP可以导致卵巢细胞退化并出现管状结构,而这些组织学变化属于癌前病变[80]㊂Rahmani等[81]发现BaP通过氧化应激导致卵巢表面上皮内陷㊁细胞堆积㊁管状结构形成,卵巢间质出现间质水肿㊁出血等病理学改变,并且BaP 诱导卵巢中Caspase-3表达升高,影响卵巢的生理功能,与睾丸相比,BaP对卵巢的危害更严重,这是因为在BaP处理后,胎儿卵巢中促细胞凋亡蛋白Bcl-2相关X蛋白(Bcl-2associated X protein,Bax)表达增加,并激活下游Caspase-3和Caspase-9,导致卵巢细胞凋亡[82]㊂卵黄蛋白原(vitellogenin,VTG)和CCND2是雌激素介导的卵巢发育相关基因[83],BaP可以下调VTG和CCND2表达,造成雌性栉孔扇贝卵巢受损,组织学检查发现,BaP可引起卵巢发育延迟和卵母细胞退化,并且卵巢的病变情况随着染毒时间和染毒剂量的增加而严重[78]㊂研究发现BaP可以抑制脂联素受体1(adiponectin receptor protein1,AdipoR1)和脂联素受体2(adiponectin receptor protein2,AdipoR2)表达,进而影响卵巢功能[84]㊂最新研究表明,BaP及其代谢产物BPDE可抑制妊娠小鼠卵巢中腺嘌呤核苷酸转运体1(adenine nucleotide translocator1,ANT1)的表达,进一步研究发现ANT1的过表达可以修复BPDE引起的有丝分裂缺陷,恢复卵巢功能[85]㊂3.3㊀BaP对雌性生殖细胞的毒性(Toxicity of BaP to female germ cells)3.3.1㊀BaP影响卵泡发生和发育(BaP affects folli-cular genesis and development)卵泡发育是女性正常的生理过程,卵泡的发育情况直接关系到后代繁殖㊂卵泡作为卵巢的功能单位,支持卵母细胞的发育和成熟[86]㊂卵泡的生长发育过程相当复杂,原始卵泡经历初级卵泡㊁窦前㊁窦卵泡才能发育为成熟卵泡[87-88]㊂有报道称BaP作为卵毒物质,可以破坏原始卵泡[89],或者使原始卵泡迅速枯竭[90],BaP还可以通过香烟烟雾进入卵泡液中,对卵泡发育产生不利影响[91]㊂Sobinoff等[24]研究了BaP卵毒性的机制,连续用BaP处理雌性小鼠7d会导致卵巢中的原始卵泡显著减少,卵泡闭锁,其具体机制为BaP通过干扰AHR发育信号破坏卵泡形成㊂有报道称BaP不仅可以减少或耗尽原始卵泡和初级卵泡的数量[89-90],还可以抑制卵泡生长发育,即BaP处理过的卵泡均发育不到窦前阶段[92]㊂Sadeu和Foster[93]将小鼠卵泡暴露于不同浓度的BaP,发现卵泡存活率均降低,其中高浓度的BaP会抑制窦卵泡发育,使卵泡停滞于窦前卵泡阶段,窦卵泡比例显著减少㊂抗缪勒管激素(anti-Müllerian hormone,AMH)浓度增加与卵泡发育停滞有关[94-95]㊂有研究表明BaP可以通过减少AMH生成,促进卵泡募集到卵泡池中,最终加快卵泡枯竭的速度[96]㊂Sadeu和Foster[93]进一步探索了BaP诱导卵泡发育异常的关键分子途径,发现BaP暴露通过激活窦前㊁窦卵泡和成熟卵泡中AHR信号通路,进一步促进促凋亡因子Bax激活,此外,BaP暴露还会导致90kDa热休克蛋白aB1(recombinant heat shock protein90kDa alpha B1,Hsp90aB1)基因表达上调,导致卵泡生长延迟和存活率下降㊂卵泡生长和卵泡发育在雌性哺乳动物生殖中有着重要地位,BaP不但可以通过基因表达调控导致卵泡生长发育异常,还可能通过氧化应激影响卵泡发育㊂3.3.2㊀BaP影响卵母细胞功能(BaP affects oocyte function)BaP可使卵母细胞线粒体内ROS水平升高,导致精-卵结合和融合障碍,影响动物的繁殖[24,36]㊂BaP可导致卵母细胞和卵丘细胞DNA断裂,细胞功能障碍,影响卵母细胞进一步发育,精卵融合失败[34],这也是BaP生殖毒性机制之一㊂卵母细胞的减数分裂在卵母细胞成熟与成功受精中起着重要作用[97],BaP诱导卵母细胞减数分裂异常,卵母细胞功能障碍,不利于动物繁殖㊂BaP可以阻滞猪卵母细胞减数分裂,使部分卵母细胞停滞在MⅡ期,进一步检测发现BaP通过降低乙酰化α-微管蛋白,导致微管不稳定,损害纺锤体组装,从而干扰卵母细胞减数分裂过程[36]㊂Sui等[98]通过将雌鼠暴露于BaP检测其对子代的影响,验证了BaP对卵母细胞的遗传毒性:生发泡破裂(germinal vesicle breakdown, GVBD)是卵母细胞成熟的关键事件,母体暴露BaP 会降低子代GVBD率[99];并且BaP会扰乱子代卵母细胞的纺锤体组装和染色体配对,使卵母细胞减数分裂停滞;最后,雌鼠暴露于BaP可导致子代卵母细胞基因组高甲基化,损害卵母细胞的发育能力㊂综上所述,母系BaP暴露损害了子代卵母细胞的进一步发育,这与上文Miao等[36]研究结果相一致㊂4㊀BaP对胎儿或胚胎的生殖毒性(Reproductive toxicity of BaP to the fetus or embryo)4.1㊀BaP的胚胎发育毒性(Embryonic developmen-tal toxicity of BaP)早有研究表明,吸烟损害身体健康,还对孕妇以。

药物生殖毒性研究技术指导原则

药物生殖毒性研究技术指导原则

附件三药物生殖毒性研究技术指导原则药物生殖毒性研究技术指导原则一、概述生殖毒性研究(Reproductive toxicity study)是药物非临床安全性评价的重要内容,它与急性毒性、长期毒性、遗传毒性等毒理学研究有着密切的联系,是药物进入临床研究及上市的重要环节。

拟用于人体的药物,应根据受试物拟用适应症和作用特点等因素考虑进行生殖毒性试验。

在药物开发的过程中,生殖毒性研究的目的是通过动物试验反映受试物对哺乳动物生殖功能和发育过程的影响,预测其可能产生的对生殖细胞、受孕、妊娠、分娩、哺乳等亲代生殖机能的不良影响,以及对子代胚胎-胎儿发育、出生后发育的不良影响。

生殖毒性研究在限定临床研究受试者范围、降低临床研究受试者和药品上市后使用人群的用药风险方面发挥重要作用。

本指导原则适用于中药、天然药物和化学药物的生殖毒性研究。

本指导原则重点阐述动物生殖毒性试验中动物、给药剂量、给药方法、试验方案选择的基本原则,并介绍一些常用的试验方案;对所获得数据进行分析及评价要求;以及所涉及的科学原理与背景。

二、基本原则(一)实验管理药物的生殖毒性试验属于非临床安全性评价研究,根据《中华人民共和国药品管理法》的规定,必须执行《药物非临床研究质量管理规范》。

(二)具体问题具体分析生殖毒性试验的设计,应在对受试物认知的基础上,遵循“具体问题具体分析”的原则。

应根据受试物的结构特点、理化性质、已有的药理毒理研究信息、适应症和适用人群特点、临床用药方案等选择合理的试验方法,设计适宜的试验方案,并综合上述信息对试验结果进行全面分析评价。

(三)随机、对照、重复生殖毒性试验应符合一般动物试验的基本原则,即随机、对照和重复。

三、基本内容(一)总体考虑1、受试物1.1 中药及天然药物生殖毒性试验的受试物应能充分代表临床研究受试物或上市药品,因此受试物应采用制备工艺稳定、符合临床研究质量标准规定的样品,一般用中试样品,并注明受试物的名称、来源、批号、含量(或规格)、保存条件及配制方法等。

第九章化学毒物的生殖毒性作用

第九章化学毒物的生殖毒性作用

对大量化学毒物的研究表明:对大多数化 学毒物来说生殖系统比其他系统更敏感。因此, 在化学毒物安全性评价中生殖系统至关重要。
化学毒物对人类生殖危害的评价很复杂。
发育毒理学(developmental toxicology):
是研究发育生物体在受精卵、妊娠期、出生 后、直到性成熟的发育过程中,由于出生前接 触导致异常发育的理化因素或环境条件后的发 病机制和结果。
第九章 发育毒性与致畸作用
第一节 概 述
生殖过程是一个连续的循环过程, 常将其分为
①生殖(reproduction) ②发育(development)
生殖(reproduction)是人和哺乳动物繁衍种 族的复杂的生理过程,包括两性生殖细胞或称配 子的发生,即精子发生(spermatogenesis)和卵 子发生(cogenesis)、配子的释放、性周期和性 行为、卵细胞受精(fertilization)、受精卵 的卵裂、胚泡形成、植入(implantation)或着床 (imbed)、胚胎形成、胚胎发育、器官形成、 胎儿发育、分娩和哺乳、出生后发育直至性成熟 ,又繁殖下一代。
环磷酰胺于不同孕时对小鼠染毒出现的指畸形发生率变化
孕第9d 孕第10d 孕第11d 孕第 12d
多指 2.9%
并指 0
缺指 7.1%
无指 5.7%
66.7% 0 0 0
2.4% 44.0% 20.0%
0
5.3% 0 56.1% 7.0%
3. 胎儿期
器官形成结束(以硬腭闭合为标志)后即进 入胎儿期(人类从第56~58天起),直到分娩。
一个毒物可能影响一个或一些发育事件, 因此一个结构的敏感性的模式因毒性作用的性 质而不同。
致畸敏感期或致畸作用危险期(critical period)器官形成期特别容易感受致畸物的作 用而诱发器官结构的缺陷,即结构畸形,故又 称为致畸敏感期或致畸作用危险期。

外源化学物的生殖和发育毒性作用

外源化学物的生殖和发育毒性作用

二 生殖毒性试验
生殖毒性试验类型
仔的发育情况
3种
致畸试验:孕母暴露于外源化学物,检查出生前胎 一代生殖试验:在配子发生和形成时暴露于外源
化学物,检查对生殖功能的影响
多代生殖(繁殖)试验:对仔代进行多代的观察
二 生殖毒性试验
生殖毒性试验类型
z 选择依据:接触方式、试验目的 z 药物:三段生殖毒性试验 z 食品添加剂、农药以及环境污物:长 期连续反复接触,三段生殖毒性试验+ 多代生殖(繁殖)试验
E
配子生成、释放
A
新生儿适应
E
受精 性腺成熟
B
分娩
D
合子-胚胎转运
B
胎儿发育
D
胚胎植入 胚胎分化 生殖周期
C 生殖和发育毒性
一 概念
生殖毒性(reproductive toxicity):外源化学物
对生殖过程影响及损害作用,其主要表现为生殖系 统器官(睾丸、附睾、前列腺、卵巢、子宫等)的 变化,动情(月经)周期、性行为和功能的影响, 以及对生育力和生殖(妊娠)结局的影响等。
第三节
发育毒性及其评价
一 母/父源性因素与发育毒性的关系
母体接触毒物
直接作用 间接作用 母源性发育毒性
母体易感因素:年龄、遗传背景、代谢状 态、疾病状态、应激、 营养状态、其它 暴露、 配偶等等 毒 物 胎盘毒性:胎盘缺 陷、 过小、低血流 量、运输改变、代 谢改变 代谢物 直 接 经 胎 盘 转 运
同一时期,全球出现了5850个短肢畸形儿
反 应 停 th a lid o m id e
动物模型复制成功,致畸剂量:1 mg/(kg·d) 时间:末次月经后6-8周,口服200 mg 其他发育毒性:流产,早产和死胎等发生

药物毒理学总结

药物毒理学总结

药物毒理学总结1.药物毒性作用包括哪些类型?并分别解释其含义(1)一般毒性反应:在治疗剂量下不出现,仅在剂量过大、用药时间过长或体内药物蓄积过多时才出现的反应(2)变态反应:机体对药物产生的免疫反应。

非肽类药物作为半抗原与机体蛋白结合后,经过敏化过程而发生的反应(3)致癌作用(4)生殖毒性和发育毒性:生殖毒性指针对育龄人群,用药后对生殖系统及与生育相关的神经或内分泌系统产生的毒性/发育毒性指出生前接触药物,从而影响个体从受精卵到性成熟青春期的生长发育过程。

关注药物对胚胎的影响,特别是药物的致畸毒性(5)致突变与遗传毒性:某些药物或化学物质可以损伤人类或哺乳动物的遗传物质而发生突变作用,从而产生对人类本身及后代的影响(6)特异质反应:用药者有先天性遗传异常,对某些药物反应特别敏感,出现的反应性质可能与常人不同(7)依耐性:生理依耐性、精神依耐性2.试述新药临床前毒理学研究的目的、意义及局限性(1)目的是通过研究出现毒性反应的症状、程度、剂量、时间、靶器官以及损伤的可逆性;安全剂量及安全范围,从而预测人类临床用药的可能毒性,以制定防治措施;同时推算临床研究的安全参考剂量和安全范围;为新药进一步结构改造提供依据。

(2)意义:确保临床用药安全(3)局限:仍不能完全排除新药上临床时的风险。

(4)原因:1)新药本身产生的新的药理毒理学特征,可能超出了人们现有的预测水平。

2)另一方面来自现有毒理学评价手段,可能不能完全适应新药评价的需要,动物实验还存在很多缺陷。

有以下五点:①试验动物和人对药物反应的种属差异。

②试验动物的数量有限,难以发现发生率低的毒性反应。

③常规毒性试验所用的动物多系实验室培育的品种,反应较单一,而临床病人很广泛且对药物的敏感性各不相同。

④毒性试验所用的动物多是健康的,而临床用药病人可能有多种疾病。

⑤动物毒性试验中采用大剂量的做法也与临床用药相差甚远,特别是毒性低给药量很大的药,实验结果可能会产生假象。

生殖毒性与胚胎毒性介绍

生殖毒性与胚胎毒性介绍
在实验动物发育毒性试验中,通常不去区分胎儿 与胚胎,所以使用胚胎-胎儿毒性更恰当。
出生缺陷 (birth defect):是指婴儿出生 前即已形成的发育障碍。 包括: 形态结构异常:畸形 功能缺陷:如智力低下,代谢 和行为的异常
畸形(malformation) :指出生前因素引起 发育生物体的严重的解剖学上形态结构的缺 陷(异常),对发育、生长、生理功能、生育力 和(或)寿命可产生有害影响,可以存活也 可能不能存活。
磷杀虫剂、杀线虫剂和工业污染物 干扰睾丸的功能及结构。
➢对内分泌功能的影响
干扰下丘脑-垂体-睾丸轴的正常功能, 主要影响促性腺释放激素的释放。
2.外源化学物对雌性生殖系统的损害
➢对卵巢的直接影响:CS2导致卵巢萎缩 ➢干扰下丘脑-垂体-性腺轴:苯及同系物 干扰下丘脑,作用于垂体-卵巢系统,引起 雌性生殖系统功能异常。
胚胎毒性(embryotoxicity):通常是指外源性 理化因素造成的孕体着床前后直到器官形成 期结束的所有的毒性。
表现为:胚胎期染毒而出现畸胎、生长
迟缓、着床数减少和吸收胎,也偶有晚死胎。
胎儿毒性(fetotoxicity) :指器官形成期结束后的 因素引发的任何毒性表现(包括死亡、体重降低、 骨化迟缓、功能缺陷以及结构异常,甚至肿瘤)。
着床前期发育毒性
❖ 从受精算起,到完成着床之前(人类为1112天,啮齿类动物为前6天);
❖ 通常是未分化细胞受化学毒物损伤而致胚泡 死亡,即着床前丢失 ;
❖ 也有着床前接触毒物导致畸形的例子,如环 氧己烷、甲基亚硝脲等。
器官形成期(胚胎发育期)
➢ 在致畸作用中,对致畸物最敏感的阶段是器官 发生期,一般称为危险期(critical period)或关 键期 。

药物生殖毒性指导原则

药物生殖毒性指导原则

药物生殖毒性研究技术指导原则二○○六年十一月一、概述生殖毒性研究(Reproductive toxicity study)是药物非临床安全性评价的重要内容,它与急性毒性、长期毒性、遗传毒性等毒理学研究有着密切的联系,是药物进入临床研究及上市的重要环节。

拟用于人体的药物,应根据受试物拟用适应症和作用特点等因素考虑进行生殖毒性试验。

在药物开发的过程中,生殖毒性研究的目的是通过动物试验反映受试物对哺乳动物生殖功能和发育过程的影响,预测其可能产生的对生殖细胞、受孕、妊娠、分娩、哺乳等亲代生殖机能的不良影响,以及对子代胚胎-胎儿发育、出生后发育的不良影响。

生殖毒性研究在限定临床研究受试者范围、降低临床研究受试者和药品上市后使用人群的用药风险方面发挥重要作用。

本指导原则适用于中药、天然药物和化学药物的生殖毒性研究。

本指导原则重点阐述动物生殖毒性试验中动物、给药剂量、给药方法、试验方案选择的基本原则,并介绍一些常用的试验方案;对所获得数据进行分析及评价要求;以及所涉及的科学原理与背景。

二、基本原则(一)实验管理药物的生殖毒性试验属于非临床安全性评价研究,根据《中华人民共和国药品管理法》的规定,必须执行《药物非临床研究质量管理规范》。

(二)具体问题具体分析生殖毒性试验的设计,应在对受试物认知的基础上,遵循“具体问题具体分析”的原则。

应根据受试物的结构特点、理化性质、已有的药理毒理研究信息、适应症和适用人群特点、临床用药方案等选择合理的试验方法,设计适宜的试验方案,并综合上述信息对试验结果进行全面分析评价。

(三)随机、对照、重复生殖毒性试验应符合一般动物试验的基本原则,即随机、对照和重复。

三、基本内容(一)总体考虑1、受试物1.1 中药及天然药物生殖毒性试验的受试物应能充分代表临床研究受试物或上市药品,因此受试物应采用制备工艺稳定、符合临床研究质量标准规定的样品,一般用中试样品,并注明受试物的名称、来源、批号、含量(或规格)、保存条件及配制方法等。

lwmAAA名词解释

lwmAAA名词解释

药物毒理学名词解释1急性毒作用带半数致死剂量与急性阈剂量的比值,比值小,药物产生轻微损害到急性死亡的剂量范围窄,引起死亡的危险性大;反之,药物引起急性中毒死亡的危险性小2直接致癌物本身就具有致癌活性,通常具有很强的致癌作用,能与亲核分子共价结合形成加合物3非遗传毒性致癌物不能与DNA发生反应,但可以通过促进细胞的过度增殖和可遗传的改变而致癌的化学物质4间接致癌物不是以其原型致癌,进入机体后需要经过酶的代谢激活才具有致癌活性的化学物质5最大耐受剂量不引起受试动物死亡的最高剂量6致癌性长期用药产生的毒性,主要通过损伤遗传物质产生肿瘤,也可通过非遗传物质损伤途径产生,还可以是迟发效应7姐妹染色单体交换SCE当使用差示染色法时,可见到染色体的两条染色单体染色一深一浅,如发生同源节段的内换,就会使两条姐妹染色单体都出现深浅相同的染色,但同源节段仍然一深一浅8药物戒断综合征对药物产生躯体依赖性以后,中断用药便会产生强烈的躯体不适反应,出现由于生理功能改变而产生的临床症状和体征9蓄积系数多次给药后药物在体内的蓄积程度,用稳态期内给药后t时刻的血药浓度与单剂量给药后t时刻的血药浓度比值表示10管理毒理学国家要政部门根据药物描述毒理学和机制毒理学研究资料以及相关的法规,制定允许药物进入临床研究和上市的要求和批准程序,提出对药物安全性评价和临床研究的指导原则及上市后药物不良反应监测的规定11量反应毒性作用机体、器官或组织应用一定剂量的药物后发生生物学改变的现象,此种变化的程度呈连续增加或减少的量变12蓄积机体长期暴露于药物,消除速度慢于吸收速度时,导致体内药物含量逐渐升高的现象13交叉耐受性机体对某种药物产生耐受性后,对另一种药物的敏感性也降低14超敏反应/变态反应机体受到某些抗原刺激时出现生理功能紊乱或组织细胞损伤的异常适应性免疫应答反应15慢性毒作用带急性阈剂量与慢性阈剂量的比值,比值大,说明急性阈剂量与慢性阈剂量之间的剂量范围大,轻微慢性毒效应到明显急性中毒之间剂量范围宽,易被忽视,发生慢性中毒危险性大;反之,慢性中毒危险性小16表观分布容积假设药物以与血药浓度相同的浓度在体内均匀分布,理论上应占有的体积容积17化学致癌物具有诱发肿瘤形成能力的化学物质18药物的毒性作用理化、生物物质对机体产生的有毒作用19药物耐受性连续使用某些药物一段时间后,机体对该药的反应性逐渐降低,药效逐渐减弱,只有增加药量才能保持药效。

环磷酰胺对雄性生殖系统的毒副作用的综述

环磷酰胺对雄性生殖系统的毒副作用的综述

环磷酰胺对雄性生殖系统的毒副作用的综述02(医)七任怡2002207221摘要:通过对1989年至2006年关于环磷酰胺对雄性生殖系统毒副作用资料的查阅,从环磷酰胺对生精细胞,干细胞因子,精原干细胞,精子的发生、形态,数量,以及睾丸染色体的毒副作用等方面分类进行综述,和大家共同探讨一下有关环磷酰胺的生殖毒副作用。

关键词:环磷酰胺生殖系统毒副作用环磷酰胺(CTX)是一种烷化剂,1958年首次人工合成,主要用于肿瘤免疫,对多种肿瘤有明显的抑制作用,对增殖细胞群的各期均有杀伤作用。

进入人体后肝脏或肿瘤组织内存在的过量磷酰胺酶或磷酸酶水解,释放出氮芥基而杀伤抑制肿瘤细胞生长的作用。

主要的毒性反应有恶心、食欲减退、脱发、白细胞减少、中毒性膀胱炎、肝功能损伤。

我通过对资料文献的查阅发现他对雄性生殖系统有一定的毒副作用,不可忽视,故查阅1989年至今文献现做综述如下:1对不同发育时期睾丸生精细胞毒性损伤岳丽琴等将环磷酰胺分别作用于处于不同发育时期的1周龄、3周龄、5周龄、9周龄雄性大鼠,应用HE染色法、TUNEI法和免疫组化法检测急性期生精细胞凋亡,bcl2蛋白表达,细胞增殖能力变化及远期组织学损害结果用药后24h,除1周龄组外,各实验组生精细胞显著凋亡(P<0.()1),bcl2蛋白表达显著下降(P<O.01),生精细胞s期所占的比例显著下降(P<().01)。

用药后9周,除1周龄组外,各实验组曲细精管面积、直径、生精上皮细胞计数、Johnsen s评分均显著低于相应对照组(P<O.01),并随年龄增大损害有增加趋势。

结论:环磷酰胺可诱导生精细胞增殖启动阶段以后的生精细胞显著凋亡,且伴有bcl一2明下调。

并可显著抑制精原细胞和细线前期精母细胞增殖。

远期组织学改变年龄越小所受的损害越小,提示为使睾丸免受抗肿瘤药物的伤害而采用性激素使生精细胞增殖分化处于不分化状态是有效的防护方法之一。

2影响睾丸组织中SCF表达代江涛等通过环磷酰胺对大鼠睾丸组织中干细胞因子的表达及增殖指数影响的研究,以探讨环磷酰胺所致生精功能损害的原因。

药物生殖毒性研究技术指导原则

药物生殖毒性研究技术指导原则

附件三药物生殖毒性研究技术指导原则药物生殖毒性研究技术指导原则一、概述生殖毒性研究(Reproductive toxicity study)是药物非临床安全性评价的重要内容,它与急性毒性、长期毒性、遗传毒性等毒理学研究有着密切的联系,是药物进入临床研究及上市的重要环节。

拟用于人体的药物,应根据受试物拟用适应症和作用特点等因素考虑进行生殖毒性试验。

在药物开发的过程中,生殖毒性研究的目的是通过动物试验反映受试物对哺乳动物生殖功能和发育过程的影响,预测其可能产生的对生殖细胞、受孕、妊娠、分娩、哺乳等亲代生殖机能的不良影响,以及对子代胚胎-胎儿发育、出生后发育的不良影响。

生殖毒性研究在限定临床研究受试者范围、降低临床研究受试者和药品上市后使用人群的用药风险方面发挥重要作用。

本指导原则适用于中药、天然药物和化学药物的生殖毒性研究。

本指导原则重点阐述动物生殖毒性试验中动物、给药剂量、给药方法、试验方案选择的基本原则,并介绍一些常用的试验方案;对所获得数据进行分析及评价要求;以及所涉及的科学原理与背景。

二、基本原则(一)实验管理药物的生殖毒性试验属于非临床安全性评价研究,根据《中华人民共和国药品管理法》的规定,必须执行《药物非临床研究质量管理规范》。

(二)具体问题具体分析生殖毒性试验的设计,应在对受试物认知的基础上,遵循“具体问题具体分析”的原则。

应根据受试物的结构特点、理化性质、已有的药理毒理研究信息、适应症和适用人群特点、临床用药方案等选择合理的试验方法,设计适宜的试验方案,并综合上述信息对试验结果进行全面分析评价。

(三)随机、对照、重复生殖毒性试验应符合一般动物试验的基本原则,即随机、对照和重复。

三、基本内容(一)总体考虑1、受试物1.1 中药及天然药物生殖毒性试验的受试物应能充分代表临床研究受试物或上市药品,因此受试物应采用制备工艺稳定、符合临床研究质量标准规定的样品,一般用中试样品,并注明受试物的名称、来源、批号、含量(或规格)、保存条件及配制方法等。

药物生殖毒性研究

药物生殖毒性研究
利用人工智能和机器学习技术对大量数据进 行模式识别和预测,有助于提高风险评估的 准确性。
体外和计算机模拟技术的 发展
通过体外实验和计算机模拟技术,可以在一 定程度上模拟体内生殖毒性反应,为早期风
险评估提供依据。
生殖毒性研究的前沿领域与展望
个体化生殖毒性研究
随着基因组学和表观遗传学的发展,未来研 究将更加关注个体差异对药物生殖毒性的影 响。
促进合理用药
通过生殖毒性研究,医生可以了解药物对生殖系 统的影响,为患者提供更合理的用药建议。
3
药物研发与注册
生殖毒性研究是药物研发和注册过程中必不可少 的一部分,为新药的上市提供安全性依据。
02
药物生殖毒性评估方法
体内评估方法
动物实验
利用动物模型进行药物生殖毒性研究 ,观察药物对动物生殖系统的影响, 评估药物的潜在生殖毒性。
跨学科合作与数据共享
加强跨学科合作和数据共享,有助于推动生 殖毒性研究的进展,提高风险评估的准确性。
谢谢观看
长期健康影响
某些药物可能对胎儿和新生儿的长期健康造成影响,如行为问题和学 习障碍等。
药物对乳腺和子宫的影响
乳腺疾病风险增加
某些药物可能增加女性乳腺疾病的风险 ,如乳腺增生和乳腺癌等。
VS
子宫疾病风险增加
某些药物可能增加女性子宫疾病的风险, 如子宫内膜异位症和子宫肌瘤等。
05
药物生殖毒性研究的挑 战与展望
药物可能对精子和卵子的数量和 质量产生负面影响,降低受孕概 率或导致遗传物质异常。
生殖内分泌干扰
一些药物可能干扰正常的生殖内 分泌功能,如影响激素分泌和信 号转导,导致性发育异常和生育 能力下降。
生殖毒性研究的重要性

药物生殖和发育毒性作用

药物生殖和发育毒性作用
下丘脑-垂体-性腺轴 促性腺激素释放激素 (GnRH) 黄体生成素LH 促卵泡素FSH 雌激素 孕激素
四、发育毒理学
发育毒理学关注的是受精后胚胎发育的整个过程。
早胚期
后胚期
胎儿期
发育的三个过程
自发流产和胚胎丢失 胚胎毒性反应 组织形成受阻-沙立度胺
胎儿乙内酰脲综合症-苯妥英等
小结
一、遗传改变产生和潜在结果 遗传与突变 二、遗传功能和遗传变化评价 三、致突变试验方法 1、鼠伤寒沙门氏菌营养缺陷型回复突变试验
2、哺乳动物培养细胞染色体畸变试验 3、啮齿动物微核试验
02
精子的产生
03
精子输送
04
神经系统
05
内分泌系统
二、男性生殖毒性学
一)精子发生易感性
精子的产生过程
与精子快速生成过程有关的细胞分裂和代谢活性,对某些类型的损伤特别敏感。
药物特别容易损害DNA或影响快速生长组织需要的细胞蛋白功能或细胞呼吸。
DNA损害
蛋白质损伤
特定靶位—睾丸内环境
二)下丘脑-垂体-性腺轴激素调节
下丘脑-垂体-性腺轴 雄激素 黄体生成素(LH) 促性腺激素释放激素(GnRH)
三、女性生殖毒理学
女性生殖毒理学
女性生殖系统的功能
卵细胞毒性
阻滞原始卵母细胞,影响进一步的成熟和排卵。如抗癌药--白消安。
卵巢体细胞和生殖道毒性
卵巢体萎缩—环氧树脂、呋喃妥因 输卵管和子宫萎缩—镉
三)生殖功能激素调节和相关毒性
实验方法: 动物 剂量与给药途径 给药时间 对照组 观察与检查 报告 判定
二)致畸胎试验
生殖过程第三阶段,反映药物对胚胎发育后期、母代分娩过程、哺乳期的影响。

药物毒理学:生殖与发育毒理学

药物毒理学:生殖与发育毒理学

Seg II ♀

Seg

I
交配前
交配 孕期
哺乳期 断奶后
结果的评价 :
1、受试物的特点 ❖ 受试物的药学特点; ❖ 药效学、药代动力学和其他毒理学研究的结果,
特别是长期毒性试验和遗传毒性试验结果; ❖ 临床试验受试者人群特征以及已取得的临床研究
的结果。
2、生殖毒性和致畸试验的结果:
❖ 致畸作用成立的条件:经统计学检验, ✓ 畸形模型的建立和致畸率增加 ✓ 胎鼠死亡率增高 ✓ 胎重降低 ✓ 有剂量-效应关系; ❖ 在评价雄性生殖毒性时,重点应注意睾丸病理组
6
常用术语
生殖毒理学(Reproductive toxicology):研究药物 对生殖过程(包括生殖细胞的发生形成、交配、受 精、合子形成、着床、胚胎形成并发育、分娩、 哺乳等)的影响及其规律的学科。
发育毒理学(Developmental toxicology):研究药 物对胚胎发育的影响及出现异常胚胎发生(结构 畸形、生长迟缓、功能缺陷、个体死亡等)的规 律的学科。
7
胚胎毒性(Embryo toxicity):药物对胚胎的选择毒 性作用,表现为胚胎死亡、生长迟缓、畸形、功 能缺陷。
致畸性(Teratogenicity):胚胎在器官形成期接触 药物后,引起的永久性结构畸形和/或功能缺陷。
母体毒性(Maternal toxicology):仅对怀孕母体的 毒性效应。
作用于生殖细胞使其遗传物质产生改变引起胚胎早期死亡畸形或功能缺陷抗癌药胚胎在器官形成期接触药物后药物对正在发育分化的各种体细胞产生作用阻碍或改变其正常发育方向引起永久性结构畸形和功能缺陷
第十五章 生殖与发育毒理学
Reproductive & Developmental Toxicology

药物生殖和发育毒性作用

药物生殖和发育毒性作用

6
生殖毒理学(reproductive toxicology)主要研究外
源化学物对生殖细胞发生、卵细胞受精、胚胎形成、
妊娠、分娩和哺乳过程的损害作用及其评定,评定方 法即为生殖毒性试验。 发育毒理学(developmental toxicology)主要研究外 源化学物对胚胎发育、胎仔发育以及出生幼仔发育的
药物生殖和发育毒性作用
1
反应停事件 (沙利度胺; 酞胺哌啶酮)
1957 –1961
2
3
生殖发育是哺乳动物繁衍种族的生理过程,其中包
含生殖细胞发生(即精子发生和卵细胞发生)、配 子的释放、性周期和性行为、卵细胞受精、受精卵 的卵裂、胚泡的形成、植入或着床、胚胎形成、胚 胎发育、器官发生(或称器官形成)、胎仔发育、
力的降低不孕或不育等。雄性可表现为睾丸萎
缩或坏死,精子数目减少。
18
3、生殖毒性的评价
外源化学物对生殖过程作用的评定主要
通过生殖毒性试验来进行。
生殖毒性试验可以全面反映外源化学物
对性腺功能、发情周期、交配行为来自受孕、妊娠过程、分娩、授乳以及幼仔断
乳后生长发育可能发生的影响。
19
评定的主要依据是交配后母体受孕情况(受孕
分娩和哺乳过程。
生殖发育也可称繁殖过程。
4
外源化学物对生殖发育的影响
干扰生殖发育的任何环节,并造成损害作用。 可以通过对内分泌系统,特别是对性腺的作用,
发生间接的影响。
神经系统对内分泌功能也有调节作用,通过下
丘脑-垂体-睾丸轴(下丘脑-垂体-卵巢轴)两条
途径作用于生殖发育过程 。
5
外源化学物对生殖发育损害作用的特点 生殖发育过程较机体其他系统更为敏感 外源化学物对生殖发育过程影响的范围 较为广泛和深远

药物生殖毒性研究概述

药物生殖毒性研究概述

(三)随机、对照、重复 生殖毒性试验应符合一般动物试验的基本原则,即随机、对照和重 复。
基本内容
(一)总体考虑
(二)试验方案 (三)毒代动力学
(一)总体考虑
1、受试物 1.1 中药及天然药物 生殖毒性试验的受试物应能充分代表临床研究受试物或上市 药品,因此受试物应采用制备工艺稳定、符合临床研究质量标准 规定的样品,一般用中试样品,并注明受试物的名称、来源、批 号、含量(或规格)、保存条件及配制方法等。如不采用中试样 品,应有充分的理由。如果由于给药容量或给药方法限制,可采 用原料药进行试验。试验中所用溶媒和/或辅料应标明批号、规 格及生产厂家。 1.2 化学药物 生殖毒性试验的受试物应采用制备工艺稳定、符合临床研究 用质量标准规定的样品,并注明受试物的名称、来源、批号、含 量(或规格)、保存条件及配制方法等,并附有研制单位的自检 报告。所用辅料、溶媒等应标明批号、规格和生产厂家,并符合 试验要求。
药物生殖毒性研究技术 指导原则
山东大学新药评价中心 2006-10


动物生殖毒性研究(Reproduction toxicity study)是药物非临床安全性评价的重要内容,它与 急性毒性、长期毒性、遗传毒性等毒理学研究有着密 切的联系,是药物申请进入临床研究及上市的重要环 节。拟用于人体的药物,应根据受试物拟用适应症和 作用特点等因素考虑进行动物的生殖毒性试验。
2、受试物药代动力学研究
在开始生殖毒性试验前,掌握一些受试物药代动 力学方面的信息,这些信息可能来源于非妊娠或非哺 乳期动物,可提示是否应进行动物种属选择、试验设 计、给药方案的调整等。在进行结果评价时,可能有 必要进一步研究妊娠或哺乳动物的药代动力学情况 (注释1)。
3、试验系统 3.1 试验动物 应采用哺乳动物进行生殖毒性试验。在选择生殖毒性试验用动物种 属和品系时,应考虑动物的背景资料、实用性、与人的相关性等。应从 受试物、采用的试验方案和阐明试验结果的角度考虑所选择动物种属 (品系)的优缺点(注释2)。 通常应采用与其他毒理学试验相同的种属和品系,这样与其他毒理 学试验结果具有可比性,并可能避免进行过多的预试验。大鼠实用性好、 与其他试验结果的可比性高并已积累了大量的背景资料,因此可作为生 殖毒性试验的首选啮齿类动物。 在胚胎-胎仔发育毒性研究中,一般还需要采用第二种哺乳动物, 其中家兔已积累了丰富的背景资料,且容易获得和实用,因此家兔为优 先选用的非啮齿类动物。家兔不适合时,可根据具体情况,选择另一种 可替代的非啮齿类动物或第二种啮齿类动物。 通常选用年轻、性成熟的成年动物,雌性动物未经产。个体动物初 始体重不应超过或低于平均体重±20%。 动物应符合国家有关规定的等级要求,来源、品系、遗传背景清楚, 并具有实验动物质量合格证。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25
4. 母体毒性作用 母体毒性作用是指外源化学物在一定剂量下,对受孕母
体产生的损害作用。具体表现包括体重减轻、出现某些临床 症伏、直至死亡。 ➢ 母体毒性作用与致畸作用关系 ❖ 具有致畸作用,但无母体毒性出现。 ❖ 出现致畸作用的同时也表现母体毒性。 ❖ 不具有特定致畸作用机理,但可破坏母体正常生理稳态。 ❖ 仅具有母体毒性,但不具有致畸作用。 ❖ 在一定剂量下,既不呈现母体毒性,也未见致畸作用。
F3a
F3b
20
➢ 两代一窝(和一代一窝)生殖试验
出生第8周给予受试物(F0) 第16-19周 雌雄交配 F1(每窝选留幼仔8只,雌雄各半)
断奶,给予受试物 F1交配
F2出生,每窝留8只幼仔 F2断奶,检查发育情况
21
观察指标:
受孕率: 反映雌性动物生育能力以及雌性动物受孕情况 受孕率=妊娠雌性动物数/交配雌性动物数×100%
Ⅰ段:生育力和早期胚胎发育毒性试验(一般生殖毒性试验) 主要反映妊娠前及妊娠初期的情况
Ⅱ段:肧体-胎体毒性试验(致畸试验) Ⅲ段:出生前后发育毒性试验(围生期毒性试验)
反映外源化合物对胚胎发育后期、母代分娩过程、 哺乳期的影响。
13
Ⅰ段:生育力和早期胚胎发育毒性试验 (一般生殖毒性试验)
目的:评价受试物对配子成熟、交配行为、生育力、胚 胎着床的影响(前述生殖周期的A和B阶段)。
继发性的影响精子发生 改变下丘脑-垂体功能
直接影响睾丸细胞功能
• 精子生成障碍 • 性欲异常,丧失生育能力 • 引起生殖细胞突变,造成可遗传损害
10
对雌性生殖系统的毒作用
对卵巢的损害:卵母细胞数下降/突变;
生长卵泡和成熟卵泡降低,排卵抑制,受孕力下降; 干扰卵巢内分泌,影响受精/着床/胚胎发育
生殖道的损害:影响运送卵子/受精/受精卵发育 对下丘脑-垂体系统的损害:闭经,受孕力降低。
11
二、生殖毒性的评价
➢ 是检查外源化学物对动物生育繁殖机能有无 损害作用的试验。
➢ 评定的主要依据是交配后母体受孕情况(受 孕率)、妊娠过程情况(正常妊娠率)、子 代动物分娩出生情况(出生存活率)、授乳 哺育(哺育成活率)以及断奶后发育情况等。
12
三段生殖毒性试验
主要是根据发育阶段的区别来设计的,每一段试验 大致相当于上述两个阶段。
第八讲 生殖发育毒性及其 试验与评价方法
第一节 概 述
➢ 哺乳动物的生育繁殖过程 ➢ 外源化学物对生殖发育的影响 ➢ 外源化学物对生殖发育损害作用的特点
2
哺乳动物的生育繁殖过程
生殖发育是哺乳动物繁衍种族的生理过程, 其中包含生殖细胞发生(即精子发生和卵细胞 发生)、配子的释放、性周期和性行为、卵细 胞受精、受精卵的卵裂、胚泡的形成、植入或 着床、胚胎形成、胚胎发育、器官发生(或称 器官形成)、胎仔发育、分娩和哺乳过程。
17
18
19
2. 雌性生殖毒性评价
➢ 三代两窝
F0 (断奶或出生8 周)
第一次交配 给予受试物 8 到12 周 第二次交配
F1a
观察三个月,喂饲普通饲料,
观察其生长发育情况
F1b
21 天 断 乳 后 给 予 受 试物8到12周
F2a
观察三个月,喂饲普通饲料, 观察其生长发育情况
F2b
21 天 断 乳后 给予 受 试 物8 到12 周
正常分娩率: 反映雌性动物妊娠过程是否受到影响 幼子出生存活率=正常分娩雌性动物数/妊娠动物数×100%
幼仔出生存活率: 反映雌性动物分娩过程是否正常 幼子出生存活率=出生后4天存活幼子数/分娩时出生幼子数 ×100%
幼仔哺育成活率: 反映雌性动物授乳哺育幼仔的能力 幼子哺乳成活率=21天断乳幼子存活数/出生后4天幼子存活 数×100%
15
❖ 染毒途径:动物接触受试物的方法应参照人类实际接触途径。 交配前雄性动物应染毒4-10周,雌性动物2周 一般可混入饲料或饮水中,也可采用灌胃或胶囊法。
❖ 动物:至少采用一种动物,推荐用大鼠;每组雌雄各20只; 雌性动物妊娠13-15天处死,雄性交配成功处死。
16
评价方法
1. 雄性生殖毒性评价(动物试验) 精子生成分析(精子计数、形态学及其活率) 精子功能检测 睾丸标志酶活性检测 交配实验 显性致死试验
不能完全丧失生育能力。相当于1/10LD50。 低剂量组则不应产生任何可观察到的损害效应。相当于高
剂量组的1/30。 中剂量组应仅能出现极为轻微的中毒症状。 如果1000mg/kg体重剂量对生育力无损害作用,或最高剂
量可引起亲代动物表现一般毒性作用,但对生育力无不利 影响,则可不进行其他剂量实验。
给药期:雄性从交配前4周开始染毒,并持续至交配成功 ;雌性交配前2周开始染毒(以覆盖3~4个动情周期), 至妊娠第6天受精卵着床。
14
一般生殖毒性试验方法原则
❖ 受试动物:多用性成熟大鼠,也可用小鼠或家兔 ❖ 剂量分组:一般设立三个剂量组和两个对照组 高剂量组产生轻微毒性症状,但其死亡率不大于10%,也
22
Ⅱ段:胚体-胎体毒性试验(致畸试验)
生殖是对亲代动物而言,从配子生成、受精到胎 体分娩是一生殖过程。
发育主要是对子代而言,从受精卵到性成熟的青 春期甚至一直到衰老都属于发育过程。发育毒性也称 为胚胎毒性。
23
基本概念
1.发育毒性(developmental toxicity) 指出生前经父体和(或)母体接触外源性理化因素引起的
在子代到达成体之前出现的有害作用,也称为胚胎毒性。具 体表现可分为: ❖ 生长迟缓: 即胚胎与胎仔的发育过程在外源化学物影响下, 较正常的发育过程缓慢。 ❖ 畸形: 由于外源化学物干扰,活产胎仔胎儿出生时,某种 器官表现形态结构异常。 ❖ 功能不全: 即胎仔的生化、生理、代谢、免疫、神经活动 及行为的缺陷或异常。 ❖ 胚胎死亡: 某些外源化学物在一定剂量范围内,可在胚胎 或胎仔发育期间对胚胎或胎仔具有损害作用,并使其死亡。
及其他化学物的生殖发育毒性。 3. 改进的大鼠发育神经毒性的试验程序。
33
❖ 动物选择:
致畸试验的动物选择,除参照毒性试验中选择动物 的一般原则,即食性和对受试物代谢过程与人类接近, 体型小,驯服,容易饲养和繁殖及价廉外,还应特别注 意妊娠过程较短、每窝产仔数较多和胎盘构造及厚度与 人类接近等特点。
生殖发育也可称繁殖过程。
3
连续、完整的生殖发育过程的六个阶段
A.从交配前到受孕:检查成年雄性和雌性生殖功能、配子的发 育与成熟、交配行为、受精。 B.从受孕到着床:检查成年雌性生殖功能、胚胎着床前发育、 着床。 C.从着床到硬腭闭合:检查成年雌性生殖功能、肧体发育、主 要器官形成。 D.从硬腭闭合到妊娠结束:检查成年雌性生殖功能、胎体的发 育与生长、器官的发育与生长。 E.从出生到断乳:检查成年雌性生殖功能、新生仔对宫外生活 的适应性、断乳前的发育与生长。 F.从断乳到性成熟:检查断乳后的发育与生长、对独立生活的 适应、达到完全的性功能。
通常采用两种动物:一种啮齿类,首选大鼠;另一 种非啮齿类推荐家兔。
Байду номын сангаас34
❖ 剂量分组:
一般应先进行预试,目的是找出引起母体中毒的剂量。 最少设3个剂量组,另设对照组。原则上最高剂量组,可以 引起母体轻度中毒,即进食量减少、体重减轻、死亡不超 过10%。最低剂量组为无母体和胚胎毒性反应;中间剂量组 可以允许母体出现某些极轻微中毒症状。其剂量与高剂量 和低剂量成等比级数关系。
26
5. 畸形与变异 ❖ 在胚胎或胎儿出现器官形态结构异常称为畸形。 ❖ 机体的形态结构或生理功能,在同一物种的子代与亲代 之间或子代的个体之间,有时出现不完全相同的现象,即 为变异。
27
致畸作用的毒理学特点
➢ 器官发生期的胚胎对致畸物最为敏感 ➢ 剂量与效应关系较为复杂 ❖ 剂量效应关系复杂的表现及原因:在一定范围内,
将性成熟雌雄动物按雌雄l:1或2:1比例同笼交配。 每日将已确定受孕雌鼠随机分入各剂量组和对照组。出现 阴栓或精子之日即为受孕0日,也有人作为第1日。
泛和深远。不仅直接涉及雌雄两性个体,同时 还对其第二代甚至以后世代的个体产生影响。
6
第二节 生殖毒性及其评价
➢ 生殖毒性的表现 ➢ 生殖毒性的评价方法
7
➢ 1950年美国霍普金斯大学医院发现,怀孕期间服用黄 体酮,先后有600多名女婴出现生殖器男性化畸形 。 ➢ 1956年用于治疗妊娠反应的反应停,1961年后出现近 万例短肢畸形儿(海豹畸形)。 ➢ 二恶英(TCDD)造成的大面积污染及其与人群生殖危害 的关系至今仍不清楚 。 ➢ 过去半个世纪震惊全球的系列中毒或灾难事件的发生, 在世界范围内提高了人们对用药的安全意识,高度关注 新的化学物对生殖内分泌系统或妊娠结局的不良影响, 促进了与生殖内分泌系统安全相关法律的产生和研究方 法指南的问世。
30
Wilson发育毒理学基本原理
(一)对致畸的易感性取决于孕体的基因型及其与有害环境 因子相互作用的方式。 (二)对致畸的易感性随着对有害因素暴露的发育时期的不 同而变化。 (三)致畸物以特异的方式(作用机制)作用于发育的细胞 和组织,启动一系列的异常发育事件(细胞病理机制)。 (四)有害影响能否接近发育中的组织取决于有害影响本身 的性质。 (五)异常发育的四种表型是:死亡、畸形、生长迟缓和功 能缺陷。 (六)随着剂量的增加,异常发育表型的频率和程度也随之 增加,从无毒作用到全部致死。
致畸作用机制
➢ 基因突变引起胚胎发育异常 ➢ 细胞死亡和增致速度减慢 ➢ 细胞间通讯抑制 ➢ 胚胎中间代谢障碍 ➢ 胚胎组织发育过程的不协调
32
外源化学物发育毒性的评价
➢ 传统常规致畸试验
主要试验方案:由美国环境保护局(EPA)首先提出。 1. 三段生殖毒性试验主要用于评价药物的生殖发育毒性。 2. 一代和多代生殖毒性试验主要用于评价食品添加剂、农药
相关文档
最新文档