03牛顿运动定律
牛顿三大定律是什么
牛顿三大定律是什么牛顿三大定律是什么牛顿简称牛,符号为N。
是一种衡量力的大小的国际单位,以科学家艾萨克·牛顿的名字而命名。
下面是小编为大家整理的牛顿三大定律是什么,仅供参考,欢迎阅读。
1、牛顿第一运动定律牛顿第一运动定律表明,除非有外力施加,物体的运动速度不会改变。
根据这定律,假设没有任何外力施加或所施加的外力之和为零,则运动中物体总保持匀速直线运动状态,静止物体总保持静止状态。
物体所显示出的维持运动状态不变的这性质称为惯性。
所以,这定律又称为惯性定律。
2、牛顿第二运动定律物体加速度的大小跟物体受到的作用力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
而以物理学的观点来看,牛顿运动第二定律亦可以表述为“物体随时间变化之动量变化率和所受外力之和成正比”,即动量对时间的一阶导数等于外力之和。
3、牛顿第三运动定律在经典力学里,牛顿第三定律表明,当两个物体互相作用时,彼此施加于对方的力,其大小相等、方向相反。
牛顿第三运动定律和第一、第二定律共同组成了牛顿运动定律,阐述了经典力学中基本的运动规律。
拓展:物理必修一牛顿定律知识点1、动力学的两类基本问题:(1)已知物体的受力情况,确定物体的运动情况.基本解题思路是:①根据受力情况,利用牛顿第二定律求出物体的加速度.②根据题意,选择恰当的运动学公式求解相关的速度、位移等.(2)已知物体的运动情况,推断或求出物体所受的未知力.基本解题思路是:①根据运动情况,利用运动学公式求出物体的加速度.②根据牛顿第二定律确定物体所受的合外力,从而求出未知力.(3)注意点:①运用牛顿定律解决这类问题的关键是对物体进行受力情况分析和运动情况分析,要善于画出物体受力图和运动草图.不论是哪类问题,都应抓住力与运动的关系是通过加速度这座桥梁联系起来的这一关键.②对物体在运动过程中受力情况发生变化,要分段进行分析,每一段根据其初速度和合外力来确定其运动情况;某一个力变化后,有时会影响其他力,如弹力变化后,滑动摩擦力也随之变化.2、关于超重和失重:在平衡状态时,物体对水平支持物的压力大小等于物体的重力.当物体在竖直方向上有加速度时,物体对支持物的压力就不等于物体的重力.当物体的加速度方向向上时,物体对支持物的压力大于物体的重力,这种现象叫超重现象.当物体的加速度方向向下时,物体对支持物的压力小于物体的重力,这种现象叫失重现象.对其理解应注意以下三点:(1)当物体处于超重和失重状态时,物体的重力并没有变化.(2)物体是否处于超重状态或失重状态,不在于物体向上运动还是向下运动,即不取决于速度方向,而是取决于加速度方向.(3)当物体处于完全失重状态(a=g)时,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等.易错现象:(1)当外力发生变化时,若引起两物体间的弹力变化,则两物体间的滑动摩擦力一定发生变化,往往有些同学解题时仍误认为滑动摩擦力不变。
牛顿运动定律知识点
第三章牛顿运动定律第1节牛顿第一定律__牛顿第三定律牛顿第一定律(1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态。
(2)成立条件:物体不受外力作用。
(3)意义:①指出了一切物体都有惯性,因此牛顿第一定律又叫惯性定律。
②指出力不是维持物体运动状态的原因,而是改变物体运动状态的原因,即产生加速度的原因。
2.惯性(1)定义:物体具有保持原来匀速直线运动状态或静止状态的性质。
(2)性质:惯性是一切物体都具有的性质,是物体的固有属性,与物体的运动情况和受力情况无关。
(3)量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小。
物理学史链接(1)伽利略利用“理想实验”得出“力是改变物体运动状态的原因”的观点,推翻了亚里士多德的“力是维持物体运动的原因”的错误观点。
(2)英国科学家牛顿在《自然哲学的数学原理》著作中提出了“牛顿第一、第二、第三定律”。
牛顿第三定律1.作用力和反作用力两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,后一个物体一定同时对前一物体也施加了力。
力是物体与物体间的相互作用,物体间相互作用的这一对力通常叫做作用力和反作用力。
2.内容两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
3.意义建立了相互作用物体之间的联系及作用力与反作用力的相互依赖关系。
第2节牛顿第二定律__两类动力学问题牛顿第二定律1.内容物体加速度的大小跟它受到的作用力成正比、跟它的质量成反比,加速度的方向跟作用力的方向相同。
2.表达式F=ma。
3.“五个”性质两类动力学问题1.两类动力学问题(1)已知受力情况求物体的运动情况。
(2)已知运动情况求物体的受力情况。
2.解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如图:力学单位制1.单位制由基本单位和导出单位组成。
2.基本单位基本量的单位。
牛顿运动定律
典型例题
【例1】某伞兵和他携带的武器质量共为 80kg,降落伞未张开时,受到的空气阻力 为 25N,求伞兵在这段时间的加速度。
分析:伞兵在降落伞未打 开时,受到二个力的作用 :竖直向下重力 G 和向上 的空气阻力Ff ,伞兵所受 的合力为F =G – Ff, 方向 向下。
F
f
.
F
a G
解:由牛顿第二定律 F m a,得
(2)演示实验:用向心力演示器演示 方法:控制变量法
1.F与m的关系
m大,F也大
保持r、ω一定
保持m、ω一定 保持r、m一定
2.F与r的关系
r大,F也大
3.F与ω的关系
ω大,F也大
结论: 向心力的大小F与物体质量m、圆 周半径r和角速度ω都有关系
公式:F=m rω2
v 根据 推导向心力的另一表达式 r
• A .公式中的 G 是引力常量,它是由实验 得出的,而不是人为规定的 • B.当两个物体间的距离r趋于零时,万有 引力趋于无穷大 • C.m1和m2所受引力大小总是相等的 • D .两个物体间的引力总是大小相等,方 向相反的,是一对平衡力
答案:AC
5. 如图所示,r虽大于两球的半径,但两球的半径 不能忽略,而球的质量分布均匀,大小分别为m1 与m2,则两球间万有引力的大小为( D )
N =G=mg =10×10N=100N f =μN=0.5×100N=50N F合 =F-f =70N-50N=20N
G Ff a m 80 9.8 25 2 2 m/s 9.5 m/s 80 F
f
.
F
G
a
运用牛顿第二定律解题的一般步骤:
1、确定研究对象 2、对研究对象进行正确的受力分析或运动情 况分析 3、利用牛顿第二定律或运动学公式求加速度 4、利用运动学公式或牛顿第二定律进一步求 解要求的物理量 5 、检验结果是否合理性
新人教高三物理专题复习03力和运动+牛顿运动定律
新人教高三物理专题复习03:力和运动 牛顿运动定律一、例题精析【例1】一斜面AB 长为5m ,倾角为30°,一质量为2kg 的小物体(大小不计)从斜面顶端A 点由静止释放,如图所示.斜面与物体间的动摩擦因数为63,求小物体下滑到斜面底端B 时的速度及所用时间.(g 取10 m/s 2)解析:以小物块为研究对象进行受力分析,如图所示.物块受重力mg 、斜面支持力N 、摩擦力f ,垂直斜面方向,由平衡条件得:mg cos30°=N沿斜面方向上,由牛顿第二定律得:mg sin30°-f =ma又f =μN由以上三式解得a =2.5m/s 2 小物体下滑到斜面底端B 点时的速度:==as v B 25m/s 运动时间:22==as t s 题后反思:以斜面上物体的运动为背景考查牛顿第二定律和运动学知识是常见的题型之一,熟练掌握斜面上物体的受力分析,正确求解加速度是解决问题的关键。
【例2】如图所示,长方体物块A 叠放在长方体物块B 上,B 置于光滑水平面上.A 、B 质量分别为m A =6kg ,m B =2kg ,A 、B 之间动摩擦因数μ=0.2,开始时F =10N ,此后逐渐增加,在增大到45N 的过程中,则( )A .当拉力F <12N 时,两物块均保持静止状态B .两物块开始没有相对运动,当拉力超过12N 时,开始相对滑动C .两物块间从受力开始就有相对运动D .两物块间始终没有相对运动,但AB 间存在静摩擦力,其中A 对B 的静摩擦力方向水平向右 解析:先以B 为研究对象,B 水平方向受摩擦力f=m B a ,当f 为最大静摩擦力时,B 的最大加速度为6212===B A m gm a μm/s 2;再以AB 整体为研究对象,能使AB 一起匀加速运动所施加的最大外力F m =(m A +m B )a =48N 。
由题给条件,F 从10N 开始逐渐增加到45N 的过程中,AB 将始终保持相对静止而一起匀加速运动。
物理 ③牛顿运动定律
三、牛顿运动定律1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种运动状态为止。
(1)运动是物体的一种属性,物体的运动不需要力来维持。
(2)定律说明了任何物体都有惯性。
(3)不受力的物体是不存在的。
牛顿第一定律不能用实验直接验证。
但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种新方法:通过观察大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律。
(4)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2、惯性:物体保持匀速直线运动状态或静止状态的性质。
(1)惯性是物体的固有属性,即一切物体都有惯性,与物体的受力情况及运动状态无关。
因此说,人们只能“利用”惯性而不能“克服”惯性。
(2)质量是物体惯性大小的量度。
3、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,表达式F合=ma(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础。
(2)对牛顿第二定律的数学表达式F合=ma,F合是力,ma是力的作用效果,特别要注意不能把ma看作是力。
(3)牛顿第二定律揭示的是力的瞬间效果。
即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬间效果是加速度而不是速度。
(4)牛顿第二定律F合=ma,F合是矢量,ma也是矢量,且ma与F合的方向总是一致的。
F合可以进行合成与分解,ma也可以进行合成与分解。
4、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。
(1)牛顿第三运动定律指出了两物体之间的作用是相互的,因而力总是成对出现的,它们总是同时产生,同时消失。
2020高考物理一轮复习专题03牛顿运动定律(解析版)
专题03 牛顿运动定律1 .(2020 届安徽省宣城市高三第二次调研)如图所示,在水平桌面上叠放着质量均为M 的A、B 两块木板,在木板 A 的上面放着一个质量为m 的物块C,木板和物块均处于静止状态。
A、B、C 之间以及 B 与地面之间的动摩擦因数都为。
若用水平恒力 F 向右拉动木板 A (已知最大静摩擦力的大小等于滑动摩擦力),要使 A 从 C 、B 之间抽出来,则对 C 有aC=mg=gm对 B 受力分析有:受到水平向右的滑动摩擦力力,有f= μ(2M+m )g因为μ(M+m )g<μ(2M+m )g 所以 B 没有运动,加速度为0 ;所以当a A>a C 时,能够拉出,则有F mg M m g M解得F> 2μ(m+M )g,故选C2 .(2020 届福建省漳州市高三第一次教学质量检测)如图,个可以看作质点,质量为m=1kg 的物块,以沿传动带向下的速度v0 4m/s 从M 点开始沿传送带运动。
物块运动过程的部分v-t 图像如图所示,取g=10m/s 2,则()F 大小应满足的条件是(A.F (m 2M )g B.F (2m 3M )gC .F 2 (m M )gD .F (2m M )g答案】C解析】要使 A 能从C、 B 之间抽出来,则,A要相对于B、C 都滑动,所以AC 间,AB 间都是滑动摩擦力,对 A 有a A=mg M m gμ(M+m )g,B 与地面的最大静摩擦力等于滑动摩擦MN 是一段倾角为=30 °的传送带A .物块最终从传送带N 点离开B .传送带的速度v=1m/s ,方向沿斜面向下C .物块沿传送带下滑时的加速度a=2m/s 2D .物块与传送带间的动摩擦因数32【答案】D【解析】从图象可知,物体速度减为零后反向向上运动,最终的速度大小为1m/s ,因此没从N 点离开,并且能推出传送带斜向上运动,速度大小为1m/s ,AB 错误;v—t 图象中斜率表示加速度,可知物块沿传送带下滑时的加速度a=2.5m/s 2,C 错误;根据牛顿第二定律mg cos30o mg sin 30o ma,可得3,D 正确。
第03章牛顿运动定律
第三章 牛顿运动定律一、牛顿第一定律1.牛顿第一定律导出了力的概念 力是改变物体运动状态的原因。
(运动状态指物体的速度)又根据加速度定义:t v a ∆∆=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。
(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。
)2.牛顿第一定律导出了惯性的概念一切物体都有保持原有运动状态的性质,这就是惯性。
惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。
质量是物体惯性大小的量度。
3.牛顿第一定律描述的是理想化状态牛顿第一定律描述的是物体在不受任何外力时的状态。
而不受外力的物体是不存在的。
物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例。
二、牛顿第三定律 1.区分一对作用力反作用力和一对平衡力一对作用力反作用力和一对平衡力的共同点有:大小相等、方向相反、作用在同一条直线上。
不同点有:作用力反作用力作用在两个不同物体上,而平衡力作用在同一个物体上;作用力反作用力一定是同种性质的力,而平衡力可能是不同性质的力;作用力反作用力一定是同时产生同时消失的,而平衡力中的一个消失后,另一个可能仍然存在。
2.一对作用力和反作用力的冲量和功一对作用力和反作用力在同一个过程中(同一段时间或同一段位移)的总冲量一定为零,但作的总功可能为零、可能为正、也可能为负。
这是因为作用力和反作用力的作用时间一定是相同的,而位移大小、方向都可能是不同的。
三、牛顿第二定律1.定律的表述物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,既F =ma (其中的F 和m 、a 必须相对应)特别要注意表述的第三句话。
因为力和加速度都是矢量,它们的关系除了数量大小的关系外,还有方向之间的关系。
明确力和加速度方向,也是正确列出方程的重要环节。
若F 为物体受的合外力,那么a 表示物体的实际加速度;若F 为物体受的某一个方向上的所有力的合力,那么a 表示物体在该方向上的分加速度;若F 为物体受的若干力中的某一个力,那么a 仅表示该力产生的加速度,不是物体的实际加速度。
牛顿三大定律概念及公式
牛顿三大定律概念及公式
简介
在物理学中,牛顿三大定律是描述物体运动的基本定律。
这些定律由英国物理学家伊莱沙·牛顿于17世纪提出,被认为是经典力学的基础。
本文将介绍牛顿的三大定律的概念及相应的公式。
第一定律:惯性定律
牛顿的第一定律也被称为惯性定律。
该定律表明,如果一个物体没有受到外力作用,它将保持静止状态或匀速直线运动的状态。
换句话说,物体的速度只有在受到外力时才会变化。
数学表述:
$$\\sum F = 0$$
第二定律:运动定律
牛顿的第二定律关注物体的运动,它描述了力对物体运动状态的影响。
第二定律的数学表达式为:
F=ma
其中,F代表物体所受合力,m代表物体的质量,a代表物体的加速度。
这个公式表明,物体的加速度与施加在其上的合力成正比,与物体的质量成反比。
第三定律:作用-反作用定律
牛顿的第三定律阐明了作用和反作用的关系。
它表明:对于两个物体之间的相互作用力,这两个物体所受的力大小相等、方向相反。
数学公式:
F AB=−F BA
这意味着,如果物体A对物体B施加一个力F AB,那么物体B也会施加一个力F BA在物体A上,且大小相等、方向相反。
结论
牛顿的三大定律是描述物体运动的基本定律,它们为解释物理世界中的各种现象提供了重要的基础。
第一定律强调惯性,第二定律关注运动状态的变化,第三定律描述了作用和反作用的关系。
这些定律不仅在经典力学中有着广泛的应用,也在
其他领域中发挥着重要的作用。
牛顿三大定律的基本概念及相应的公式在物理学领域具有重要意义。
牛顿运动定律知识点总结
牛顿运动定律知识点总结牛顿第一定律(惯性定律)内容:任何一个物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。
知识点:惯性:物体保持其静止或匀速直线运动状态的倾向。
所有物体都具有惯性,质量是物体惯性大小的唯一量度。
不受外力作用的物体:将保持静止或匀速直线运动状态。
力是改变物体运动状态的原因:力不是维持物体运动的原因,而是改变物体运动状态(包括静止开始运动,匀速运动变成变速运动等)的原因。
牛顿第二定律(动量定律)内容:物体的加速度与作用力成正比,与物体的质量成反比,且与物体质量的倒数成正比;加速度的方向与作用力的方向相同。
公式:(F = ma)其中,(F) 是作用在物体上的力,(m) 是物体的质量,(a) 是物体的加速度。
知识点:力与加速度的瞬时关系:一旦作用力发生变化,物体的加速度就会立即发生变化。
作用力与反作用力:物体受到作用力时,会对施力物体产生大小相等、方向相反的反作用力。
单位制:在国际单位制(SI)中,力的单位是牛顿(N),质量的单位是千克(kg),加速度的单位是米每平方秒(m/s²)。
牛顿第三定律(作用与反作用定律)内容:两个物体之间的作用力和反作用力,总是同时在同一条直线上,大小相等,方向相反。
知识点:作用力和反作用力总是成对出现:有作用力必有反作用力,且作用力与反作用力大小相等、方向相反、作用在同一直线上。
作用力和反作用力作用在两个不同的物体上:作用力与反作用力总是成对出现,其中一个力(称作用力)作用在某一物体上,而另一个力(称反作用力)作用在与之相互作用的另一个物体上。
力的性质相同:它们都是同一种性质的力,且不能合成,不是平衡力。
作用与反作用力和平衡力的区别:作用与反作用力是两个物体间的相互作用力,是一对力;而平衡力是一个物体受到几个力而平衡,是一对以上的力。
通过这三个定律,牛顿建立了完整的经典力学体系,对后世的物理学发展产生了深远的影响。
牛顿运动定律
牛顿运动定律牛顿运动定律是经典力学的基石,由英国物理学家艾萨克·牛顿在17世纪提出。
这三条定律描述了物体的运动规律,为我们理解和研究自然界中的运动提供了重要的工具和指导。
下面将逐一介绍牛顿运动定律。
第一定律:惯性定律牛顿的第一定律,也被称为惯性定律,提出了物体运动状态的特性。
它的表述为:“一切物体都会保持静止或匀速直线运动,除非受到外力的作用。
”这意味着一个静止的物体将保持静止,一个运动的物体将保持以相同速度及方向进行匀速直线运动,直到有力使其改变运动状态。
第二定律:动量定律牛顿的第二定律描述了物体在受到外力作用时的运动状态变化。
它的数学表达为:“物体受到的力等于物体质量乘以加速度。
”数学公式可表示为F = ma,其中F代表力,m代表物体的质量,a代表物体的加速度。
换句话说,当一个物体受到外力时,它的加速度与受到的力成正比,质量越大,加速度越小,质量越小,加速度越大。
第三定律:作用反作用定律牛顿的第三定律指出:“对于每一个作用力,都有一个相等大小、方向相反的反作用力。
”这意味着施加在物体上的力,将同时存在一力大小相等但方向相反的力作用在施加力的物体上。
例如,当一个人站在地面上时,他会受到地面向上的支持力,同时他也对地面施加一个大小相等但方向相反的力。
牛顿运动定律的应用广泛,从日常生活到工程设计,都离不开这些定律的指导。
在日常生活中,我们常常可以观察到牛顿运动定律的应用。
例如,当我们开启车辆时,车身会向后倾斜,这是因为车辆受到了向后的加速度,而乘坐的人则因惯性继续向前,所以产生了相对倾斜的感觉。
另一个例子是踢足球,当我们用力踢球时,球会受到力的作用而发生变化,加速度增加,从而改变球的运动状态。
在工程设计中,牛顿运动定律同样发挥着重要作用。
例如,在车辆设计中,采用合适的力学模型和计算方法,可以预测车辆的运动和加速性能,从而提高安全性和舒适性。
另一个应用是桥梁设计,根据桥梁所受荷载和物体的运动状态,可以计算出合理的桥梁结构和支撑力,确保桥梁的稳定性和安全性。
牛顿运动定律
第二章 牛顿运动定律§2-1牛顿运动定律 力一、牛顿运动定律 1、第一定律0=F时,恒量=V (2-1)说明:⑴反映物体的惯性,故叫做惯性定律。
⑵给出了力的概念,指出了力是改变物体运动状态的原因。
2、第二定律a m F= (2-2)说明:⑴F为合力⑵a m F =为瞬时关系⑶矢量关系 ⑷只适应于质点 ⑸解题时常写成⎪⎩⎪⎨⎧===⇒=zz y yxxm a F m a F m a F a m F (直角坐标系) (2-3) ⎪⎩⎪⎨⎧====⇒=(切向)(法向)dtdvm ma F r v m ma F a m F t t n n 2(自然坐标系) (2-4) 3、第三定律11'F F-= (2-5)说明:⑴1F 、2F在同一直线上,但作用在不同物体上。
⑵1F、2F 同有同无互不抵消。
二、几种常见的力 1、力力是指物体间的相互作用。
2、力学中常见的力 (1)万有引力2210rm m G F = (2-6)即任何二质点都要相互吸引,引力的大小和两个质点的质量1m 、2m 的乘积成正比,和它们距离r 的平方成反比;引力的方向在它们连线方向上。
说明:通常所说的重力就是地面附近物体受地球的引力。
(2)弹性力弹簧被拉伸或压缩时,其内部就产生反抗力,并企图恢复原来的形状,这种力称为弹簧的恢复力。
(3)摩擦力当一物体在另一物体表面上滑动或有滑动的趋势时,在接触面上有一种阻碍它们相对滑动的力,这种力称为摩擦力。
3、两种质量由惯引称为惯性质量,确定的质量称为引力质量,确定的质量m m m a f m m r Gm M f ==2/可证明:const m m =惯引,适选单位可有 惯引m m =。
∴以后不区别二者,统称为质量。
§2-2力学单位制和量纲(自学) §2-3惯性系 力学相对性原理一、惯性参照系在运动学中,参照系可任选,在应用牛顿定律时,参照系不能任选,因为牛顿运动定律不是对所有的参照系都适用。
Lec03 牛顿运动定律 基本相互作用 惯性力
a
N
m a0
mg
S
a0
h
a ( g a0 )sin 匀加速直线运动
t 1 sin 2h g a0
= 1s
例2. 水桶以角速度 旋转,求水面的形状? 解:水面关于z 轴对称。任选水面一小质元m, 它在水面的切线方向静止。 水是流体,无切向应力,故周围的水 z 对质元m的作用力必定垂直于液面。 在水面参考系中有: r mg sin mr 2 cos 0 r 2 r 2 dz tan z0 O g dr g N 2 惯性离心力 斜率 ( r )2
(1) (2)
o
dt
Y
vx
dv x
对(1) (2)分别积分可得
0 vx 运动轨迹 vy dv y v 0 sin g kv y
v 0 cos
t
kdt
t
dt
X
0
v x v0e kt cos dx
1 [( gkv sin )e kt g ] dy vy 0 dt k
'
牛顿运动定律适用于惯性系 1. 加速平动参考系 惯性系 S系 o x
z
S系
y
o x
y
在S系: m a m a 0 m a ' F
r PO r PO ' rO 'O a a ' a 0 2 2 d rO 'O d r PO ' a0 a' 2 2 dt dt
再分别积分可得
03.牛顿运动定律(2014年高考物理真题分类汇编)
03.牛顿运动定律1.(2014北京)18.应用物理知识分析生活中的常见现象,可以使物理学习更加有趣和深入。
例如平伸手掌托起物体,由静止开始竖直向上运动,直至将物体抛出。
对此现象分析正确的是A.手托物体向上运动的过程中,物体始终处于超重状态B.手托物体向上运动的过程中,物体始终处于失重状态C.在物体离开手的瞬间,物体的加速度大于重力加速度D.在物体离开手的瞬间,手的加速度大于重力加速度18.【答案】D【考点】超重和失重【解析】手托住物体向上运动时,若加速度向上,则处于超重现象,若加速度向下,则处于失重状态,若匀速向上,则既不是超重也不是失重状态,由于物体的运动状态不清楚,所以状态不能确定,AB项错误;物体离开手之后,只受重力作用,加速度竖直向下,大小为g,C项错误;此时手速度瞬间变为零,手的加速度大于物体的加速度,D 项正确。
2.(2014北京)19.伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促进了人类科学认识的发展。
利用如图所示的装置做如下实验:小球从左侧斜面上的O 点由静止释放后沿斜面向下运动,并沿右侧斜面上升。
斜面上先后铺垫三种粗糙程度逐渐减低的材料时,小球沿右侧斜面上升到的最高位置依次为1、2、3。
根据三次实验结果的对比,可以得到的最直接的结论是A.如果斜面光滑,小球将上升到与O点等高的位置B.如果小球不受力,它将一直保持匀速运动或静止状态C.如果小球受到力的作用,它的运动状态将发生改变D.小球受到的力一定时,质量越大,它的加速度越小19.【答案】A【考点】伽利略理想斜面实验【解析】如果斜面光滑是假象出来的,属于归纳总结出来的结论,A项正确;实验没有验证小球不受力时的运动,不受力时的运动状态是推论,B项错误;小球受力运动状态的变化也是想象出来的,C项错误;小球受力一定时,质量越大,加速度越小,这是牛顿第二定律的结论,D项错误。
3.(2014年大纲卷)19.一物块沿倾角为θ的斜坡向上滑动。
牛顿三大定律及介绍
牛顿三大定律及介绍牛顿三大定律包括牛顿第一运动定律、牛顿其次运动定律和牛顿第三运动定律三条定律,由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中总结提出。
艾萨克·牛顿艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国闻名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。
他在1687年发表的论文《自然定律》里,对万有引力和三大运动定律进行了描述。
这些描述奠定了此后三个世纪里物理世界的科学观点,并成为了现代工程学的基础。
他通过论证开普勒行星运动定律与他的引力理论间的全都性,展现了地面物体与天体的运动都遵循着相同的自然定律;为太阳中心说供应了强有力的理论支持,并推动了科学革命。
牛顿第一运动定律牛顿第一运动定律,简称牛顿第肯定律。
又称惯性定律、惰性定律。
常见的完整表述:任何物体都要保持匀速直线运动或静止状态,直到外力迫使它转变运动状态为止。
英国物理学家艾萨克·牛顿于1687年,在巨著《自然哲学的数学原理》里,提出了牛顿运动定律,牛顿第一运动定律就是其中一条定律。
牛顿其次运动定律牛顿其次运动定律的常见表述是:物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比;加速度的方向跟作用力的方向相同。
该定律是由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中提出的。
牛顿其次运动定律和第一、第三定律共同组成了牛顿运动定律,阐述了经典力学中基本的运动规律。
牛顿第三运动定律牛顿第三运动定律的常见表述是:相互作用的两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上。
该定律是由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中提出的。
牛顿第三运动定律和第一、其次定律共同组成了牛顿运动定律,阐述了经典力学中基本的运动规律。
牛顿运动定律 维基百科
牛顿运动定律是由英国物理学家艾萨克·牛顿在1687年提出的,包括牛顿第一运动定律、牛顿第二运动定律和牛顿第三运动定律三条定律。
这些定律在经典力学范围内适用,适用于质点、惯性参考系以及宏观、低速运动问题。
牛顿第一运动定律,又称惯性定律,指出物体在没有外力作用时,要么保持静止,要么保持匀速直线运动。
公式为F=ma,其中F代表外力,m代表物体的质量,a代表加速度。
牛顿第二运动定律描述了力与物体加速度之间的关系,即F=ma,其中F表示作用在物体上的力,m表示物体的质量,a表示物体的加速度。
该定律表明,物体的加速度与施加在物体上的力成正比,与物体的质量成反比。
牛顿第三定律:表明两个物体之间的作用力和反作用力总是大小相等、方向相反,作用在同一直线上。
公式为F=-F',其中F代表作用力,F'代表反作用力。
牛顿运动定律
例:水桶以角速度 旋转,求水面的形状?
Z
解:选水面为参照系, 选柱坐标系,
r
任选水面一小质元,其质量是m,因 该质元在所选的参照系中静止。
则有下列方程:
N
Z
mg
mr2
由(1)、(2)式可得:
2 tg r g
tg
而:
2
z
g dz tg dr
r
r
分离变量:
dz
2
g
1 g kv 2 y ln 2k g
上升时的最大高度: 从最高点落到地面:
kv 1 1 g ln( 1 ) ln 2k g 2 k g kv 2 f
2 g kv0 g g g kv 2 f
2 0
v f v0
g 2 g kv0
例3:一柔软绳长度为 l ,线密度 为r,开始时一端着地, 然后自由下落,求下落的任意时刻,绳对地面的压力? 解:建立如图所示的坐标,并作示意图。 设压力为 N y
得:
2 R 2 z0 h 4g
2 2 z r z0 2g
2 z ( 2r 2 R 2 ) h 4g
复杂问题往往除动力学方程外,还需补充一些运 动学方程或几何关系 。
例 如图所示,已知M和m及α 不计一切摩擦,试求: 1、m 相对地面的加速度
2、M相对地面的加速度
接触面光滑 a
a
S
E
在 E 系,物体所受合外力为零,其加速度也为 零,符合牛顿定律。
在 S 系,物体所受合外力仍为零,但其加速 度不为零,显然不符合牛顿定律。 惯性系:一个参照系,如果牛顿定律对此参照 系成立,该系称为惯性系。如上E 参考系。 否则称为非惯性系,如上S 参考系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点3 牛顿运动定律◎考纲要求◎牛顿3定律◎考点透视◎一、牛顿第一定律1.牛顿第一定律导出了力的概念力是改变物体运动状态的原因。
(运动状态指物体的速度)又根据加速度定义:tv a ∆∆=,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。
(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。
)2.牛顿第一定律导出了惯性的概念一切物体都有保持原有运动状态的性质,这就是惯性。
惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。
质量是物体惯性大小的量度。
3.牛顿第一定律描述的是理想化状态牛顿第一定律描述的是物体在不受任何外力时的状态。
而不受外力的物体是不存在的。
物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在F =0时的特例。
二、牛顿第三定律1.区分一对作用力反作用力和一对平衡力一对作用力反作用力和一对平衡力的共同点有:大小相等、方向相反、作用在同一条直线上。
不同点有:作用力反作用力作用在两个不同物体上,而平衡力作用在同一个物体上;作用力反作用力一定是同种性质的力,而平衡力可能是不同性质的力;作用力反作用力一定是同时产生同时消失的,而平衡力中的一个消失后,另一个可能仍然存在。
2.一对作用力和反作用力的冲量和功 一对作用力和反作用力在同一个过程中(同一段时间或同一段位移)的总冲量一定为零,但作的总功可能为零、可能为正、也可能为负。
这是因为作用力和反作用力的作用时间一定是相同的,而位移大小、方向都可能是不同的。
三、牛顿第二定律1.定律的表述物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,既F=ma(其中的F和m、a必须相对应)特别要注意表述的第三句话。
因为力和加速度都是矢量,它们的关系除了数量大小的关系外,还有方向之间的关系。
明确力和加速度方向,也是正确列出方程的重要环节。
若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F 为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际加速度。
2.牛顿第二定律确立了力和运动的关系牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系。
联系物体的受力情况和运动情况的桥梁或纽带就是加速度。
3.应用牛顿第二定律解题的步骤①明确研究对象。
可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。
设每个质点的质量为m i,对应的加速度为a i,则有:对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律:,,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反的,其矢量和必为零,所以最后得到的是该质点组所受的所有外力之和,即合外力F。
②对研究对象进行受力分析。
同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。
③若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。
④当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。
解题要养成良好的习惯。
只要严格按照以上步骤解题,同时认真画出受力分析图,标出运动情况,那么问题都能迎刃而解。
3.应用举例四、向心力和向心加速度(牛顿第二定律在圆周运动中的应用)1.做匀速圆周运动物体所受的合力为向心力 “向心力”是一种效果力。
任何一个力,或者几个力的合力,或者某一个力的某个分力,只要其效果是使物体做匀速圆周运动的,都可以作为向心力。
2.一般地说,当做圆周运动物体所受的合力不指向圆心时,可以将它沿半径方向和切线方向正交分解,其沿半径方向的分力为向心力,只改变速度的方向,不改变速度的大小;其沿切线方向的分力为切向力,只改变速度的大小,不改变速度的方向。
分别与它们相应的向心加速度描述速度方向变化的快慢,切向加速度描述速度大小变化的快慢。
做圆周运动物体所受的向心力和向心加速度的关系同样遵从牛顿第二定律:在列方程时,根据物体的受力分析,在方程左边写出外界给物体提供的合外力,右边写出物体需要的向心力(可选用R T m R m R mv 2222⎪⎭⎫ ⎝⎛πω或或等各种形式)。
如果沿半径方向的合外力大于做圆周运动所需的向心力,物体将做向心运动,半径将减小;如果沿半径方向的合外力小于做圆周运动所需的向心力,物体将做离心运动,半径将增大。
3.圆锥摆圆锥摆是运动轨迹在水平面内的一种典型的匀速圆周运动。
其特点是由物体所受的重力与弹力的合力充当向心力,向心力的方向水平。
也可以说是其中弹力的水平分力提供向心力(弹力的竖直分力和重力互为平衡力)。
4.竖直面内圆周运动最高点处的受力特点及分类这类问题的特点是:由于机械能守恒,物体做圆周运动的速率时刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。
物体在最低点处向心力向上,而重力向下,所以弹力必然向上且大于重力;而在最高点处,向心力向下,重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论。
、 、⑴弹力只可能向下,如绳拉球。
这种情况下有mg Rmv mg F ≥=+2即gR v ≥,否则不能通过最高点。
⑵弹力只可能向上,如车过桥。
这种情况下有:gR v mg Rmv F mg ≤∴≤=-,2,否则车将离开桥面,做平抛运动。
⑶弹力既可能向上又可能向下,如管内转(或杆连球、环穿珠)。
这种情况下,速度大小v 可以取任意值。
但可以进一步讨论:①当gR v >时物体受到的弹力必然是向下的;当gR v <时物体受到的弹力必然是向上的;当gR v =时物体受到的弹力恰好为零。
②当弹力大小时,向心力有两解:mg ±F ;当弹力大小时,向心力只有一解:F +mg ;当弹力F =mg 时,向心力等于零。
◎典型例题◎例1. 如图所示,如图所示,轻弹簧下端固定在水平面上。
一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。
在小球下落的这一全过程中,下列说法中正确的是A.小球刚接触弹簧瞬间速度最大B.从小球接触弹簧起加速度变为竖直向上C.从小球接触弹簧到到达最低点,小球的速度先增大后减小D.从小球接触弹簧到到达最低点,小球的加速度先减小后增大解:小球的加速度大小决定于小球受到的合外力。
从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。
当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。
选CD 。
例2. 如图所示, , m =4kg 的小球挂在小车后壁上,细线与竖直方向成37°角。
求:⑴小车以a=g 向右加速;⑵小车以a=g 向右减速时,细线对小球的拉力和后壁对小球的压力各多大? 解:⑴向右加速时小球对后壁必然有压力,球在三个共点力作用下向右加速。
,合外力向右,向右,因此G 和的合力一定水平向左,所以 的大小可以用平行四边形定则求出:=50N ,可见向右加速时的大小与a 无关;可在水平方向上用牛顿第二定律列方程:-0.75G =ma 计算得=70N 。
可以看出将随a 的增大而增大。
(这种情况下用平行四边形定则比用正交分解法简单。
) ⑵必须注意到:向右减速时,有可能减为零,这时小球将离开后壁而“飞”起来。
这时细线跟竖直方向的夹角会改变,因此的方向会改变。
所以必须先求出这个临界值。
当时G 和的合力刚好等于ma ,所以a 的临界值为g a 43 。
当a=g时小球必将离开后壁。
不难看出,这时=2mg=56N,=0例3. 如图所示,在箱内倾角为α的固定光滑斜面上用平行于斜面的细线固定一质量为m的木块。
求:⑴箱以加速度a匀加速上升,⑵箱以加速度a向左匀加速运动时,线对木块的拉力和斜面对箱的压力各多大?解:⑴a向上时,由于箱受的合外力竖直向上,重力竖直向下,所以的合力F必然竖直向上。
、可先求F,再由=F sinα和=F cosα求解,得到:=m(g+a)sinα,=m(g+a)cosα显然这种方法比正交分解法简单。
⑵a向左时,箱受的三个力都不和加速度在一条直线上,必须用正交分解法。
可选择沿斜面方向和垂直于斜面方向进行正交分解,(同时正交分解a),然后分别沿x、y轴列方程求、:=m(g sinα-a cosα),=m(g cosα+a sinα)经比较可知,这样正交分解比按照水平、竖直方向正交分解列方程和解方程都简单。
还应该注意到的表达式=m(g sinα-a cosα)显示其有可能得负值,这意味这绳对木块的力是推力,这是不可能的。
这里又有一个临界值的问题:当向左的加速度时=m(g sinα-a cosα)沿绳向斜上方;当时木块和斜面不再保持相对静止,而是相对于斜面向上滑动,绳子松弛,拉力为零。
例4. 如图所示,,质量m =4kg 的物体与地面间的动摩擦因数为μ=0.5,在与水平成θ=37°角的恒力F 作用下,从静止起向右前进=2.0s 后撤去F ,又经过=4.0s 物体刚好停下。
求:F 的大小、最大速度、总位移s 。
解:由运动学知识可知:前后两段匀变速直线运动的加速度a 与时间t 成反比,而第二段中,加速度,所以第一段中的加速度一定是。
再由方程1)sin (cos ma F mg F =--θμθ可求得:F =54.5N第一段的末速度和第二段的初速度相等都是最大速度,可以按第二段求得:又由于两段的平均速度和全过程的平均速度相等,所以有60)(221=+=t t v s m m 需要引起注意的是:在撤去拉力F 前后,物体受的摩擦力发生了改变。
在应用牛顿第二定律解题时,有时为了方便,可以取一组物体(一组质点)为研究对象。
这一组物体一般具有相同的速度和加速度,但也可以有不同的速度和加速度。
以质点组为研究对象的好处是可以不考虑组内各物体间的相互作用,这往往给解题带来很大方便。
使解题过程简单明了。
例5. 如图所示,A 、B 两木块的质量分别为m A 、m B ,在水平推力F 作用下沿光滑水平面匀加速向右运动,求A 、B 间的弹力F N 。
,解:这里有a 、两个未知数,需要要建立两个方程,要取两次研究对象。
比较后可知分别以B 、(A +B )为对象较为简单(它们在水平方向上都只受到一个力作用)。
可得F m m m F BA B N += 这个结论还可以推广到水平面粗糙时(A 、B 与水平面间μ相同);也可以推广到沿斜面方向推A 、B 向上加速的问题,有趣的是,答案是完全一样的。