南航双语矩阵论 matrix theory第三章部分题解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Solution Key to Some Exercises in Chapter 3 #5. Determine the kernel and range of each of the following linear transformations on 2P
(a) (())'()p x xp x σ=
(b) (())()'()p x p x p x σ=-
(c) (())(0)(1)p x p x p σ=+
Solution (a) Let ()p x ax b =+. (())p x ax σ=.
(())0p x σ= if and only if 0ax = if and only if 0a =. Thus, ker(){|}b b R σ=∈
The range of σis 2()P σ={|}ax a R ∈
(b) Let ()p x ax b =+. (())p x ax b a σ=+-.
(())0p x σ= if and only if 0ax b a +-= if and only if 0a =and 0b =.
Thus, ker(){0}σ=
The range of σis 2()P σ=2{|,}P ax b a a b R +-∈=
(c) Let ()p x ax b =+. (())p x bx a b σ=++.
(())0p x σ= if and only if 0bx a b ++= if and only if 0a =and 0b =.
Thus, ker(){0}σ=
The range of σis 2()P σ=2{|,}P bx a b a b R ++∈=
备注: 映射的核以及映射的像都是集合,应该以集合的记号来表达或者用文字来叙述. #7. Let be the linear mapping that maps 2P into 2R defined by
10()(())(0)p x dx p x p σ⎛⎫ ⎪= ⎪⎝⎭
⎰ Find a matrix A such that
()x A ασαββ⎛⎫+= ⎪⎝⎭
. Solution
1(1)1σ⎛⎫= ⎪⎝⎭ 1/2()0x σ⎛⎫
= ⎪⎝⎭ 11/211/2()101
0x ασαβαββ⎛⎫⎛⎫⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭
Hence, 11/210A ⎛⎫= ⎪⎝⎭
#10. Let σ be the transformation on 3P defined by
(())'()"()p x xp x p x σ=+
a) Find the matrix A representing σ with respect to 2[1,,]x x
b) Find the matrix B representing σ with respect to 2[1,,1]x x +
c) Find the matrix S such that 1B S AS -=
d) If 2012()(1)p x a a x a x =+++, calculate (())n p x σ.
Solution (a) (1)0σ=
()x x σ=
22()22x x σ=+
002010002A ⎛⎫ ⎪= ⎪ ⎪⎝⎭
(b) (1)0σ=
()x x σ=
22(1)2(1)x x σ+=+
000010002B ⎛⎫ ⎪= ⎪ ⎪⎝⎭
(c)
2[1,,1]x x +2[1,,]x x =101010001⎛⎫ ⎪ ⎪ ⎪⎝⎭
The transition matrix from 2[1,,]x x to 2[1,,1]x x + is
101010001S ⎛⎫ ⎪= ⎪ ⎪⎝⎭
, 1B S AS -=
(d) 2201212((1))2(1)n n a a x a x a x a x σ+++=++
#11. Let A and B be n n ⨯ matrices. Show that if A is similar to B then there exist n n ⨯ matrices S and T , with S nonsingular, such that
A ST =and
B TS =.
Proof There exists a nonsingular matrix P such that 1A P BP -=. Let 1S P -=, T BP =. Then
A ST =and
B TS =.
#12. Let σ be a linear transformation on the vector space V of dimension n . If there exist a vector v such that 1()v 0n σ-≠ and ()v 0n σ=, show that
(a) 1,(),,()v v v n σσ- are linearly independent.
(b) there exists a basis E for V such that the matrix representing σ with respect to the basis E is
000010000010⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭
Proof
(a) Suppose that
1011()()v v v 0n n k k k σσ--++
+= Then 11011(()())v v v 0n n n k k k σσσ---+++=
That is, 12210110()()())()v v v v 0n n n n n k k k k σσσσ----++
+== Thus, 0k must be zero since 1()v 0n σ-≠.
211111(()())()v v v 0n n n n k k k σσσσ----++==
This will imply that 1k must be zero since 1()v 0n σ-≠.
By repeating the process above, we obtain that 011,,,n k k k - must be all zero.
This proves that
1,(),,()v v v n σσ- are linearly independent.
(b) Since 1,(),,()v v v n σσ- are n linearly independent, they form a basis for V .
Denote 112,(),,()εv εv εv n n σσ-===
12()εεσ=
23()εεσ=
…….
1()εεn n σ-=
()ε0n σ=
12[(),(),,()]εεεn σσσ121[,,,,]εεεεn n -=000010000010⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭
#13. If A is a nonzero square matrix and k A O =for some positive integer k , show that A can not be similar to a diagonal matrix.
Proof Suppose that A is similar to a diagonal matrix 12diag(,,,)n λλλ. Then for each i , there exists a nonzero vector x i such that x x i i i A λ=
x x x 0k k i i i i i A λλ=== since k A O =.
This will imply that 0i λ= for 1,2,,i n =. Thus, matrix A is similar to the zero matrix. Therefore, A O =since a matrix that is similar to the zero matrix must be