八年级数学竞赛试题答案

合集下载

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)

初二数学竞赛试题7套整理版(含答案)初二数学竞赛试题7套整理版(含答案)第一套试题1. 某数与它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.2. 有一个矩形,长是宽的3倍,如果长再加上宽再加上1的和等于50,求矩形的长和宽各是多少?解:设矩形的宽为x,则长为3x,根据题意可得方程 3x + x + 1 = 50,化简得 4x + 1 = 50,解得 x = 12,所以长为3 * 12 = 36,宽为12.3. 某个数的三次方减去它自身等于608,求这个数是多少?解:设这个数为x,根据题意可得方程 x^3 - x = 608,化简得 x^3 - x - 608 = 0,因此需求解该方程的解x.4. 甲数和乙数之和是300,甲数比乙数大30,求甲数和乙数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 x + y = 300,x - y = 30,联立这两个方程可以解得甲数x和乙数y.5. 家长购买某品牌的饮料,每瓶售价为5元,如果购买10瓶,优惠50%,那么需要支付的价格是多少?解:购买10瓶优惠50%,相当于购买5瓶的价格,所以需要支付 5 * 10 * (1 - 50%) = 25元.第二套试题1. 学校图书馆购买300本新书,若图书馆中已有书籍500本,现将这些书按每排放10本的方式摆放,共需要多少排?解:新书300本加上原有书籍500本,共计800本书,每排放10本,所以需要 800 / 10 = 80排.2. 小明每天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,求他一天中运动的总时长是多少分钟?解:小明一天早上跑步30分钟,下午骑自行车25分钟,晚上游泳40分钟,总时长为 30 + 25 + 40 = 95分钟.3. 甲、乙两人开始一起钓鱼,甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,如果他们一起钓了45分钟,那么他们一共钓到了多少条鱼?解:甲每分钟能钓2条鱼,乙每分钟能钓1条鱼,他们一起钓了45分钟,所以甲和乙一共钓到了 2 * 45 + 1 * 45 = 135 条鱼.4. 某商品原价100元,现在打8折,过了一段时间后再降价,降到原价的85%,现在这个商品的售价是多少?解:原价100元,打8折后为 100 * (1 - 80%) = 80元,再降到原价的85%为 80 * 85% = 68元.5. 某人的年收入为12000元,每月生活费占月收入的1/5,那么这个人每月的生活费用是多少元?解:年收入12000元,月收入为 12000 / 12 = 1000元,生活费占收入的1/5,所以生活费用为 1000 * 1/5 = 200元.第三套试题1. 甲、乙两个人合作修一个房子,甲一个人修需要8天,乙一个人修需要12天,问他们一起修需要多少天?解:甲一个人修需要8天,乙一个人修需要12天,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8天.2. 甲购买一本书花费了原价的3/4,折后价格为60元,问这本书的原价是多少?解:折后价格为60元,花费原价的3/4,所以原价为 60 / (3/4) = 80元.3. 甲、乙两人比赛,甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,问谁的平均速度更快?解:甲第一轮跑步用时1分钟,第二轮用时50秒,第三轮用时40秒,平均速度为 (60 + 50 + 40) / 3 = 50 秒/轮;乙第一轮跑步用时55秒,第二轮用时45秒,第三轮用时35秒,平均速度为 (55 + 45 + 35) / 3 = 45 秒/轮;所以甲的平均速度更快.4. 一只小狗每小时能跑5公里,一只小猫每小时能跑8公里,如果它们从同一地点同时出发并分别向东和西跑,4小时后它们相距了多少公里?解:小狗每小时能跑5公里,4小时后跑了5 * 4 = 20公里,小猫每小时能跑8公里,4小时后跑了8 * 4 = 32公里,所以它们相距了 32 -20 = 12 公里.5. 三个连续的偶数相加的和是60,求这三个数分别是多少?解:设第一个偶数为x,那么第二个偶数为x + 2,第三个偶数为x+ 4,根据题意可得方程 x + (x + 2) + (x + 4) = 60,求解该方程可得x及其对应的三个连续偶数.第四套试题1. 一个数的2倍加上5等于13,求这个数是多少?解:设这个数为x,根据题意可得方程 2x + 5 = 13,解得 x = 4.2. 甲乙两数相差22,乙数的2倍与甲数的3倍之和等于70,求甲、乙两数各是多少?解:设甲数为x,乙数为y,根据题意可得方程 y - x = 22,2y + 3x= 70,联立这两个方程可以解得甲数x和乙数y.3. 一辆汽车以每小时80千米的速度行驶,行驶了1小时20分钟后停下来休息,求这段时间内汽车行驶的路程?解:汽车以每小时80千米的速度行驶,1小时20分钟共1.33 小时,所以汽车行驶的路程为 80 * 1.33 = 106.4 千米.4. 甲、乙两个人一起做一件工作,甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要4小时,乙单独完成需要6小时,他们一起完成需要的时间为 1/(1/4 + 1/6) = 2.4小时.5. 一个数加上它的四分之一之和的和是28,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/4)x + x = 28,化简得9/4x = 28,解得 x = 44.第五套试题1. 一条宽10米的路,两边分别种植了向阳向每排7棵树或9棵树,每棵树之间距离相等,而且与路两边相邻树之间距离也相等,问道路中间最宽的地方有多宽?解:分别种植7棵树和9棵树,每棵树之间距离相等,所以道路中间最宽的地方为两排树之间的距离.2. 一个数与4的乘积减去2等于18,求这个数是多少?解:设这个数为x,根据题意可得方程 4x - 2 = 18,解得 x = 5.3. 甲、乙、丙三人合作种田,甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,问他们三个人一起种地需要多少天?解:甲一个人种地需要10天,乙一个人种地需要12天,丙一个人种地需要15天,他们一起种地需要的时间为 1/(1/10 + 1/12 + 1/15) =4.8天.4. 某人共有100元,买了一本书花掉了原价的3/5,剩下的钱还能买另一本原价为80元的书吗?解:100元买了一本书花掉了原价的3/5,剩下的钱为 100 * (1 - 3/5) = 40元,剩下的钱不足以购买另一本80元的书.5. 一团面粉重800克,其中水分为15%,求这团面粉中水分的重量是多少克?解:面粉重800克,其中水分为15%,所以水分的重量为800 * 15% = 120克.第六套试题1. 一个数与它的五分之一之和的和是40,求这个数是多少?解:设这个数为x,根据题意可得方程 x + (1/5)x + x = 40,化简得7/5x = 40,解得 x = 28.57.2. 甲、乙两个人分别完成一项工作需要的时间比为2:5,如果他们一起完成这项工作需要3小时,求乙单独完成这项工作需要多少时间?解:甲、乙两个人分别完成一项工作需要的时间比为2:5,设甲单独完成需要的时间为x,乙单独完成需要的时间为y,根据题意可得方程 2x + 5x = 3,解得 y = 7.5.3. 有两个相交的圆,圆心之间的距离为8,两圆的半径分别为5和3,求两圆相交的弦的长度是多少?解:两个圆的半径分别为5和3,圆心之间的距离为8,利用勾股定理可以求得两圆相交的弦的长度.4. 甲乙两个人一起做一件工作,甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成这件工作需要多少小时?解:甲单独完成需要10小时,乙单独完成需要15小时,他们一起完成需要的时间为 1/(1/10 + 1/15) = 6小时.5. 甲给乙20元,乙给丙30元,丙给甲10元,这三个人一共交易了多少元?解:甲给乙20元,乙给丙30元,丙给甲10元,所以一共交易了20 + 30 + 10 = 60元.第七套试题1. 某数比它的2/3小12,求这个数是多少?解:设这个数为x,根据题意可得方程 x - (2/3)x = 12,化简得 1/3x = 12,解得 x = 36.2. 甲、乙两个人一起修一条路,甲单独修需要8小时,乙单独修需要12小时,也有可能甲的速度是乙的倍数,问他们一起修需要多少小时?解:甲单独修需要8小时,乙单独修需要12小时,他们一起修需要的时间为 1/(1/8 + 1/12) = 4.8小时.3. 某品牌的衣服原价为200元,现在打折8折,过了一段时间后再降价,降到原价的85%,现在这件衣服的售价是多少?解:原价200元,打8折后为 200 * (1 - 80%) = 160元,再降到原价的85%为 160 * 85% = 136元.4. 甲、乙两个人一起做工,甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,问他们一起做一份工作需要多少时间?解:甲一个小时能做1/3的工作量,乙一个小时能做1/4的工作量,他们一起做一份工作需要的时间为 1/(1/3 + 1/4) = 12/7小时.5. 某人的年收入为12000元,每月花销占收入的1/4,那么这个人每月的花销是多少元?解:年收入12000元,。

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案

八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】

全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】全国“希望杯”八年级数学竞赛试题(第一届至第二十二届)【含答案】第一届试题1. 某长方体的长、宽、高依次是2 cm、3 cm和4 cm,求它的体积。

解:体积公式为V = lwh,其中l、w和h分别表示长方体的长、宽和高。

代入已知数值,得V = 2 cm × 3 cm × 4 cm = 24 cm³。

答案:24 cm³2. 如图,已知△ABC中,∠C = 90°,AC = 6 cm,BC = 8 cm,AD⊥ BC,AD = 4 cm。

求△ABC的面积。

解:△ABC为直角三角形,面积公式为S = 1/2 ×底 ×高。

底为AC,高为AD,代入数值,得S = 1/2 × 6 cm × 4 cm = 12 cm²。

答案:12 cm²3. 若(3x + 5)(4 - x) = -7x + 9,求x的值。

解:将方程进行展开和合并同类项得:12x - 3x² + 20 - 5x = -7x + 9。

将所有项移到一边得:3x² - 12x + 11 = 0。

对方程进行因式分解得:(x - 1)(3x - 11) = 0。

由此可得x = 1 或 x = 11/3。

答案:x = 1 或 x = 11/3第二十二届试题1. 下图为某街区的地理平面图,a、b、c和d分别表示大街,A、B、C、D和E分别表示街区中的五个角落。

已知AE = CD,AB = 2 cm,BC = 10 cm,求AE的长度。

解:由题意可推出ABCD为平行四边形,而AE = CD。

根据平行四边形的性质,平行四边形的对角线互相等长,所以AE= CD = 10 cm。

答案:10 cm2. 若一个正方形的周长是36 cm,求它的面积。

解:设正方形的边长为x cm,由题意可知4x = 36,解方程得到x = 9。

八年级数学竞赛试卷及解答

八年级数学竞赛试卷及解答

一、选择题(每题5分,共20分)1. 下列各数中,是正有理数的是()A. -3B. 0C. -1/2D. 2解答:D2. 若a < b,且a、b都是正数,那么下列不等式中正确的是()A. a² < b²B. a³ < b³C. a < b²D. a² < b解答:B3. 已知方程3x - 2 = 5,则x的值为()A. 1B. 2C. 3D. 4解答:C4. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)解答:A5. 若等腰三角形底边长为4,腰长为6,则该三角形的周长为()A. 14B. 16C. 18D. 20解答:B二、填空题(每题5分,共25分)1. 若a、b是方程x² - 5x + 6 = 0的两个根,则a + b = __________。

解答:52. 在等差数列{an}中,a₁ = 3,公差d = 2,则第10项a₁₀ = __________。

解答:213. 若a² + b² = 25,且a - b = 3,则ab的值为 __________。

解答:164. 已知正方形的对角线长为10,则该正方形的面积是 __________。

解答:505. 若a、b、c是等比数列,且a + b + c = 6,ab = 12,则c²的值为__________。

解答:18三、解答题(共55分)1. 解方程:2(x - 3) + 3(x + 1) = 5。

解答:2x - 6 + 3x + 3 = 55x - 3 = 55x = 8x = 8/52. 已知数列{an}是等差数列,且a₁ = 3,公差d = 2,求第10项a₁₀。

解答:a₁₀ = a₁ + (10 - 1)da₁₀ = 3 + 9 2a₁₀ = 213. 已知三角形的三边长分别为3、4、5,求该三角形的面积。

(word完整版)八年级数学竞赛题及答案解析

(word完整版)八年级数学竞赛题及答案解析

八年级数学竞赛题(本检测题满分:120分,时间:120分钟) 班级: 姓名: 得分: 一、选择题(每小题3分,共30分)1.下列四个实数中,绝对值最小的数是( )A .-5B .-2C .1D .42.下列各式中计算正确的是( )A .9)9(2-=-B .525±=C .3311()-=- D .2)2(2-=- 3.若901k k <<+ (k 是整数),则k =( )A . 6B . 7C .8D . 94.下列计算正确的是( )A.ab ·ab =2ab 错误!未找到引用源。

C.3错误!未找到引用源。

-错误!未找到引用源。

=3(a ≥0) D.错误!未找到引用源。

·错误!未找到引用源。

=错误!未找到引用源。

(a ≥0,b ≥0)5.满足下列条件的三角形中,不是直角三角形的是( )A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶56.已知直角三角形两边的长分别为3和4,则此三角形的周长为( )A .12B .7+7C .12或7+7D .以上都不对7.将一根24 cm 的筷子置于底面直径为15 cm ,高为8 cm 的圆柱形水杯中,设筷子露在杯子外面的长度为h cm ,则h 的取值范围是( )A .h ≤17B .h ≥8C .15≤h ≤16D .7≤h ≤168.在直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是( )A .(4, -3)B .(-4, 3)C .(0, -3)D .(0, 3)9.在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2), 将△ABC 向左平移5个单位长度后,A 的对应点A 1的坐标是( )A .(0,5)B .(-1,5)C .(9,5)D .(-1,0)10.平面直角坐标系中,过点(-2,3)的直线l 经过第一、二、三象限,若点(0,a ),(-1,b ),(c ,-1)都在直线l 上,则下列判断正确的是( ) A . b a < B . 3<a C . 3<b D . 2-<c 二、填空题(每小题3分,共24分)11.函数y =错误!未找到引用源。

初二数学竞赛试题及答案

初二数学竞赛试题及答案

初二数学竞赛试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是无理数?A. 0.5B. √2C. 0.33333…D. 3答案:B2. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的面积是多少?A. 12B. 15C. 18D. 20答案:B3. 如果一个数的平方等于它本身,那么这个数可能是:A. 0B. 1C. -1D. 以上都是答案:D4. 一个两位数,十位上的数字比个位上的数字大3,这个两位数可能是:A. 23B. 47C. 52D. 69答案:B5. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:A6. 一个圆的直径是10厘米,那么这个圆的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C7. 一个数的相反数是-5,那么这个数是:A. 5C. 0D. 10答案:A8. 一个数的绝对值是5,那么这个数可能是:A. 5B. -5C. 0D. 以上都是答案:D9. 一个等差数列的前三项分别是2,5,8,那么这个数列的第五项是多少?A. 11B. 12C. 13答案:A10. 下列哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形答案:C二、填空题(每题4分,共20分)11. 一个等腰直角三角形的斜边长为10厘米,那么这个三角形的面积是______平方厘米。

答案:2512. 如果一个数的立方等于8,那么这个数是______。

答案:213. 一个数的平方根是3,那么这个数是______。

答案:914. 一个数的倒数是1/4,那么这个数是______。

答案:415. 一个圆的周长是31.4厘米,那么这个圆的半径是______厘米。

答案:5三、解答题(每题10分,共40分)16. 已知一个等腰三角形的底边长为8,腰长为10,求这个三角形的高。

解:根据勾股定理,设高为h,则有:h^2 + (8/2)^2 = 10^2h^2 + 16 = 100h^2 = 84h = √84 = 2√21答:这个三角形的高是2√21。

数学竞赛8年级真题试卷【含答案】

数学竞赛8年级真题试卷【含答案】

数学竞赛8年级真题试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 2x + 1,则f(1)的值为?A. 0B. 1C. 2D. 32. 下列哪个数是无理数?A. √9B. √16C. √3D. √13. 若a > b,则下列哪个选项是正确的?A. a c > b cB. a + c < b + cC. ac < bcD. a/c > b/c (c ≠ 0)4. 下列哪个方程的解集是实数集?A. x² + 1 = 0B. x² 2x + 1 = 0C. x² + x + 1 = 0D. x² x + 1 = 05. 若一组数据的平均数为10,则这组数据的和为?A. 5B. 10C. 20D. 50二、判断题(每题1分,共5分)1. 若a > b,则a² > b²。

()2. 两个负数相乘的结果是正数。

()3. 任何实数的平方都是非负数。

()4. 若a、b、c是等差数列,则a²、b²、c²也是等差数列。

()5. 两个无理数的和一定是无理数。

()三、填空题(每题1分,共5分)1. 若a + b = 5,a b = 3,则a = ______,b = ______。

2. 若x² 5x + 6 = 0,则x = ______或x = ______。

3. 若一组数据的方差为4,则这组数据的平均数为______。

4. 若等差数列{an}的前n项和为Sn = 2n² + 3n,则a1 = ______,d = ______。

5. 若函数f(x) = 2x + 3,则f(2) = ______。

四、简答题(每题2分,共10分)1. 解释什么是无理数。

2. 什么是等差数列?给出一个等差数列的例子。

3. 解释函数的定义。

八年级数学竞赛试题(附答案)

八年级数学竞赛试题(附答案)

八年级数学竞赛试题(本卷满分150分,时间120分钟)一、填空题(每小题5分,共50分)1.点P (3,-5)关于y 轴对称的点的坐标为( )A . (3,5)--B .(5,3)C .(3,5)-D .(3,5) 2.下列四组数据中,不能..作为直角三角形的三边长的是( ) A . 7,24,25 B .6,8,10 C .9,12,15 D .3,4,6 3.已知△ABC 中,AB=AC ,高BD ,CE 交于点O ,连接AO ,则图中全等三角形的对数为( )A .3B .4C .5D .6 4.如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=8,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则PQ+BQ 的最小值是( )A .4B .5C .6D .7 5.设M=(x -3)(x -7),N=(x -2)(x -8),则M 与N 的关系为( )A.M <NB.M >NC.M=N D .不能确定 6.用三种边长相等的正多边形地砖铺地,其顶点拼在一起,刚好能完全铺满地面,已知正多边形的边数为x ,y ,z ,则zy x 111++的值为( ) A .1 B .32 C .21 D .317.如图,长方形ABCD 中,△ABP 的面积为a ,△CDQ 的面积为b ,则阴影四边形的面积等于( )A .b a +B . b a -C .2ba + D .无法确定 8.若实数x 、y 、z 满足2()4()()0x z x y y z ----=.则下列式子一定成立的是( )A .0x y z ++=B .20x y z +-=C . 20y z x +-=D . 20z x y +-=9.已知3030--+-+-=a x x a x y ,其中0<a <30,30≤≤x a ,那么y 的最小值为.( ) A .10 B .20C .30D .4010.如图,ABE ∆和ADC ∆是ABC ∆分别沿着AB ,AC 边翻折0180形成的,若∠1:∠2:∠3=28:5:3,则a ∠的度数为.( )A .60oB .70oC .80oD .90o二、填空题(每小题7分,共49分)11.如果2222(2)(2)45a b a b +++-=,则a 2+b 2的值为 .12.将五个分数:23 ,58 ,1523 ,1017 ,1219 ;由小到大或由大到小排列,排在中间位置的分数是13.x 表示a 与b 的和的平方,y 表示a 与b 的平方的和,则a=7,b=-5时,x -y 的值是14.计算:|11992 -11991 |+|11993 -11992 |-|11993 -11991 |=15.观察下列运算:12=1;22=1+3;32=1+3+5;42=1+3+5+7;52=1+3+5+7+9;则n 2= (n 为正整数)。

2023-2024学年安徽省阜阳市八年级(上)竞赛数学试卷+答案解析

2023-2024学年安徽省阜阳市八年级(上)竞赛数学试卷+答案解析

2023-2024学年安徽省阜阳市八年级(上)竞赛数学试卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.在平面直角坐标系中,点一定在()A.第一象限B.第二象限C.第三象限D.第四象限2.一个长方形在平面直角坐标系中三个顶点的坐标为,,,则第四个顶点的坐标为()A. B. C. D.3.在平面直角坐标系中,将点先向右平移3个单位,再向上平移2个单位,得到点若点位于第四象限,则m、n的取值范围分别是()A.,B.,C.,D.,4.根据如图所示的程序计算函数y的值,若输入x的值是8,则输出y的值是,若输入x的值是,则输出y的值是()A.10B.14C.18D.225.记者乘汽车赴420m外的农村采访,前一段路为高速公路.后一段路为乡村公路,汽车在高速公路和乡村公路上分别以某一速度匀速行驶,汽车行驶的路程与时间间的关系如图所示,则该记者从出发到采访地一共需要时间为()A.4小时B.小时C.5小时D.6小时6.无论m为什么实数时,直线总经过点()A. B. C. D.7.已知直线与直线相交于点,那么关于x的方程的解为()A. B. C. D.8.一次函数与的图象如图,则下列结论:①;②;③当时,中,正确的个数是()A.3B.2C.1D.09.如图,,点A在DE上,,,则的大小为()A. B. C. D.10.三角形的3边长分别是xcm、、,它的周长不超过则x的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。

11.若一次函数的图象不过第一象限,则k的取值范围是______.12.如图,点A是一次函数图象上的动点,作轴与C,交一次函数的图象于设点A的横坐标为m,当______时,13.如图,则______.14.小聪从甲地匀速步行前往乙地,同时小明从乙地沿同一路线匀速步行前往甲地,两人之间的距离与步行时间之间的函数关系式如图中折线段所示.小聪与小明出发______相遇;在步行过程中,若小明先到达甲地,小明的速度是______三、解答题:本题共9小题,共90分。

八年级数学竞赛试题及参考标准答案

八年级数学竞赛试题及参考标准答案
B、直角三角形中斜边的平方等于两直角边的平方和
C、直角三角形一边的平方等于其它两边的平方
D、直角三角形一边等于等于其它两边的和
12、如图4,正方形ABCD的边长为1cm,以对角线AC为边长再作一个正方形,则正方形ACEF的面积是( )
A、3cm2B、4cm2C、5cm2D、2cm2
13、以线段 为边,
八年级数学竞赛试题(二)
一、填空题(每小题4分,共40分)
1、实数包括______和________;一个正实数的绝对值是_______;一个非正实数的绝对值是_______。
2、 的算术平方根是________; 的算术平方根是__________。
3、甲、乙两位探险者到沙漠进行探险。某日早晨7∶00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进。上午10∶00,甲、乙二人的距离的平方是_____。
9.小张和小李分别从A、B两地同时出发,相向而行,第一次在距A地5千米处相遇,继续往前走到各地(B、A)后又立即返回,第二次在距B地4千米处两人再次相遇,则A、B两地的距离是千米.
10.在△ABC中,∠A是最小角,∠B是最大角,且2∠B=5∠A,若∠B的最大值为m°,最小值为n°,则m°+n°=.
11.已知 .
10、如图3,在矩形ABCD中,DC=5cm,在DC上存在一点E,沿直线
AE把△AED折叠,使点D恰好落在BC边上,设此点为F,若△ABF
的面积为30cm2,那么折叠的△AED的面积为_______。
二、选择题(每小题3分,共24分)
11、下列说法中正确的是( )
A、三角形一边的平方等于其它两边的平方和
且使a∥c作四边形,这样的四边形( )

全国初二数学竞赛试题及答案大全

全国初二数学竞赛试题及答案大全

全国初二数学竞赛试题及答案大全一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于这个数本身,那么这个数可能是:A. 0B. 1C. -1D. 2答案:A、B3. 一个等腰三角形的两边长分别为3和4,那么第三边的长度是:A. 1B. 3C. 4D. 7答案:C4. 一个数的立方根是它本身,这个数可能是:A. 0B. 1C. -1D. 8答案:A、B、C5. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 125π答案:B6. 一个数的绝对值是它本身,这个数可能是:A. 正数B. 负数C. 零D. 所有数答案:A、C7. 一个直角三角形,两直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A8. 一个数的倒数是它本身,这个数可能是:A. 1B. -1C. 2D. 0答案:A、B9. 一个数的平方根是它本身,这个数可能是:A. 0B. 1C. -1D. 2答案:A、B10. 一个数的对数是它本身,这个数可能是:A. eB. 10C. 2D. 1答案:A、B二、填空题(每题3分,共15分)11. 一个数的平方是25,这个数可能是_________。

答案:±512. 一个数的立方是-8,这个数是_________。

答案:-213. 一个数的对数以10为底是2,这个数是_________。

答案:10014. 一个正数的倒数是1/4,这个数是_________。

答案:415. 如果一个三角形的内角和为180°,那么一个四边形的内角和是_________。

答案:360°三、解答题(每题5分,共55分)16. 证明:等腰三角形的底角相等。

答案:略17. 已知一个直角三角形的两直角边分别为3和4,求斜边的长度。

答案:根据勾股定理,斜边长度为√(3² + 4²) = √(9 + 16) = √25 = 5。

希望杯数学八年级竞赛真题及答案(1-23届)

希望杯数学八年级竞赛真题及答案(1-23届)

1、第一届希望杯初二第1试试题2、第一届希望杯初二第2试试题3、第二届希望杯初二第1试试题4、第二届希望杯初二第2试试题5、第三届希望杯初二第1试试题6、第三届希望杯初二第2试试题7、第四届希望杯初二第1试试题8、第四届希望杯初二第2试试题9、第五届希望杯初二第1试试题10、第五届希望杯初二第2试试题11、第六届希望杯初二第1试试题12、第六届希望杯初二第2试试题13、第七届希望杯初二第1试试题14、第七届希望杯初二第2试试题15、第八届希望杯初二第1试试题16、第八届希望杯初二第2试试题17、第九届希望杯初二第1试试题18、第九届希望杯初二第2试试题19、第十届希望杯初二第1试试题20、第十届希望杯初二第2试试题21、第十一届希望杯初二第1试试题22、第十一届希望杯初二第2试试题23、第十二届希望杯初二第1试试题24、第十二届希望杯初二第2试试题25、第十三届希望杯初二第1试试题26、第十三届希望杯初二第2试试题27、第十四届希望杯初二第1试试题28、第十四届希望杯初二第2试试题28、第十五届希望杯初二第1试试题30、第十五届希望杯初二第2试试题31、第十六届希望杯初二第1试试题32、第十六届希望杯初二第2试试题33、第十七届希望杯初二第1试试题34、第十七届希望杯初二第2试试题35、第十八届希望杯初二第1试试题36、第十八届希望杯初二第2试试题37、第十九届希望杯初二第1试试题38、第十九届希望杯初二第2试试题39、第二十届希望杯初二第1试试题40、第二十届希望杯初二第2试试题41、第二十一届希望杯初二第1试试题42、第二十一届希望杯初二第2试试题43、第二十二届希望杯初二第1试试题44、第二十二届希望杯初二第2试试题45、第二十三届希望杯初二第1试试题46、第二十三届希望杯初二第2试试题希望杯第一届(1990年)初中二年级第一试试题一、选择题:(每题1分,共10分)1.一个角等于它的余角的5倍,那么这个角是 ( )A .45°.B .75°.C .55°.D .65°2.2的平方的平方根是 ( )A .2.B .2. C .±2. D .43.当x=1时,a 0x 10-a 1x 9+a 0x 8-a 1x 7-a 1x 6+a 1x 5-a 0x 4+a 1x 3-a 0x 2+a 1x 的值是( ) A .0B .a 0.C .a 1D .a 0-a 14. ΔABC,若AB=π27则下列式子成立的是( )A .∠A >∠C >∠B;B .∠C >∠B >∠A;C .∠B >∠A >∠C;D .∠C >∠A >∠B 5.平面上有4条直线,它们的交点最多有( ) A .4个B .5个.C .6个.D .76.725-的立方根是[ ] (A )12-. (B )21-.(C ))12(-±. (D )12+.7.把二次根式a a 1-⋅化为最简二次根式是[ ](A) a . (B)a -. (C) a --. (D) a -8.如图1在△ABC 中,AB=BC=CA ,且AD=BE=CF ,但D ,E ,F 不是AB ,BC ,CA 的中点.又AE ,BF ,CD 分别交于M ,N ,P ,如果把找出的三个全等三角形叫做一组全等三角形,那么从图中能找出全等三角形( ) A .2组B .3组.C .4组D .5组。

八年级数学竞赛试卷及答案

八年级数学竞赛试卷及答案

(第6题)八年级“城市杯”初中数学应用能力竞赛【温馨提示】(2)解答书写时不要超过装订线; (3)草稿纸不上交.一、选择题(每小题4分,共40分)1.已知2009222==-=+cb a ,且kc b a 2009=++,则k 的值为( ). A .41 B .4 C .41- D .-42.已知1=abc ,2=++c b a ,3222=++c b a ,则111111-++-++-+b ca a bc c ab 的值为( ).A .1B .21-C .2D .32-3.若x 2 -219x +1 = 0,则441x x +等于( ).A . 411B . 16121C . 1689D . 4274.使分式a xax --1有意义的x 应满足的条件是( ).A .0≠xB .)0(1≠≠a axC .0≠x 或)0(1≠≠a a xD .0≠x 且)0(1≠≠a ax5. 已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过( ). A .第一、第二象限 B .第二、第三象限 C .第三、第四象限D .第一、第四象限6.如图,在△ABC 中,AB = AC ,点D 在AB 上,DE ⊥AC 于E ,EF ⊥BC 于F . 若∠BDE =140º,那么∠DEF 等于( ). A .55°B .60°C .65°D .70°7.如图,已知边长为a 的正方形ABCD ,E 为AD 的中点,P 为CE 的中点, F 为BP 的中点,则△BFD 的面积是( ). A .281a B . 2161a C . 2321a D .2641a 得 分 评卷人8.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分 …… 如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )A .2005B .2006C .2007D .2008 9.明明用计算器求三个正整数a ,b ,c 的表达式a bc+的值.他依次按了a ,+,b ,÷,c ,=,得到数值11.而当他依次按b ,+,a ,÷,c ,= 时,惊讶地发现得到数值是14.这时她才明白计算器是先做除法再做加法的,于是她依次按(,a ,+,b ,), ÷, c ,= 而得到了正确的结果.这个正确结果是( ) A .5B .6C .7D .810. 设x 、y 、z 是三个实数,且有⎪⎪⎩⎪⎪⎨⎧=++=++.1111,2111222x y xz y x ,则zx yz xy 111++的值是( ). A .1 B .2 C .23D .3二、填空题(每小题5分,共40分)11.已知y =254245222+-----xx x x ,则x 2 + y 2 = .12.如图,在直角坐标系中,矩形OABC 的顶点B 的坐标为(15,6),直线b x y +=31恰好将矩形OABC 分成面积相等的两部分,那么b = .13.如图,AD 是△ABC 的中线,∠ADC = 45º.把△ABC 沿直线AD 折过来,点C 落在点C '的位置上,如果BC = 4,那么='C B .14.如图,在四边形ABCD中,∠A =∠C = 90 º,AB = AD .若这个四边形的面积为16,则BC + CD = .15.已知082,043=-+=--z y x z y x ,那么代数式=++++zxyz xy z y x 2222 .16.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家得 分 评卷人(第12题)(第13题)(第14题)得 分 评卷人两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 . 17.一次函数111+++-=k x k k y (k 为正整数)的图像与x 轴、y 轴的交点是A 、B ,O 为原点.设Rt △ABO 的面积是k S ,则2009321S S S S ++++ = .18.已知62-+x x 是多项式12234-+++-+b a bx ax x x 的因式,则=a ,=b .三、解答题(每题10分,共40分) 19.已知1515153330,0c b a c b a c b a ++=++=++,求的值.20.设关于x 的一次函数11b x a y +=与22b x a y +=,则称函数)(11b x a m y +=x a n 2(+)2b +(其中1=+n m )为这两个函数的生成函数.(1)当x = 1时,求函数1+=x y 与x y 2=的生成函数的值;(2)若函数11b x a y +=与22b x a y +=的图象的交点为P ,判断点P 是否在此两个函数的生成函数的图象上,并说明理由.21.我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售。

全国数学竞赛初二试题及答案

全国数学竞赛初二试题及答案

全国数学竞赛初二试题及答案一、选择题(每题5分,共20分)1. 已知a,b,c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不规则三角形2. 一个数的平方根是4,这个数是:A. 16B. -16C. 正负16D. 正负43. 一个正数的倒数是1/5,这个正数是:A. 5B. 1/5C. 5/1D. 14. 一个数的绝对值是3,这个数可能是:A. 3B. -3C. 3或-3D. 不能确定二、填空题(每题4分,共16分)1. 已知一个等差数列的首项是2,公差是3,那么第5项的值是________。

2. 一个圆的半径是5厘米,那么它的周长是________厘米。

3. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,那么它的体积是________立方厘米。

4. 一个分数的分子是8,分母是15,化简后是________。

三、解答题(每题8分,共24分)1. 解方程:2x + 5 = 13。

2. 已知一个长方体的长、宽、高分别是a、b、c,求证:长方体的对角线长度为√(a^2 + b^2 + c^2)。

3. 一个直角三角形的两条直角边分别是6厘米和8厘米,求斜边的长度。

四、证明题(每题10分,共20分)1. 证明:在直角三角形中,斜边的中线等于斜边的一半。

2. 证明:勾股定理的逆定理:如果三角形的三边长a、b、c满足a^2 + b^2 = c^2,则这个三角形是直角三角形。

五、综合题(每题20分,共20分)1. 一个长方体的长、宽、高分别是5厘米、4厘米和3厘米,求这个长方体的表面积和体积。

答案:一、选择题1. B2. A3. A4. C二、填空题1. 2 + 4 * (5-1) = 142. 2πr = 2 *3.14 * 5 = 31.43. 长 * 宽 * 高 = 2 * 3 * 4 = 244. 8/15三、解答题1. 2x = 13 - 5 => x = 42. 证明略3. 根据勾股定理,斜边长度= √(6^2 + 8^2) = √(36 + 64) = √100 = 10厘米四、证明题1. 证明略2. 证明略五、综合题1. 表面积 = 2(5*4 + 4*3 + 5*3) = 2(20 + 12 + 15) = 2 * 47 = 94平方厘米体积 = 5 * 4 * 3 = 60立方厘米结束语:本次全国数学竞赛初二试题涵盖了基础数学知识与应用,旨在考察学生的数学思维和解决问题的能力。

2024全国初中数学重点高中自招竞赛试题精选精编(解析版)

2024全国初中数学重点高中自招竞赛试题精选精编(解析版)

专题分式学校:___________姓名:___________班级:___________考号:___________一、填空题1(2024·全国·八年级竞赛)如图,已知在△ABC 中,点D 、E 、F 分别为边AB 、BC 、AC 上的点,且AE 、BF 、CD 相交于点G ,如果AG GE +BG GF +CG GD =2014,那么AG GE ⋅BG GF ⋅CGGD的值为.【答案】2016【分析】本题主要考查了三角形面积的计算,分式化简求值,解题的关键是设S △ABG =a ,S △ACG =b ,S △BCG =c ,得出AG GE =a +b c ,BG GF =a +c b ,CG DG =b +c a ,根据AG GE +BG GF +CG GD=2014,得出a +b c +a +cb +b +c a =2014,将a +b c ⋅a +c b ⋅b +c a 化简为a +b c +a +c b +a +b c +2即可得出答案.【详解】解:设S △ABG =a ,S △ACG =b ,S △BCG =c ,则AG GE=S △ABG S △BEG =S △ACG S △CEG =S △ABG +S △ACG S △BEG +S △CEG =S △ABG +S △ACG S △BCG =a +bc ,同理可得:BG GF =a +c b ,CG DG=b +ca ,∵AG GE +BG GF +CG GD =2014,∴a +b c +a +c b +b +c a =2014,∴AG GE ⋅BG GF ⋅CG GD =a +b c ⋅a +c b⋅b +c a =a +b a +c b +c abc=a 2b +a 2c +abc +ac 2+ab 2+abc +b 2c +bc 2abc=a +b c +a +c b +a +b c +2=2014+2=2016.故答案为:2016.2(2024·全国·八年级竞赛)设a 、b 、c 是互不相等的实数,且a +4b=b +4c =c +4a ,则abc =.【答案】±8【分析】本题考查分式的化简求值,由a +4b =b +4c 可得bc =4b -c a -b ,同理可得ac =4c -a b -c,ab =4a -bc -a,由此三式相乘即可解答.【详解】解:∵a +4b=b +4c =c +4a ,∴a -b =4c -4b =4b -c bc ,b -c =4a -4c =4c -a ac ,c -a =4b -4a =4a -b ab ,∴bc =4b -c a -b ,ac =4c -a b -c,ab =4a -bc -a ,∴a 2b 2c 2=4(b -c )a -b ⋅4(c -a )b -c.4(a -b )c -a =64,∴abc =±8.故答案为:±8.3(2024·全国·八年级竞赛)已知6x 3+2x 2-8x -1x 2-1 x 2-2 =Ax +B x 2-1+Cx +Dx 2-2其中A 、B 、C 、D 为常数,则A ⋅B ⋅C ⋅D =.【答案】-24【分析】此题主要考查了分式的加减运算,先对Ax +B x 2-1+Cx +D x 2-2进行计算,然后根据题意列出关于A 、B 、C 、D 的方程组即可解决问题,解题的关键是熟练掌握分式的运算及法则的应用.【详解】解:6x 3+2x 2-8x -1x 2-1 x 2-2 =A +C x 3+B +D x 2-2A +C x -2B +D x 2-1 x 2-2 Ax +B x 2-1+Cx +Dx 2-2=Ax +B x 2-2 x 2-1 x 2-2 +Cx +D x 2-1 x 2-1 x 2-2=A +C x 3+B +D x 2-2A +C x -2B +Dx 2-1 x 2-2,∵6x 3+2x 2-8x -1x 2-1 x 2-2 =Ax +B x 2-1+Cx +D x 2-2,∴A +C =6,B +D =2,2A +C =8,2B +D =1,解得A =2,B =-1,C =4,D =3,∴A ⋅B ⋅C ⋅D =2×-1 ×4×3=-24,故答案为:-24.4(2024·全国·八年级竞赛)已知实数x ,y 满足条件1x -1y =2x +y ,则代数式y 2x -x2y=.【答案】1【分析】本题主要考查代数式求值,先将1x -1y =2x +y 变形为2xy =y -x y +x ,再把y 2x -x2y变形为y -x y +x2xy,然后代入计算即可.【详解】解:∵1x -1y =2x +y,∴2xy =y -x y +x ,∴y 2x -x 2y=y2-x2 2xy=y-xy+x2xy=y-xy+xy-xy+x=1,故答案为:1.5(2024·全国·七年级竞赛)已知实数a、b、c满足等式a2013=b2014=c2015,且2a+b-c=8050,则a-b+12c+1=.【答案】2014【分析】本题考查了分式的化简求值,代数式求值;解题的关键是令a2013=b2014=c2015=k求出a、b、c的值.令a2013=b2014=c2015=k,求得a=2013k,b=2014k,c=2015k,结合题意求出a、b、c的值,代入即可求解.【详解】解:设a2013=b2014=c2015=k,故a=2013k,b=2014k,c=2015k,则2a+b-c=2×2013k+2014k-2015k,即2×2013k+2014k-2015k=8050,解得:k=2;∴a=4026,b=4028,c=4030,∴a-b+12c+1=4026-4028+12×4030+1=2014.故答案为:2014.6(2024·全国·八年级竞赛)已知实数x、y、z满足下列等式:xyx+y =1b-1,yzy+z=1b,xzx+z=1b+1,那么代数式xyzxy+xz+yz的值为.【答案】1 6【分析】本题考查了分式的混合运算,熟练掌握分数的混合运算法则是解题的关键.根据分式的性质将分式适当变形后进行计算即可.【详解】由题意知xy、yz、xz都不为零,∴x+yxy=b-1 y+zyz=bx+zxz=b+1,即1x+1y=3 1y+1z=4 1x+1z=5,∴1x +1y +1z =6,即xy +yz +xz xyz =6,∴xyz xy +xz +yz =16.故答案为:16.7(2024·全国·八年级竞赛)已知三个数x ,y ,z 满足xy x +y =2015,yz y +z =43,zx z +x =-43,则xyzxy +yz +zx 的值为.【答案】4030【分析】本题考查分式的化简求值,灵活运用分式的运算法则是解答的关键.将所有分式的分子和分母颠倒位置,然后利用分式的混合运算法则化简求解即可.【详解】解:将所有分式的分子和分母颠倒位置,则由xy x +y =2015得x +y xy =1x +1y =120151 ,由yz y +z =43得y +z yz =1y +1z =342 ,由zx z +x =-43得x +z xz =1x +1z =-343 ,三式相加得21x +1y +1z=12015,则1x +1y +1z =xy +yz +zx xyz =12⋅12015=14030,∴xyzxy +yz +zx=4030.8(2024·全国·八年级竞赛)如图,将一张矩形卡片按图1所示的方式分成四块后,恰好能拼成图2所示的矩形,若S ①:S ③=1:5,则a :b =.【答案】2∶3【分析】本题主要考查了整式混合运算的应用,求比值,解题的关键是理解题意,根据S ①:S ③=1:5,得出S 矩形ABFE :S 矩形EFCD =1:5,求出AE ED=15,设AE =x ,则ED =5x ,得出a +b x +5x =b ⋅5x +5x ,求出3a =2b ,即可求出结果.【详解】解:如图所示,∵S ①:S ③=1:5,∴S 矩形ABFE :S 矩形EFCD =1:5,∴a +b ⋅AE a +b ⋅ED=15,∴AE ED=15,设AE =x ,则ED =5x ,∴a +b x +5x =b ⋅5x +5x ,整理得:3a =2b ,∴a :b =2:3.故答案为:2:3.9(2024·全国·八年级竞赛)对于正数x ,规定f x =x x +1,例如f 1 =11+1=12,f 2 =22+1=23,f 12 =1212+1=13,则f 12017 +f 12016 +⋯+f 12 +f 1 +f 2 +⋯+f 2016 +f 2017 =.【答案】40332【分析】本题考查代数式求值,分式的加法以及数字类规律探究,理解新定义函数的意义,掌握数字所呈现的规律是解决问题的关键.利用加法结合律以及探究所得规律得出答案.【详解】解:∵f x =xx +1,∴f x +f 1x =x x +1+1x1x+1=x x +1+1x +1=1,∴f 12017+f 12016 +⋯+f 12 +f 1 +f 2 +⋯+f 2016 +f 2017 =f 12017 +f 2017 +f 12016 +f 2016 +⋯+f 12 +f 2+f 1 =2016+11+1=40332.故答案为:40332.10(2024·全国·八年级竞赛)若x 为正数,且x -1x =3,则x x 2-x +1=.【答案】13+112【分析】先求出x 2+1x 2=11,再求出x +1x =13,最后整体代入x x 2-x +1=1x -1+1x进求解即可,此题考查了分式的运算和二次根式的运算,熟练掌握运算法则和灵活变形是解题的关键.【详解】解:∵x 为正数,且x -1x=3,∴x -1x 2=9,x +1x >0,即x 2+1x 2=11,∴x +1x 2=x 2+1x 2+2=13,∴x +1x =13,∴x x 2-x +1=1x -1+1x =113-1=13+112,故答案为:13+11211(2024·全国·八年级竞赛)已知x =2y +33y -2,则3x -2 3y -2 的值为.【答案】13【分析】本题考查了分式的混合运算,多项式乘以多项式,根据x 的值和题中式子即可求解,根据解题的关键是明确它们各自的计算方法.【详解】解:∵x =2y +33y -2,∴3x -2=6y +93y -2-2=6y +9-6y +43y -2=133y -2,∴3x -2 3y -2 =133y -2×3y -2 =13,故答案为:13.12(2024·全国·八年级竞赛)比较大小:22000+122001+1-22001+122002+10(填“>”、“=”或“<”).【答案】>【分析】本题考查了实数的比较大小,异分母分式的运算.熟练掌握以上知识点并灵活运用是解题的关键.设a =22000,根据22000+122001+1-22001+122002+1=a +12a +1-2a +14a +1=a 8a 2+6a +1>0作答即可.【详解】解:设a =22000,∴22000+122001+1-22001+122002+1=a +12a +1-2a +14a +1=a 8a 2+6a +1>0,故答案为:>.13(2024·全国·八年级竞赛)已知11的小数部分为a .则a 2-6a +9a 2+7a +12÷a -3a +4-aa +3=.【答案】-31111/-31111【分析】本题考查了分式的混合运算,无理数的估算,分母有理化,先根据分式的运算法则把所给代数式化简,再求出a 的值,然后代入化简后的结果计算即可.【详解】解:a 2-6a +9a 2+7a +12÷a -3a +4-aa +3=a -3 2a +3 a +4 ×a +4a -3-a a +3=a -3a +3-a a +3=-3a +3,∵3<11<4,∴11的整数部分3,∴a =11-3.∴-3a +3=-31111.故答案为:-31111.14(2024·全国·八年级竞赛)函数y =x -4-2-x -3x -5的自变量x 的取值范围是.【答案】x ≥3且x ≠4且x ≠5【分析】本题考查确定函数自变量取值范围.熟练掌握负整指数幂有意义的条件,二次根式有意义的条件,分式有意义的条件是解题的关键.根据题意得不等式组x -3≥0x -4≠0,x -5≠0求解即可.【详解】解:根据题意,得x -3≥0x -4≠0,x -5≠0∴x ≥3且x ≠4且x ≠5.故答案为:x ≥3且x ≠4且x ≠5.15(2024·全国·八年级竞赛)如果对于分式3x 2+4x +m,存在两个数使分式没有意义,则m 的取值范围是.【答案】m <4【分析】本题主要考查了分式有意义的条件、一元二次方程根的判别式等知识点,理解分式有意义的条件是解题的关键.由存在两个数使分式没有意义,则对于x 2+4x +m =0的判别式Δ>0,据此列不等式求解即可.【详解】解:∵分式3x 2+4x +m,存在两个数使分式没有意义,∴x 2+4x +m =0有两个解,∴Δ=42-4m >0,解得:m <4,∴当m <4时,存在两个实数使原式没有意义.故答案为m <4.二、单选题16(2024·全国·九年级竞赛)要使式子x +6x有意义,则x 的取值范围是()A.x ≥-6B.x ≠0C.x >6D.x ≥-6且x ≠0【答案】D【分析】本题主要考查了二次根式有意义的条件,分式有意义的条件.熟练掌握概念是解题的关键.分子上的二次根式要有意义,根号里面的式子为非负数,且分母不为零,分别求解满足条件的x 值.【详解】∵式子x +6x有意义,∴x +6≥0,x ≠0,∴x ≥-6且x ≠0.故选:D .17(2024·全国·八年级竞赛)已知1x +1y =2,则2x +3xy +2y 3x -2xy +3y的值为()A.74B.72C.5D.12【答案】A【分析】本题考查分式的化简求值,根据1x +1y =2得x +y =2xy ,再将2x +3xy +2y 3x -2xy +3y的分子分母变形为含xy 的式子,即可解题.【详解】解:由1x +1y=2得x +y =2xy ,则2x +3xy +2y 3x -2xy +3y =2x +y +3xy 3x +y -2xy =7xy 4xy =74.故选:A .18(2024·全国·八年级竞赛)已知实数x ,y 满足x +y =2,xy =-5,则xy +y x 的值为( ).A.65B.-145C.-65D.-45【答案】B【分析】本题考查了分式的化简求值,配方法,熟练掌握完全平方公式是解答本题的关键.先将xy +y x通分,然后将分子配方,并将分式化简成只含x +y ,xy 的代数式,最后将x +y ,xy 的值代入并计算即得答案.【详解】xy +y x =x 2+y 2xy=x 2+2xy +y 2-2xy xy=(x +y )2xy -2,当x +y =2,xy =-5时,原式=22-5-2=-145.故选B.19(2024·全国·八年级竞赛)若分式x-1x -2的值为正数,则x的取值范围是()A.1<x<2或x<-2B.x<-2或x>2C.-2<x<1或x>2D.-2<x<2【答案】C【分析】根据题意列出不等式组,解不等式组则可.此题考查分式的值,解不等式组,解题关键在于根据题意列出不等式组.【详解】解:∵分式x-1x -2的值为正数,∴x -2>0x-1>0或x -2<0x-1<0,解得:-2<x<1或x>2.故选:C.20(2024·全国·七年级竞赛)灰太狼在跑一段山路时,上山速度是80米/分,到达山顶后再下山,下山的速度是上山速度的3倍,如果上、下山的路程相同,那么灰太狼跑这段山路的平均速度是()A.160米/分B.140米/分C.60米/分D.120米/分【答案】D【分析】本题考查了分式乘除的应用,整式加减的应用,正确理解题中的数量关系是解答本题的关键,设上坡的路程为S,则上、下坡的总路程为2S,可逐步求得上下坡的总时间,最后利用平均速度等于上、下坡的总路程除以总时间,计算即得答案.【详解】设上坡的路程为S,则上、下坡的总路程为2S,上坡时间为S80,下坡时间为S80×3=S240,总时间为S80+S240=S60,所以平均速度为2S÷S60=120(米/分).故选D.21(2024·全国·八年级竞赛)若xx2+x+1=15,则x2x4+x2+1=()A.5B.115C.4 D.14【答案】B【分析】本题考查分式的化简求值和完全平方公式,根据xx2+x+1=15得出x+1x=4,再将x2x4+x2+1变形为1x+1x2-1,将x+1x=4整体代入求值即可.【详解】解:∵xx2+x+1=1x+1x+1=15,∴x+1x=4,∴x2x4+x2+1=1x2+1x2+1=1x+1x2-1=142-1=115,故选B.22(2024·全国·八年级竞赛)若x2-3x+1=0,则x2x4+x2+1的值是( ).A.8B.110C.18D.14【答案】C【分析】本题考查了分式的混合运算,完全平方公式变形求值,换元法,由x2-3x+1=0得到x2+1x2=7,设x2x4+x2+1=A,得到1A=x2+1x2+1,代入即可求解,掌握完全平方公式是解题的关键.【详解】解:由x2-3x+1=0知x≠0,∴x+1x=3,∴x2+1x2=7,设x2x4+x2+1=A,则1A=x2+1x2+1=8,∴A=18,即x2x4+x2+1=18,故选:C.三、解答题23(2024·全国·九年级竞赛)若x-3x-2=13+2+1,求1-1x-2÷x-4+1x-2的值.【答案】3+2【分析】本题考查了分式的化简求值,涉及整体代入法;先化简分式,再由x-3x-2=13+2+1,得到x-2 x-3=3+2+1,变形为1+1x-3=3+2+1,即可求得1x-3的值.关键是由已知变形求得1x-3.【详解】解:1-1 x-2÷x-4+1x-2=x-3 x-2÷x2-6x+9x-2=x-3 x-2·x-2 x-3 2=1x-3;∵x-3 x-2=13+2+1,∴x-2x-3=3+2+1,∴1+1x-3=3+2+1,∴1x-3=3+2,即原式=3+2.24(2024·全国·九年级竞赛)已知实数a 满足a 2+2a -2016=0,求a 2-2a +1a 2+5a +4×a +4a 2-1-1a +1的值.【答案】-22017.【分析】此题考查了分式的化简求值,先把要求的式子进行计算,先进行因式分解,再把除法转化成乘法,然后进行约分,得到一个最简分式,最后把a 2+2a -2016=0进行配方,得到a +1 2=2017的值,再把它整体代入即可求出答案,解题的关键是熟练掌握分式化简的步骤.【详解】解:由a 2+2a -2016=0可得(a +1)2=2017,a 2-2a +1a 2+5a +4×a +4a 2-1-1a +1=(a -1)2a +1 a +4 ×a +4a -1 a +1-1a +1,=a -1(a +1)2-1a +1,=-2(a +1)2,=-22017.25(2024·全国·八年级竞赛)先化简,再求值:x 2-1x 2+x÷x +1x -2 ,其中x =2.【答案】1x -1,2+1【分析】本题考查了分式的混合运算以及分母有理化,解答时,先进行分式运算,再代入求值即可.【详解】解:x 2-1x 2+x÷x +1x -2 =x -1 x +1 x x +1 ÷x 2+1-2x x =x +1 x -1x x +1÷x -12x =x +1 x -1 x x +1 ⋅x x -1 2=1x -1,当x =2时,原式=12-1=2+1.26(2024·全国·八年级竞赛)如图1,有一个高为hcm 的瓶子,瓶中水面的高度为acm ,盖好瓶盖后倒置,这时瓶中水面的高度为bcm ,如图2,用代数式表示瓶中水的体积与瓶子容积之比;当a =9,b =15,h =21时,求出这个比值.【答案】a a +h -b ,35【分析】此题考查圆柱体体积的应用,解题的关键是理解掌握“转化”的思想方法在推导过程中的应用.根据“瓶子容积等于正放时水的体积加倒放时空白的体积”,即可列式;瓶子容积等于正放时水的体积加倒放时空白的体积,即底面积×9+底面积×21-15 ,也就是底面积×15;水的体积为底面积×9,即可得到答案.【详解】解:瓶子容积等于正放时水的体积加倒放时空白的体积,设瓶子的底面积为S ,即Sa +S h -b ;水的体积为Sa ,∴瓶中水的体积与瓶子容积之比为Sa Sa +S h -b=aa +h -b ,∵瓶子的容积=底面积×9+底面积×21-15 =底面积×15,水的体积=底面积×9,∴瓶中水的体积:瓶子容积=(底面积×9):(底面积×15)=35,答:这个比值是35.27(2024·全国·八年级竞赛)(1)求证:1+1n 2+1(n +1)2=1+1n 2+n2;(2)计算:1+112+122+1+122+132+⋯+1+120162+120172.【答案】(1)证明见解析(2)201620162017【分析】本题主要考查了分式的化简求值,数字规律的运算;对于(1),先将等式左边通分,再根据完全平方公式整理可得答案;对于(2),先根据(1)整理得1+1n 2+1n +1 2=1+1n n +1 =1+1n -1n +1,再计算加减即可得出答案.【详解】(1)解:1+1n 2+1n +12=n 2n +1 2+n +1 2+n 2n 2n +1 2=n 2n +1 2+2n n +1 +1n 2n +1 2=n n +1 +1n n +12=1+1n 2+n2;(2)由(1)可知1+1n 2+1n +1 2=1+1n n +1=1+1n -1n +1,则原式=1+11-12+1+12-13+1+13-14+⋯+1+12016-12017=1×2016+1-12017=201620162017.28(2024·全国·八年级竞赛)(1)计算24×13-4×18×(2015-2016)0;(2)先化简,再求值:x 2-y 2x 2-2xy +y 2+xy -x÷y 2x 2-xy,其中x 、y 满足x +1+(y -3)2=0.【答案】(1)2(2)化简得:x y ;原式=33【分析】本题考查有理数的运算和分式的化简求值,熟练掌握二次根式的运算和正确化简分式是解题的关键,(1)根据二次根式的运算法则和零指数幂即可得到结果;(2)直接利用括号里面因式分解进行化简,再利用分式乘除运算法则化简,再根据二次根式、绝对值的性质得出x 、y 的值,进行代入求出答案.【详解】解:(1)原式=26×33-4×24×1=22-2=2;(2)原式=x -y x +y x -y2+x y -x ×x x -y y 2=x +y x -y -xx -y×x x -y y 2=yx -y ×x x -y y 2=x y.∵x +1+(y -3)2=0,∴x -1=0,y -3=0,∴x =1,y =3,故原式=x y =13=33.29(2024·全国·七年级竞赛)已知a 、b 、c 均为大于1的正整数,且1a <1b <1c ,1a +1b +1c -1abc为正整数.求a +b +c 的值.【答案】10【分析】本题考查异分母分式的加减,先得出1<1a +1b+1c <3c ,求出c =2,进而得出a =4或5,当a =4,b =3,c =2时,1a +1b +1c -1abc =2524(舍).当a =5,b =3,c =2时,1a +1b +1c -1abc=1,进而可得出答案.【详解】解:因为1a +1b +1c -1abc 为正整数,且a 、b 、c 为大于1的正整数,1a <1b <1c ,所以1<1a +1b+1c <3c ,得1<c <3,所以c =2,∴1a +1b >1-1c =12,得12<1a +1b <2b ,所以c <b <4,∴b =3.∴1a >1-1b -1c =16,得b <a <6,所以a =4或5,当a =4,b =3,c =2时,1a +1b +1c -1abc =2524(舍).当a =5,b =3,c =2时,1a +1b+1c -1abc=1,所以a +b +c =5+3+2=10.30(2024·全国·八年级竞赛)如果a 、b 、c 是不同的实数,且a 3+3a +15=b 3+3b +15=c 3+3c +15=0,求1a +1b+1c 的值.【答案】-15【分析】本题考查分式的求值,根据a 3+3a +15=b 3+3b +15=c 3+3c +15=0,得到a 、b 、c 都是方程x 3+3x +15=0的根,进而得到x 3+3x +15=x -a x -b x -c ,推出abc =-15,ab +bc +ac =3,即可得出1a +1b+1c 的值.解题的关键是得到x 3+3x +15=x -a x -b x -c .【详解】解:1a +1b +1c =ac +bc +acabc,∵a 、b 、c 是不同的实数,且a 3+3a +15=b 3+3b +15=c 3+3c +15=0,∴a 、b 、c 都是方程x 3+3x +15=0的根.∴x 3+3x +15=x -a x -b x -c ,∴abc =-15,ab +bc +ac =3.∴1a +1b+1c =3-15=-15.31(2024·全国·八年级竞赛)求值:12+13+14+15+1⋯+12007+11+11+13+14+15+1⋯+【答案】1【分析】本题考查了繁分式的计算,设1+13+14+1⋯+12007=x ,变形计算即可.【详解】解:设1+13+14+1⋯+12007=x ,则原式=11+x +11+1x=11+x +x x +1=1+x1+x =1.32(2024·全国·八年级竞赛)设a ,b ,c 都是实数,若(a -2b +c )2+(a -2c +b )2+(b -2a +c )2=(a -b)2+(b-c)2+(c-a)2,求分式2ab2+7(2ab+6)2bc2+7(bc+3)的值.【答案】2【分析】本题主要考查了分式化简求值,解题的关键是熟练掌握分式的性质.设a-b=x,b-c=y,c-a =z,得出x2+y2+z2-2xy-2yz-2zx=0①,x+y+z2=x2+y2+z2+2xy+2yz+2zx=0②,由①+②得x2+y2+z2=0,求出x=y=z=0,则a=b=c,代入进行变形求值即可.【详解】解:设a-b=x,b-c=y,c-a=z,由已知得:(x-y)2+(y-z)2+(z-x)2=x2+y2+z2,故x2+y2+z2-2xy-2yz-2zx=0,①又x+y+z=a-b+b-c+c-a=0,故x+y+z2=x2+y2+z2+2xy+2yz+2zx=0,②①+②得x2+y2+z2=0,故x=y=z=0,则a=b=c,∴原式=22a3+7a2+32a3+7a2+3=2.。

八年级数学竞赛试题(含答案)-

八年级数学竞赛试题(含答案)-

CD八年级数学竞赛试题一、选择题:1.方程组12,6x y x y ⎧+=⎪⎨+=⎪⎩的解的个数为( ).2.口袋中有20个球,其中白球9个,红球5个,黑球6个.现从中任取10个球,使得白球不少于2个但不多于8个,红球不少于2个,黑球不多于3个,那么上述取法的种数是( ). (A ) 14 (B ) 16 (C )18 (D )20 3.已知三个关于x 的一元二次方程02=++c bx ax ,02=++a cx bx ,02=++b ax cx恰有一个公共实数根,则222a b c bc ca ab++的值为( ). (A ) 0 (B )1 (C )2 (D )3 4.若3210x x x +++=,则2627--+x x+ … +x x ++-11+ … +2726x x +的值是( )(A )1 (B )0 (C )-1 (D )25.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) (A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限 (D )第三、四象限6.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )(A)1个 (B) 2个 (C) 3个 (D)无穷多个8.如图在四边形ABCD 中,∠DAB=∠BCD=90°,AB=AD ,若这个四边形的面积是10,则BC+CD 等于( ) A .54 B .102 C .64D .289.线段a x y +-=21(1≤x ≤3,),当a 的值由-1增加到2时,该线段运动所经过的平面区域的面积为 ( )A .6B .8C .9D .1010.四条直线两两相交,且任意三条不交于同一点,则这四条直线共可构成的同位角有( ) (A )24组 (B )48组 (C )12组 (D )16组 11、如图,P 是△ABC 内一点,BP ,CP ,AP 的延长线分别与 AC ,AB ,BC 交于点E ,F ,D 。

八年级数学竞赛试题及答案

八年级数学竞赛试题及答案

八年级数学竞赛试题及答案1.将1、2、3、4、5这五个数字排成一排,使得最后一个数是奇数且其中任意连续三个数之和都能被这三个数中的第一个数整除。

求满足要求的排法数量。

答案:3种2.XXX沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车。

假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车。

求发车间隔的时间。

答案:18分钟3.如图,在三角形ABC中,AB=7,AC=11,点M是BC 的中点,AD是∠BAC的平分线,MF∥AD。

求FC的长度。

答案:FC=54.已知0<a<1,且满足$\left\lfloor\frac{a+1}{2}\right\rfloor+\left\lfloor\frac{a+2}{3}\right\rfloor+\cdots+\left\lfloor\frac{a+29}{30}\right\rfloor=18$,求$\left\lfloor10a\right\rfloor$的值。

答案:25.XXX家电话号码原为六位数。

第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码。

XXX发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍。

求XXX家原来的电话号码。

答案:6.在平面上有7个点,其中任意3个点都不在同一条直线上。

如果连接这7个点中的每两个点,那么最多可以得到21条线段;以这些线段为边,最多能构成35个三角形。

7.设a、b、c均是不为0的实数,且满足$a^2-b^2=bc$及$b^2-c^2=ca$。

证明:$a^2-c^2=ab$。

8.如图,在凹四边形ABCD中,它的三个内角∠A、∠B、∠C均为45度。

E、F、G、H分别是边AB、BC、CD、DA的中点。

证明:四边形EFGH是正方形。

9.已知长方形ABCO,O为坐标原点,点B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限且是直线y=2x+6上的一点,若△APD是等腰直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高滩中学2014-2015(上)八年级数学竞赛答案
1、B ;
由2a =3,2c =12,得2a ·2c =3×12. 即2c a +=36=62,而2b =6
c a b a b b c a +===∴+22)2(22
2、:∵a+b=-2,∴a=-b-2,b=-2-a ,
又∵a≥2b ,∴-b-2≥2b ,a≥-4-2a ,
移项,得-3b≥2,3a≥-4,
∴b≤- 2/3<0(不等式的两边同时除以-3,不等号的方向发生改变);
a≥- 4/3;由a≥2b ,得 a/b≤2 (不等式的两边同时除以负数b ,不等号的方向发生改变);
A 、当a >0时, b/a≤ 1/2, b/a 有最大值是 1/2,;故本选项错误;
B 、当- 4/3≤a <0时, b/a≥ 1/2, b/a 有最小值是 1/2,无最大值;故本选项错误;
C 、∴ a/b 有最大值2;故本选项正确;
D 、∴ a/b 无最小值;故本选项错误.
故选C .
3、A
解析:由条件13x ≤≤,可得1324x x x ---=-,当1x =,得最小值-2,当3x =,得最大值2,故选A
4、C
5、C
商品的原价为m/20% 进价为m/20%-m 进价提高25%后的进价为:(m/20%-m)X(1+25%)要求每件仍获利m 元,可得 提高进价后的卖价为:(m/20%-m)X(1+25%)+m
利润率为m/(m/20%-m)X(1+25%)+m 等于1/6 约等于16.67%
6、31
由勾股定理,得 .因为b 是整数,,所以是1到4023之间的奇数,而且是完全平方数,这样的数共有31个,即
.因此a 一定是3,5,…,63,故满足条件的直角三角形的个数
为31.
7、166
因为2和3互为质数,所以能同时被2和3整除的数是6的倍数,1000以内是6的倍数为6,12,18,……….996,即为6×(1+2+…+166),所以共有166个
8、提示:[]9,8,710
7,01,23,65=--<--<<≤--<≤-<≤z y x z y x z y x 从而则
9、设:甲、乙两站相距S 千米,则
7080+s +2=5080+s ,解得S =1950千米.
10、【解】Q 2125x x x x =+-=(,∴5x x
= 又Q 01x <<5x x = 11、解:│x+2│+│x-2│+│y-5│+│y+1│=10
∴51,22≤≤-≤≤-y x
∴当x=2,y=5时,x+y 的最大值=7
当x=-2,y=-1时,x+y 的最小值=-3
12、12个
不妨设三条边分别为a,b,c 且a<b<c,则有1510,30<<⎩
⎨⎧>+-=+C c b a c b a 得 因c 为整数,故c=11,12,13,14
当c=11时,b=10,a=9.
当c=12时,b=11,a=7;b=10,a=8
当c=13时,b=12,a=5;b=11,a=6;b=10,a=7;b=9,a=8
当c=14时,b=13,a=3;b=12,a=4;b=11,a=5;b=10,a=6;b=9,a=7
13、由已知等式得1511=+a b 1711=+c b 1611=+a
c 所以:24111=++c
b a 又因为=++ab
c ca bc ab b
a c 111++=24
abc
+ +=
24
1
所以
ca
bc
ab。

相关文档
最新文档