南航双语矩阵论matrix theory第7章部分习题参考答案

合集下载

矩阵理论习题与答案

矩阵理论习题与答案

矩阵理论习题与答案矩阵理论习题与答案矩阵理论是线性代数中的重要内容之一,它在数学、工程、计算机科学等领域都有广泛的应用。

为了帮助读者更好地理解和掌握矩阵理论,本文将介绍一些常见的矩阵理论习题,并提供详细的答案解析。

一、基础习题1. 已知矩阵A = [[2, 3], [4, 5]],求A的转置矩阵。

答案:矩阵的转置是将其行和列互换得到的新矩阵。

所以A的转置矩阵为A^T = [[2, 4], [3, 5]]。

2. 已知矩阵B = [[1, 2, 3], [4, 5, 6]],求B的逆矩阵。

答案:逆矩阵是指与原矩阵相乘得到单位矩阵的矩阵。

由于B是一个2×3的矩阵,不是方阵,所以不存在逆矩阵。

3. 已知矩阵C = [[1, 2], [3, 4]],求C的特征值和特征向量。

答案:特征值是矩阵C的特征多项式的根,特征向量是对应于每个特征值的线性方程组的解。

计算特征值和特征向量的步骤如下:首先,计算特征多项式:det(C - λI) = 0,其中I是单位矩阵,λ是特征值。

解特征多项式得到特征值λ1 = 5,λ2 = -1。

然后,将特征值代入线性方程组 (C - λI)x = 0,求解得到特征向量:对于λ1 = 5,解得特征向量v1 = [1, -2]。

对于λ2 = -1,解得特征向量v2 = [1, -1]。

所以C的特征值为λ1 = 5,λ2 = -1,对应的特征向量为v1 = [1, -2],v2 = [1, -1]。

二、进阶习题1. 已知矩阵D = [[1, 2], [3, 4]],求D的奇异值分解。

答案:奇异值分解是将矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,一个是对角矩阵。

计算奇异值分解的步骤如下:首先,计算D的转置矩阵D^T。

然后,计算D和D^T的乘积DD^T,得到一个对称矩阵。

接下来,求解对称矩阵的特征值和特征向量。

将特征值构成对角矩阵Σ,特征向量构成正交矩阵U。

最后,计算D^T和U的乘积D^TU,得到正交矩阵V。

南航双语矩阵论期中考试卷mid-term-exam(2014)优选全文

南航双语矩阵论期中考试卷mid-term-exam(2014)优选全文

Mid-term Exam of Matrix Theory (2014)Preferentially Selected Five Questions (5×20 )Q1.Given A ∈P n ×n ,consider the following questions.1)If A is invertible,prove that A −1can be represented by the polynomial of A with degree less than n .2)For any positive integer k ∈N ,prove that A k can be represented by the polynomial of A with degree less than n .3)Especially A = 11221,find the representative polynomials of A −1and A 2014as men-tioned in 1)and 2).Q2.Denote A a linear transformation in R 3,α1,α2,α3the basis of R 3.Suppose that the representation matrix of A with respect to α1,α2,α3is A = 12020−2−2−1.1)Show that β1=α1,β2=α1+α2,β1=α1+α2+α3also form a basis of R 3.2)Determine the representative matrix of A with respect to β1,β2,β2.3)Find the eigenvalues and eigenvectors of A .Q3.Denote R [x ]3to be the vector space of zero and polynomials with degree less than 3.1)Determine the dimension of R [x ]3and give a basis of R [x ]3.2)Define the linear transformation D on R [x ]3,D (f (x ))=f (x ),∀f (x )∈R [x ]3.Show R (D )and ker(D ).3)Prove that D is not diagonalizable.4)Define the inner product on R [x ]3,(f,g )= 1−1f (x )g (x )dx,∀f (x ),g (x )∈R [x ]3,please Gram-Schmidt orthogonalize the basis given in 1).Q4.1)To the best of your knowledge about λ−matrix,determine if the following two matrices are similar or not,and give reason,1A =210021002 ,B = 2a 002a 002 .2)Denote V ={ a 11a 12a 21a 22∈R 2×2|a 11=a 22}.i)Find a basis of V and show the dimension.ii)Arbitrarily given A = a 11a 12a 21a 22 and B = b 11b 12b 21b 22in V ,define (A,B )=a 11b 11+2a 12b 12+a 21b 21.Please show that (A,B )is an inner product on V .Q5.Given A ∈C m ×n and b ∈C m ,please prove1)there exists a real number α>0such that A H A +αI is nonsingular;2)the solution to the least square problem min x ∈C n{ Ax −b 2+α x 2}is x ∗=(A H A +αI )−1A H b ,where · stands for the 2−norm in C m .Q6.Given A ∈R n ×n ,summarize the necessary and sufficient conditions of A to be di-agonalizable,and prove at least one of them.Determine if the matrix A given in Q2is diagonalizable or not.If yes,please explain why,if not,please give the Jordan canonical form of A .2。

南航矩阵论课后习题答案

南航矩阵论课后习题答案

南航矩阵论课后习题答案南航矩阵论课后习题答案矩阵论是数学中的一个重要分支,广泛应用于各个领域,包括物理学、工程学、计算机科学等等。

南航的矩阵论课程是培养学生数学思维和解决实际问题的重要环节。

在课后习题中,学生需要运用所学的矩阵理论知识,解答各种问题。

下面是南航矩阵论课后习题的一些答案和解析。

1. 已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求A的逆矩阵。

解析:要求一个矩阵的逆矩阵,需要先判断该矩阵是否可逆。

一个矩阵可逆的充要条件是其行列式不为零。

计算矩阵A的行列式,得到det(A) = -3。

因此,矩阵A可逆。

接下来,我们可以使用伴随矩阵法求解逆矩阵。

首先,计算矩阵A的伴随矩阵Adj(A),然后将其除以行列式的值,即可得到逆矩阵。

计算得到A的伴随矩阵为Adj(A) = [-3 6 -3; 6 -12 6; -3 6 -3]。

最后,将伴随矩阵除以行列式的值,即可得到矩阵A的逆矩阵A^-1 = [-1 2 -1; 2 -4 2; -1 2 -1]。

2. 已知矩阵A = [2 1; 3 4],求A的特征值和特征向量。

解析:要求一个矩阵的特征值和特征向量,需要先求解其特征方程。

特征方程的形式为|A - λI| = 0,其中A为给定矩阵,λ为特征值,I为单位矩阵。

计算得到特征方程为|(2-λ) 1; 3 (4-λ)| = (2-λ)(4-λ) - 3 = λ^2 - 6λ + 5 = 0。

解这个二次方程,得到特征值λ1 = 1,λ2 = 5。

接下来,我们可以求解对应于每个特征值的特征向量。

将特征值代入(A - λI)x = 0,即可求解出特征向量。

对于特征值λ1 = 1,解得特征向量x1 = [1; -1];对于特征值λ2 = 5,解得特征向量x2 = [1; 3]。

3. 已知矩阵A = [1 2; 3 4],求A的奇异值分解。

解析:奇异值分解是将一个矩阵分解为三个矩阵的乘积:A = UΣV^T,其中U和V是正交矩阵,Σ是对角矩阵。

重庆大学矩阵论课后习题答案第七章答案精选全文

重庆大学矩阵论课后习题答案第七章答案精选全文

可编辑修改精选全文完整版第七章答案第三题证明:验证P-M 的第一个方程成立1111BQ A P B PAQQ A P PAQ PAA AQ PAQ B -------====第四题证明:验证P-M 的前两个个方程成立第六题 略第七题让求A -({}1A ),更确切的说应该是让求一个A -,因为如果A 不是通常可逆的情况下A -不唯一,当然,在通常应用情况下,我们只要求出一个就可以满足我们的要求了,书上也是侧重求出其中的一个。

解:(1) 略如果用满值分解法做出的结果是1011101500152022⎛⎫ ⎪ ⎪ ⎪⎝⎭(2)2342111111111112111111111111211111A E E ⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪-⎛⎫ ⎪ ⎪==-- ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭令10110100121120,00100110001P Q -⎛⎫⎛⎫ ⎪- ⎪ ⎪=-= ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭则22010012000000000E A Q P -⎛⎫ ⎪-⎛⎫ ⎪== ⎪ ⎪⎝⎭ ⎪⎝⎭如果用满值分解法做出的结果是100315533355033⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪⎝⎭第十二题对于低阶矩阵来说,最大秩分解是最有效的而且是最方便的,但如果今后遇到一些复杂的矩阵时,我们可以考虑其它分解方法第十三题解:102120425A +⎛⎫= ⎪⎝⎭最小范数解为:0102111120422550x A β+⎛⎫⎛⎫⎛⎫ ⎪=== ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭通解为:1122121421()225x x x x A E A A x x x β+++-⎛⎫⎛⎫=+-= ⎪ ⎪-+⎝⎭⎝⎭第十四题类似第十三题。

南京航空航天大学研究生课程《矩阵论》内容总结与习题选讲

南京航空航天大学研究生课程《矩阵论》内容总结与习题选讲

《矩阵论》复习提纲与习题选讲Chapter1 线性空间和内积空间内容总结:z 线性空间的定义、基和维数;z 一个向量在一组基下的坐标;z 线性子空间的定义与判断;z 子空间的交z 内积的定义;z 内积空间的定义;z 向量的长度、距离和正交的概念;z Gram-Schmidt 标准正交化过程;z 标准正交基。

习题选讲:1、设表示实数域3]x [R R 上次数小于3的多项式再添上零多项式构成 的线性空间(按通常多项式的加法和数与多项式的乘法)。

(1) 求的维数;并写出的一组基;求在所取基下的坐标;3]x [R 3]x [R 221x x ++ (2) 在中定义3]x [R , ∫−=11)()(),(dx x g x f g f n x R x g x f ][)(),(∈ 证明:上述代数运算是内积;求出的一组标准正交基;3][x R (3)求与之间的距离;221x x ++2x 2x 1+−(4)证明:是的子空间;2][x R 3]x [R (5)写出2[][]3R x R x ∩的维数和一组基;二、 设22R ×是实数域R 上全体22×实矩阵构成的线性空间(按通常矩阵的加 法和数与矩阵的乘法)。

(1) 求22R ×的维数,并写出其一组基;(2) 在(1)所取基下的坐标; ⎥⎦⎤⎢⎣⎡−−3111(3) 设W 是实数域R 上全体22×实对称矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。

证明:W 是22R ×的子空间;并写出W 的维数和一组基;(4) 在W 中定义内积, )A B (tr )B ,A (T =W B ,A ∈求出W 的一组标准正交基;(5)求与之间的距离; ⎥⎦⎤⎢⎣⎡0331⎥⎦⎤⎢⎣⎡−1221 (6)设V 是实数域R 上全体22×实上三角矩阵构成的线性空间(按通常矩阵的加法和数与矩阵的乘法)。

证明:V 也是22R ×的子空间;并写出V 的维数和一组基;(7)写出子空间的一组基和维数。

研究生矩阵理论课后答案第6-7章

研究生矩阵理论课后答案第6-7章

求矩阵的Jordan标准形与变换矩阵 求矩阵的Jordan标准形与变换矩阵 Jordan
由行列式因子定不变因子和初等因子:( :(参看 ①由行列式因子定不变因子和初等因子:(参看 0 λ − 2 0 第二章有关定义及结果). ).如 第二章有关定义及结果).如 λE-A= −1 λ −1 −1 )=λ行列式因子:D 行列式因子:D1(λ)=1; D2(λ)=λ-2;
第六章 矩阵函数
•矩阵函数一般定义:矩阵函数是从Cm×n到Cu×v的一 矩阵函数一般定义:矩阵函数是从C 个对应规则f:C 使对每个x 个对应规则f:Cm×n→Cu×v,使对每个x∈Cm×n,都 对应于唯一 f(x)∈ 唯一的 对应于唯一的f(x)∈Cu×v. 例如:det:C ,det(A)∈ 例如:det:Cn×n→C1×1,∀A∈Cn×n,det(A)∈C1×1; ,f(A)=2Af:Cn×n→Cn×n,∀A∈Cn×n,f(A)=2A-E∈Cn×n. 矩阵函数的概念十分广泛, •矩阵函数的概念十分广泛,其应用也相应地十分 广泛. 广泛. 我们仅限于讨论从C •我们仅限于讨论从Cn×n到自身的函数 f:Cn×n→Cn×n. 特别更限于最简单的矩阵多项式函数和由矩阵 矩阵多项式函数和由 特别更限于最简单的矩阵多项式函数和由矩阵 幂级数定义的矩阵函数. 幂级数定义的矩阵函数.
0 1 1 1 0 0 1 0 −1
. P -1=
0 1 0 1 −1 1 0 1 − 1
2 0 0 2 0 0 0 A − 2E = 1 1 1 − 2 = 1 −1 1 1 −1 3 2 1 −1 1 0 0 x = 1 , ( A − 2E)x = 1 1 1 1 0 z = 0 , ( A − 2E)z = 1 −1 1 0 00 −1 1 1 = 0 −1 1 1 0 0 1 −1 1 0 = 0 −1 1 −1

南京航空航天大学2007-2014硕士研究生矩阵论matrixTheory试题

南京航空航天大学2007-2014硕士研究生矩阵论matrixTheory试题

2 3 4 A 4 6 8 6 7 8 。 一(20 分) (1)设
2010 ~ 2011 学年《矩阵论》 课程考试 A 卷
(i)求 A 的特征多项式和 A 的全部特征值; (ii)求 A 的行列式因子,不变因子和初等因子; (iii)写出 A 的 Jordan 标准形;
1 A* A2 A* (3)证明: n 。
1 1 1 1 A 0 0 0 0 四、 (20 分)已知矩阵
(1)求矩阵 A 的 QR 分解;
1 2 0 1 b 1 1 2 1 ,向量 ,
(2)计算 A ;
17 6 14 60 A , B 45 16 3 13 ,试问 A 和 B 是否相似?并说明 (2)设
原因。
2 1 A 1 2 3 1 ,求 A 1 , A 2 , A , A F ; 二(20 分) (1)设

(3)用广义逆判断方程组 Ax b 是否相容?若相容,求其通解;若不相容,求其极小最小二乘解。
五、 (20 分)
(1)设矩阵
问当 t 满足什么条件时, A B 成立?
5 3 2 0 1 A 3 2 t , B 1 1 2 t 2 2 0 .5 t
五(20 分)设
A ( a ij )
为 n 阶 Hermite 矩阵,证明:
3
存在唯一 Hermite 矩阵 B 使得 A B ;
2
(2)
(3) 如果 A 0 ,则 tr ( A)tr ( A ) n 。
1
如果 A 0 ,则 tr ( A ) (tr ( A)) ;
2

南京航空航天大学MatrixTheory双语矩阵论期末考试

南京航空航天大学MatrixTheory双语矩阵论期末考试
(2) The Jordan canonical form is
--------------------------------------------------------------------------------------------------------------------------
(2) Find a basis for such that with respect to this basis,thematrixBrepresenting is diagonal.
(3) Find thekernel(核)andrange(值域)of this transformation.
Solution:
南京航空航天大学Matrix-Theory双语矩阵论期末考试
———————————————————————————————— 作者:
———————————————————————————————— 日期:
Part I (必做题,共5题,70分)
第1题(15分)
得分
Let denote the set of all real polynomials of degree less than 3 withdomain(定义域) .The addition and scalar multiplication are defined intheusual way.Definean inner product on by
第2题(15分)
得分
Let be the linear transformation on (the vector space of real polynomials of degree less than 3) defined by

第七章课后习题答案

第七章课后习题答案

第七章课后习题答案问题1:请简述第七章中讨论的主要概念。

答案:第七章主要讨论了[具体概念],它涉及到[概念的详细解释]。

此概念在[相关领域或情境]中具有重要意义,因为它[解释了什么或如何应用]。

问题2:如何计算[特定数学公式或计算过程]?答案:要计算[特定数学公式或计算过程],首先需要确定所有必要的变量。

然后,按照以下步骤进行计算:1. [第一步计算过程]2. [第二步计算过程]3. [以此类推,直至最终结果]问题3:分析[案例研究或实际情境],并讨论其对[相关概念]的影响。

答案:在[案例研究或实际情境]中,我们可以看到[相关概念]的应用。

具体来说,[案例或情境描述]展示了[概念如何影响结果]。

通过这个案例,我们可以更好地理解[概念]在实际生活中的应用和重要性。

问题4:解释[特定术语或理论],并给出一个例子。

答案: [特定术语或理论]是指[术语或理论的定义]。

例如,在[相关领域]中,[术语或理论]可以用来[具体应用或解释]。

一个具体的例子是[例子描述],它清楚地展示了[术语或理论]的实际应用。

问题5: [选择题或判断题]。

答案: [正确答案]。

这个问题的答案是[正确答案],因为[解释为什么这是正确答案]。

总结:第七章的习题涵盖了对[章节主题]的深入理解,包括理论概念、实际应用和计算技能。

通过解答这些问题,学生可以更好地掌握章节内容,并将其应用于解决实际问题。

请注意,以上内容仅为模板,具体答案需要根据实际的章节内容和习题进行定制。

如果需要针对特定章节的具体习题答案,请提供相关章节的详细内容和习题,以便我能够提供更准确的答案。

南京航空航天大学MatrixTheory双语矩阵论期末考试

南京航空航天大学MatrixTheory双语矩阵论期末考试

第6题 第7题
Let P4 be the vector space consisting of all real polynomials of degree less than 4 with usual addition and scalar multiplication. Let x1, x2 , x3 be three distinct real numbers. For each pair of polynomials f and g in P4 , define
Explain.
Solution:
(1) An annihilating polynomial of A is x2 5x 6 .
The minimal polynomial of A divides any annihilating polynomial of A. The possible minimal polynomials are
x 6 , x 1, and x2 5x 6 . --------------------------------------------------------------------------------------------------------------(2) The minimal polynomial of A divides the characteristic polynomial of A. Since A is a matrix of order 3, the characteristic polynomial of A is of degree 3. The minimal polynomial of A and the
(1)
(1) 0 (x) x (x2) 2 2x2

南京航空航天大学Matrix-Theory双语矩阵论期末考试2015

南京航空航天大学Matrix-Theory双语矩阵论期末考试2015

NUAALet 3P (the vector space of real polynomials of degree less than 3) defined by(())'()''()p x xp x p x σ=+.(1) Find the matrix A representing σ with respect to the ordered basis [21,,x x ] for 3P .(2) Find a basis for 3P such that with respect to this basis, the matrix B representing σ is diagonal.(3) Find the kernel (核) and range (值域)of this transformation. Solution: (1)221022x x x x σσσ===+()()() 002010002A ⎛⎫⎪= ⎪ ⎪⎝⎭----------------------------------------------------------------------------------------------------------------- (2)101010001T ⎛⎫ ⎪= ⎪ ⎪⎝⎭(The column vectors of T are the eigenvectors of A)The corresponding eigenvectors in 3P are 1000010002T AT -⎛⎫⎪= ⎪ ⎪⎝⎭(T diagonalizes A ) 22[1,,1][1,,]x x x x T += . With respect to this new basis 2[1,,1]x x +, the representingmatrix of σis diagonal.------------------------------------------------------------------------------------------------------------------- (3) The kernel is the subspace consisting of all constant polynomials.The range is the subspace spanned by the vectors 2,1x x +-----------------------------------------------------------------------------------------------------------------------Let 020012A ⎛⎫⎪= ⎪ ⎪-⎝⎭.(1) Find all determinant divisors and elementary divisors of A .(2) Find a Jordan canonical form of A .(3) Compute At e . (Give the details of your computations.) Solution: (1)110020012I A λλλλ-⎛⎫ ⎪-=- ⎪ ⎪-⎝⎭,(特征多项式 2()(1)(2)p λλλ=--. Eigenvalues are 1, 2, 2.)Determinant divisor of order 1()1D λ=, 2()1D λ=, 23()()(1)(2)D p λλλλ==-- Elementary divisors are 2(1) and (2)λλ-- .---------------------------------------------------------------------------------------------------------------------- (2) The Jordan canonical form is100021002J ⎛⎫ ⎪= ⎪ ⎪⎝⎭--------------------------------------------------------------------------------------------------------------------------(3) For eigenvalue 1, 010010011I A ⎛⎫⎪-=- ⎪ ⎪-⎝⎭ , An eigenvector is 1(1,0,0)T p = For eigenvalue 2, 1102000010I A ⎛⎫⎪-= ⎪ ⎪⎝⎭, An eigenvector is 2(0,0,1)T p =Solve 32(2)A I p p -=, 331100(2)00000101A I p p --⎛⎫⎛⎫⎪ ⎪-== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭we obtain that3(1,1,0)T p =-101001010P ⎛⎫ ⎪=- ⎪ ⎪⎝⎭, 1110001010P -⎛⎫⎪= ⎪ ⎪-⎝⎭ 1At J e Pe P -=22210100110001000101000010tt t t e e te e ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭22220000t t t t t t e e e e tee ⎛⎫-⎪= ⎪ ⎪-⎝⎭ --------------------------------------------------------------------------------------------------------------------Suppose that ∈R A and O I A A =--65.(1) What are the possible minimal polynomials of A ? Explain.(2) In each case of part (1), what are the possible characteristic polynomials of A ? Explain.Solution:(1) An annihilating polynomial of A is 256x x --.The minimal polynomial of A divides any annihilating polynomial of A. The possible minimal polynomials are6x -, 1x +, and 256x x --.---------------------------------------------------------------------------------------------------------------(2) The minimal polynomial of A divides the characteristic polynomial of A. Since A is a matrix of order 3, the characteristic polynomial of A is of degree 3. The minimal polynomial of A and the characteristic polynomial of A have the same linear factors. Case 6x -, the characteristic polynomial is 3(6)x - Case 1x +, the characteristic polynomial is 3(1)x + Case 256x x --, the characteristic polynomial is 2(1)(6)x x +- or 2(6)(1)x x -+-------------------------------------------------------------------------------------------------------------------Let 120000A ⎛⎫=⎪⎝⎭. Find the Moore-Penrose inverse A +of A .Solution: ()12011200000A PG ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭1()(1,0)T T P P P P +-==, 111()250T T G G GG +-⎛⎫⎪== ⎪ ⎪⎝⎭110112(1,0)2055000A G P +++⎛⎫⎛⎫ ⎪⎪=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭也可以用SVD 求.------------------------------------------------------------------------------------------------------------------Part II (选做题, 每题10分)请在以下题目中(第6至第9题)选择三题解答. 如果你做了四题,请在题号上画圈标明需要批改的三题. 否则,阅卷者会随意挑选三题批改,这可能影响你的成绩.Let 4P be the vector space consisting of all real polynomials of degree lessthan 4 with usual addition and scalar multiplication. Let 123,,x x x be three distinct real numbers. For each pair of polynomials f and g in 4P , define 31,()()i i i f g f x g x =<>=∑.Determine whether ,f g <> defines an inner product on 4P or not. Explain.Let n n A ⨯∈R . Show that if x x A =)(σis the orthogonal projection fromn R to )(A R , then A is symmetric and the eigenvalues ofA are all 1’s and 0’s.n n A ⨯∈C . Show that x x A H is real-valued for all n C x ∈if and only if Ais Hermitian.Let n n B A ⨯∈C , be Hermitian matrices, and A bepositive definite. Show thatAB is similar to BA , and is similar to a real diagonal matrix.若正面不够书写,请写在反面.123()()()x x x x x x ---. Then ,0f f <>=. But 0f ≠. This does not define an inner product. For any x , ()()x x T A R A N A ⊥-∈=, ()x x 0T A A -=. Hence, T T A A A =. Thus. T A A =.From above, we have 2A A =. This will imply that λλ-2is an annihilating polynomial of A. The eigenvalue of A must be the roots of 02=-λλ. Thus, the eigenvalues of A are1’s and 0’s.See Thm 7.1.1, page 182. 也可以用其它方法.Since A is nonsingular, 1()AB A BA A -=. Hence, A is similar to BASince A is positive definite, there is a nonsingular hermitian matrix P such that H A PP =. 1()H H AB PP B P P BP P -==Since H P BP is Hermitian, it is similar to a real diagonal matrix.is similar to H AB P BP , H P BP is similar to a real diagonal matrix. Thus AB is similar to a real diagonal matrix.。

南京航空航天大学07-08矩阵论答案(B)

南京航空航天大学07-08矩阵论答案(B)
T

= 5; A
= 23 ;
T 1 2
∵ λ ( A A) = {3, 5,15} , ∴ A 2 = [λmax ( A A)] = 15 。
的特征向量, (2)设 x ∈ C 是 A 相应于特征值 λ 的特征向量,∴ Ax = λ x , x ≠ 0 , )
n
两 边 取 矩 阵 范 数 导 出 的 C 上 向 量 范 数 可 得 : λ x = λ x = Ax ≤ A x ,

Ik
0 , In−k
使得 PAP
H
A11 = 0
=B, A22 − A A A12 0
H 12 −1 11
H − ∵ A11 > 0, A22 − A12 A111 A12 > 0,∴ B > 0, 从而有 A > 0 。
5 ∆ 1 = 5 > 0, ∆ 2 = 1 > 0 , ∆ 3 = A − B = 1 − t 2 > 0 4
即−
2 2 成立。 <t< 时 A > B 成立。 5 5
H
矩阵, (2)∵ A 是 Hermite 矩阵,∴ 存在酉矩阵 U ,使得 U AU = diag{λ1 , λ2 ,⋯ , λn } , ) 由此可知: 由此可知: λmin ( A) I ≤ A ≤ λmax ( A) I ,
共 3 页 ∴ ∀x ∈ C n , x ≠ 0 ,有 λmin ( A) ≤ R( x ) =
−1
第 3 页
x H Ax ≤ λmax ( A) 。 xH x
− 存在,构造可逆矩阵 (3)∵ A11 > 0,∴ A11 存在,构造可逆矩阵 P = ) − A H A− 1 12 11

南京航空航天大学2009_矩阵论考试考题及答案

南京航空航天大学2009_矩阵论考试考题及答案

二、 (1பைடு நூலகம் 分)设矩阵
考试试卷 A
(考试时间:2009 年 11 月?日 晚 7:00-9:00 考试方式:闭卷 A)
成绩:
一、 (15 分)在 R 4 中有两组基,
1 0 2 A 0 1 1 , 0 1 0
计算: 2 A8 3 A5 A4 A2 4E 。

1 1 4 4
(3) , 因 容 易 验 证 AA b b , 故 方 程 组 Ax b 相 容 , 最 小 范 数 解 为
1 1 3 3 y1 0 1 1 x A b E2 A A y 3 1 3 y 2 34 0 3 3 3 1 y3 4
个基有相同坐标的非零向量为 k x1 x2 x3 x4 , k 非零常数。
(5 分)
共 4 页,第 1 页
学院 年级 班 学号 姓名 ------------------------------线--------------------------------- ---------- -----------------------封--------------------------------------- --------------------------------------密--------------------------------
(3),判断方程组 Ax b 是否相容?若相容,求其最小范数解;若不相容,求其极小最小二乘 解。(4 分)
解:
2 0 0 8 1 0 0 4 行 (1): A 0 2 8 0 0 1 4 0 ,故矩阵 A 的满秩分解为: 2 2 8 8 0 0 0 0 2 0 2 0 1 0 0 4 1 0 0 4 A 0 2 CD, C 0 2 , D 。 0 1 4 0 0 1 4 0 2 2 2 2

矩阵理论参考答案

矩阵理论参考答案

矩阵理论参考答案矩阵理论参考答案矩阵理论是现代数学中的一个重要分支,广泛应用于各个领域,如物理学、工程学、经济学等。

矩阵理论的研究对象是矩阵,矩阵是由一定数量的数按照一定的规律排列成的矩形阵列。

在矩阵理论中,有许多重要的概念和定理,下面将对其中一些进行简要介绍。

首先,矩阵的基本运算是矩阵加法和矩阵乘法。

矩阵加法是指对应位置的元素相加,矩阵乘法是指按照一定的规则将两个矩阵相乘得到一个新的矩阵。

矩阵乘法是矩阵理论中的一个核心概念,它不仅可以用于解决线性方程组,还可以用于描述线性变换和矩阵的特征。

其次,矩阵的转置是指将矩阵的行和列互换得到的新矩阵。

转置矩阵在矩阵理论中有着重要的应用,它可以用于求解线性方程组的解和描述矩阵的性质。

例如,对于一个方阵,如果它的转置矩阵与原矩阵相等,那么这个矩阵就是对称矩阵。

此外,矩阵的逆是指存在一个矩阵,使得它与原矩阵相乘得到单位矩阵。

逆矩阵在矩阵理论中是一个非常重要的概念,它可以用于求解线性方程组的唯一解和描述矩阵的可逆性。

一个矩阵是否可逆与它的行列式有关,如果一个矩阵的行列式不为零,则它是可逆的。

此外,矩阵的特征值和特征向量也是矩阵理论中的重要概念。

特征值是一个数,特征向量是一个非零向量,它们满足一个方程:矩阵乘以特征向量等于特征值乘以特征向量。

特征值和特征向量可以用于描述矩阵的性质和求解线性方程组的解。

最后,矩阵理论还有一些重要的定理,如克莱因-高尔登定理、谱定理等。

克莱因-高尔登定理是矩阵理论中的一个基本定理,它描述了一个方阵的特征值和特征向量的性质。

谱定理是矩阵理论中的另一个重要定理,它描述了一个对称矩阵的特征值和特征向量的性质。

总之,矩阵理论是现代数学中的一个重要分支,它在各个领域都有广泛的应用。

矩阵的基本运算、转置、逆、特征值和特征向量等概念和定理都是矩阵理论中的重要内容。

通过对矩阵理论的研究,我们可以更好地理解和应用数学知识,推动科学技术的发展。

矩阵论考试题和答案(详细)

矩阵论考试题和答案(详细)
一、 (20 分) (1)特征值多项式为 f (λ ) =

第 1 页
课程编号: A000003 考试日期: 2009 年 1 月 13 日
λ I − A = λ (λ + 1)2
---------------3 ----------------3 -------------6 --------------2 ---------------2
= P −1 AP 满足相容矩阵范数的四个条件。
共 4 页
第 2 页
三、 (20 分)
(1) A 的满秩分解为 1 0 − 1 0 1 A = 0 1 0 1 0 − 1 0
A + = C T ( CC
T
-----------------5
1 4 0 1 − 4
(tr ( A))2 = (λ1 + L + λn ) 2 ≥ λ12 + L + λn2 = tr ( A2 ) 。 ---------------4
(3)因为 A > 0 ,则 A 可逆,并且 A−1 > 0 。由 I = AA−1 ,可得
n = tr ( I ) = tr ( AA−1 ) = tr ( AH A−1 ) ≤ tr ( AH A)tr ( A− H A−1 ) 2 = tr ( A2 )tr ( A−2 ) 2
由(2)知 tr ( A2 ) ≤ tr ( A), tr ( A−2 ) ≤ tr ( A−1 ) ,因此n ≤ tr ( A)tr ( A−1 ) 。 -则存在与 . 相容的向量范数 . a ,从而
| λ | x a = λ x a = Ax a ≤ A x a , | λ −1 | x a ≤ A−1 x

南航双语矩阵论matrix theory第3章部分习题参考答案

南航双语矩阵论matrix theory第3章部分习题参考答案

1
Exercise 8
Let S be the subspace of C[a, b] spanned by e x , xe x , and x 2 e x . Let D be the differentiation operation of S, i.e., D( f ) f ' . Find the matrix representing D with respect to [e x , xe x , x2 e x ] Solution
3
This will imply that k1 must be zero since n 1 ( v) 0 . By repeating the process above, we obtain that k0 , k1 , , kn 1 must be all zero. This proves that
Solution
(1) 1
1
1
( x)
1 / 2 0
( x) 1 0 1
Hence, A
1 1/ 2 1 0
1/ 2 1 1/ 2 0
4
If B is nonsingular, then AB B1 ( BA) B . AB and BA are similar.
A P diБайду номын сангаасg(1 , 2 , , n ) P1 then Ak P diag(1k , 2k ,
, n . Hence, diag(1 , 2 ,
, n k ) P1 .
Ak O implies that i 0 for i 1, 2,

南航双语矩阵论matrixtheory第7章部分习题参考答案

南航双语矩阵论matrixtheory第7章部分习题参考答案

第七章部分习题参考答案Exercise 1Show that a normal matrix A is Hermitian if its eigenvalues are all real.Proof If A is a normal matrix, then there is a unitary matrix that diagonalizes A . That is, there is a unitary matrix U such thatHA U D U =where D is a diagonal matrix and the diagonal elements of D are eigenvalues of A . If eigenvalues of A are all real, then()H H H H H H A UDU UD U UDU A ====Therefore, A is Hermitian.Exercise 2Let A and B be Hermitian matrices of the same order. Show that AB is Hermitian if and only ifAB BA =. ProofIf A B B A =, then ()()H H H H AB BA A B AB ===. Hence, AB is Hermitian.Conversely, if AB is Hermitian, then ()H AB AB =. Therefore, H H AB B A BA ==. Exercise 3Let A and B be Hermitian matrices of the same order. Show that A and B are similar if they have the same characteristic polynomial.Proof Since matrix A and B have the same characteristic polynomial, they have the same eigenvalues 12,,,n λλλ . There exist unitary matrices U and V such that12diag(,,,)H n U AU λλλ= , 12diag(,,,)H n V BV μμμ= .Thus,H H U AU V BV =. (11,H H U U V V --==)That is 1()H H UV AUV B -=. Hence, A and B are similar.Exercise 4Let A be a skew-Hermitian matrix, i.e., H A A =-, show that (a) I A - and I A + are invertible.(b) 1()()I A I A --+ is a unitary matrix with eigenvalues not equal to 1-. Proof of Part (a)Method 1: (a) since H A A =-, it follows that()()H I A I A I AA I A A -+=-=+For any x 0≠()()0x x x x x x x x x x H H H H H HH I A A A A A A +=+=+> Hence, ()()I A I A -+ is positive definite. It follows that ()()I A I A -+ is invertible. Hence, both I A - and I A + are invertible.Method 2:If I A - is singular, then there exists a nonzero vector x such that()x 0I A -=. Thus, x x A =,x x x x H H A =. (1)Since x x H is real, it follows that()x x x x H H H A =.That is x x x x H H H A =. Since H A A =-, it follows thatx x x x H H A -= (2)Equation (1) and (2) implies that 0x x H =. This contradicts the assumption that x is nonzero. Therefore, I A - is invertible.Method 3:Let λ be an eigenvalue of A and x be an associated eigenvector. x x A λ=x x x x H H A λ=. ()x x x x x x x x x x x xH H H H H H H H A A A λλ===-=-Hence, λ is either zero or pure imaginary. 1 and 1- can not be eigenvalues of A . Hence, I A -and I A + are invertible.Method 4: Since H A A =-, A is normal. There exists a unitary matrix U such that 12diag(,,,)H n U AU λλλ=12()()diag(,,,)H H H H H H n U AU U A U U AU λλλ==-= 12diag(,,,)n λλλ= 12diag(,,,)n λλλ- Each j λ is pure imaginary or zero.12(diag(,,,))H n I A U I U λλλ-=- 12diag(1,1,,1))H n I A U U λλλ-=---Since 10i λ-≠ for 1,2,,j n = , det ()0I A -≠. Hence, I A - is invertible. Similarly, we can prove that I A + is invertible.Proof of Part (b) Method 1:Since ()()()()I A I A I A I A +-=-+, it follows that11[()()]()()H I A I A I A I A ---+-+11()()()()H H I A I A I A I A --=+--+ ( Note that 11()()H H P P --= if P is nonsingular.) 11()()()()I A I A I A I A --=-+-+ 11()()()()I A I A I A I A I --=--++=Hence, 1()()I A I A --+ is a unitary matrix. Denote 1()()B I A I A -=-+.Since 111(1)(1)()()()()2()I B I I A I A I A I A I A I A -----=---+=-++-+=-+,1det()(2)det[()]0n I B I A ---=-+≠Hence, 1- can not be an eigenvalue of 1()()I A I A --+. Method 2:By method 4 of the Proof of Part (a),12diag(1,1,,1))H n I A U U λλλ-=---12diag(1,1,,1))H n I A U U λλλ+=+++1()()I A I A --+1212111diag(,,,))111H n nU U λλλλλλ---=+++ The eigenvalues of 1()()I A I A --+ are1212111,,,111n nλλλλλλ---+++ , which are all not equal to 1-.Method 3: Since ()()()()I A I A I A I A +-=-+, it follows that 11()()()()I A I A I A I A ---+=+-If 1- is an eigenvalue of 1()()I A I A --+, then there is a nonzero vector x , such that1()()x x I A I A --+=-. That is 1()()x x I A I A -+-=-.It follows that()()x x I A I A -=-+.This implies that x 0=. This contradiction shows that 1- can not be an eigenvalue of1()()I A I A --+.Exercise 6If H is Hermitian, show that i I H - is invertible, and 1(i )(i )U I H I H -=+- is unitary. Proof Let i A H =-. Then A is skew-Hermitian. By Exercises #4, I A - and I A + are invertible, and 1()()U I A I A -=-+ is unitary. This finishes the proof.Exercise 7Find the Hermitian matrix for each of the following quadratic forms. And reduce each quadratic form to its canonical form by a unitary transformation (a) 12312131213(,,)i i f x x x x x x x x x x x =+-+ Solution()1123123230i 1(,,)i 00100x f x x x x x xx x ⎛⎫⎛⎫ ⎪ ⎪=- ⎪⎪ ⎪⎪⎝⎭⎝⎭, 0i 1i 00100A ⎛⎫⎪=- ⎪ ⎪⎝⎭3d e t ()2I A λλλ-=-. Eigenvalues of Aare 1λ2λ=, and 30λ=.Associated unit eigenvectors are1i 1,)22u T =-, 2i 1,)22u T =-, and3u T =, respectively. 123,,u u u form an orthonormal set.Let 123(,,)u u u U =, and x y U =. Then we obtain the canonical form1122y yExercise 9Let A and B be Hermitian matrices of order n , and A be positive definite. Show that AB issimilar to a real diagonal matrix.Proof Since A is positive definite, there exists an nonsingular Hermitian matrix P such thatHA P P = 1()H H AB PP B P P BP P -==AB is similar to H P BP . Since H P BP is Hermitian, it is similar to a real diagonal matrix. Hence, AB is similar to a real diagonal matrix.Exercise 10Let A be an Hermitian matrix of order n . Show that there exists a real number 0t such that t I A +is positive definite. Proof 1: The matrix t I A + is Hermitian for real values of t . If the eigenvalues of A are 12,n λλλ ,,, then the eigenvalues of t I A +are 12,,n t t t λλλ+++ ,. Let12max{,,}n t λλλ> ,Then the eigenvalues of t I A + are all positive. And hence, tI A +is positive definite.Proof 2: The matrix t I A + is Hermitian for real values of t . Let r A be the leading principle minor of A of order r .d e t ()r r r t I A t +=+terms involving lower powers in t .Hence, det()r r t I A + is positive for sufficiently large t .Thus, if t is sufficiently large, all leading principal minors of t I A + will be positive.That is, there exists a real number 0t such that det()r r t I A + is positive for 0t t > and for each r . Thus t I A + is positive definite for 0t t >. Exercise 11 Let11121222HA A A A A ⎛⎫= ⎪⎝⎭be an Hermitian positive definite matrix. Show that 1122det()det()det()A A A ≤Proof We first prove that if A is Hermitian positive definite and B is Hermitian semi-positivedefinite, then det()det()A B A +≥. Since A is positive definite, there exists a nonsingular hermitian matrix P such thatHA P P = 11(())H H AB P I P B P P --+=+ 11det()det()det(())H A B A I P B P --+=+11()H I P B P --+ is positive semi- definite. Its eigenvalues are all greater than or equal to 1.Thus11det(())1H I P B P --+≥111121112112111222H H I O A A I A A A A I A A O I --⎛⎫-⎛⎫⎛⎫⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭11112111112112212111222121112H H A A A O I A A O A A A A O A A A A O I ---⎛⎫-⎛⎫⎛⎫== ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ 122121112H A A A A -- is positive definite, and 1121112H A A A - is positive semi-definite, and11122121112det()det()det()H A A A A A A -=-Hence, 111222212111212111222121112det()det()det(H H H A A A A A A A A A A A A ---=-+≥-)This finishes the proof.Exercise 12Let A be a positive definite Hermitian matrix of order n . Show that the element in A with the largest norm must be in the main diagonal.Proof Let ()ij A a =. Suppose that 00i j a is of the largest norm, where 00i j ≠. Consider the principal minor 00000000i i i j i j j j a a a a ⎛⎫⎪ ⎪⎝⎭. It must be positive definite since A is positive definite. (Recall that an Hermitian matrix is positive definite iff all its principal minors are positive.) Thus, 00000000det 0i i i j i j j j a a a a ⎛⎫⎪> ⎪⎝⎭. On the other hand, 000000000000002det 0i i i j i i j j i j i j j j a a a a a a a ⎛⎫⎪=-≤ ⎪⎝⎭since 00i j a is of the largest norm.(Remark: The diagonal elements in an Hermitian matrix must be real.)This contradiction implies that the element in A with the largest norm must be in the main diagonal.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章部分习题参考答案Exercise 1Show that a normal matrix A is Hermitian if its eigenvalues are all real.Proof If A is a normal matrix, then there is a unitary matrix that diagonalizes A . That is, there is a unitary matrix U such thatH A UDU =where D is a diagonal matrix and the diagonal elements of D are eigenvalues of A . If eigenvalues of A are all real, then()H H H H H H A UDU UD U UDU A ====Therefore, A is Hermitian.Exercise 2Let A and B be Hermitian matrices of the same order. Show that AB is Hermitian if and only if AB BA =. ProofIf AB BA =, then ()()H H H H AB BA A B AB ===. Hence, AB is Hermitian. Conversely, if AB is Hermitian, then ()H AB AB =. Therefore, H H AB B A BA ==.Exercise 3Let A and B be Hermitian matrices of the same order. Show that A and B are similar if they have the same characteristic polynomial.Proof Since matrix A and B have the same characteristic polynomial, they have the same eigenvalues 12,,,n λλλ. There exist unitary matrices U and V such that12diag(,,,)H n U AU λλλ=, 12diag(,,,)H n V BV μμμ=.Thus,H H U AU V BV =. (11,H H U U V V --==)That is 1()H H UV AUV B -=. Hence, A and B are similar.Exercise 4Let A be a skew-Hermitian matrix, i.e., H A A =-, show that (a) I A - and I A + are invertible.(b) 1()()I A I A --+ is a unitary matrix with eigenvalues not equal to 1-. Proof of Part (a)Method 1: (a) since H A A =-, it follows that()()H I A I A I AA I A A -+=-=+For any x 0≠()()0x x x x x x x x x x H H H H H H H I A A A A A A +=+=+>Hence, ()()I A I A -+ is positive definite. It follows that ()()I A I A -+ is invertible. Hence, both I A - and I A + are invertible.Method 2:If I A - is singular, then there exists a nonzero vector x such that()x 0I A -=. Thus, x x A =, x x x x H H A =. (1)Since x x H is real, it follows that()x x x x H H H A =.That is x x x x H H H A =. Since H A A =-, it follows thatx x x x H H A -= (2)Equation (1) and (2) implies that 0x x H =. This contradicts the assumption that x is nonzero. Therefore, I A - is invertible.Method 3:Let λ be an eigenvalue of A and x be an associated eigenvector. x x A λ=x x x x H H A λ=. ()x x x x x x x x x x x xH H H H H H H H A A A λλ===-=-Hence, λ is either zero or pure imaginary. 1 and 1- can not be eigenvalues of A . Hence, I A -and I A + are invertible.Method 4: Since H A A =-, A is normal. There exists a unitary matrix U such that 12diag(,,,)H n U AU λλλ=12()()diag(,,,)H H H H H H n U AU U A U U AU λλλ==-= 12diag(,,,)n λλλ=12diag(,,,)n λλλ-Each j λ is pure imaginary or zero.12(diag(,,,))H n I A U I U λλλ-=-12diag(1,1,,1))H n I A U U λλλ-=---Since 10i λ-≠ for 1,2,,j n =, det ()0I A -≠. Hence, I A - is invertible. Similarly, we can prove that I A + is invertible.Proof of Part (b) Method 1:Since ()()()()I A I A I A I A +-=-+, it follows that11[()()]()()H I A I A I A I A ---+-+11()()()()H H I A I A I A I A --=+--+ ( Note that 11()()H H P P --= if P is nonsingular.) 11()()()()I A I A I A I A --=-+-+11()()()()I A I A I A I A I --=--++=Hence, 1()()I A I A --+ is a unitary matrix. Denote 1()()B I A I A -=-+.Since 111(1)(1)()()()()2()I B I I A I A I A I A I A I A -----=---+=-++-+=-+,1det()(2)det[()]0n I B I A ---=-+≠Hence, 1- can not be an eigenvalue of 1()()I A I A --+. Method 2:By method 4 of the Proof of Part (a),12diag(1,1,,1))H n I A U U λλλ-=---12diag(1,1,,1))H n I A U U λλλ+=+++1()()I A I A --+1212111diag(,,,))111H nnU U λλλλλλ---=+++ The eigenvalues of 1()()I A I A --+ are1212111,,,111nnλλλλλλ---+++, which are all not equal to 1-.Method 3: Since ()()()()I A I A I A I A +-=-+, it follows that 11()()()()I A I A I A I A ---+=+-If 1- is an eigenvalue of 1()()I A I A --+, then there is a nonzero vector x , such that1()()x x I A I A --+=-. That is 1()()x x I A I A -+-=-.It follows that()()x x I A I A -=-+.This implies that x 0=. This contradiction shows that 1- can not be an eigenvalue of1()()I A I A --+.Exercise 6If H is Hermitian, show that i I H - is invertible, and 1(i )(i )U I H I H -=+- is unitary. Proof Let i A H =-. Then A is skew-Hermitian. By Exercises #4, I A - and I A + are invertible, and 1()()U I A I A -=-+ is unitary. This finishes the proof.Exercise 7Find the Hermitian matrix for each of the following quadratic forms. And reduce each quadratic form to its canonical form by a unitary transformation (a) 12312131213(,,)i i f x x x x x x x x x x x =+-+ Solution()1123123230i 1(,,)i 00100x f x x x x x x x x ⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪⎝⎭⎝⎭, 0i 1i 00100A ⎛⎫ ⎪=- ⎪ ⎪⎝⎭3det()2I A λλλ-=-. Eigenvalues of Aare 1λ2λ=30λ=.Associated unit eigenvectors are1i 1,)22u T =-, 2i 1,)22u T =-, and3u T=, respectively. 123,,u u u form an orthonormal set.Let 123(,,)u u u U =, and x y U =. Then we obtain the canonical form1122y yExercise 9Let A and B be Hermitian matrices of order n , and A be positive definite. Show that AB issimilar to a real diagonal matrix.Proof Since A is positive definite, there exists an nonsingular Hermitian matrix P such that H A PP = 1()H H AB PP B P P BP P -==AB is similar to H P BP . Since H P BP is Hermitian, it is similar to a real diagonal matrix. Hence, AB is similar to a real diagonal matrix.Exercise 10Let A be an Hermitian matrix of order n . Show that there exists a real number 0t such that t I A +is positive definite.Proof 1: The matrix t I A + is Hermitian for real values of t . If the eigenvalues of A are 12,n λλλ,,, then the eigenvalues of t I A +are 12,,n t t t λλλ+++,. Let12max{,,}n t λλλ>,Then the eigenvalues of t I A + are all positive. And hence, tI A +is positive definite.Proof 2: The matrix t I A + is Hermitian for real values of t . Let r A be the leading principle minor of A of order r .det()r r r t I A t +=+terms involving lower powers in t .Hence, det()r r t I A + is positive for sufficiently large t .Thus, if t is sufficiently large, all leading principal minors of t I A + will be positive.That is, there exists a real number 0t such that det()r r t I A + is positive for 0t t > and for each r . Thus t I A + is positive definite for 0t t >.Exercise 11 Let11121222HA A A A A ⎛⎫= ⎪⎝⎭be an Hermitian positive definite matrix. Show that 1122det()det()det()A A A ≤Proof We first prove that if A is Hermitian positive definite and B is Hermitian semi-positivedefinite, then det()det()A B A +≥. Since A is positive definite, there exists a nonsingular hermitian matrix P such that H A PP =11(())H H A B P I P B P P --+=+ 11det()det()det(())H A B A I P B P --+=+11()H I P B P --+ is positive semi- definite. Its eigenvalues are all greater than or equal to 1.Thus11det(())1H I P B P --+≥111121112112111222H H I O A A I A A A A I A A O I --⎛⎫-⎛⎫⎛⎫⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭11112111112112212111222121112H H A A A O I A A O A A A A O A A A A O I ---⎛⎫-⎛⎫⎛⎫== ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ 122121112H A A A A -- is positive definite, and 1121112H A A A - is positive semi-definite, and11122121112det()det()det()H A A A A A A -=-Hence, 111222212111212111222121112det()det()det(H H H A A A A A A A A A A A A ---=-+≥-)This finishes the proof.Exercise 12Let A be a positive definite Hermitian matrix of order n . Show that the element in A with the largest norm must be in the main diagonal.Proof Let ()ij A a =. Suppose that 00i j a is of the largest norm, where 00i j ≠. Consider theprincipal minor 00000000i i i j i j j j a a a a ⎛⎫⎪ ⎪⎝⎭. It must be positive definite since A is positive definite. (Recall that an Hermitian matrix is positive definite iff all its principal minors are positive.) Thus, 00000000det 0i i i j i j j j a a a a ⎛⎫⎪> ⎪⎝⎭. On the other hand, 000000000000002det 0i i i j i i j j i j i j j j a a a a a a a ⎛⎫⎪=-≤ ⎪⎝⎭since 00i j a is of the largest norm.(Remark: The diagonal elements in an Hermitian matrix must be real.)This contradiction implies that the element in A with the largest norm must be in the main diagonal.。

相关文档
最新文档