高中数学必修五第一章解三角形教案
高中数学新教材解三角形教案
高中数学新教材解三角形教案高中数学新教材解三角形教案1一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用.本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.2、了解构造法在解题中的运用.三、教学重点及难点重点:平面对量知识在各个领域中应用.难点:向量的构造.四、教学流程设计五、教学过程设计一、复习与回顾1、提问:下列哪些量是向量?(1)力(2)功(3)位移(4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?[说明]复习数量积的有关知识.二、学习新课例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看例2(书中例3)证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.证法(二)向量法[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.二、巩固练习1、如图,某人在静水中游泳,速度为km/h.(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8 km/h.(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的应用.2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.四、作业布置1、书面作业:课本P73, 练习8.4 4高中数学新教材解三角形教案2教学目标:1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.2.会求一些简单函数的反函数.3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.4.进一步完善学生思维的深刻性,培育学生的逆向思维能力,用辩证的观点分析问题,培育抽象、概括的能力.教学重点:求反函数的方法.教学难点:反函数的概念.教学过程:教学活动设计意图一、创设情境,引入新课1.复习提问①函数的概念②y=f(x)中各变量的意义2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt 的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.3.板书课题由实际问题引入新课,激发了学生学习爱好,展示了教学目标.这样既可以拨去反函数这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.二、实例分析,组织探究1.问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2.问题组二:(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(3)函数()的定义域与函数()的值域有什么关系?3.渗透反函数的概念.(老师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培育学生抽象、概括的能力.通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在最近进展区设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.三、师生互动,归纳定义1.(根据上述实例,老师与学生共同归纳出反函数的定义)函数y=f(x)(x∈A) 中,设它的值域为C.我们根据这个函数中x,y 的关系,用y 把x 表示出来,得到x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量y 的函数.这样的函数x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到用x表示自变量, y表示函数的习惯,将中的x与y对调写成.2.引导分析:1)反函数也是函数;2)对应法则为互逆运算;3)定义中的如果意味着对于一个任意的函数y=f(x)来说不一定有4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;5)函数y=f(x)与x=f(y)互为反函数;6)要理解好符号f;7)交换变量x、y的原因.3.两次转换x、y的对应关系(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)4.函数与其反函数的关系函数y=f(x)函数定义域AC值域CA四、应用解题,总结步骤1.(投影例题)【例1】求下列函数的反函数(1)y=3x-1 (2)y=x 1【例2】求函数的反函数.(老师板书例题过程后,由学生总结求反函数步骤.)2.总结求函数反函数的步骤:1° 由y=f(x)反解出x=f(y).2° 把x=f(y)中x与y互换得.3° 写出反函数的定义域.(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?(2)的反函数是________.(3)(x0)的反函数是__________.在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.通过动画演示,表格对比,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培育学生分析、思考的习惯,以及归纳总结的能力.题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.五、巩固强化,评价反馈1.已知函数y=f(x)存在反函数,求它的反函数y =f( x)(1)y=-2x 3(xR) (2)y=-(xR,且x)( 3 ) y=(xR,且x)2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.五、反思小结,再度设疑本节课主要讨论了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节讨论.(让学生谈一下本节课的学习体会,老师适时点拨)进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可实行同学板演、分组竞赛等多种形式调动学生的乐观性.问题是数学的心脏学生带着问题走进课堂又带着新的问题走出课堂.六、作业习题2.4第1题,第2题进一步巩固所学的知识.教学设计说明问题是数学的心脏.一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采纳了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,讨论性质,进而得出概念,这正是数学讨论的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对比、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培育学生的逆向思维.使学生自然成为学习的主人。
下学期高一数学第一章解三角形全章教案 必修5
下学期高一数学第一章解三角形全章教案1.1第1课时 正弦定理(1)教学目标(1)要求学生掌握正弦定理及其证明;(2)会初步应用正弦定理解斜三角形,培养数学应用意识; (3)在问题解决中,培养学生的自主学习和自主探索能力. 教学重点,难点正弦定理的推导及其证明过程. 教学过程 一.问题情境在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角.那么斜三角形怎么办?我们能不能发现在三角形中还蕴涵着其他的边与角关系呢?探索1 我们前面学习过直角三角形中的边角关系,在Rt ABC ∆中,设90C =︒,则sin a A c =, sin b B c =, sin 1C =, 即:sin a c A =, sin b c B =, sin c c C =, sin sin sin a b cA B C==. 探索2 对于任意三角形,这个结论还成立吗? 二.学生活动学生通过画三角形、测量边长及角度,再进行计算,初步得出该结论对于锐角三角形和钝角三角形成立.教师再通过几何画板进行验证.引出课题——正弦定理. 三.建构数学探索3 这个结论对于任意三角形可以证明是成立的.不妨设C 为最大角,若C 为直角,我们已经证得结论成立,如何证明C 为锐角、钝角时结论也成立? 证法1 若C 为锐角(图(1)),过点A 作AD BC ⊥于D ,此时有sin AD B c =,sin ADC b=,所以sin sin c B b C =,即sin sin b c B C =.同理可得sin sin a cA C=, 所以sin sin sin a b cA B C ==. 若C 为钝角(图(2)),过点A 作AD BC ⊥,交BC 的延长线于D ,此时也有sin AD B c =,且sin sin(180)AD C C b =︒-=.同样可得sin sin sin a b cA B C==.综上可知,结论成立.证法 2 利用三角形的面积转换,先作出三边上的高AD 、BE 、CF ,则sin AD c B =,sin BE a C =,sin CF b A =.所以111sin sin sin 222ABC S ab C ac B bc A ∆===,每项同除以12abc 即得:sin sin sin a b cA B C==.探索4 充分挖掘三角形中的等量关系,可以探索出不同的证明方法.我们知道向量也是解决问题的重要工具,因此能否从向量的角度来证明这个结论呢?在ABC ∆中,有BC BA AC =+.设C 为最大角,过点A 作AD BC ⊥于D (图(3)),于是BC AD BA AD AC AD ⋅=⋅+⋅.设AC 与AD 的夹角为α,则0||||cos(90)||||cos BA AD B AC AD α=⋅⋅︒++⋅,其中 ,当C ∠为锐角或直角时,90C α=︒-; 当C ∠为钝角时,90C α=-︒. 故可得sin sin 0c B b C -=,即sin sin b cB C=. 同理可得sin sin a cA C =. 因此sin sin sin a b c A B C==. 四.数学运用 1.例题:例1.在ABC ∆中,30A =︒,105C =︒,10a =,求b ,c .解:因为30A =︒,105C =︒,所以45B =︒.因为sin sin sin a b cA B C==, 所以sin 10sin 45102sin sin 30a B b A ︒===︒,sin 10sin1055256sin sin 30a C c A ︒===+︒.因此, b ,c 的长分别为102和5256+.例2.根据下列条件解三角形: (1)3,60,1b B c ==︒=; (2)6,45,2c A a ==︒=.解:(1)sin sin b cB C =,∴sin 1sin 601sin 23c B C b ⨯︒===, ,60b c B >=,∴C B <,∴C 为锐角, ∴30,90C A ==,∴222a b c =+=.(2)sin sin a cA C=,∴sin 6sin 453sin 22c A C a ⨯===,∴60120C =或, ∴当sin 6sin 756075,31sin sin 60c B C B b C =====+时,; ∴当sin 6sin1512015,31sin sin 60c B C B b C =====-时,; 所以,31,75,60b B C =+==或31,15,120b B C =-==.说明:正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题. 练习:在ABC ∆中,30a =,26b =,30A =︒,求c 和,B C .说明:正弦定理可以用于解决已知两角和一边求另两边和一角的问题. 2.练习: (1)在ABC ∆中,已知8b c +=,30B ∠=︒,45C ∠=︒,则b = ,c = . (2)在ABC ∆中,如果30A ∠=︒,120B ∠=︒,12b =,那么a = ,ABC ∆的面积是 .(3)在ABC ∆中,30bc =,1532ABC S ∆=,则A ∠= . (4)课本第9页练习第1题. 五.回顾小结:1.用两种方法证明了正弦定理:(1)转化为直角三角形中的边角关系;(2)利用向量的数量积.2.初步应用正弦定理解斜三角形. 六.课外作业:课本第9页练习第2题;课本第11页习题1.1第1、6题§1.1.1第2课时 正弦定理(2)教学目标(1)掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形; (2)熟记正弦定理2sin sin sin a b cR A B C===(R 为ABC ∆的外接圆的半径)及其变形形式.教学重点,难点利用三角函数的定义和外接圆法证明正弦定理. 教学过程 一.问题情境上节课我们已经运用两种方法证明了正弦定理,还有没有其他方法可以证明正弦定理呢? 二.学生活动学生根据第5页的途径(2),(3)去思考. 三.建构数学证法1 建立如图(1)所示的平面直角坐标系,则有(cos ,sin )A c B c B ,(,0)C a ,所以ABC ∆的面积为1sin 2ABC S ac B ∆=.同理ABC ∆的面积还可以表示为1sin 2ABC S ab C ∆=及1sin 2ABC S bc A ∆=,所以111sin sin sin 222ab C ac B bc A ==. 所以sin sin sin a b c A B C==. 证法2 如下图,设O 是ABC ∆的外接圆,直径2BD R =.(1)如图(2),当A 为锐角时,连CD ,则90BCD ∠=︒,2sin a R D =.又D A ∠=∠,所以2sin a R A =.(2)如图(3),当A 为钝角时,连CD ,则90BCD ∠=︒,2sin a R D =.又180A D ∠+∠=︒,可得sin sin(180)sin D A A =︒-=,所以2sin a R A =.(3)当A 为直角时,2a R =,显然有2sin a R A =.所以不论A 是锐角、钝角、直角,总有2sin a R A =.同理可证2sin b R B =,2sin c R C =.所以2sin sin sin a b cR A B C===. 由此可知,三角形的各边与其所对角的正弦之比是一个定值,这个定值就是三角形外接圆的直径. 由此可得到正弦定理的变形形式:(1)2sin ,2sin ,2sin a R A b R B c R C ===; (2)sin ,sin ,sin 222a b cA B C R R R===;(3)sin sin sin ::::A B C a b c =. 四.数学运用1.例题:例1.根据下列条件,判断ABC ∆有没有解?若有解,判断解的个数. (1)5a =,4b =,120A =︒,求B ; (2)5a =,4b =,90A =︒,求B ;(3)106a =,203b =45A =︒,求B ; (4)202a =203b =45A =︒,求B ;(5)4a =,33b =,60A =︒,求B . 解:(1)∵120A =︒,∴B 只能是锐角,因此仅有一解. (2)∵90A =︒,∴B 只能是锐角,因此仅有一解.(3)由于A 为锐角,而210632=,即A b a sin =,因此仅有一解90B =︒.(4)由于A 为锐角,而22032022031062>>=,即sin b a b A >>,因此有两解,易解得60120B =︒︒或.(5)由于A 为锐角,又1034sin 605<︒=,即sin a b A <,∴B 无解. 例2.在ABC ∆中,已知,cos cos cos a b cA B C==判断ABC ∆的形状.解:令sin ak A=,由正弦定理,得sin a k A =,sin b k B =,sin c k C =.代入已知条件,得sin sin sin cos cos cos A B C A B C==,即tan tan tan A B C ==.又A ,B ,C (0,)π∈,所以A B C ==,从而ABC ∆为正三角形.说明:(1)判断三角形的形状特征,必须深入研究边与边的大小关系:是否两边相等?是否三边相等?还要研究角与角的大小关系:是否两角相等?是否三角相等?有无直角?有无钝角? (2)此类问题常用正弦定理(或将学习的余弦定理)进行代换、转化、化简、运算,揭示出边与边,或角与角的关系,或求出角的大小,从而作出正确的判断.例3.某登山队在山脚A 处测得山顶B 的仰角为35︒,沿倾斜角为20︒的斜坡前进1000米后到达D 处,又测得山顶的仰角为65︒,求山的高度(精确到1米). 分析:要求BC ,只要求AB ,为此考虑解ABD ∆. 解:过点D 作//DE AC 交BC 于E ,因为20DAC ∠=︒, 所以160ADE ∠=︒,于是36016065135ADB ∠=︒-︒-︒=︒. 又352015BAD ∠=︒-︒=︒,所以30ABD ∠=︒. 在ABD ∆中,由正弦定理,得sin 1000sin13510002()sin sin 30AD ADB AB m ABD ∠︒===∠︒.在Rt ABC ∆中,sin 35235811()BC AB m =︒=︒≈. 答:山的高度约为811m .例4.如图所示,在等边三角形中,,AB a =O 为三角形的中心,过O 的直线交AB 于M ,交AC 于N ,求2211OM ON +的最大值和最小值. 解:由于O 为正三角形ABC 的中心,∴3AO =, 6MAO NAO π∠=∠=,设MOA α∠=,则233ππα≤≤,αβπβ-αACBD在AOM ∆中,由正弦定理得:sin sin[()]6OM OAMAO ππα=∠-+, ∴6sin()6OM πα=+,在AON ∆中,由正弦定理得:6sin()6ON πα=-,∴2211OM ON +22212[sin ()sin ()]66a ππαα=++-22121(sin )2a α=+, ∵233ππα≤≤,∴3sin 14α≤≤,故当2πα=时2211OM ON +取得最大值218a, 所以,当α=2,33or ππ时23sin 4α=,此时2211OM ON +取得最小值215a . 例5.在ABC ∆中,AD 是BAC ∠的平分线,用正弦定理证明:AB BDAC DC=. 证明:设BAD α∠=,BDA β∠=,则CAD α∠=,180CDA β∠=︒-.在ABD ∆和ACD ∆中分别运用正弦定理,得sin sin AB BD βα=,sin(180)sin AC DC βα︒-=, 又sin(180)sin ββ︒-=,所以AB AC BD DC =,即AB BDAC DC=. 2.练习:(1)在ABC ∆中,::4:1:1A B C =,则::a b c = ( D )A .4:1:1 B .2:1:1 CD(2)在ABC ∆中,若sin :sin :sin 4:5:6A B C =,且15a b c ++=,则a = , b = ,c = . 五.回顾小结:1.了解用三角函数的定义和外接圆证明正弦定理的方法; 2.理论上正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. 六.课外作业:课本第9页练习第3题;课本第11页习题1.1第2、8题.§1.1.2 第3课时 余弦定理(1)教学目标(1)掌握余弦定理及其证明;(2)使学生能初步运用余弦定理解斜三角形. 教学重点,难点(1)余弦定理的证明及其运用;(2)能灵活运用余弦定理解斜三角形. 教学过程 一.问题情境 1.情境:复习正弦定理及正弦定理能够解决的两类问题. 2.问题:在上节中,我们通过等式BC BA AC =+的两边与AD (AD 为ABC ∆中BC 边上的高)作数量积,将向量等式转化为数量关系,进而推出了正弦定理,还有其他途径将向量等式BC BA AC =+数量化吗?二.学生活动如图,在ABC ∆中,AB 、BC 、CA 的长分别为c 、a 、b . ∵BC AB AC +=∴()()AC AC AB BC AB BC ⋅=+⋅+22cos 2a B ac c +-=, 即B ac a c b cos 2222-+=;同理可证:A bc c b a cos 2222-+=, C ab b a c cos 2222-+=. 三.建构数学 1. 余弦定理上述等式表明,三角形任何一边的平方等于其他两边平方的和,减去这两边与它们夹角的余弦的积的两倍.这样,我们得到余弦定理. 2.思考:回顾正弦定理的证明,尝试用其他方法证明余弦定理.方法1:如图1建立直角坐标系,则(0,0),(cos ,sin ),(,0)A B c A c A C b .所以2222222222(cos )(sin )cos sin 2cos 2cos a c A b c A c A c A bc A b b c bc A=-+=+-+=+-同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=注:此法的优点在于不必对A 是锐角、直角、钝角进行分类讨论.方法2:若A 是锐角,如图2,由B 作BD AC ⊥,垂足为D ,则cos AD c A =,所以即A bc c b a cos 2222-+=,类似地,可以证明当A 是钝角时,结论也成立,而当A 是直角时,结论显 然成立.同理可证B ac a c b cos 2222-+=,C ab b a c cos 2222-+=.图1 图2 3.余弦定理也可以写成如下形式:bc a c b A 2cos 222-+= , ac b c a B 2cos 222-+=, acc b a C 2cos 222-+=.4.余弦定理的应用范围:利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在ABC ∆中,(1) 已知3b =,1c =,060A =,求a ;A BCcab(2) 已知4a =,5b =,6=c ,求A (精确到00.1).解:(1)由余弦定理,得2222202cos 31231cos607a b c bc A =+-=+-⨯⨯⨯=,所以 a =(2)由余弦定理,得222222564cos 0.752256b c a A bc +-+-===⨯⨯, 所以,041.4A ≈.例2. ,A B 两地之间隔着一个水塘,现选择另一点C ,测得182,CA m =126,CB m =063ACB ∠=,求,A B 两地之间的距离(精确到1m ). 解:由余弦定理,得所以,168()AB m ≈答:,A B 两地之间的距离约为168m .例3.用余弦定理证明:在ABC ∆中,当C 为锐角时,222a b c +>;当C 为钝角时,222a b c +<.证:当C 为锐角时,cos 0C >,由余弦定理,得222222cos c a b ab C a b =+-<+,即 222a b c +>.同理可证,当C 为钝角时,222a b c +<.2.练习:书第15页 练习1,2,3,4 五.回顾小结:1.余弦定理及其应用2.正弦定理和余弦定理是解三角形的两个有力工具,要区别两个定理的不同作用,在解题时正确选用;六.课外作业:书第16页1,2,3,4,6,7题§1.1.2 第4课时 余弦定理(2)教学目标(1)能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦定理、余弦定理及相关的三角公式解决这些问题. 教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题,牢固掌握两个定理,应用自如. 教学过程 一.问题情境1.正弦定理及其解决的三角形问题(1)已知两角和任一边,求其它两边和一角;(2)已知两边和其中一边的对角,求另一边的对角,从而进一步其它的边和角. 2.余弦定理及其解决的三角形问题 (1)已知三边,求三个角;(2)已知两边和他们的夹角,求第三边和其他两个角. 四.数学运用 1.例题:例1.在长江某渡口处,江水以5/km h 的速度向东流,一渡船在江南岸的A 码头出发,预定要在0.1h 后到达江北岸B 码头,设AN 为正北方向,已知B 码头在A 码头的北偏东015,并与A 码头相距1.2km .该渡船应按什么方向航行?速度是多少(角度精确到00.1,速度精确到0.1/km h )?解:如图,船按AD 方向开出,AC 方向为水流方向,以AC 为一边、AB 为对角线作平行四边形ABCD ,其中 1.2(),50.10.5()AB km AC km ==⨯=.在ABC ∆中,由余弦定理,得2221.20.52 1.20.5cos(9015) 1.38BC =+-⨯⨯-≈, 所以 1.17()AD BC km =≈. 因此,船的航行速度为1.170.111.7(/)km h ÷=.在ABC ∆中,由正弦定理,得 0sin 0.5sin 75sin 0.41281.17AC BAC ABC BC ∠∠==≈, 所以 024.4ABC ∠≈所以 00159.4DAN DAB NAB ABC ∠=∠-∠=∠-≈.答:渡船应按北偏西09.4的方向,并以11.7/km h 的速度航行.例2. 在ABC ∆中,已知sin 2sin cos A B C =,试判断该三角形的形状.解:由正弦定理及余弦定理,得222sin ,cos sin 2A a a b c C B b ab+-==, 所以 22222a a b c b ab+-=,整理得 22b c =因为0,0b c >>,所以b c =.因此,ABC ∆为等腰三角形.例3.如图,AM 是ABC ∆中BC 边上的中线,求证:22212()2AM AB AC BC =+-.证:设AMB α∠=,则0180AMC α∠=-.在ABM ∆中,由余弦定理,得2222cos AB AM BM AM BM α=+-.在ACM ∆中,由余弦定理,得22202cos(180)AC AM MC AM MC α=+--.因为01cos(180)cos ,2BM MC BC αα-=-==, 所以2222122AB AC AM BC +=+,因此, 22212()2AM AB AC BC =+-. 例4.在ABC ∆中,BC a =,AC b =,,a b 是方程02322=+-x x 的两个根,且2cos()1A B +=,求:①角C 的度数; ②AB 的长度; ③ABC S ∆.解:①1cos cos(())cos()2C A B A B π=-+=-+=- ∴120C =;②由题设:232a b ab ⎧+=⎪⎨=⎪⎩,∴2222cos AB AC BC AC BC C =+-⋅⋅120cos 222ab b a -+=ab b a ++=22102)32()(22=-=-+=ab b a , 即10AB =;③ABC S ∆11133sin sin120222222ab C ab ===⋅⋅=.2.练习:(1)书第16页 练习1,2,3,4DCBA(2)如图,在四边形ABCD 中,已知AD CD ⊥,10AD =,14AB =, 60BDA ∠=, 135BCD ∠=, 求BC 的长.(3)在ABC ∆中,已知()()()456::::b c c a a b +++=,求ABC ∆的最大内角;(4)已知ABC ∆的两边,b c 是方程2400x kx -+=的两个根,的面积是2cm ,周长是20cm ,试求A 及k 的值; 五.回顾小结:1.正弦、余弦定理是解三角形的有力工具,要区别两个定理的不同作用,在解题时正确选用;2.应用正弦、余弦定理可以实现将“边、角相混合”的等式转化为“边和角的单一”形式; 3.应用余弦定理不仅可以进行三角形中边、角间的计算,还可以判断三角形的形状. 六.课外作业:书第17页5,8,9,10,11题§1.3正弦定理、余弦定理的应用(1)教学目标(1)综合运用正弦定理、余弦定理等知识和方法解决与测量学、航海问题等有关的实际问题;(2)体会数学建摸的基本思想,掌握求解实际问题的一般步骤;(3)能够从阅读理解、信息迁移、数学化方法、创造性思维等方面,多角度培养学生分析问题和解决问题的能力. 教学重点,难点(1)综合运用正弦定理、余弦定理等知识和方法解决一些实际问题; (2)掌握求解实际问题的一般步骤. 教学过程 一.问题情境 1.复习引入复习:正弦定理、余弦定理及其变形形式, (1)正弦定理、三角形面积公式:R CcB b A a 2sin sin sin ===; B acC ab A bc S ABC sin 21sin 21sin 21===∆.(2)正弦定理的变形:①C R c B R b A R a sin 2,sin 2,sin 2===;②RcC R b B R a A 2sin ,2sin ,2sin ===; ③sin sin sin ::::A B C a b c =.(3)余弦定理:bca cb A A bc c b a 2cos ,cos 2222222-+=-+=.二.学生活动引导学生复习回顾上两节所学内容,然后思考生活中有那些问题会用到这两个定理,举例说明.三.建构数学正弦定理、余弦定理体现了三角形中边角之间的相互关系,在测量学、运动学、力学、电学等许多领域有着广泛的应用.1.下面给出测量问题中的一些术语的解释:(1)朝上看时,视线与水平面夹角为仰角;朝下看时,视线与水平面夹角为俯角. (2)从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角.(3)坡度是指路线纵断面上同一坡段两点间的高度差与其水平距离的比值的百分率.道路坡度100%所表示的可以这样理解:坡面与水平面的夹角为45度.45度几乎跟墙壁一样的感觉了. (4)科学家为了精确地表明各地在地球上的位置,给地球表面假设了一个坐标系,这就是经纬度线.2.应用解三角形知识解决实际问题的解题步骤:①根据题意作出示意图;②确定所涉及的三角形,搞清已知和未知;③选用合适的定理进行求解;④给出答案. 四.数学运用 1.例题:例1.如图1-3-1,为了测量河对岸两点,A B 之间的距离,在河岸这边取点,C D ,测得85ADC ∠=,60BDC ∠=,47ACD ∠=,72BCD ∠=,100CD m =.设,,,A B C D 在同一平面内,试求,A B 之间的距离(精确到1m ).解:在ADC ∆中,85ADC ∠=,47ACD ∠=,则48DAC ∠=.又100DC =,由正弦定理,得()sin 100sin 85134.05sin sin 48DC ADC AC m DAC ∠==≈∠.在BDC ∆中,60BDC ∠=,72BCD ∠=, 则48DBC ∠=.又100DC =, 由正弦定理,得()sin 100sin 60116.54sin sin 48DC BDC BC m DBC ∠==≈∠.在ABC ∆中, 由余弦定理,得3233.95≈, 所以 ()57AB m ≈答,A B 两点之间的距离约为57m .本例中AB 看成ABC ∆或ABD ∆的一边,为此需求出AC ,BC 或AD ,BD ,所以可考察ADC ∆和BDC ∆,根据已知条件和正弦定理来求AC ,BC ,再由余弦定理求AB .引申:如果A ,B 两点在河的两岸(不可到达),试设计一种测量A ,B 两点间距离的方法.可见习题1.3 探究拓展 第8题.例2.如图1-3-2,某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,测出该渔轮在方位角为45,距离为10n mile 的C 处,并测得渔轮正沿方位角为105的方向,以9/n mile h 的速度向小岛靠拢,我海军舰艇立即以21/n mile h 的速度前去营救.求舰艇的航向和靠近渔轮所需的时间(角度精确到0.1,时间精确到1min ). 解:设舰艇收到信号后x h 在B 处靠拢渔轮,则21AB x =,9BC x =,又10AC =,()45180105120ACB ∠=+-=.由余弦定理,得2222cos AB AC BC AC BC ACB =+-⋅∠,即()()222211092109cos 120x x x =+-⨯⨯∠.化简,得2369100x x --=,解得()()240min 3x h ==(负值舍去).由正弦定理,得图1-3-1图1-3-2sin 9sin12033sin 2114BC ACB x BAC AB x ∠∠===, 所以21.8BAC ∠≈,方位角为4521.866.8+=.答 舰艇应沿着方向角66.8的方向航行,经过40min 就可靠近渔轮.本例是正弦定理、余弦定理在航海问题中的综合应用.因为舰艇从A 到B 与渔轮从C 到B 的时间相同,所以根据余弦定理可求出该时间,从而求出AB 和BC ;再根据正弦定理求出BAC ∠. 例3.如图,某海岛上一观察哨A 在上午11时测得一轮船在海岛北偏东3π的C 处,12时20分测得轮船在海岛北偏西3π的B 处,12时40分轮船到达海岛正西方5km 的E 港口.如果轮船始终匀速前进,求船速. 解:设ABE θ∠=,船的速度为/km h υ,则43BC υ=,13BE υ=. 在ABE ∆中,153sin sin 30υθ=,15sin 2θυ∴=. 在ABC ∆中,()43sin120sin 180AC υθ=-, 4415sin 2033233322AC υθυυ⋅⋅∴===. 在ACE ∆中,22520202525cos150333υ⎛⎫⎛⎫⎛⎫=+-⨯⨯⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 22540077525100933υ=++=,293υ∴=, ∴船的速度93/km h υ=. 2.练习:书上P20 练习1,3,4题.五.回顾小结:1.测量的主要内容是求角和距离,教学中要注意让学生分清仰角、俯角、张角、视角和方位角及坡度、经纬度等概念,将实际问题转化为解三角形问题.2.解决有关测量、航海等问题时,首先要搞清题中有关术语的准确含义,再用数学语言(符号语言、图形语言)表示已知条件、未知条件及其关系,最后用正弦定理、余弦定理予以解决.六.课外作业: 书上P21页习题1.3 第2,3,4题.§1.3 正弦定理、余弦定理的应用(2)教学目标(1)能熟练应用正弦定理、余弦定理解决三角形等一些几何中的问题和物理问题;(2)能把一些简单的实际问题转化为数学问题,并能应用正弦、余弦定理及相关的三角公式解决这些问题;(3)通过复习、小结,使学生牢固掌握两个定理,应用自如.教学重点,难点能熟练应用正弦定理、余弦定理及相关公式解决三角形的有关问题。
必修五第一章《解三角形》教案
§1.1.1 正弦定理●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin bB c=,又si n1c C c==, A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin ab=sin c=A c B(图1.1-3)思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
高中数学必修五解三角形教案
高中数学必修五解三角形教案高中数学必修五解三角形教案篇一:高中数学必修5解三角形知识总结及练习解三角形一、知识点:1、正弦定理:在C中,a、b、c分别为角?、?、C的对边,R 为C的外接圆的半径,则有abc2R.(两类正弦定理解三角形的问题:1、已知sin?sin?sinC两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角.)2、正弦定理的变形公式:①a?2Rsin?,b?2Rsin?,c?2RsinC;②sin??等式中)③a:b:c?sin?:sin?:sinC;abc,sin??,sinC?;(正弦定理的变形经常用在有三角函数的2R2R2Ra?b?cabc.sin??sin??sinCsin?sin?sinC1113、三角形面积公式:SC?bcsin??absinC?acsin? 222④?a2?b2?c2?2bccosA?2224.余弦定理:?b?a?c?2accos(本文来自: 教师联盟网:高中数学必修五解三角形教案)B 或?c2?b2?a2?2bacosC??b2?c2?a2?cosA?2bc?a2?c2?b2? ?cosB?2ac?? b2?a2?c2?cosC?2ab?(两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角.)2225、设a、b、c是C的角?、?、C的对边,则:①若a?b?c,则C?90?为222222直角三角形;②若a?b?c,则C?90?为锐角三角形;③若a?b?c,则C?90?为钝角三角形.6.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.7.解题中利用?ABC中A?B?C??,以及由此推得的一些基本关系式进行三角变换的运算,如:sin(A?B)?sinC,cos(A?B)??cosC,tan(A?B)??tanC, sinA?BCA?BCA?BC?cos,cos?sin,tan?cot 222222二、知识演练1、ΔABC中,a=1,b=3, ∠A=30°,则∠B等于()A.60°B.60°或120°C.30°或150°D.120°2、若(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC, 那么ΔABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形3.己知三角形三边之比为5∶7∶8,则最大角与最小角的和为( ).A.90°B.120°C.130°D.150°2224.在△ABC 中,a?b?c?bc ,则A等于()A.60°B.45°C.120°D.30°5.在△ABC中,A为锐角,lgb-lgc=lgsinA=-lg2, 则△ABC为()A. 等腰三角形 B. 等边三角形 C. 直角三角形 D. 等腰直角三角形b6、锐角?ABC中,B=2A,则a的取值范围是()A(-2,2)B(0,2)C(2,2)D2,)7.在?ABC中.sinA?sinB?sinC?sinBsinC.则A的取值范围是222 ?A.(0,6]B.[ 6,?)C.(0,3]D.[ 3,?)?8.在△ABC中,a=x,b=2,B=45,若△ABC有两解,则x的取值范围是_______________9. ?ABC中,B?60?,AC,则AB+2BC的最大值为_________.10.a,b,c为△ABC的三边,其面积S△ABC=123,bc=48,b-c=2,求a11.在?ABC中,角A,B,C所对的边分别为a,b,c,且满足cosA?2,AB?AC?3.(I)求?ABC的面积;(II)若b?c?6,求a的值.12、在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足S?2a?b2?c2)。
高中数学第一章解三角形教案新人教版必修5B
解三角形复习课 教案(一)教学目标:(1)运用正弦定理、余弦定理,解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
(3)培养学生分析问题、解决问题,自主探究的能力。
(二)教学重点与难点:重点:(1)正弦定理与余弦定理的应用。
(2)题目的条件满足什么形式时适合用正弦、余弦定理解决问题。
难点:(1)利用正弦定理求解过程中一解、二解的情况。
(2)从实际问题抽象出数学问题。
(三)教学过程:观察引入:? 让学生观察思考:在△ABC 中,请给出适当的条件,并根据你给出的条件可以得到什么结论?(培养学生自主探究和学习的能力)根据学生所答,教师归纳总结正弦定理,余弦定理公式:(正弦定理)正弦定理可以用来解两种类型的三角问题:(1)已知两角和任意一边,可以求出其他两边和一角;(2)已知两边和其中一边的对角,可以求出三角形的其他的边和角。
Cab b a c B ca a c bAbc c b a cos 2cos 2cos 2222222222-+=-+=-+= (余弦定理)余弦定理可解以下两种类型的三角形:BR C c B b A a 2sin sin sin === (1)已知三边;(2)已知两边及夹角.(四)例题精讲:让学生自主探究,分析问题,解决问题。
(可用正、余弦2种方法解决,注意解的个数)例2 如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西300,相距10海里C 处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B 处救援?(角度精确到10)根据题目要求把实际问题转化成解三角形问题,对应的边长和角度可从已知条件中获得。
(五)课堂练习:1.△ABC 中,∠A=60°, a= 6 , b=4, 那么满足条件的△ABC ( )A 有 一个解B 有两个解C 无解D 不能确定2.ABC 中,8b =,c =,ABC S =,则A ∠等于 ( )A 30B 60C 30或150D 60或1203.△ABC 中,若60A =,a =sin sin sin a b cA B C +-+-等于 ( )145,,.ABC a b B A C c ︒∆===例在中,已知求和A 2B 1 24.ABC中,:1:2A B=,C的平分线CD把三角形面积分成3:2两部分,则cos A=()A 13B12C34D 05.果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为()A 锐角三角形B 直角三角形C 钝角三角形D 由增加的长度决定参考答案:1.C 2。
必修五解三角形教案
必修五解三角形教案教案标题:必修五解三角形教案教案目标:1. 确保学生理解和掌握三角形的基本概念和性质。
2. 培养学生解决三角形相关问题的能力。
3. 提高学生的逻辑思维和推理能力。
教案步骤:第一步:引入三角形的概念(15分钟)1. 引导学生回顾平面几何的基本概念,如点、线、角等。
2. 引入三角形的概念,解释三角形的定义和特点。
3. 通过示意图和实例,让学生理解三角形的构成要素:三条边和三个角。
第二步:介绍三角形的分类(20分钟)1. 介绍根据边长和角度的关系,将三角形分为等边三角形、等腰三角形和普通三角形。
2. 解释每种三角形的定义和性质,如等边三角形的三边相等、等腰三角形的两边相等等。
3. 通过实例和练习,让学生区分不同种类的三角形,并理解它们之间的关系。
第三步:探究三角形的角度性质(25分钟)1. 引导学生思考三角形内角之和的问题,并让学生猜测三角形内角之和的大小。
2. 引导学生通过实验和推理,发现三角形内角之和恒为180度的规律。
3. 给予学生足够的练习,巩固和应用三角形内角之和的概念。
第四步:解决三角形的问题(30分钟)1. 给学生提供一些实际问题,要求他们应用所学的知识解决。
2. 引导学生分析问题,确定解题思路,并运用所学的三角形性质解决问题。
3. 鼓励学生在解题过程中提出自己的解决方法,并进行讨论和分享。
第五步:总结与拓展(10分钟)1. 总结本节课所学的内容,强调三角形的基本概念和性质。
2. 提醒学生在实际生活中运用三角形的知识,如测量高楼的高度、计算航行船只的位置等。
3. 鼓励学生进一步拓展学习,了解更多与三角形相关的知识和应用。
教学评估:1. 在课堂中通过观察学生的参与和回答问题的表现,评估他们对三角形概念和性质的理解程度。
2. 布置练习题,检验学生对三角形解题方法的掌握和应用能力。
3. 鼓励学生在课后自主学习和探究,通过小测验或作业评估他们的学习成果。
教学资源:1. 幻灯片或黑板,用于呈现概念和示意图。
必修五第一章 解三角形全章教案
1.1正弦定理和余弦定理1.1.1正弦定理从容说课本章内容是处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系有密切的联系,与已知三角形的边和角相等判定三角形全等的知识也有着密切的联系.教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构.教学重点1.正弦定理的概念;2.正弦定理的证明及其基本应用.教学难点1.正弦定理的探索和证明;2.已知两边和其中一边的对角解三角形时判断解的个数.教具准备直角三角板一个三维目标一、知识与技能1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;2.会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题.二、过程与方法1.让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系;2.引导学生通过观察、推导、比较,由特殊到一般归纳出正弦定理;3.进行定理基本应用的实践操作.三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.培养学生探索数学规律的思维能力,通过三角函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一.教学过程导入新课师如右图,固定△ABC的边CB及∠B,使边AC绕着顶点C转动.师思考:∠C的大小与它的对边A B的长度之间有怎样的数量关系?生显然,边AB的长度随着其对角∠C的大小的增大而增大.师能否用一个等式把这种关系精确地表示出来?师在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式 关系.如右图,在 △R t ABC 中,设 BC =A ,AC =B ,AB =C ,根据锐角三角函数中正弦函数的定义,有 a b c a b c=sin A ,=sin B ,又 sin C =1= ,则ccc sinA sinB simCc.从而在直角三角形 ABC 中,a b csinA sinB simC推进新课 [合作探究].师那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析) 生可分为锐角三角形和钝角三角形两种情况:如右图,当△ABC 是锐角三角形时,设边 A B 上的高是 CD ,根据任意角三角函数的定义,有CD =A sin B =B sin A ,则a b c b a b c ,同理,可得 .从而 sinA sinB sinC sinB sinA sinB sinC.(当△ABC 是钝角三角形时,解法类似锐角三角形的情况,由学生自己完成) 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即a b c sinA sinB sinC师是否可以用其他方法证明这一等式?生可以作△ABC 的外接圆,在△ABC 中,令 BC =A ,AC =B ,AB =C ,根据直径所对的圆周角是直角以及同弧所对的圆周角相等,来证明a b csinA sinB sinC这一关系.师很好!这位同学能充分利用我们以前学过的知识来解决此问题,我们一起来看下面的证法. 在△ABC 中,已知 BC =A ,AC =B ,AB =C ,作△ABC 的外接圆,O 为圆心,连结 BO 并延长交圆于 B ′, 设 BB ′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到 ∠BAB ′=90°,∠C =∠B ′,∴sin C =sin B ′=sinC sinBc2R∴csinC2R同理,可得a b2R,2R sinA sinB∴a b csinA sinB sinC2R这就是说,对于任意的三角形,上述关系式均成立,因此,我们得到等式a b csinA sinB sinC点评:上述证法采用了初中所学的平面几何知识,将任意三角形通过外接圆性质转化为直角三角形进而求证,此证法在巩固平面几何知识的同时,易于被学生理解和接受,并且消除了学生所持的“向量方法证明正弦定理是唯一途径”这一误解.既拓宽了学生的解题思路,又为下一步用向量方法证明正弦定理作了铺垫[知识拓展师接下来,我们可以考虑用前面所学的向量知识来证明正弦定理.从定理内容可以看出,定理反映的是三角形的边角关系,而在向量知识中,哪一知识点体现边角关系呢生向量的数量积的定义式A·B=|A||B|C osθ,其中θ为两向量的夹角师回答得很好,但是向量数量积涉及的是余弦关系而非正弦关系,这两者之间能否转化呢生可以通过三角函数的诱导公式s inθ=Co s(90°-θ)进行转化师这一转化产生了新角90°-θ,这就为辅助向量j的添加提供了线索,为方便进一步的运算,辅助向量选取了单位向量j,而j垂直于三角形一边,且与一边夹角出现了90°-θ这一形式,这是作辅助向量j垂直于三角形一边的原因师在向量方法证明过程中,构造向量是基础,并由向量的加法原则可得AC CB AB而添加垂直于AC的单位向量j是关键,为了产生j与AB、ACCB、的数量积,而在上面向量等式的两边同取与向量j的数量积运算,也就在情理之中了师下面,大家再结合课本进一步体会向量法证明正弦定理的过程,并注意总结在证明过程中所用到的向量知识点点评:(1)在给予学生适当自学时间后,应强调学生注意两向量的夹角是以同起点为前提,以及两向量垂直的充要条件的运用(2)要求学生在巩固向量知识的同时,进一步体会向量知识的工具性作用向量法证明过程(1)△ABC为锐角三角形,过点A作单位向量j垂直于CB-A,j与的夹角为90°-C AC,则 j 与AB的夹角为由向量的加法原则可得AC CB AB为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j的数量积运算,得到j (AC CB)j AB 由分配律可得AC j CB j AB∴|j|AC Co s90°+|j|CB Co s(90°-C)=|j|AB Co s(90°-A∴A sin C=C sin A∴a c sinA sinC另外,过点C作与CB 垂直的单位向量j,则j与AC的夹角为90°+C,j与AB的夹角为c b90°+B,可得sinC sinB(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j与A C的夹角为90°-C,j与AB的夹角为90°-Ba b c ∴sinA sinB sinC(2)△ABC为钝角三角形,不妨设A>90°,过点A作与AC垂直的单位向量j,则j 与AB的夹角为A-90°,j与CB的夹角为90°-C由AC CB AB ,得j·AC C B=j·AB即A·Co s(90°-C)=C·Co s(A- ∴A sin C=C sin A∴a c sinA sinC另外,过点C作与C B垂直的单位向量j,则j与AC 的夹角为90°+C,j与AB夹角为90°+B.同理,可得b c sinB sinC∴a b csimA sinB sinC(形式1)综上所述,正弦定理对于锐角三角形、直角三角形、钝角三角形均成立师在证明了正弦定理之后,我们来进一步学习正弦定理的应用[教师精讲](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使A=ksin A,B=ksin B,C=ksin C;(2)a b c sinA sinB sinC等价于a b c b a c, ,sinA sinB sinC sinB sinA sinC(形式我们通过观察正弦定理的形式2不难得到,利用正弦定理,可以解决以下两类有关三角形问题.①已知三角形的任意两角及其中一边可以求其他边,如a bsinAsinB.这类问题由于两角已知,故第三角确定,三角形唯一,解唯一,相对容易,课本P的例1就属于此类问题②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如s inA ab sinB.此类问题变化较多,我们在解题时要分清题目所给的条件.一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形.师接下来,我们通过例题评析来进一步体会与总结[例题剖析]【例1】在△ABC中,已知A=32.0°,B=81.8°,A=42.9c m,解三角形分析:此题属于已知两角和其中一角所对边的问题,直接应用正弦定理可求出边B,若求边C,再利用正弦定理即可解:根据三角形内角和定理,C=180°-(A+B)=180°-根据正弦定理,b= c=a s inB42.9sin81.8sinA sin32.0oa s inC42.9sin66.2sinA sin32.0ooo≈80.1(c m)≈74.1(c[方法引导(1)此类问题结果为唯一解,学生较易掌握,如果已知两角和两角所夹的边,也是先利用内角和180°求出第三角,再利用正弦定理(2)对于解三角形中的复杂运算可使用计算器【例2】在△ABC中,已知A=20c m,B=28c m,A=40°,解三角形(角度精确到1°,边长精确到1c m).分析:此例题属于B sin A<a<b的情形,故有两解,这样在求解之后呢,无需作进一步的检验,使学生在运用正弦定理求边、角时,感到目的很明确,同时体会分析问题的重要性解:根据正弦定理,sin B=bsinA28sin40 a 20o因为0°<B<180°,所以B≈64°或B(1)当B≈64°时,C=180°-(A+B)=180°-(40°+64°)=76°,C=a s inC20sin76sinA sin40oo≈30(c4(2)当B≈116°时,C=180°-(A+B)=180°-(40°+116°)=24°,C =a s inC20sin24sinA sin40oo≈13(c[方法引导]通过此例题可使学生明确,利用正弦定理求角有两种可能,但是都不符合题意,可以通过分析获得,这就要求学生熟悉已知两边和其中一边的对角时解三角形的各种情形.当然对于不符合题意的解的取舍,也可通过三角形的有关性质来判断,对于这一点,我们通过下面的例题来体会变式一:在△ABC中,已知A=60,B=50,A=38°,求B(精确到1°)和C(保留两个有效数字).分析:此题属于A≥B这一类情形,有一解,也可根据三角形内大角对大边,小角对小边这一性质来排除B为钝角的情形解:已知B<A,所以B<A,因此B也是锐角∵sin B=bsinA50sin38 a 60o∴B∴C=180°-(A+B)=180°-∴C =a s in C 60sin111o sinA sin38o[方法引导同样是已知两边和一边对角,但可能出现不同结果,应强调学生注意解题的灵活性,对于本题,如果没有考虑角B所受限制而求出角B的两个解,进而求出边C的两个解,也可利用三角形内两边之和大于第三边,两边之差小于第三边这一性质进而验证而达到排除不符合题意的解变式二:在△ABC中,已知A=28,B=20,A=120°,求B(精确到1°)和C(保留两个有效数字).分析:此题属于A为钝角且A>B的情形,有一解,可应用正弦定理求解角B后,利用三角形内角和为180°排除角B为钝角的情形解:∵sin B=bsinA20sin120 a 28o∴B≈38°或B≈142°(舍去∴C =180°-(A+B)∴C=a s inC28sin22sinA sin120≈12.[方法引导]此题要求学生注意考虑问题的全面性,对于角B为钝角的排除也可以结合三角形小角对小边性质而得到(2)综合上述例题要求学生自我总结正弦定理的适用范围,已知两角一边或两边与其中一边的对角解三角形(3)对于已知两边夹角解三角形这一类型,将通过下一节所学习的余弦定理来解师为巩固本节我们所学内容,接下来进行课堂练习:1.在△ABC中(结果保留两个有效数字),(1)已知 C =3,A =45°,B =60°,求 B(2)已知 B =12,A =30°,B =120°,求 A解:(1)∵C =180°-(A +B )=180°-(45°+60°)=75°,b c sinB sin C,∴B =csinB 3 s in60 sin Csin75(2)∵a b sinA sinB,∴A =bsinA 12sin30sinB sin 120点评:此题为正弦定理的直接应用,意在使学生熟悉正弦定理的内容,可以让数学成绩较弱的 学生进行在黑板上解答,以增强其自信心2.根据下列条件解三角形(角度精确到 1°,边长精确到 (1)B =11,A =20,B =30°;(2)A =28,B =20,A (3)C =54,B =39,C =115°;(4)A =20,B =28,A解: (1) ∵a b sinA sinB∴sin A =a s inB 20sin30b 11∴A ≈65°,A1 2当 A ≈65°时,C =180°-(B +A )=180°-(30°+65°)=85°, 111bsinC 11sin 85 ∴C = 1sinsinB sin30当 A ≈115°时,C =180°-(B +A )=180°-2 22bsin C 11sin 35 ∴C = 2sinB sin30(2)∵sin B =bsinA 20sin45a 28∴B ≈30°,B1 2 由于 A +B =45°+150°>180°,故 B ≈150°应舍去(或者由 B <A 知 B <A ,故 B 应为锐角 2 2∴C =180°-(45°+30°)=105°∴C=a s inC 28sin 105 sinA sin45(3)∵b csinB sinC∴sin B =bsinC 39sin 115c 54∴B ≈41°,B1 2由于 B <C ,故 B <C ,∴B ≈139°应舍去2∴当 B =41°时,A =180°-1 2A =csinA54sin24 sinC sin115(4) sin B=bsinA28sin120a 20=1.212>∴本题无解点评:此练习目的是使学生进一步熟悉正弦定理,同时加强解三角形的能力,既要考虑到已知角的正弦值求角的两种可能,又要结合题目的具体情况进行正确取舍课堂小结通过本节学习,我们一起研究了正弦定理的证明方法,同时了解了向量的工具性作用,并且明确了利用正弦定理所能解决的两类有关三角形问题:已知两角、一边解三角形;已知两边和其中一边的对角解三角形布置作业(一)课本第10页习题1.1第1、2题(二)预习内容:课本P~P余弦定理5 8[预习提纲(1)复习余弦定理证明中所涉及的有关向量知识(2)余弦定理如何与向量产生联系(3)利用余弦定理能解决哪些有关三角形问题板书设计正弦定理1.正弦定理证明方法: 3.利用正弦定理,能够解决两类问题:a b csinA sinB sinC(1)平面几何法已知两角和一边(2)向量法(2)已知两边和其中一边的对角1.1.2余弦定理从容说课课本在引入余弦定理内容时,首先提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题”.这样,用联系的观点,从新的角度看过去的问题,使学生对过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,使学生能够形成良好的知识结构.设置这样的问题,是为了更好地加强数学思想方法的教学.比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对三角形进行讨论,方法不够简洁,通过向量知识给予证明,引起学生对向量知识的学习兴趣,同时感受向量法证明余弦定理的简便之处.教科书就是用了向量的方法,发挥了向量方法在解决问题中的威力.在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.由上可知,余弦定理是勾股定理的推广”.还要启发引导学生注意余弦定理的各种变形式,并总结余弦定理的适用题型的特点,在解题时正确选用余弦定理达到求解、求证目的启发学生在证明余弦定理时能与向量数量积的知识产生联系,在应用向量知识的同时,注意使学生体会三角函数、正弦定理、向量数量积等多处知识之间的联系教学重点余弦定理的发现和证明过程及其基本应用教学难点1.向量知识在证明余弦定理时的应用,与向量知识的联系过程2.余弦定理在解三角形时的应用思路3.勾股定理在余弦定理的发现和证明过程中的作用.教具准备投影仪、幻灯片两张第一张:课题引入图片(记作A如图(1),在Rt△ABC中,有A2+B2=C2问题:在图(2)、(3)中,能否用b、c、A求解a第二张:余弦定理(记作1.1.2B余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的积的两倍形式一: a2=b2+c2-2bcco s A,b2=c2+a2-2caco s B,c2=a2+b2-2abco s C形式二:co s A=b2c2a2c2a2b2a2b2,co s B=,co s C=2bc 2ca 2abc2三维目标一、知识与技能1.掌握余弦定理的两种表示形式及证明余弦定理的向量方法2.会利用余弦定理解决两类基本的解三角形问题3.能利用计算器进行运算二、过程与方法1.利用向量的数量积推出余弦定理及其推论2.通过实践演算掌握运用余弦定理解决两类基本的解三角形问题三、情感态度与价值观1.培养学生在方程思想指导下处理解三角形问题的运算能力;2.通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一.教学过程导入新课师上一节,我们一起研究了正弦定理及其应用,在体会向量应用的同时,解决了在三角形已知两角、一边和已知两边与其中一边对角这两类解三角形问题.当时对于已知两边夹角求第三边问题未能解决,下面我们来看幻灯片1.1.2A,如图(1),在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面我们根据初中所学的平面几何的有关知识来研究这一问题在△ABC中,设BC=A,AC=B,AB=C,试根据B、C、A来表示A师由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构成直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于D,那么在Rt△BDC中,边A可利用勾股定理用CD、DB表示,而CD可在Rt△ADC中利用边角关系表示,DB可利用AB-AD转化为AD,进而在△R t ADC内求解解:过C作CD⊥AB,垂足为D,则在△R t CDB中,根据勾股定理可得A2=CD2+BD2∵在Rt△ADC中,CD2=B2-AD2又∵BD2=(C-AD)2=C2-2C·AD+AD2∴A2=B2-AD2+C2-2C·AD+AD2=B2+C2-2C·AD又∵在Rt△ADC中,AD=B·CO s A∴a2=b2+c2-2ab c os A类似地可以证明b2=c2+a2-2caco s Bc2=a2+b2-2ab c os C另外,当A为钝角时也可证得上述结论,当A为直角时,a2+b2=c2也符合上述结论,这也正是我们这一节将要研究的余弦定理,下面我们给出余弦定理的具体内容.(给出幻灯片1.1.2B推进新课1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍在幻灯片1.1.2B中我们可以看到它的两种表示形式形式一a2=b2+c2-2bcco s Ab2=c+a2-2caco s Bc2=a2+b2-2abco s C形式二cosA cosB bc22c22bca22caab22cosC a2b22abc2师在余弦定理中,令C=90°时,这时c o s C=0,所以c2=a2+b2,由此可知余弦定理是勾股定理的推广.另外,对于余弦定理的证明,我们也可以仿照正弦定理的证明方法二采用向量法证明,以进一步体会向量知识的工具性作用[合作探究2.向量法证明余弦定理(1)证明思路分析师联系已经学过的知识和方法,可用什么途径来解决这个问题?用正弦定理试求,发现因A、B均未知,所以较难求边C.由于余弦定理中涉及到的角是以余弦形式出现,从而可以考虑用向量来研究这个问题.由于涉及边长问题,那么可以与哪些向量知识产生联系呢生向量数量积的定义式a·b=|a||b|co sθ,其中θ为A、B的夹角师在这一点联系上与向量法证明正弦定理有相似之处,但又有所区别.首先因为无须进行正、余弦形式的转换,也就少去添加辅助向量的麻烦.当然,在各边所在向量的联系上仍然通过向量加法的三角形法则,而在数量积的构造上则以两向量夹角为引导,比如证明形式中含有角C,则构造CBCA这一数量积以使出现CO s C.同样在证明过程中应注意两向量夹角是以同起点为前提(2)向量法证明余弦定理过程如图,在△ABC中,设AB、BC、CA的长分别是c、a、b由向量加法的三角形法则,可得∴AC AB BCAC AC (AB BC)(AB BC)AB22AB BC BC2AB 2AB BC cos(180B)BC2c22accosB a2,B即B2=C2+A2-2AC COBC AC AB由向量减法的三角形法则,可得∴BC BC(AC AB) (AC AB)AC22AC AB AB 2AC 2AC AB cosAAB2b22bccosA c2即a2=b2+c2-2bcco s AAB AC CB AC BC 由向量加法的三角形法则,可得∴AB AB (AC BC) (AC BC) AC22AC BC BC2 AC 22AC BC cosCBC2b22ba cosC a2,2 2即 c 2=a 2+b 2-2abco s C [方法引导(1)上述证明过程中应注意正确运用向量加法(减法)的三角形法则(2)在证明过程中应强调学生注意的是两向量夹角的确定,AC与A B属于同起点向量,则夹角为 A ; AB 与 BC 是首尾相接,则夹角为角 B 的补角 180°-B ; 则夹角仍是角 C[合作探究A C与 是同终点,师 思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能 否由三边求出一角?生(留点时间让学生自己动手推出)从余弦定理,又可得到以下推论:cosAb2c 2 a 2a 2 c 2b 2b 2 a 2c 2,cosB,cosC2bc2ac2ba师 思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角 形中三边平方之间的关系,如何看这两个定理之间的关系? 生(学生思考片刻后会总结出)若△ABC 中,C =90°,则 co s C =0,这时 c 2=a 2+b 2 .由此可知 余弦定理是勾股定理的推广,勾股定理是余弦定理的特例.师 从余弦定理和余弦函数的性质可知,在一个三角形中,如果两边的平方和等于第三边的 平方,那么第三边所对的角是直角;如果两边的平方和小于第三边的平方,那么第三边所对 的角是钝角,如果两边的平方和大于第三边的平方,那么第三边所对的角是锐角.从上可知, 余弦定理可以看作是勾股定理的推广.现在,三角函数把几何中关于三角形的定性结果都变 成可定量计算的公式了.师 在证明了余弦定理之后,我们来进一步学习余弦定理的应用(给出幻灯片 1.1.2B通过幻灯片中余弦定理的两种表示形式我们可以得到 ,利用余弦定理,可以解决以下两类有 关三角形的问题(1)已知三边,求三个角这类问题由于三边确定,故三角也确定,解唯一,课本 P 例 4 属这类情况8(2)已知两边和它们的夹角,求第三边和其他两个角这类问题第三边确定,因而其他两个角唯一,故解唯一,不会产生类似利用正弦定理解三角形 所产生的判断取舍等问题接下来,我们通过例题来进一步体会一下 [例题剖析]【例 1】在△ABC 中,已知 B =60 c m ,C =34 c m ,A =41°,解三角形(角度精确到 1°,边长 精确到 1 c m )解:根据余弦定理,a 2 =b 2+c 2-2bcco s A =602+342 -2·60·34co s41°≈3 600+1 156-所以 A ≈41 c 由正弦定理得 sin C =csinA 34 sin41 34 0.656≈a 41 41因为 C 不是三角形中最大的边,所以 C 是锐角.利用计数器可得 C B =180°-A -C =180°-41°-【例 2】在△ABC 中,已知 a =134.6 c m ,b =87.8 c m ,c =161.7 c m ,解三角形BC解:由余弦定理的推论,得co s A =co s B =bc 22c 2 a 2 87.82 161.72 134.6 2bc 2 87.8 161.7a 2b 2 134.62 161.72 87.8 2ca 2 134.6 161.722≈0.554 3,A≈0.839 8,BC =180°-(A +B )=180°-[知识拓展 补充例题:【例 1】在△ABC 中,已知 a =7,b =10,c =6,求 A 、B 和 C .(精确到分析:此题属于已知三角形三边求角的问题,可以利用余弦定理,意在使学生熟悉余弦定理的 形式二解:∵cosA b2c 2 a 2 102 62 72 2bc 2 10 60.725∴A∵c os C =a2b 2c 2 72 102 62 113 2ab 2 7 10 140∴C∴B =180°-(A +C )=180°- [教师精讲(1)为保证求解结果符合三角形内角和定理 ,即三角形内角和为 180°,可用余弦定理求出 两角,第三角用三角形内角和定理求出(2)对于较复杂运算,可以利用计算器运算【例 2】在△ABC 中,已知 a =2.730,b =3.696,c =82°28′,解这个三角形(边长保留四个有效 数字,角度精确到分析:此题属于已知两边及其夹角解三角形的类型,可通过余弦定理形式一先求出第三边,在 第三边求出后其余角求解有两种思路 :一是利用余弦定理的形式二根据三边求其余角 ,二是 利用两边和一边对角利用正弦定理求解,但根据 1.1.1 斜三角形求解经验,若用正弦定理需 对两种结果进行判断取舍,而在 0°~180°之间,余弦有唯一解,故用余弦定理较好 解:由 c 2=a 2+b 2-2abco s C =2.7302+3.6962-2×2.730×3.696×co s82°28′, 得 c∵c os A =b2c 2 a 2 3.696 2 4.297 2 2.730 2bc 2 3.696 4.2972∴A∴B =180°-(A +C )=180°- [教师精讲通过例 2,我们可以体会在解斜三角形时,如果正弦定理与余弦定理都可选用,那么求边 用两个定理均可,求角则用余弦定理可免去判断取舍的麻烦【例 3】在△ABC 中,已知 A =8,B =7,B =60°,求 C 及 分析:根据已知条件可以先由正弦定理求出角 A ,再结合三角形内角和定理求出角 C ,再利用△SABC正弦定理求出边 C ,而三角形面积由公式 S = △ABC12ac sin B 可以求出若用余弦定理求 C ,表面上缺少 C ,但可利用余弦定理 b 2=c 2+a 2-2caco s B 建立关于 C 的方程,亦 能达到求 C 的目的 下面给出两种解法解法一:由正弦定理得8 7sinA sin60∴A =81.8°,A = 1 2∴C =38.2°,C1 27 c 由sin60 sin C,得 c =3,c 1 2= △∴S ABC 1 1 ac sinB 6 3 或 = 2 2ac sinB 10 3 2 解法二:由余弦定理得 b 2=c +a 2-2caco s B∴72=c +82-2×8×cco 整理得 c 2-8c解之,得 c =3,c =5. = 12 △∴S ABC[教师精讲]1 1 ac sinB 6 3 或 S =2 2ac sinB 10 3 2 在解法一的思路里,应注意由正弦定理应有两种结果,避免遗漏;而解法二更有耐人寻味 之处,体现出余弦定理作为公式而直接应用的另外用处,即可以用之建立方程,从而运用方程 的观点去解决,故解法二应引起学生的注意综合上述例题,要求学生总结余弦定理在求解三角形时的适用范围 ;已知三边求角或已 知两边及其夹角解三角形,同时注意余弦定理在求角时的优势以及利用余弦定理建立方程的 解法,即已知两边、一角解三角形可用余弦定理解之课堂练习1.在△ABC 中(1)已知 c =8,b =3,b =60°,求 A(2)已知 a =20,b B =29,c =21,求 B (3)已知 a =33,c =2,b =150°,求 B (4)已知 a =2,b =2,c =3+1,求 A解: (1)由 a 2=b 2+c 2-2bcco s A ,得 a 2=82+32-2×8×3co s60°=49.∴A(2)由cosBc2a 2b 2202 212 292 ,得 c osB2ca2 20 21.∴B(3)由 b 2=c 2+a 2-2caco s B ,得 b 2=(33)2+22-2×33×2co s150°=49.∴b(4)由cosAb2c 2 a 2 2bc ,得cosA( 2)2 ( 3 1)2 22 2 2( 3 1)2 2.∴A评述:此练习目的在于让学生熟悉余弦定理的基本形式 ,要求学生注意运算的准确性及解题 效率2.根据下列条件解三角形(角度精确到 (1)a =31,b =42,c (2)a =9,b =10,c△S ABC1 △ABC 1。
高中数学第一章解三角形教案新人教A版必修5
解三角形复习课(一)●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题。
过程与方法:采用启发与尝试的方法,让学生在温故知新中学会正确识图、画图、想图,帮助学生逐步构建知识框架,并通过练习、训练来巩固深化解三角形实际问题的一般方法。
教学形式要坚持引导——讨论——归纳,目的不在于让学生记住结论,更多的要养成良好的研究、探索习惯,让学生在具体的实践中结合图形灵活把握正弦定理和余弦定理的特点,有利地进一步突破难点。
情感态度与价值观:让学生进一步巩固所学的知识,加深对所学定理的理解,提高创新能力;进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验 ●教学重点1. 三角形的形状的确定(大边对大角,“两边和其中一边的对角”的讨论);2. 应用正、余弦定理进行边角关系的相互转化问题(内角和的灵活运用)。
●教学难点让学生转变观念,由记忆到理解,由解题公式的使用到结合图形去解题和校验。
●教学过程【复习导入】近年广东高考中,解三角形的题目已填空、选择为主,难度要求每年有所不同,结合大题16题出题也不鲜见;关键是借三角形对于我们结合图形分析做题,以及锻炼严谨慎密的逻辑思维大有裨益。
1. 正弦定理:R CcB b A a 2sin sin sin === (2R 可留待学生练习中补充) B ac A bcC ab S sin 21sin 21sin 21===∆.余弦定理 :A bc c b a cos 2222-+= B ac c a b cos 2222-+=C ab b a c cos 2222-+=求角公式:bc a c b A 2cos 222-+= acb c a B 2cos 222-+= ab c b a C 2cos 222-+=点评:文字语言有助于记忆, 符号语言方便应用。
2.思考:各公式所能求解的三角形题型?正弦定理: 已知两角和一边或两边和其中一边的对角球其他边角,或两边夹角求面积。
高中数学第一章解三角形教学设计新人教A版必修5
(新课标)高中数学第一章解三角形教学设计新人教A版必修5从容说课本章主要学习了正弦定理和余弦定理、应用举例以及实习作业.正弦定理、余弦定理是反映三角形边、角关系的重要定理.利用正弦定理、余弦定理,可以将三角形中的边的关系与角的关系进行相互转化,许多几何问题也可以转化为解三角形的问题来研究.本节课是人教版数学必修五第一章解三角形的全章复习.教学重点1.在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形.2.三角形各种类型的判定方法;三角形面积定理的应用.3.正、余弦定理与三角形的有关性质的综合运用.教学难点定理及有关性质的综合运用.教具准备多媒体投影仪三维目标一、知识与技能1.掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形确良;2.三角形各种类型的判定方法;3.三角形面积定理的应用.二、过程与方法通过引导学生分析,解答典型例题,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题.三、情感态度与价值观通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系.教学过程导入新课师本章我们共学习了哪些内容?生 本章我们学习了正弦定理与余弦定理. 师 你能讲出正弦定理、余弦定理的具体内容吗?生 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即R CcB b A a 2sin sin sin ===; 余弦定理: a 2=b 2+c 2-2bcco s A ,b 2=a 2+c 2-2acco s B , c 2=b 2+a 2-2baco s C ;abc b a C ac b c a cisB bc a c b A 2cos ,2,2cos 222222222-+=-+=-+=.师 很好!哪位同学来说说运用正弦定理、余弦定理可以解决哪些类型的问题? 生 正弦定理可以解决以下两类问题:(1)已知两角和一边解三角形;(2)已知两边及其中一边的对角解三角形.余弦定理可以解决以下两类问题:(1)已知三边解三角形;(2)已知两边及其夹角解三角形.生 老师,我来补充.利用正弦定理的解题的类型(1)在有解时只有一解,类型(2)可有解、一解和无解;利用余弦定理的解题的两种类型有解时只有一解. 师 very good !除了以上这些,我们还学习了什么? 生 除了正弦定理、余弦定理我们还学习了三角形面积公式:C ab B ac A bc S sin 21sin 21sin 21===C ,利用它我们可以解决已知两边及其夹角求三角形的面积.师 你说的非常完善,你是我们全班同学学习的榜样.希望我们全班同学都向他学习.推进新课 多媒体投影解斜三角形时可用的定理公式 适用类型 备注余弦定理a 2=b 2+c 2-2bc cos A b 2=a 2+c 2-2ac cos B c 2=b 2+a 2-2ba cos C(1) 已知三边 (2)已知两边及其夹角类型(1)(2)有解时只有一解正弦定理(3)已知两角和一边类型(3)在有解时只有一解,类型(4)可有解、一解和无R CcB b A a 2sin sin sin === (4)已知两边及其中一边的对角解三角形面积公式S =21bc sin A =21ac sin B =21ab sin C(5)已知两边及其夹角生 老师,我也来补充.利用正弦定理、余弦定理我们还可以解决实际生活中的一些问题:有关测量距离、高度、角度的问题.师 看来同学们对解三角形这一章掌握得都不错.下面,我们来看一下例题与练习. [例题剖析]【例1】在△ABC 中,若sin A >sin B ,则A 与B 的大小关系为_________. 生 这个题目以前做过的,A 与B 的大小关系不定. 师 对吗?生 我认为不对.我以前做过的题目中没有“在△ABC 中”这个条件. (其他学生一致认可) 师 那本题应该怎么做呢?生 我觉得答案应该是A >B ,但是理由我说不上来. 生 我来说.因为在△ABC 中,由正弦定理得R CcB b A a 2sin sin sin ===,所以 a =2Rsin A ,B =2Rsin B .又因为sin A >sin B ,所以A >B . 又因为在三角形中,大边对大角,所以A >B . 师 好,你解得非常正确.【例2】在△ABC 中,若△ABC 的面积为S ,且2S=(a +b )2-C 2,求t a n C 的值. 师 拿到题目你怎么考虑,从哪里下手?生 利用三角形的面积公式,代入已知条件2S=(A +B )2-C 2中,再化简. 师 用面积公式S=21 bc in A =21ac sin B =21ab sin C 中的哪一个呢? 生 用哪一个都可以吧. 生 不对,应该先化简等式右边,得(A +B )2-C 2=A 2+2AB +B 2-C 2,出现了A 与B 的乘积:AB ,而2abco s C =a 2+b 2-c 2,因此面积公式应该用S=21ab sin C ,代入等式得 ab sin C =a 2+b 2+2ab -C 2=2ab -2abco s C .化简得tan 2C=2.从而有344142tan12tan2tan2-=-=-=CCC.师思路非常清晰,请同学们思考本题共涉及到了哪些知识点?生正弦定理、余弦定理与三角形面积公式.生还有余切的二倍角公式.师你能总结这类题目的解题思路吗?生拿到题目不能盲目下手,应该先找到解题切入口.师对,你讲得很好.生正弦定理、余弦定理都要试试.【例3】将一块圆心角为120°,半径为20 c m的扇形铁片裁成一块矩形,有如图(1)、(2)的两种裁法:让矩形一边在扇形的一条半径OA上,或让矩形一边与弦AB平行,请问哪种裁法能得到最大面积的矩形?并求出这个最大值.师本题是应用题,怎么处理?生由实际问题抽象出数学模型,找到相应的数学知识来解决.分析:这是一个如何下料的问题,从图形的特点来看,涉及到线段的长度和角度,将这些量放置在三角形中,通过解三角形求出矩形的边长,再计算出两种方案所得矩形的最大面积,加以比较,就可以得出问题的结论.解:按图(1)的裁法:矩形的一边O P在OA上,顶点M在圆弧上,设∠M OA=θ,则|MP|=20sinθ,|OP|=20co sθ,从而S=400sinθco sθ=200sin2θ,即当4πθ=时,S m a x=200.按图(2)的裁法:矩形的一边PQ与弦AB平行,设∠M O Q=θ,在△M O Q中,∠O QM=90°+30°=120°,由正弦定理,得|MQ|=θθsin2340120sinsin20=︒.又因为|MN |=2|OM |sin(60°-θ),=40sin(60°-θ),所以 S=|MQ |·|MN |=331600sinθsin(60°-θ)=331600{-21[co s60°-co s(2θ-60°)]}=33800[cos(2θ-60°)-co s60°]. 所以当θ=30°时,S m a x =33400. 由于33400>200,所以用第二种裁法可裁得面积最大的矩形,最大面积为33400c m 2. 评注:正弦定理、余弦定理在测量(角度、距离)、合理下料、设计规划等方面有广泛应用.从解题过程来看,关键是要找出或设出角度,实质是解斜三角形,将问题涉及的有关量集中在某一个或者几个三角形中,灵活地运用正弦定理、余弦定理来加以解决.【例4】如果一个三角形的三边是连续的三个自然数,求所有这些三角形中的最大角的度数.(精确到°) 师 已知什么,要求什么?生(齐答)已知三角形的三边,要求三角形中的角. 师 怎么处理呢?生用正弦定理或余弦定理实现三角形中边与角的转化,可是三条边的值不知道啊. 生条件中三角形的三边是连续的三个自然数,那么我们可以设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.师 接下来怎么做呢?生 因为co sθ是[0°,180°]内的减函数,所以要求θ的最大值即求co sθ的最小值. 师cosθ的最小值怎么求呢? 生 因为cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <23n-1>1⇒n >2. 又因为n 为自然数,所以当n=3时,(cosθ)min =-41,所以θ的最大值为°. (教师用多媒体投影)解:设这三个连续的自然数为n-1,n ,n+1,最大的角为θ,则)1(2321)1(24)1(2)1()1(cos 2222--=--=-+--+=n n n n n n n n n n θ.因为cosθ是[0°,180°]内的减函数,所以要求θ的最大值即求co s θ的最小值,且cosθ>-1,从而有)1(2321--n >-1)1(23-⇒n <⇒23n-1>1⇒n >2. 因此,当n=3时,(cosθ)min =-41,所以θ的最大值为°. 师 下面我们来看一组练习 多媒体投影1.在△ABC 中,若A =30°,B =45°,C =6,则A 等于( ) A.26- B.26(2-C.)26(3-D.)26(4-2.在△ABC 中,若a =7,b =4,c =5, 则△ABC 的面积为(精确到0.1)( ) A .7B .C .D . 3.某人站在山顶向下看一列车队向山脚驶来,他看见第一辆车与第二辆车的俯角差等于他看见第二辆车与第三辆车的俯角差,则第一辆车与第二辆车的距离D 1与第二辆车与第三辆车的距离D 2之间的关系为( ) >d 2=d 2 <d 2 D.大小确定不了4.在△ABC 中,若A ·co t A =bco t B ,则△ABC 是_______三角形.5.在异面直线A ,B 上有两点M 、N ,EF 是直线A ,B 的公垂线段,若EM =5,EF =3,FN =4,MN =6,则异面直线A ,B 所成的角为___________.(精确到1°) 练习题答案:4.等腰°课堂小结同学们本节课你的收获是什么?生 正弦定理、余弦定理都是联系三角形边和角的关系式.生 凡是可用正弦定理的时候,都可以用余弦定理;当关系式中有边的平方项时,可以考虑余弦定理.生 已知两边一对角求解三角形时用余弦定理讨论二次方程,更容易判断是无解、一解还是两解的问题.生 利用正弦定理和余弦定理解决几何问题的关键还是在于找出图形中的边角关系,然后假设有关的边和角,利用正弦定理和余弦定理建立边或角的关系式.生 在运用正弦定理、余弦定理解决实际问题时,通常都根据题意,从实际问题中抽象出一个或几个三角形,然后通过解这些三角形,得出实际问题的解.其基本步骤是: (1)分析:理解题意,弄清已知与未知,画出示意图(一个或几个三角形);(2)建模:根据已知条件与求解目标,把已知量与待求量尽可能地集中在有关三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理、余弦定理解这些三角形,求得数学模型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.布置作业1.已知锐角三角形的三边长分别为2、3、x ,则x 的取值范围是__________.2.在△ABC 中,已知t a n A =21,t a n B =31,试求最长边与最短边的比. 3.某人坐在火车上看风景,他看见远处有一座宝塔在与火车前进方向成30°角的直线上,1分钟后,他看见宝塔在与火车前进方向成45°角的直线上,设火车的速度是100 km/h ,求宝塔离开铁路线的垂直距离. 答案:1.(5,13)2.解:因为t a n A =21,t a n B =31,所以1312113121tan tan 1tan tan )tan(=•-+=-+=+BA B A B A . 因为0°<A <45°,0°<B <45°,所以A +B = 45°. 所以3510103135sin sin sin =︒==B C b c ,所以最长边与最短边的比为35. 3.解:如图,设宝塔在C 点,先看时的位置为A ,再看时的位置为B ,由题意知∠BAC =45°-30°=15°,AB =3560100=(km ),AC =)13(3513515sin 53sin sin +=︒︒=∠•∠=ABC BCA AB AC ,所以C 点到直线AB 的距离为d =AC ·sin30°=65(3+1)(km ).板书设计 本章复习例1 例3 例2 例4(投影区)备课资料解三角形三角形的三条边和三个内角是三角形的六个基本元素.已知其中的三个基本元素(至少有一个是边)求其余的基本元素叫做解三角形. 1.直角三角形的解法因为直角三角形中有一个是直角,例如△ABC 中,C =90°,角A 、B 、C 的对边分别是A 、B 、C .那么利用以下关系式:(1)A +B =90°;(2)A 2+B 2=C 2;(3)A =c sin A =cco s B =B ·t a n A ;(4)B =cco s A =c sin B =acxtana . 可分四种情况来解直角三角形. (1)已知斜边和一锐角; (2)已知一条直角边和一锐角; (3)已知一斜边和一直角边; (4)已知两条直角边. 2.斜三角形的解法在一个三角形中,如果没有一个角是直角,那么这个三角形叫做斜三角形.斜三角形的解法可分以下四种情况:(1)已知两角和一边;(2)已知两边和其中一边的对角;(3)已知两边和它们的夹角;(4)已知三边.解斜三角形常常利用以下基本关系式: 1.三角形内角和为180°,即A +B +C =180°; 2.正弦定理,即R CcB b A a 2sin sin sin ===3.余弦定理,即(1)⎪⎩⎪⎨⎧+=+=+=;cos cos ,cos cos ,cos cos B a A b c A c C a b C b B c a(2)⎪⎩⎪⎨⎧-+=-+=-+=C ab b a c B ac c a b A bc c b a cos 2cos 2,cos 2222222222一般地说,在已知两边和其中一边的对角的情况下,解三角形时,问题不一定有解,如果有解也不一定有唯一解.对这类问题进行讨论,可得如下结论.90°≤A <180°0°<A <90°a >b 一解 一解 a =b 无解 一解a <b无解A >B sin A A =B sin A A <B sin A两解 一解 无解。
高中数学人教版教案:必修5第一章《解三角形》全章教案
数学5 第一章解三角形章节总体设计(一)课标要求本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。
通过本章学习,学生应当达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。
(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。
(二)编写意图与特色1.数学思想方法的重要性数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。
本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。
在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。
教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。
”设置这些问题,都是为了加强数学思想方法的教学。
2.注意加强前后知识的联系加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。
本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。
人教版高中必修5第一章解三角形课程设计
人教版高中必修5第一章解三角形课程设计1. 课程背景本课程设计是基于人教版高中必修五《数学》第一章节“解三角形”而设计的。
通过本课程设计,旨在让学生能够对三角形的性质、三角函数、三角形的解法等内容进行全面深入的学习和了解,并提高学生的解题能力和思维逻辑能力。
2. 教学目标•理解三角形的相关基本概念和性质,如三条中线交于一点、重心、垂心等;•掌握解三角形的基本方法,特别是余弦定理和正弦定理的应用;•掌握三角函数中正弦、余弦、正切、余切等的相关概念和应用;•提高学生解题能力和思维逻辑能力。
3. 教学内容3.1 三角形的基本概念和性质三角形的基本概念包括三边、三角、顶点、内角、外角等;三角形的基本性质包括角的和为180度、边长之和大于第三边、三条中线交于一点等等。
教师可借助ppt或板书等方式,让学生了解三角形的基本概念和性质。
3.2 解三角形的基本方法解三角形的基本方法主要包括余弦定理和正弦定理。
让学生通过多种角度、多个实际问题进行训练,提高学生的运用解三角形基本方法的能力。
3.3 三角函数的相关概念和应用介绍三角函数的基本概念及其与三角形的关系。
要求学生掌握 sin、cos、tan、cot等三角函数的图像、性质和用途,并通过例题、练习题巩固和提高运用三角函数的能力。
4. 教学方法本课程设计采用多种教学方法,如讲授法、探究法、启发法、情景模拟法等。
尤其在解三角形基本方法和三角函数应用中,注重学生独立思考和应用能力的提高。
5. 教学过程与时间安排5.1 三角形的基本概念和性质教学时间:2课时教学过程:1.讲授三角形的基本概念和性质,让学生通过书本、ppt等方式对三角形的基础有全面的了解。
2.安排部分课堂活动,如团队讨论、板书练习等,让学生运用所学知识进行实际操练。
3.安排少量概念题目,以加深学生对于三角形的认识和了解。
5.2 解三角形的基本方法教学时间:3课时教学过程:1.讲解余弦定理和正弦定理的基本定义和运用方法。
高中数学第一章解三角形新教案人教A版必修5 教案
A BCj图1-2图1-1新课标理念下高中数学必修5第一章 解三角形教法学法的探究交流本章概述:本章是在学习三角函数、平面向量的基础上,通过对任意三角形边角关系的探究,发现并掌握三角形中的边长与角度之间的数量关系,并运用它们解决一些与测量和几何计算有关的实际问题。
本章的主要内容是两个重要定理,即正弦定理和余弦定理以及这两个定理在解斜三角形中的应用。
教材地位:本章是在学习了三角函数、平面向量等知识的基础上,进一步学习如何解三角形的。
正、余弦定理是我们学习有关三角形知识的继续和发展,它们进一步揭示了三角形边与角之间的关系,在生产、生活中有着广泛的应用,是我们求解三解形的重要工具。
本章内容与三角形定性研究的结论相联系,与三角函数相联系,同时也体现了向量及其运算的应用。
高考中常与三角函数和向量知识联系起来考查,是高考的一个热点内容。
课标要求:1、理解并掌握正弦定理和余弦定理,并能解决一些简单的三角形度量问题。
2、能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
学法指导:1、重视数学思想方法的运用。
解三角形作为几何度量问题,要突出几何背景,注意数形结合思想的运用,具体解题时,要注意函数与方程思想的运用。
2、加强新旧知识的联系。
本章知识与初中学习的三角形的边、角关系有着密切联系。
同时,要注意与三角函数、平面向量等知识的联系,将新知识融入已有的知识体系,从而提高综合运用知识的能力。
3、提高数学建模能力。
利用解三角形解决相关的实际问题,根据题意,找出量与量之间的关系,作出示意图,将实际问题抽象成解三角形模型。
学科实践:本章知识在现实生活中有着广泛的应用,如天文测量、航海测量、地理测量以及日常生活中的距离、高度、角度的测量等,解三角形的理论被用于解决许多测量问题。
因此,通过本章的学习,能提高学生解决关于测量和几何计算的实际问题的能力和数学建模能力。
知识点1 正弦定理1、正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即CcB b A a sin sin sin == 正弦定理给出了任意三角形中,三条边及其对应角的正弦值之间的对应关系。
高中新课标必修5第一章解三角形教案
高中新课标必修5第一章 解三角形 教案讲义一 正弦定理和余弦定理以及其应用一、知识与技能:掌握正弦定理和余弦定理,并能加以灵活运用。
二、知识引入与讲解:Ⅰ、正弦定理的探索和证明及其基本应用:正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC==2R例1.(1)、已知∆ABC 中,∠A 060=,a 求sin sin sin a b cA B C++++ (=2)(2)、已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c (答案:1:2:3)Ⅱ、余弦定理的发现和证明过程及其基本应用:例2.(1)、在∆ABC 中,已知=ac 060=B ,求b 及A (=b60.=A )(2)、在∆ABC 中,已知80a =,100b =,045A ∠=,试判断此三角形的解的情况。
例3.在∆ABC 中,已知7a =,5b =,3c =,判断∆ABC 的类型。
分析:由余弦定理可知 222222222是直角ABC 是直角三角形是钝角ABC 是钝角三角形是锐角a b c A a b c A a b c A =+⇔⇔∆>+⇔⇔∆<+⇔⇔ABC 是锐角三角形∆(注意:是锐角A ⇔ABC 是锐角三角形∆)解:222753>+,即222a b c >+, ∴ABC 是钝角三角形∆。
练习: (1)在∆ABC 中,已知sin :sin :sin 1:2:3A B C =,判断∆ABC 的类型。
(2)已知∆ABC 满足条件cos cos a A b B =,判断∆ABC 的类型。
(答案:(1)ABC 是钝角三角形∆;(2)∆ABC 是等腰或直角三角形)例4.在∆ABC 中,060A =,1b =,面积为2,求sin sin sin a b cA B C++++的值 分析:可利用三角形面积定理111sin sin sin 222S ab C ac B bc A ===以及正弦定理sin sin abAB=sin cC==sin sin sin a b cA B C++++解:由1sin 2S bc A ==得2c =,则2222cos a b c bc A =+-=3,即a =从而sin sin sin a b c A B C ++++2sin aA==例题5、某人在M 汽车站的北偏西20︒的方向上的A 处,观察到点C 处有一辆汽车沿公路向M 站行驶。
高中数学解三角形教案
高中数学解三角形教案
一、教学目标:
1. 了解三角形的定义和性质;
2. 掌握解三角形的方法;
3. 能够运用解三角形的知识解决实际问题。
二、教学重点:
1. 三角形的定义和性质;
2. 解三角形的方法。
三、教学内容:
1. 三角形的定义和性质
2. 解三角形的方法
3. 实例分析
四、教学步骤:
1. 师生互动导入:通过实际例子引入三角形的定义和性质,例如让学生观察周围的物体,
找到其中的三角形并进行分类,引导学生讨论三角形的定义和性质。
2. 教学讲解:讲解三角形的定义和性质,包括三角形的内角和为180度、三边之和大于第三边等性质,引导学生理解三角形的基本概念。
3. 解三角形的方法:介绍解三角形的方法,包括余角、角平分线、作图等方法,讲解每种
方法的应用场景和步骤。
4. 实例分析:通过实际例子进行分析和讨论,引导学生运用解三角形的方法解决实际问题,加深对知识的理解和应用能力。
五、教学评价:
教师可通过课堂练习、作业和小测验等方式进行教学评价,检验学生对三角形的理解和解
题能力。
六、拓展延伸:
师生可通过课外探究、实验等方式拓展三角形的相关知识,激发学生的学习兴趣,提高学
生的综合能力。
七、教学反思:
教师应及时总结本节课的教学效果,结合学生的表现和反馈,不断优化教学方法,提高教学质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题: §1.1.1正弦定理●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
过程与方法:让学生从已有的几何知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。
情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。
●教学重点正弦定理的探索和证明及其基本应用。
●教学难点已知两边和其中一边的对角解三角形时判断解的个数。
●教学过程 Ⅰ.课题导入如图1.1-1,固定∆ABC 的边CB 及∠B ,使边AC 绕着顶点C 转动。
A 思考:∠C 的大小与它的对边AB 的长度之间有怎样的数量关系? 显然,边AB 的长度随着其对角∠C 的大小的增大而增大。
能否用一个等式把这种关系精确地表示出来? C B Ⅱ.讲授新课[探索研究] (图1.1-1)在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。
如图1.1-2,在Rt ∆ABC 中,设BC=a,AC=b,AB=c, 根据锐角三角函数中正弦函数的定义,有sin aA c=,sin bB c=,又sin 1c C c==,A则sin sin sin abcc ABC=== b c 从而在直角三角形ABC 中,sin sin sin abcABC==C a B(图1.1-2)思考:那么对于任意的三角形,以上关系式是否仍然成立? (由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.1-3,当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则sin sin abAB=, C同理可得sin sin cbC B =, b a从而sin sin abAB=sin cC=A c B(图1.1-3) 思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。
(证法二):过点A 作j AC ⊥,由向量的加法可得 AB AC CB =+则 ()j AB j AC CB ⋅=⋅+∴j AB j AC j CB ⋅=⋅+⋅()()00cos 900cos 90-=+-j AB A j CB C j∴sin sin =c A a C ,即sin sin =a c A C 同理,过点C 作⊥j BC ,可得 sin sin =b c B C从而sin sin abAB=sin cC=类似可推出,当∆ABC 是钝角三角形时,以上关系式仍然成立。
(由学生课后自己推导)从上面的研探过程,可得以下定理正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC=[理解定理](1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =; (2)sin sin abAB=sin cC=等价于sin sin abAB=,sin sin cbCB=,sin aA=sin cC从而知正弦定理的基本作用为:①已知三角形的任意两角及其一边可以求其他边,如sin sin b Aa B=; ②已知三角形的任意两边与其中一边的对角可以求其他角的正弦值,如sin sin a A B b=。
一般地,已知三角形的某些边和角,求其他的边和角的过程叫作解三角形。
[例题分析]例1.在∆ABC 中,已知032.0=A ,081.8=B ,42.9=a cm ,解三角形。
解:根据三角形内角和定理,0180()=-+C A B000180(32.081.8)=-+066.2=; 根据正弦定理,00sin 42.9sin81.880.1()sin sin32.0==≈a B b cm A ;根据正弦定理,00sin 42.9sin66.274.1().sin sin32.0==≈a C c cm A评述:对于解三角形中的复杂运算可使用计算器。
例2.在∆ABC 中,已知20=a cm ,28=b cm ,040=A ,解三角形(角度精确到01,边长精确到1cm )。
解:根据正弦定理,sin 28sin40sin 0.8999.20==≈b A B a因为00<B <0180,所以064≈B ,或0116.≈B ⑴ 当064≈B 时,00000180()180(4064)76=-+≈-+=C A B , 00sin 20sin7630().sin sin40==≈a C c cm A ⑵ 当0116≈B 时,00000180()180(40116)24=-+≈-+=C A B ,00sin 20sin2413().sin sin40==≈a C c cm A评述:应注意已知两边和其中一边的对角解三角形时,可能有两解的情形。
Ⅲ.课堂练习第5页练习第1(1)、2(1)题。
[补充练习]已知∆ABC 中,sin :sin :sin 1:2:3A B C =,求::a b c (答案:1:2:3)Ⅳ.课时小结(由学生归纳总结)(1)定理的表示形式:sin sin a b A B =sin c C ==()0sin sin sin a b ck k A B C++=>++;或sin a k A =,sin b k B =,sin c k C =(0)k > (2)正弦定理的应用范围:①已知两角和任一边,求其它两边及一角; ②已知两边和其中一边对角,求另一边的对角。
Ⅴ.课后作业第10页[习题1.1]A 组第1(1)、2(1)题。
●板书设计 ●授后记余弦定理教学目标:了解向量知识应用,掌握余弦定理推导过程,会利用余弦定理证明简单三角形问题,会利用余弦定理求解简单斜三角形边角问题,能利用计算器进行运算;通过三角函数、余弦定理、向量数量积等多处知识间联系来体现事物之间的普遍联系与辩证统一.教学重点:余弦定理证明及应用.教学难点:1.向量知识在证明余弦定理时的应用,与向量知识的联系过程;2.余弦定理在解三角形时的应用思路.教学过程:Ⅰ.课题导入上一节,我们一起研究了正弦定理及其应用,在体会向量应用的同时,解决了在三角形已知两角一边和已知两边和其中一边对角这两类解三角形问题.当时对于已知两边夹角求第三边问题未能解决,如图(1)在直角三角形中,根据两直角边及直角可表示斜边,即勾股定理,那么对于任意三角形,能否根据已知两边及夹角来表示第三边呢?下面我们根据初中所学的平面几何的有关知识来研究这一问题.在△ABC中,设BC=a,AC=b,AB=c,试根据b,c,A来表示a.分析:由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构造直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作CD垂直于AB于D,那么在Rt△BDC中,边a可利用勾股定理用CD、DB表示,而CD可在Rt△ADC中利用边角关系表示,DB可利用AB—AD转化为AD,进而在Rt△ADC内求解.解:过C作CD⊥AB,垂足为D,则在Rt△CDB中,根据勾股定理可得:a2=CD2+BD2∵在Rt△ADC中,CD2=b2-AD2又∵BD2=(c-AD)2=c2-2c·AD+AD2∴a2=b2-AD2+c2-2c·AD+AD2=b2+c2-2c·AD又∵在Rt△ADC中,AD=b·cos A∴a2=b2+c2-2bc cos A类似地可以证明b2=a2+c2-2ac cos Bc2=a2+b2-2ab cos C另外,当A为钝角时也可证得上述结论,当A为直角时a2=b2+c2也符合上述结论,这也正是我们这一节将要研究的余弦定理,Ⅱ.讲授新课1.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍.形式一:a 2=b 2+c 2-2bc cos A , b 2=c 2+a 2-2ca cos B , c 2=a 2+b 2-2ab cos C . 形式二:cos A =b 2+c 2-a 22bc ,cos B =c 2+a 2-b 22ca ,cos C =a 2+b 2-c 22ab.在余弦定理中,令C =90°,这时,cos C =0,所以c 2=a 2+b 2,由此可知余弦定理是勾股定理的推广.另外,对于余弦定理的证明,我们也可以仿照正弦定理的证明方法二采用向量法证明,以进一步体会向量知识的工具性作用.2.向量法证明余弦定理 (1)证明思路分析由于余弦定理中涉及到的角是以余弦形式出现,那么可以与哪些向量知识产生联系呢? 向量数量积的定义式:a ·b =|a ||b |cos θ,其中θ为a 、b 的夹角. 在这一点联系上与向量法证明正弦定理有相似之处,但又有 所区别,首先因为无须进行正、余弦形式的转换,也就省去添加 辅助向量的麻烦.当然,在各边所在向量的联系上依然通过向量加 法的三角形法则,而在数量积的构造上则以两向量夹角为引导,比如证明形式中含有角C ,则构造CB →·CA →这一数量积以使出现cos C .同样在证明过程中应注意两向量夹角是以同起点为前提.(2)向量法证明余弦定理过程:如图,在△ABC 中,设AB 、BC 、CA 的长分别是c 、a 、b .由向量加法的三角形法则可得AC →=AB →+BC →, ∴AC →·AC →=(AB →+BC →)·(AB →+BC →) =AB →2+2AB →·BC →+BC →2=|AB →|2+2|AB →||BC →|cos(180°-B )+|BC →|2 =c 2-2ac cos B +a 2即b 2=c 2+a 2-2ac cos B由向量减法的三角形法则可得: BC →=AC →-AB →∴BC →·BC →=(AC →-AB →)·(AC →-AB →) =AC →2-2AC →·AB →+AB →2=|AC →|2-2|AC →||AB →|cos A +|AB →|2=b 2-2bc cos A +c 2即a 2=b 2+c 2-2bc cos A由向量加法的三角形法则可得 AB →=AC →+CB →=AC →-BC →∴AB →·AB →=(AC →-BC →)·(AC →-BC →) =AC →2-2AC →·BC →+BC →2=|AC →|2-2|AC →||BC →|cos C +|BC →|2=b 2-2ba cos C +a 2. 即c 2=a 2+b 2-2ab cos C评述:(1)上述证明过程中应注意正确运用向量加法(减法)的三角形法则.(2)在证明过程中应强调学生注意的是两向量夹角的确定,AC →与AB →属于同起点向量,则夹角为A ;AB →与BC →是首尾相接,则夹角为角B 的补角180°-B ;AC →与BC →是同终点,则夹角仍是角C .在证明了余弦定理之后,我们来进一步学习余弦定理的应用. 利用余弦定理,我们可以解决以下两类有关三角形的问题: (1)已知三边,求三个角.这类问题由于三边确定,故三角也确定,解唯一; (2)已知两边和它们的夹角,求第三边和其他两个角.这类问题第三边确定,因而其他两个角唯一,故解唯一,不会产生类似利用正弦定理解三角形所产生的判断取舍等问题.接下来,我们通过例题评析来进一步体会与总结. 3.例题评析[例1]在△ABC 中,已知a =7,b =10,c =6,求A 、B 和C.(精确到1°)分析:此题属于已知三角形三边求角的问题,可以利用余弦定理,意在使学生熟悉余弦定理的形式二.解:∵cos A =b 2+c 2-a 22bc =102+62-722×10×6 =0.725,∴A ≈44°∵cos C =a 2+b 2-c 22ab =72+102-622×7×10 =113140=0.8071,∴C ≈36°∴B =180°-(A +C )≈180°-(44°+36°)=100°.评述:(1)为保证求解结果符合三角形内角和定理,即三角形内角和为180°,可用余弦定理求出两角,第三角用三角形内角和定理求出.(2)对于较复杂运算,可以利用计算器运算.[例2]在△ABC 中,已知a =2.730,b =3.696,C =82°28′,解这个三角形(边长保留四个有效数字,角度精确到1′).分析:此题属于已知两边夹角解三角形的类型,可通过余弦定理形式一先求出第三边.在第三边求出后其余边角求解有两种思路:一是利用余弦定理的形式二根据三边求其余角,二是利用两边和一边对角结合正弦定理求解,但若用正弦定理需对两种结果进行判断取舍,而在0°~180°之间,余弦有唯一解,故用余弦定理较好.解:由c 2=a 2+b 2-2ab cos C =2.7302+3.6962-2×2.730×3.696×cos82°28′ 得c =4.297.∵cos A =b 2+c 2-a 22bc =3.6962+4.2972-2.73022×3.696×4.297=0.7767,∴A =39°2′∴B =180°-(A +C )=180°-(39°2′+82°28′)=58°30′.评述:通过例2,我们可以体会在解斜三角形时,如果正弦定理与余弦定理均可选用,那么求边两个定理均可,求角则余弦定理可免去判断取舍的麻烦.[例3]已知△ABC 中,a =8,b =7,B =60°,求c 及S △ABC .分析:根据已知条件可以先由正弦定理求出角A ,再结合三角形内角和定理求出角C ,再利用正弦定理求出边c ,而三角形面积由公式S △ABC =12ac sin B 可以求出若用余弦定理求c ,表面上缺少C ,但可利用余弦定理b 2=c 2+a 2-2ca cos B 建立关于c 的方程,亦能达到求c 的目的.下面给出两种解法.解法一:由正弦定理得8sin A =7sin600∴A 1=81.8°,A 2=98.2° ∴C 1=38.2°,C 2=21.8°, 由7sin600 =csin C,得c 1=3,c 2=5 ∴S △ABC =12 ac 1sin B =6 3 或S △ABC =12 ac 2sin B =10 3解法二:由余弦定理得b 2=c 2+a 2-2ca cos B∴72=c 2+82-2×8×c cos60° 整理得:c 2-8c +15=0 解之得:c 1=3,c 2=5,∴S △ABC =12 ac 1sin B =6 3 ,或S △ABC =12ac 2sin B =10 3 .评述:在解法一的思路里,应注意由正弦定理应有两种结果,避免遗漏;而解法二更有耐人寻味之处,体现出余弦定理作为公式而直接应用的另外用处,即可以用之建立方程,从而运用方程的观点去解决.故解法二应引起学生的注意.综合上述例题,要求学生总结余弦定理在求解三角形时的适用范围:已知三边求任意角或已知两边夹角解三角形,同时注意余弦定理在求角时的优势以及利用余弦定理建立方程的解法.为巩固本节所学的余弦定理及其应用,我们来进行下面的课堂练习. Ⅲ.课堂练习1.在△ABC 中:(1)已知b =8,c =3,A =60°,求a ; (2)已知a =20,b =29,c =21,求B ;(3)已知a =3 3 ,c =2,B =150°,求b ; (4)已知a =2,b = 2 ,c = 3 +1,求A . 解:(1)由a 2=b 2+c 2-2bc cos A 得a 2=82+32-2×8×3cos60°=49,∴a =7. (2)由cos B =c 2+a 2-b 22ca得cos B =202+212-2922×20×21 =0,∴B =90°.(3)由b 2=a 2+c 2-2ac cos B 得b 2=(3 3 )2+22-2×3 3 ×2cos150°=49,∴b =7. (4)由cos A =b 2+c 2-a 22bc得cos A =( 2 )2+( 3 +1)2-222 2 ( 3 +1)= 2 2 ,∴A =45°.评述:此练习目的在于让学生熟悉余弦定理的基本形式,要求学生注意运算的准确性及解题效率.2.根据下列条件解三角形(角度精确到1°) (1)a =31,b =42,c =27; (2)a =9,b =10,c =15.解:(1)由cos A =b 2+c 2-a 22bc得cos A =422+272-3122×42×27 ≈0.6691,∴A ≈48°由cos B =c 2+a 2-b 22ca ≈0.0523,∴B ≈93°∴C =180°-(A +B )=180°-(48°+93°)≈39° (2)由cos A =b 2+c 2-a 22bc得cos A =102+152-922×10×15 =0.8090,∴A ≈36°由cos B =c 2+a 2-b 22ca得cos B =92+152-1022×9×15=0.7660,∴B ≈40°∴C =180°-(A +B )=180°-(36°+40°)≈104°评述:此练习的目的除了让学生进一步熟悉余弦定理之外,还要求学生能够利用计算器进行较复杂的运算.同时,增强解斜三角形的能力. Ⅳ.课时小结通过本节学习,我们一起研究了余弦定理的证明方法,同时又进一步了解了向量的工具性作用,并且明确了利用余弦定理所能解决的两类有关三角形问题:已知三边求任意角;已知两边一夹角解三角形. Ⅴ.课后作业课本习题P 16 1,2,3,4.解斜三角形题型分析正弦定理和余弦定理的每一个等式中都包含三角形的四个元素,如果其中三个元素是已知的(其中至少有一个元素是边),那么这个三角形一定可解.关于斜三角形的解法,根据所给的条件及适用的定理可以归纳为下面四种类型: (1)已知两角及其中一个角的对边,如A 、B 、a 解△ABC . 解:①根据A +B +C =π,求出角C ;②根据a sin A =b sin B 及a sin A =c sin C,求b 、c ; 如果已知的是两角和它们的夹边,如A 、B 、c ,那么先求出第三角C ,然后按照②来求解.求解过程中尽可能应用已知元素.(2)已知两边和它们的夹角,如a 、b 、C ,解△ABC . 解:①根据c 2=a 2+b 2-2ab cos C ,求出边c ;②根据cos A =b 2+c 2-a 22bc,求出角A ;③从B =180°-A -C ,求出角B .求出第三边c 后,往往为了计算上的方便,应用正弦定理求角,但为了避免讨论角是钝角还是锐角,应先求a 、b 较小边所对的角(它一定是锐角),当然也可用余弦定理求解.(3)已知三边a 、b 、c ,解△ABC .解:一般应用余弦定理求出两角后,再由A +B +C =180°,求出第三个角.另外,和第二种情形完全一样,当第一个角求出后,可以根据正弦定理求出第二个角,但仍然需注意要先求较小边所对的锐角.(4)已知两边及其中一条边所对的角,如a 、b 、A ,解△ABC .解:①根据a sin A =bsin B ,经过讨论求出B ;②求出B 后,由A +B +C =180°求角C ; ③再根据a sin A =csin C,求出边c .另外,如果已知三角,则满足条件的三角形可以作出无穷多个,故此类问题解不唯一. [例1]在△ABC 中,a =1,b =7 ,B =60°,求角C .解:由余弦定理得 (7 )2=12+c 2-2c cos60°, ∴c 2-c -6=0,解得c 1=3,c 2=-2(舍去).∴c =3.评述:此题应用余弦定理比正弦定理好.[例2]在△ABC 中,已知A >B >C 且A =2C ,A 、B 、C 所对的边分别为a 、b 、c ,又2b =a +c 成等差数列,且b =4,求a 、c 的长.解:由a sin A =c sin C且A =2C 得 a 2sin C cos C =c sin C ,cos C =a2c又∵2b =a +c 且b =4,∴a +c =2b =8,①∴cos C =a 2+42-c 28a =a +2-c a =5a -3c 4a =a 2c .∴2a =3c②由①②解得a =245 ,c =165.[例3]在△ABC 中,已知a =2,b = 2 ,A =45°,解此三角形. 解:由a 2=b 2+c 2-2bc cos A 得22=( 2 )2+c 2-2 2 c cos45°, c 2-2c -2=0解得c =1+ 3 或c =1- 3 (舍去)∴c =1+ 3 ,cos B =c 2+a 2-b 22ca =22+(1+ 3 )2-( 2 )22×2×(1+ 3 ) = 32 .∴B =30°C =180°-(A +B )=180°-(45°+30°)=105°.[例4]在△ABC 中,已知:c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0,求角C . 解:∵c 4-2(a 2+b 2)c 2+a 4+a 2b 2+b 4=0, ∴[c 2-(a 2+b 2)]2-a 2b 2=0, ∴c 2-(a 2+b 2)=±ab ,cos C =a 2+b 2-c 22ab =±12 ,∴C =120°或C =60°.课题: §2.2解三角形应用举例第一课时●教学目标知识与技能:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语过程与方法:首先通过巧妙的设疑,顺利地引导新课,为以后的几节课做良好铺垫。