2019年宁波市中考数学试题、答案

合集下载

2019年浙江省宁波市中考数学试卷附解析

2019年浙江省宁波市中考数学试卷附解析

2019年浙江省宁波市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为( ) A .11000B .1200C .12D .152.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ) A .不小于54m 3 B .小于54m 3 C .不小于45m 3 D .小于45m 33.在一周内体育老师对某运动员进行了5次百米短跑测试,若想了解该运动员的成绩是否稳定,老师需要知道他5次成绩的( ) A .平均数B .方差C .中位数D .众数4.下列图形中是四棱柱的侧面展开图的是( )A .B .C .D .5.以下各组数为边长的三角形中,能组成直角三角形的是( ) A .3,4,6B .15,20,25C .5,12,15D .10,16,25 6.下列分式中是最简分式的是( )A .122+x x B .x24C .112--x xD .11--x x7.如图△ABC 与△A ′B ′C ′关于直线MN 对称,P 为MN 上任意一点,下列说法不正确的是( ) A .AP=A ′PB .MN 垂直平分AA ′,CC ′ C .这两个三角形面积相等D .直线AB ,A ′B ′的交点不一定在MN 上8.如图是一个可以自由转动的转盘,转动这个转盘,当它停止转动时, 指针最可能停留的区域是( ) A .1B . 2C . 3D . 49.下面的算式: 2-(-2)=0;(-3)-(+3)=0;(3)|3|0---=;0-(- 1)=1,其中正确的算式有( ) A .1 个B .2个C .3 个D .4个二、填空题10.计算:2sin303cos60tan 45o o O -+的结果是 .11. 如图,在高为 2m ,坡角为 30°的楼梯上铺地毯,则地毯长度至少要 m .12.直线y=kx-4与y 轴相交所成的锐角的正切值为12,则k 的值为 . 13.β为锐角,若2cos 2β=,则β= ;若3tan 3β=,则β= .14.已知扇形的弧长为20πcm ,圆心角为150°,则这个扇形的半径为 cm.. 15.钢筋的横截面面积是0.25π,长度为h ,则钢筋的体积V=0.257πh ,这里常量是 ,变量是 .16.已知点P(-1,2),PQ 垂直于x 轴,垂足为Q ,则点Q 的坐标为 . 17.若(1+x)(2x 2+mx+5)的计算结果中x 2项的系数为-3,则m= _. 18. 二元一次方程270x y -+=,若x= 3,则y= ;若x= ,则3l y =-. 19.222(2)-+-= , -8÷2×21=______ ,425-= .20.若(1)35a a x -+=-是关于x 的一元一次方程,则a = ,x = .21.如图,AD 为△ABC 中BC 边上的中线,则S △ADB S △ADC 12S △ABC (填“>”或“<”或“一”号)三、解答题22.口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球5个,任意摸出1个绿球的概率是31.求: (1) 口袋里黄球的个数; (2) 任意摸出1个红球的概率.23.已知:如图,⊙O 与⊙C 内切于点A ,⊙O 的弦AB 交⊙C 于D 点,DE ⊥OB ,E 为垂足. 求证:(1)AD=DB ; (2)DE 为⊙O 的切线.24.如图,梯形ABCD 中,AB ∥CD ,且AB =2CD ,E ,F 分别是AB ,BC •的中点,EF 与BD 相交于点M . (1)求证:△EDM ∽△FBM ;(2)若DB =9,求BM .25.点 C 是线段 AB 的黄金分割点,且AC>BC .若 AB=2. 求:(1)AC 与 BC 的长度的积;(2)AC 与 BC 的长度的比.26.下面让我们来探究生活中有关粉刷墙壁时,刷具扫过面积的问题(π≈3.14).⑴甲工人用的刷具是一根细长的棍子(如图①),长度AB 为20㎝(宽度忽略不计),他用刷具绕A 点旋转90°,则刷具扫过的面积是多少?⑵乙工人用的刷具形状是圆形(如图②),直径CD 为20㎝,点O 、C 、D 在同一直线上,OC=30㎝,他把刷具绕O 点旋转90°,则刷具扫过的面积是多少?OE DCBAA B 图①D图②O C27.若不等式2123x a x b -<⎧⎨->⎩的解集为11x -<<,求(1)(1)a b +-的值.28.如图是一个被等分成12个扇形的转盘.请在转盘上选出若干个扇形涂上斜线(涂上斜线表示阴影区域,其中有一个扇形已涂),使得自由转动这个转盘,当它停止转动时,指针落在阴影区域内的概率为41.29.用如图的大正方形纸片 3 张,小正方形纸片2 张,长方形纸片5 张,将它们拼成一个大长方形,并运用面积的关系,将多项式22352a ab b ++ 分解因式.22352(32)()a ab b a b a b ++=++30.已知一个角的补角比它的余角的2倍多100,求这个角的度数.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.答案:B4.A5.B6.A7.D8.B9.A二、填空题10.111.2(2+12. 2±13.45°,60°14.2415.0.25π;V,h16.(-l ,O)17.-518.13,-519.0,-2,25-20.-1,421.=,=三、解答题 22.(1)6;(2)任意摸出一个红球的概率:154. 23.(1)连结OD ,证OD ⊥AB ;(2)连结CD ,利用三角形的中位线证明CD ∥OB .24.(1)略(2)3.25.∵点 C 是线段 AB 的黄金分割点,且 AC>BC .∴1AB =,21)3BC AB AC =-=-=(1)1)(38AC BC ⋅==(2)AC==BC26.(1)314㎝2;(2)1570㎝2.27.-628.略29.22++=++30.a ab b a b a b352(32)() 10°。

2019年宁波市中考数学试题、答案(解析版)说课讲解

2019年宁波市中考数学试题、答案(解析版)说课讲解

2019年宁波市中考数学试题、答案(解析版)2019年宁波市中考数学试题、答案(解析版)(满分为150分,考试时间120分钟.)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出的四个选项中,只有一项符合题目要求) 1.2-的绝对值为( ) A .12-B .2C .12D .2-2.下列计算正确的是( ) A .325a a a +=B .326a a a -=C .()325a a =D .624a a a ÷=3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1 526 000 000元人民币.数1 526 000 000用科学记数法表示为 ( ) A .81.52610⨯ B .815.2610⨯ C .91.52610⨯ D .101.52610⨯4.若分式12x -有意义,则x 的取值范围是 ( )A .2x >B .2x ≠C .0x ≠D .2x ≠-5.如图,下列关于物体的主视图画法正确的是( )ABC D6.不等式32x->x 的解为( )A .1x <B .1x <-C .1x >D .1x >-7.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为 ( ) A .1m =- B .0m = C .4m = D .5m =8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x (单位:千克)及方差2S 2( ) A .甲 B .乙 C .丙 D .丁9.已知直线m n P ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则∠2的度数为( )A .60°B .65°C .70°D .7510.如图所示,矩形纸片ABCD 中,AD=6 cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为 ( )A .3.5 cmB .4 cmC .4.5 cmD .5cm11.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下 ( ) A .31元 B .30元 C .25元 D .19元12.勾股定理是人类最伟大的科学发现之一,在我国古算书《周醉算经》中早有记载。

2019年宁波市中考数学试题、答案(解析版)

2019年宁波市中考数学试题、答案(解析版)

2019年宁波市中考数学试题、答案(解析版)(满分为150分,考试时间120分钟、)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出得四个选项中,只有一项符合题目要求)1、2-得绝对值为( )A、12-B、2 C、12D、2-2、下列计算正确得就是( )A、325a a a+=B、326a a a-=C、()325a a=D、624a a a÷=3、宁波就是世界银行在亚洲地区选择得第一个开展垃圾分类试点项目得城市,项目总投资为1 526 000 000元人民币、数1 526 000 000用科学记数法表示为( )A、81.52610⨯B、815.2610⨯C、91.52610⨯D、101.52610⨯4、若分式12x-有意义,则x得取值范围就是( )A、2x>B、2x≠C、0x≠D、2x≠-5、如图,下列关于物体得主视图画法正确得就是( )A B C D6、不等式32x->x得解为( )A、1x<B、1x<-C、1x>D、1x>-7、能说明命题“关于x得方程240x x m-+=一定有实数根”就是假命题得反例为( )A、1m=-B、0m=C、4m=D、5m=8、去年某果园随机从甲、乙、丙、丁四个品种得葡萄树中各采摘了10棵,每棵产量得平均数x(单位:千克)及方差2S(单位:千克2)如下表所示:甲乙丙丁x24 24 23 202S2、1 1、9 2 1、9( )A、甲B、乙C、丙D、丁9、已知直线m nP,将一块含45°角得直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D、若125∠=︒,则∠2得度数为( )A、60°B、65°C、70°D、7510、如图所示,矩形纸片ABCD中,AD=6 cm,把它分割成正方形纸片ABFE与矩形纸片EFCD后,分别裁出扇形ABF与半径最大得圆,恰好能作为一个圆锥得侧面与底面,则AB得长为( )A、3、5 cmB、4 cmC、4、5 cmD、5 cm11、小慧去花店购买鲜花,若买5支玫瑰与3支百合,则她所带得钱还剩下10元;若买3支玫瑰与5支百合,则她所带得钱还缺4元、若只买8支玫瑰,则她所带得钱还剩下( )A、31元B、30元C、25元D、19元12、勾股定理就是人类最伟大得科学发现之一,在我国古算书《周醉算经》中早有记载。

最新浙江省宁波市年中考数学试题(Word版,含解析)

最新浙江省宁波市年中考数学试题(Word版,含解析)

浙江省宁波市2019年中考数学试题(Word版,含解析)一、选择题(每小题4分,共48分)1、(2019·宁波)在,,0,这四个数中,为无理数地是()A、B、C、0D、2、(2019•宁波)下列计算正确地是()A、B、C、D、3、(2019•宁波)2019年2月13日,宁波舟山港45万吨原油码头首次挂靠全球最大油轮——“泰欧”轮,其中45万吨用科学记数法表示为()A、吨B、吨C、吨D、吨4、(2019•宁波)要使二次根式有意义,则地取值范围是()A、B、C、D、5、(2019•宁波)如图所示地几何体地俯视图为()A、B、C、D、6、(2019•宁波)一个不透明地布袋里装有5个红球、2个白球、3个黄球,它们除颜色外其余都相同.从袋中任意找出1个球,是黄球地概率为()A、B、C、D、7、(2019•宁波)已知直线m∥n,将一块含30°角地直角三角板ABC按如图方式放置(∠ABC =30°),其中A、B两点分别落在直线m、n上.若∠1=20°,则∠2地度数为()A、20°B、30°C、45°D、50°8、(2019•宁波)若一组数据2,3,x,5,7地众数为7,则这组数据地中位数为()A、2B、3C、5D、79、(2019•宁波)如图,在Rt△ABC中,∠A=90°,BC=.以BC地中点O为圆心地圆分别与AB、AC相切于D、E两点,则地长为()A、B、C、D、10、(2019•宁波)抛物线(m是常数)地顶点在()A、第一象限B、第二象限C、第三象限D、第四象限11、(2019•宁波)如图,四边形ABCD是边长为6地正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD、CD于G、F两点.若M、N分别是DG、CE地中点,则MN地长为()A、3B、C、D、412、(2019•宁波)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②地两个小矩形为正方形.在满足条件地所有分割中,若知道九个小矩形中n个小矩形地周长,就一定能算出这个在大矩形地面积,则n地最小值是()A、3B、4C、5D、6二、填空题(每小题4分,共24分)13、(2019•宁波)实数地立方根是________14、(2019•宁波)分式方程地解是________15、(2019•宁波)如图,用同样大小地黑色棋子按如图所示地规律摆放:则第⑦个图案有________个黑色棋子.16、(2019•宁波)如图,一名滑雪运动员沿着倾斜角为34°地斜坡,从A滑行至B.已知AB =500米,这名滑雪运动员地高度下降了________米(参考数据:,,).17、(2019•宁波)已知△ABC地三个顶点为A,B,C,将△ABC向右平移m()个单位后,△ABC某一边地中点恰好落在反比例函数地图象上,则m地值为________.18、(2019•宁波)如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD地中点E处,折痕为FG,点F、G分别在边AB、AD上.则cos∠EFG地值为________.三、解答题(6+8+8+10+10+10+12+14,共78分)19、(2019•宁波)先化简,再求值:,其中.20、(2019•宁波)在地方格中,△ABC地三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边地格点三角形(画出一个即可);(2)将图2中地△ABC绕着点C按顺时针方向旋转90°,画出经旋转后地三角形.21、(2019•宁波)大黄鱼是中国特有地地方性鱼种类,有“国鱼”之称.由于过去滥捕等多种因素,大黄鱼资源已基本枯竭.目前,我市已培育出十余种大黄鱼品种.某鱼苗人工养殖基地对其中地四个品种“宁港”、“御龙”、“甬岱”、“象山港”共300尾鱼苗进行成活实验,从中选出成活率最高地品种进行推广.通过实验得知“甬岱”品种鱼苗成活率为80%,并把实验数据绘制成下列两幅统计图(部分信息未给出):(1)求实验中“宁港”品种鱼苗地数量;(2)求实验中“甬岱”品种鱼苗地成活数,并补全条形统计图;(3)你认为应选哪一品种进行推广?请说明理由.22、(2019•宁波)如图,正比例函数地图象与反比例函数地图象交于A、B 两点,点C在x轴负半轴上,AC=AO,△ACO地面积为12.(1)求k地值;(2)根据图象,当时,写出自变量地取值范围.23、(2019•宁波)2019年5月14日至15日,“一带一路”国际合作高峰论坛在北京举行.本届论坛期间,中国同30多个国家签署经贸合作协议.某厂准备生产甲、乙两种商品共8万件销往“一带一路”沿线国家和地区.已知2件甲种商品与3件乙种商品地销售收入相同,3件甲种商品比2件乙种商品地销售收入多1500元.(1)甲种商品与乙种商品地销售单价各多少元?(2)若甲、乙两种商品地销售总收入不低于5400万元,则至少销售甲种商品多少万件?24、(2019•宁波)在一次课题学习中,老师让同学们合作编题.某学习小组受赵爽弦图地启发,编写了下面这道题,请你来解一解.如图,将矩形ABCD地四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE.(1)求证:四边形EFGH为平行四边形;(2)若矩形ABCD是边长为1地正方形,且∠FEB=45°,tan∠AEH=2,求AE地长.25、(2019•宁波)如图,抛物线与x轴地负半轴交于点A,与y轴交于点B,连结AB.点C在抛物线上,直线AC与y轴交于点D.(1)求c地值及直线AC地函数表达式;(2)点P在x轴地正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO 并延长交AB于点N,若M为PQ地中点.①求证:△APM∽△AON;②设点M地横坐标为m,求AN地长(用含m地代数式表示).26、(2019•宁波)有两个内角分别是它们对角地一半地四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=∠D,∠C=∠A,求∠B与∠C地度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA地平分线交OA于点E,连结DE并延长交AC于点F,∠AFE=2∠EAF.求证:四边形DBCF是半对角四边形;(3)如图3,在(2)地条件下,过点D作DG⊥OB于点H,交BC于点G.当DH=BG时,求△BGH与△ABC地面积之比.答案解析部分一、<b>选择题(每小题4分,共48分)</b>1、【答案】A【考点】无理数【解析】【解答】解:无理数就是无限不循环小数。

2019年浙江省宁波市中考数学试卷-答案

2019年浙江省宁波市中考数学试卷-答案

2019年浙江省宁波市中考数学试卷数学答案解析1.【答案】B 【解析】解:22-=故答案为:B【考点】绝对值及有理数的绝对值2.【答案】D【解析】解:A 、∵2a 和3a 不是同类项,∴不能加减,故此答案错误,不符合题意; B 、∵3256a a a a ⋅=≠,∴此答案错误,不符合题意;C 、∵()3265a a a =≠,∴此答案错误,不符合题意;D 、∵624a a a ÷=,∴此答案正确,符合题意。

故答案为:D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方 3.【答案】C【解析】解:91526000000=1.52610⨯。

故答案为:C【考点】科学记数法—表示绝对值较大的数4.【答案】B【解析】解:由题意得:20x -≠,解得: 2.x ≠故答案为:B【考点】分式有意义的条件5.【答案】C【解析】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

故答案为:C 。

【考点】简单几何体的三视图6.【答案】A【解析】解:去分母得:32x x ->,移项得:23x x --->,合并同类项得:33x -->,系数化为1得: 1.x ﹤故答案为:A【考点】解一元一次不等式7.【答案】D【解析】解:∵()2²44410b ac m -=--⨯⨯≥, 解不等式得:4x ≤,由一元二次方程的根的判别式可知:当x≤4时,方程有实数根,∴当5m =时,方程²40x x m -+=没有实数根。

故答案为:D【考点】一元二次方程根的判别式及应用8.【答案】B【解析】解:∵从平均数可知:甲、乙比丙和丁大,∴排除选项C 和D ;从方差看,乙的方差比甲的小,∴排除选项A 。

故答案为:B【考点】平均数及其计算,方差9.【答案】C【解析】解:设直线n 与AB 的交点为E 。

∵∠AED 是△BED 的一个外角, 1AED B ∴∠=∠+∠,45125B ∠=︒∠=︒,,452570AED ∴∠=︒+︒=︒m n ,270AED ∴∠=∠=︒。

2019年浙江省宁波市中考数学试卷原卷附解析

2019年浙江省宁波市中考数学试卷原卷附解析

2019年浙江省宁波市中考数学试卷原卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.下面几何体的俯视图正确的是( )A .B .C .D .2.如图,坡角为30的斜坡上两树间的水平距离AC 为2m ,则两树间的坡面距离AB 为( )A .4mB .3mC .43m 3D .43m3.如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要 35 片马赛克片. 已知每箱装有 125 片马赛克片,那么要铺满整个台面需购买马赛克( )A .6 箱B .7 箱C .8 箱D .9 箱 4.过⊙O 内一点M 的最长的弦长为6 cm ,最短的弦长为 4 cm ,则OM 的长为( ) A .3 cm B .2cm C .2 cm D .3 cm5.不等式025x >-的解集是( )A .25x <B .25x >C .52x <D .25-x < 6.等腰三角形形一个底角的余角等于30°,它的顶角等于( )A .30°B .60°C .90°D . 以上都不对7.如图,CD 是△ABC 的中线,DE 是△ACD 的中线,BF 是△ADE 的中线,若△AEF 的面积是 1cm 2,则△ABC 的面积是( )A . 4cm 2B .5 cm 2C . 6 cm 2D .8 cm 28.如图,已知点 B ,F ,C ,E 在同一直线上,若 AB=DE ,∠B=∠E ,且BF=CE ,则要使△ABC ≌△DEF 的理由是( )A .ASAB .SASC .SSSD .AAS9.如图,在ABC ∆中,AB=AC=10,AB 的垂直平分线交AC 于G ,BC=7,则GBC ∆的周长是( )A .10B .20C .17D .1310.如图所示,已知△ABC ≌△DCB ,那么下列结论中正确的是( )A .∠ABC=∠CDB ,∠BAC=∠DCB ,∠ACB=∠DBCB .∠ABC=∠DCB ,∠BAC=∠CDB ,∠ACB=∠ABDC .∠ABC=∠DCB ,∠BAC=∠CDB ,∠ACB=∠DBCD .∠ABC=∠DBC ,∠BAC=∠CDB ,∠ACB=∠ACD二、填空题11.2cos45°的值等于 .12.晚上,小亮走在大街上,如图,他发现:当他站在大街两边的两盏路灯之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为 3m ,左边的影子长为 1.5m ,且自己的身高为 1.80 m ,两盏路灯的高相同,两盏路灯之间的距离为 12m ,则路灯的高度为 m .13.弦AB 分圆为1:5两部分,则劣弧AB 所对的圆心角等于______.14.如图,矩形纸片ABCD 中,AD=9,AB=3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为________.15.设将一张正方形纸片沿图中虚线剪开后,能拼成右边四个图形,则其中是中心对称图形的是 (填序号).16.如图,直线a ∥b ,直线AC 分别交a 、b 于点B 、C ,直线AD 交a 于点D 。

2019年宁波市中考数学试题、答案(解析版)

2019年宁波市中考数学试题、答案(解析版)

2019年宁波市中考数学试题、答案(解析版)(满分为150分,考试时间120分钟、)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出得四个选项中,只有一项符合题目要求)1、2-得绝对值为( )A、12-B、2 C、12D、2-2、下列计算正确得就是( )A、325a a a+=B、326a a a-=C、()325a a=D、624a a a÷=3、宁波就是世界银行在亚洲地区选择得第一个开展垃圾分类试点项目得城市,项目总投资为1 526 000 000元人民币、数1 526 000 000用科学记数法表示为( )A、81.52610⨯B、815.2610⨯C、91.52610⨯D、101.52610⨯4、若分式12x-有意义,则x得取值范围就是( )A、2x>B、2x≠C、0x≠D、2x≠-5、如图,下列关于物体得主视图画法正确得就是( )A B C D6、不等式32x->x得解为( )A、1x<B、1x<-C、1x>D、1x>-7、能说明命题“关于x得方程240x x m-+=一定有实数根”就是假命题得反例为( )A、1m=-B、0m=C、4m=D、5m=8、去年某果园随机从甲、乙、丙、丁四个品种得葡萄树中各采摘了10棵,每棵产量得平均数x(单位:千克)及方差2S(单位:千克2)如下表所示:甲乙丙丁x24 24 23 202S2、1 1、9 2 1、9( )A、甲B、乙C、丙D、丁9、已知直线m nP,将一块含45°角得直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D、若125∠=︒,则∠2得度数为( )A、60°B、65°C、70°D、7510、如图所示,矩形纸片ABCD中,AD=6 cm,把它分割成正方形纸片ABFE与矩形纸片EFCD后,分别裁出扇形ABF与半径最大得圆,恰好能作为一个圆锥得侧面与底面,则AB得长为( )A、3、5 cmB、4 cmC、4、5 cmD、5 cm11、小慧去花店购买鲜花,若买5支玫瑰与3支百合,则她所带得钱还剩下10元;若买3支玫瑰与5支百合,则她所带得钱还缺4元、若只买8支玫瑰,则她所带得钱还剩下( )A、31元B、30元C、25元D、19元12、勾股定理就是人类最伟大得科学发现之一,在我国古算书《周醉算经》中早有记载。

最新2019年浙江省宁波市中考数学试卷含答案

最新2019年浙江省宁波市中考数学试卷含答案

最新浙江省宁波市中考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.12.(4分)中国(宁波)特色文化产业博览会于4月16日在宁波国际会展中心闭幕.本次博览会为期四天,参观总人数超55万人次,其中55万用科学记数法表示为()A.0.55×106B.5.5×105C.5.5×104D.55×1043.(4分)下列计算正确的是()A.a3+a3=2a3B.a3•a2=a6 C.a6÷a2=a3D.(a3)2=a54.(4分)有五张背面完全相同的卡片,正面分别写有数字1,2,3,4,5,把这些卡片背面朝上洗匀后,从中随机抽取一张,其正面的数字是偶数的概率为()A.B.C.D.5.(4分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6 B.7 C.8 D.96.(4分)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.(4分)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为()A.50°B.40°C.30°D.20°8.(4分)若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7 B.5 C.4 D.39.(4分)如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC 长为半径画弧,交边AB于点D,则的长为()A.πB.πC.πD.π10.(4分)如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8 B.﹣8 C.4 D.﹣411.(4分)如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.12.(4分)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=2时,S2﹣S1的值为()A.2a B.2b C.2a﹣2b D.﹣2b二、填空题(每小题4分,共24分)13.(4分)计算:|﹣|=.14.(4分)要使分式有意义,x的取值应满足.15.(4分)已知x,y满足方程组,则x2﹣4y2的值为.16.(4分)如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为米(结果保留根号).17.(4分)如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为.18.(4分)如图,在菱形ABCD中,AB=2,∠B是锐角,AE⊥BC于点E,M是AB的中点,连结MD,ME.若∠EMD=90°,则cosB的值为.三、解答题(本大题有8小题,共78分)19.(6分)先化简,再求值:(x﹣1)2+x(3﹣x),其中x=﹣.20.(8分)在5×3的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出线段BD,使BD∥AC,其中D是格点;(2)在图2中画出线段BE,使BE⊥AC,其中E是格点.21.(8分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并依次用A,B,C,D 表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求本次调查的学生人数;(2)求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;(3)若该校共有学生1200人,试估计每周课外阅读时间满足3≤t<4的人数.22.(10分)已知抛物线y=﹣x2+bx+c经过点(1,0),(0,).(1)求该抛物线的函数表达式;(2)将抛物线y=﹣x2+bx+c平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.23.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D 与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.24.(10分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.(1)求甲、乙两种商品的每件进价;(2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?25.(12分)若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC 的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.求证:△ABC是比例三角形.(3)如图2,在(2)的条件下,当∠ADC=90°时,求的值.26.(14分)如图1,直线l:y=﹣x+b与x轴交于点A(4,0),与y轴交于点B,点C是线段OA上一动点(0<AC<).以点A为圆心,AC长为半径作⊙A 交x轴于另一点D,交线段AB于点E,连结OE并延长交⊙A于点F.(1)求直线l的函数表达式和tan∠BAO的值;(2)如图2,连结CE,当CE=EF时,①求证:△OCE∽△OEA;②求点E的坐标;(3)当点C在线段OA上运动时,求OE•EF的最大值.最新浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.【解答】解:由正数大于零,零大于负数,得﹣3<﹣1<0<1,最小的数是﹣3,故选:A.2.【解答】解:550000=5.5×105,故选:B.3.【解答】解:∵a3+a3=2a3,∴选项A符合题意;∵a3•a2=a5,∴选项B不符合题意;∵a6÷a2=a4,∴选项C不符合题意;∵(a3)2=a6,∴选项D不符合题意.故选:A.4.【解答】解:∵从写有数字1,2,3,4,5这5张纸牌中抽取一张,其中正面数字是偶数的有2、4这2种结果,∴正面的数字是偶数的概率为,故选:C.5.【解答】解:正多边形的一个外角等于40°,且外角和为360°,则这个正多边形的边数是:360°÷40°=9.故选:D.6.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.7.【解答】解:∵∠ABC=60°,∠BAC=80°,∴∠BCA=180°﹣60°﹣80°=40°,∵对角线AC与BD相交于点O,E是边CD的中点,∴EO是△DBC的中位线,∴EO∥BC,∴∠1=∠ACB=40°.故选:B.8.【解答】解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.9.【解答】解:∵∠ACB=90°,AB=4,∠A=30°,∴∠B=60°,BC=2∴的长为=,故选:C.10.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,∵S△ABC∴k1﹣k2=8.故选:A.11.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1时,y=a﹣b<0,∴y=(a﹣b)x+b的图象在第二、三、四象限,故选:D.12.【解答】解:S1=(AB﹣a)•a+(CD﹣b)(AD﹣a)=(AB﹣a)•a+(AB﹣b)(AD ﹣a),S2=AB(AD﹣a)+(a﹣b)(AB﹣a),∴S2﹣S1=AB(AD﹣a)+(a﹣b)(AB﹣a)﹣(AB﹣a)•a﹣(AB﹣b)(AD﹣a)=(AD﹣a)(AB﹣AB+b)+(AB﹣a)(a﹣b﹣a)=b•AD﹣ab﹣b•AB+ab=b(AD﹣AB)=2b.故选:B.二、填空题(每小题4分,共24分)13.【解答】解:|﹣|=.故答案为:.14.【解答】解:要使分式有意义,则:x﹣1≠0.解得:x≠1,故x的取值应满足:x≠1.故答案为:x≠1.15.【解答】解:原式=(x+2y)(x﹣2y)=﹣3×5=﹣15故答案为:﹣1516.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)17.【解答】解:如图1中,当⊙P与直线CD相切时,设PC=PM=m.在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8﹣x)2,∴x=5,∴PC=5,BP=BC﹣PC=8﹣5=3.如图2中当⊙P与直线AD相切时.设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,PB==4.综上所述,BP的长为3或4.18.【解答】解:延长DM交CB的延长线于点H.∵四边形ABCD是菱形,∴AB=BC=AD=2,AD∥CH,∴∠ADM=∠H,∵AM=BM,∠AMD=∠HMB,∴△ADM≌△BHM,∴AD=HB=2,∵EM⊥DH,∴EH=ED,设BE=x,∵AE⊥BC,∴AE⊥AD,∴∠AEB=∠EAD=90°∵AE2=AB2﹣BE2=DE2﹣AD2,∴22﹣x2=(2+x)2﹣22,∴x=﹣1或﹣﹣1(舍弃),∴cosB==,故答案为.三、解答题(本大题有8小题,共78分)19.【解答】解:原式=x2﹣2x+1+3x﹣x2=x+1,当x=﹣时,原式=﹣+1=.20.【解答】解:(1)如图所示,线段BD即为所求;(2)如图所示,线段BE即为所求.21.【解答】解:(1)由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的10%所以:20÷10%=20×=200(人)即本次调查的学生人数为200人;(2)由条形图知:C级的人数为60人所以C级所占的百分比为:×100%=30%,B级所占的百分比为:1﹣10%﹣30%﹣45%=15%,B级的人数为200×15%=30(人)D级的人数为:200×45%=90(人)B所在扇形的圆心角为:360°×15%=54°.(3)因为C级所占的百分比为30%,所以全校每周课外阅读时间满足3≤t<4的人数为:1200×30%=360(人)答:全校每周课外阅读时间满足3≤t<4的约有360人.22.【解答】解:(1)把(1,0),(0,)代入抛物线解析式得:,解得:,则抛物线解析式为y=﹣x2﹣x+;(2)抛物线解析式为y=﹣x2﹣x+=﹣(x+1)2+2,将抛物线向右平移一个单位,向下平移2个单位,解析式变为y=﹣x2.23.【解答】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°24.【解答】解:(1)设甲种商品的每件进价为x元,则乙种商品的每件进价为(x+8)元.根据题意,得,=,解得x=40.经检验,x=40是原方程的解.答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;(2)甲乙两种商品的销售量为=50.设甲种商品按原销售单价销售a件,则(60﹣40)a+(60×0.7﹣40)(50﹣a)+(88﹣48)×50≥2460,解得a≥20.答:甲种商品按原销售单价至少销售20件.25.【解答】解:(1)∵△ABC是比例三角形,且AB=2、AC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,∴=,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴=,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.26.【解答】解:∵直线l:y=﹣x+b与x轴交于点A(4,0),∴﹣×4+b=0,∴b=3,∴直线l的函数表达式y=﹣x+3,∴B(0,3),∴OA=4,OB=3,在Rt△AOB中,tan∠BAO==;(2)①如图2,连接DF,∵CE=EF,∴∠CDE=∠FDE,∴∠CDF=2∠CDE,∵∠OAE=2∠CDE,∴∠OAE=∠ODF,∵四边形CEFD是⊙O的圆内接四边形,∴∠OEC=∠ODF,∴∠OEC=∠OAE,∵∠COE=∠EOA,∴△COE∽△EOA,②过点E⊥OA于M,由①知,tan∠OAB=,设EM=3m,则AM=4m,∴OM=4﹣4m,AE=5m,∴E(4﹣4m,3m),AC=5m,∴OC=4﹣5m,由①知,△COE∽△EOA,∴,∴OE2=OA•OC=4(4﹣5m)=16﹣20m,∵E(4﹣4m,3m),∴(4﹣4m)2+9m2=25m2﹣32m+16,∴25m2﹣32m+16=16﹣20m,∴m=0(舍)或m=,∴4﹣4m=,3m=,∴(,),(3)如图,设⊙O的半径为r,过点O作OG⊥AB于G,∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∴AB×OG=OA×OB,∴OG=,∴AG==×=,∴EG=AG﹣AE=﹣r,连接FH,∵EH是⊙O直径,∴EH=2r,∠EFH=90°=∠EGO,∵∠OEG=∠HEF,∴△OEG∽△HEF,∴,∴OE•EF=HE•EG=2r(﹣r)=﹣2(r﹣)2+,∴r=时,OE•EF最大值为.。

2019年宁波市中考数学试卷(解析版)

2019年宁波市中考数学试卷(解析版)

2019年宁波市中考数学试卷(解析版)一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B【解析】【解答】解:∣-2∣=2. 故答案为:B2.下列计算正确的是()A. B. C. D.【答案】 D【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D 、∵,∴此答案正确,符合题意。

故答案为:D3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【解析】【解答】解:。

故答案为:C4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【解析】【解答】解:由题意得:x-2≠0,解得:x≠2. 故答案为:B5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

故答案为:C。

6.不等式的解为()A. B. C. D.【答案】A【解析】【解答】解:去分母得:3-x﹥2x,移项得:-x-2x﹥-3,合并同类项得:-3x﹥-3,系数化为1得:x﹤1. 故答案为:A7.能说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例为()A. m=-1B. m=0C. m=4D. m=5【答案】 D【解析】【解答】解:∵b²-4ac=(-4)²-4×1×m≥0,解不等式得:x≤4,由一元二次方程的根的判别式可知:当x≤4时,方程有实数根,∴当m=5时,方程x²-4x+m=0没有实数根。

故答案为:D8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】【解答】解:∵从平均数可知:甲、乙比丙和丁大,∴排除选项C和D;从方差看,乙的方差比甲的小,∴排除选项A。

2019年浙江省宁波市中考数学试卷A卷附解析

2019年浙江省宁波市中考数学试卷A卷附解析

2019年浙江省宁波市中考数学试卷A 卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图所示,课堂上小亮站在座位上回答数学老师提出的问题,那么数学老师观察小亮身后,盲区是( )A .DCE △B .四边形ABCDC .ABF △D .ABE △2.已知点 C 是线段 AB 的黄金分割点,其中AC >BC ,以 AC 为边作正方形面积记为 S 1, 以 AB 与 BC 分别为长和宽作长方形,面积记为S 2, 则下列关于 S 1和 S 2 关系正 确的是( )A .12S S >B .12S S =C .12S S <D .不确定3.若A (-4,y 1),B (-3,y 2),C (1,y 3)为二次函数y=x 2+4x-5的图象上的三点,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 1<y 2D .y 1<y 3<y 24.如图,已知在△ABC 中,AB=BC ,BD 是角平分线,DE ⊥AB 于点E ,DF ⊥BC 于点F ,则下列四个结论中正确的个数有 ( )①BD 上任意一点到点A 和点C 的距离相等;②BD 上任一点到AB 和BC 的距离相等;③AD=CD ,BD ⊥AC ;④∠ADE=∠CDF .A .1个B .2个C .3个D .4个 5.不等式组0260x ≤-≤的解是( ) A .3x ≥B .3x ≤C .3x =D .无解 6.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为( )A .4x ≤B .2x <C .24x <≤D .2x >7.下列说法不正确的是( )A .在平移变换中,图形中的每一个点都沿同一方向移动了相同的距离B .在旋转变换中,图形中的每一点都绕旋转中心旋转了相同的角度C .在相似变换中,图形中的每一个角都扩大(或缩小)相同的倍数D .在相似变换中,图形中的每一条线段都扩大(或缩小)相同的倍数8.在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b )(如图1),把余下的部分拼成一个梯形(如图2),根据两个图形中阴影部分的面积相等,可以验证( )A .a 2-b 2=(a +b )(a -b )B .(a -b )2=a 2-2ab +b 2C .(a +b )2=a 2+2ab +b 2D .(a +2b )(a -b )=a 2+ab -2b 2 9.“阳光体育”运动在我市轰轰烈烈开展,为了解同学们最爱好的阳光体育运动项目,小王对本班50名同学进行了跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目最喜爱人数的调查,并根据调查结果绘制了如上的人数分布直方图,若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为( )A .120oB .144oC .180oD .72o10.下列说法中,正确的是( )A .买一张电影票,座位号一定是偶数B .投掷一枚均匀硬币,正面一定朝上C .三条任意长的线段可以组成一个三角形D .从 1,2,3,4,5 这五个数字中任取一个数,取得奇数的可能性大二、填空题11.如果两个相似三角形的周长分别为 6厘米和 9 厘米,那么这两个相似三角形的相似比为 .12.如图,在□ABCD 中,∠A 的平分线交BC 于点E .若AB=3,AD=8,则EC=_______.13.当 m 时,关于x 的方程2(2)530m x x m -++=是一元二次方程.14.已知点P(a ,b)在第二象限,则直线y=ax+b 不经过第 象限.15.已知甲以 5 km/h 的速度从A 地出发去B 地,经过 80 min ,乙骑自行车从A 地出发追甲,为保证在 30 min 内(包括 30 min )追上,乙骑车的速度至少要 km/h .16.如图,∠1 =40°,∠2=40°,那么直线a 与b 的位置关系是 ,理由是 .a ab ba b 图1 图217.填上适当的数,使等式成立:24x x -+ =(x - 2).18.用笔尖扎重叠的纸得到如图成轴对称的两个图案,在图中找出:(1)两对对应点 , ;(2)两组对应线段 , ;(3)两组对应角 , .19.已知某圆恰好分成三个扇形A 、B 、C , 扇形A 、B 所占的百分比分别为 25%、45%, 又知整个圆代表学校总人数.且C 中有l50人,则该校的总人数是 人.20.如图,点A 、B 、C 在直线l 上,则图中共有______条线段.21.一个数是 6,另一个数比6 的相反数大 2,则这两个数的和为 .三、解答题22.铁道口的栏杆如图,短臂OD 长1.25 m ,长臂OE 长 16.5 m ,当短臂端点下降0.85m (AD 长) 时,求长臂端点升高多少m (BE 的长)? (不计杆的高度)23.如图,已知OA 、OB 为⊙O 的半径,C 、D 分别是OA 、OB 的中点.求证:(1)∠A=∠B ;O DA E B(2)AE=BE.24.如图,在□ABCD 中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F,试判断四边形AECF是不是平行四边形,并说明理由25.如图所示,一块四边形菜地ABCD.你能在保证面积不变的前提下,把它改成一块三角形菜地吗?请作图说明.26.如图所示,架在消防车上的云梯 AB 的坡比为 1:0.8,已知云梯 AB 的长为 l6m,云梯底部离地面 1.5m(即 BC= 1.5 m). 求云梯顶端离地面的距离. (精确到 1 m)27.如图 ,当∠1 = 50°,∠2 = 130°时,直线1l ,2l 平行吗?为什么?28.已知△ABC 中,以点A 为顶点的外角为120°,∠B=30°,求∠C 的度数.29.某交警队对所管辖区从1997年到2000年交通伤亡人数及直接经济损失统计如下:1997年死亡80人,伤302人,直接经济损失100万元;1998年死亡99人,伤350人,直接经济损失l30万元;1999年死亡135人,伤455人,直接经济损失l42万元;2000年死亡92人,伤400人,直接经济损失85万元.请制作能反映该辖区在这4年中车祸情况及合计的统计表.30.借助计算器计算下列各题: 31= ; 3312+= ; 333123++= ;(433331234+++= ;……从上面计算结果,你发现了什么规律?请把你发现的规律用一个等式来表示.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.B3.B4.D5.C6.B7.C8.A9.答案:B10.D二、填空题2 :3.12.513.2≠14.三15.55316.a∥b;同位角相等,两直线平行17.4、218.略19.50020.321.2三、解答题22.∵∠DAO=∠EBO=90°,∠AOD=∠BOE,∴△AOD∽△BOE.∴DO ADEO BE=,即1.250.8516.5BE=,∴BE=11.22.答:长臂端点升高 11.22 m.23.(1)∵OA、OB为⊙O的半径,∴OA=OB,∵C、D分别为OA、OB的中点,∴OC=12OA ,OD=12OB,∴OC=OD.又∵∠AOB=∠AOB,∴△OAD≌△OBC(SAS),∴∠A=∠B,∠ODA= ∠OCB.(2)∴∠ACE=∠BDE,∵∠A=∠A ,AC=DB,∴△ACE≌△BDE(ASA),∴AE=BE.是平行四边形,提示:连结AC 交BD 于O ,证△ABE ≌△CDF ,得OE=OF 即可 25.连结BD .过点A 作AP ∥BD 交CD 延长线于P ,连结PB ,△PBC 即为所求 26.l4m27.平行.理由:∵∠2+∠3=180°,∠2=130°.∴∠3=180-∠2=180°-130°=50°.∵∠1=50°,∴∠3=∠1,∴1l ⊥2l28.∠C=90°29.30.(1) 1 (2) 3 (3) 6 (4) 10 3123n n ++=++++。

2019年浙江省宁波市中考数学试卷乙卷附解析

2019年浙江省宁波市中考数学试卷乙卷附解析

2019年浙江省宁波市中考数学试卷乙卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列光源的光线所形成的投影不能称为中心投影的是( ) A .探照灯 B .太阳C .路灯D .台灯2.下列哪个图可以近似地反应上午9:10时,浙江某中学竖立的旗杆与其影子的位置关系的是( )3.如图,梯形ABCD 中,AB ∥DC ,AB ⊥BC ,AB =2cm ,CD =4cm .以BC 上一点O 为圆心的圆经过A 、D 两点,且∠AOD =90°,则圆心O 到弦AD 的距离是( ) A .6cmB .10cm C .32cm D .52cm4.点C 把线段AB 分成两条线段AC 和BC ,如果ACBCAB AC =,那么称线段AB 被点C 黄金分割,AC 与AB 的比叫做黄金比,其比值是( ) A .215- B .253- C .215+ D .253+ 5.下列各图中,为轴对称图形的是( )6..已知平面直角坐标系内,0(0,0),A (1.3), C (3,0),若以0,A ,C ,B 为顶点的四边形是平行四边形,则B 点不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 7.正方形的面积为 4,则正方形的对角线长为( )A 2B .22C .32D . 48.点M 在y 轴的左侧,到x 轴、y 轴的距离分别是3和5,则点M 的坐标是( ) A .(一5,3)B .(-5,-3)C .(5,3)或(-5,3)D .(-5,3)或(-5,-3) 9.如图,AB ∥CD ,AC ⊥BC 于点C ,图中与∠CAB 互余的角有( )A .1个B .2个C .3个D .4个 A .B .C .D .10.如图△ABC 中,AB 的中垂线交AC 于D ,AB =10,AC =8,△DBC 的周长是a ,则BC 等于 ( ) A . a -6 B .a -8C .a -10D .10-a11.方程1x x-=0的根是( ) A .1 B .-1 C .1或0 D .1或-1 12.已知当1a =,2b =-时,代数式10ab bc ca ++=,则c 的值为( )A . 12B . 6C .-6D . -12二、填空题13.在一次抽奖活动中,中奖概率是0.12,则不中奖的概率是 .14. 立方体的一边长为xcm ,那么它的表面积ycm 2关于xcm 的函数解析式是 . y =6x 215.如图,直线y kx b =+经过A(2,1)、B(-l ,-2)两点,则不等式122x kx b >+>-的解为 .16.若a b <,则5a + 5b +,2a - 2b -.17.如图,AE=AD ,请你添加一个条件: ,使△ABE ≌△ACD (图形中不再增加其他字母).18.a 的 2倍的立方与b 的5倍的平方的差可表示为 .三、解答题一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一座小岛C ,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近? (参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)20.已知△ABC中,AB=1,142BC=,11255CA=.(1)分别化简142,11255的值;(2)试在4×4的方格纸上画出△ABC,使它的顶点都在方格的顶点上(每个小方格的边长为 1).21.如图,在正方形ABCD中,两条对角线相交于0,∠BAC的平分线交BD于E,若正方形ABCD的周长为l6 cm,求DE的长.22.如图所示,△ACB,△ECD都是等腰直角三角形,且点 C在AD上,AE的延长线与BD 交于点F. 请你在图中找出一对全等三角形,并写出证明它们全等的过程.23.如图所示,在四边形ABCD 中,∠A :∠B :∠C :∠D=3:2:3:2,那么四边形ABCD 是平行四边形吗? 请证明你的判断.24.从棱长为2厘米的立方体毛坯的一角,挖去一个棱长为 1厘米的小立方体,得到一个如图所示的零件,请先画出该几何体的三视图,再求出它的表面积. 它的表面积.25.如图,直线1l 、2l 相交于点B ,点A 是直线1l 上的点,在直线2l 上寻找一点C ,使△ABC 是等腰三角形,请画出所有等腰三角形.26.某山区有23名中、小学生因贫困失学需要捐款.捐助一名中学生的学习需要x 元,一名小学生的学习需要y 元.我校学生积极捐款,各年级学生的捐款数额、恰好资助的贫困学生人数的部分情况如下表:(1)(2) 已知初三年级学生的捐款解决了剩余贫困中、小学生的学习费用,请将初三年级资助的贫困小学生人数和初三年级的捐款数额直接填入表中(不需写出计算过程).27.如图,DF ⊥AB ,∠A=430,∠D=42°,求∠ACB 的度数.∠ACB=89 º.28.某班同学去社会实践基地参加实践活动,一部分同学抬土,另一部分同学挑土. 已知全班共有竹筐 58 只,扁担 37 根,要使每一位同学都能同时参加抬土或挑土,应怎样分配抬土和挑土人数?EBDFCA29.如图,先画出三角形关于直线n 的轴对称图形,再画出所得图形关于直线m 的轴对称图形;经过这样两次轴对称变换后所得的图形和原来图形有什么关系?30.已知6a b +=,3ab =, 求代数式(547)(63)(43)ab a b a ab ab b +++---的值.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.B4.A5.C6.C7.B8.D9.C10.B11.DD二、填空题 13.0.88 14.15.12x -<<16.<,>17.答案不唯一,如AB =AC18.32(2)(5)a b -三、解答题 19.解:过C 作AB 的垂线,交直线AB 于点D ,得到Rt △ACD 与Rt △BCD . 设BD =x 海里,在Rt △BCD 中,tan ∠CBD =CD BD,∴CD =x ·tan63.5°.在Rt △ACD 中,AD =AB +BD =(60+x)海里,tan ∠A =CD AD,∴CD =( 60+x ) ·tan21.3°.∴x·tan63.5°=(60+x)·tan21.3°,即 ()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近20.(1)== (2)略 21.4 cm22.△ACE ≌△BCD ,证明略BCDA略24.图略.该几何体的表面积等于三视图面积和的2倍,即(2×2+2×2+2×2)×2=24(平方厘米).∴该几何体的表面积为24平方厘米.25.略26.(1)由题意得⎩⎨⎧=+=+420033400042y x y x ,解得⎩⎨⎧==600800y x ;(2)7400,7.27.28.分配抬土 32 人,挑土21 人29.略30.-2ab+lOa+lOb=54。

浙江宁波2019中考试题数学卷(解析版)

浙江宁波2019中考试题数学卷(解析版)

1 满分150分,考试时间120分钟
一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)
1. 6的相反数是
A. -6
B.
61 C. 61 D. 6
【答案】A.
【解析】试题分析:根据只有符号不同的两个数互为相反数可得
6的相反数是-6,故答案选 A. 考点:相反数.
2. 下列计算正确的是
A. 633a a a
B. 33a a
C. 523)(a a
D. 3
2a a a 【答案】D.
考点:合并同类项法则;同底数幂乘法法则;幂的乘方运算
. 3. 宁波栎社国际机场三期扩建工程建设总投资
84.5亿元,其中84.5亿元用科学计数法表示为
A. 0.845×1010元
B. 84.5
×108元 C. 8.45×109元 D. 8.45×1010元【答案】C.
【解析】
试题分析:科学计数法是指:a ×n 10,且101
a ,n 为原数的整数位数减一.84.5亿=8 450
000 000=8.45×109,故答案选 C.
考点:科学计数法.。

2019宁波中考数学试题及答案

2019宁波中考数学试题及答案

2019宁波中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 2x + 3 = 7B. 2x - 3 = 7C. 3x + 2 = 7D. 3x - 2 = 7答案:B2. 求下列函数的值域:y = x^2 - 4x + 4A. (-∞, 0]B. [0, +∞)C. (-∞, 4]D. [4, +∞)答案:B3. 已知三角形ABC的三边长分别为a、b、c,且a^2 + b^2 = c^2,下列哪个选项是正确的?A. 三角形ABC是锐角三角形B. 三角形ABC是直角三角形C. 三角形ABC是钝角三角形D. 无法确定三角形ABC的类型答案:B4. 计算下列表达式的值:(3x - 2)(x + 1) = ?A. 3x^2 + x - 2B. 3x^2 - x - 2C. 3x^2 + x + 2D. 3x^2 - x + 2答案:A5. 已知函数f(x) = 2x + 3,求f(-1)的值。

A. 1B. -1C. -5D. 5答案:C6. 计算下列概率:在一个装有5个红球和3个蓝球的袋子里随机抽取一个球,抽到红球的概率是多少?A. 1/3B. 1/2C. 5/8D. 3/8答案:C7. 计算下列几何图形的面积:一个矩形的长为6cm,宽为4cm,求其面积。

A. 12cm^2B. 18cm^2C. 24cm^2D. 30cm^2答案:C8. 计算下列函数的反函数:y = 2x + 1,求x关于y的表达式。

A. x = (y - 1) / 2B. x = (y + 1) / 2C. x = 2y - 1D. x = 2y + 1答案:A9. 计算下列统计数据:一组数据的平均数为5,中位数为4,众数为3,下列哪个选项是正确的?A. 这组数据是对称的B. 这组数据不是对称的C. 无法确定这组数据是否对称D. 这组数据是均匀分布的答案:B10. 计算下列函数的导数:y = x^3 - 3x^2 + 2x,求y'。

浙江省宁波市2019年中考数学试卷(解析版)

浙江省宁波市2019年中考数学试卷(解析版)

浙江省宁波市2019年中考数学试卷一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】解:∣-2∣=2.故答案为:B【分析】因为一个负数的绝对值等于它的相反数,而-2的相反数是2,所以-2的绝对值等于2。

2.下列计算正确的是()A. B. C. D.【答案】 D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D、∵,∴此答案正确,符合题意。

故答案为:D【分析】(1)因为a³与a²不是同类项,所以不能合并;(2)根据同底数幂相乘,底数不变,指数相加可判断求解;(3)根据幂的乘方,底数不变,指数相乘可判断求解;(4)根据同底数幂相除,底数不变,指数相减可判断求解。

3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:。

故答案为:C【分析】任何一个绝对值大于等于1的数都可以用科学记数法表示,科学记数法的表示形式为a×10n,其中1≤|a|<10,n=整数位数-1.4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【考点】分式有意义的条件【解析】【解答】解:由题意得:x-2≠0,解得:x≠2.故答案为:B【分析】分式有意义的条件是:分母不为0,从而列出不等式,求解即可。

5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【考点】简单几何体的三视图【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

2019宁波中考数学试题及答案

2019宁波中考数学试题及答案

2019宁波中考数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 0.5D. -0.5答案:C2. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 7C. 9D. 12答案:A3. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C4. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 78.5B. 25πC. 50πD. 78.5π答案:D5. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 以上都不是答案:C6. 一个数的立方等于-8,这个数是多少?A. 2B. -2C. 8D. -8答案:B7. 一个数除以-2的结果是3,这个数是多少?A. -6B. 6C. -3D. 3答案:A8. 一个数的倒数是1/3,这个数是多少?A. 3B. 1/3C. 1/9D. 9答案:A9. 一个数的相反数是-5,这个数是多少?A. 5B. -5C. 0D. 10答案:A10. 一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 2答案:A二、填空题(本大题共5小题,每小题4分,共20分)11. 一个数的平方是16,这个数是____。

答案:±412. 一个数的立方根是2,这个数是____。

答案:813. 一个数的绝对值是7,这个数是____。

答案:±714. 一个数的倒数是2,这个数是____。

答案:1/215. 一个数的相反数是-3,这个数是____。

答案:3三、解答题(本大题共4小题,共50分)16. 已知一个等腰三角形的底边长为6厘米,两腰相等,且两腰的长度之和为20厘米,求这个等腰三角形的高。

(10分)解:设等腰三角形的两腰长度为x厘米,根据题意得:2x + 6 = 202x = 14x = 7所以两腰的长度为7厘米。

2019年浙江省宁波市中考数学试卷(附答案与解析)

2019年浙江省宁波市中考数学试卷(附答案与解析)

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前2019年浙江省宁波市中考数学试卷数 学(满分为150分,考试时间120分钟.)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出的四个选项中,只有一项符合题目要求)1.2-的绝对值为 ( )A .12-B .2C .12D .2-2.下列计算正确的是 ( )A .325a a a +=B .326a a a -=C .()325a a =D .624a a a ÷=3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1 526 000 000元人民币.数1 526 000 000用科学记数法表示为 ( ) A .81.52610⨯ B .815.2610⨯ C .91.52610⨯D .101.52610⨯ 4.若分式12x -有意义,则x 的取值范围是( )A .2x >B .2x ≠C .0x ≠D .2x ≠- 5.如图,下列关于物体的主视图画法正确的是( )AB CD6.不等式32x->x 的解为( ) A .1x <B .1x <-C .1x >D .1x >-7.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为( ) A .1m =- B .0m = C .4m = D .5m = 8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x22 ( ) A .甲 B .乙 C .丙 D .丁 9.已知直线m n ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则∠2的度数为 ( )A .60°B .65°C .70°D .75 10.如图所示,矩形纸片ABCD 中,AD=6 cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为 ( )A .3. 5 cmB .4 cmC .4.5 cmD .5 cm 11.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下 ( ) A .31元 B .30元 C .25元 D .19元 12.勾股定理是人类最伟大的科学发现之一,在我国古算书《周醉算经》中早有记载。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年宁波市中考数学试题、答案(解析版)(满分为150分,考试时间120分钟.)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出的四个选项中,只有一项符合题目要求) 1.2-的绝对值为( )A.12-C.12D.2- 2.下列计算正确的是( )A.325a a a +=B.326a a a -=C.()325a a =D.624a a a ÷=3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1 526 000 000元人民币.数1 526 000 000用科学记数法表示为 ( ) A.81.52610⨯ B.815.2610⨯ C.91.52610⨯D.101.52610⨯ 4.若分式12x -有意义,则x 的取值范围是( )A.2x >B.2x ≠C.0x ≠D.2x ≠- 5.如图,下列关于物体的主视图画法正确的是( )AB C D 6.不等式32x->x 的解为( ) A.1x <B.1x <-C.1x >D.1x >-7.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为( ) A.1m =-B.0m =C.4m =D.5m =8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x (单位:千克)及方差2S (单位:千克2)如下表所示:( ) A.甲B.乙C.丙D.丁9.已知直线m n P ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D.若125∠=︒,则∠2的度数为 ( )° ° ° ?10.如图所示,矩形纸片ABCD 中,AD=6 cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为 ( )cmcmcmcm11.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下 ( ) 元元元元12.勾股定理是人类最伟大的科学发现之一,在我国古算书《周醉算经》中早有记载。

如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出 ( )A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和试题卷Ⅱ二、填空题(每小题4分,共24分) 13.请写出一个小于4的无理数: . 14.分解因式:2x xy += .15.袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为 . 16.如图,某海防哨所O 发现在它的西北方向,距离哨所400米的A 处有一般船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B 处,则此时这般船与哨所的距离OB 约为 .米。

(精确到1 1.414≈,1.732≈)17.如图,Rt ABC △中,90C ∠=︒,AC=12,点D 在边BC 上,CD=5,BD=13.点P 是线段AD 上一动点,当半径为6的OP 与ABC △的一边相切时,AP 的长为 .18.如图,过原点的直线与反比例函数ky x=(k>0)的图象交于A ,B 两点,点A 在第一象限,点C 在x 轴正半轴上,连结AC 交反比例函数图象于点为BAC ∠的平分线,过点B 作AE 的垂线,垂足为E ,连结DE.若AC=3DC ,△ADE 的面积为8,则k 的值为 .三、解答题(本大题有8小题,共78分) 19.(本题6分)先化简,再求值:()()()221x x x x -+--,其中 3.x =20.(本题8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影: (1)使得6个阴影小等边三角形组成一个轴对称图形。

(2)使得6个阴影小等边三角形组成一个中心对称图形。

(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)21.(本题8分)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动。

为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表。

由图表中给出的信息回答下列问题:(1)m =________,并补全频数直方图________;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗请简要说明理由; (3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.22.(本题10分)如图,已知二次函数23y x ax =++的图象经过点()P 23.-,(1)求a 的值和图象的顶点坐标。

(2)点)Qm n (,在该二次函数图象上. ①当2m =时,求n 的值;②若点Q 到y 轴的距离小于2,请根据图象直接写出n 的取值范围.23.(本题10分)如图,矩形EFGH 的顶点E ,G 分别在菱形ABCD 的边AD ,BC 上,顶点F 、H 在菱形ABCD 的对角线BD 上. (1)求证:BG=DE ;(2)若E 为AD 中点,FH=2,求菱形ABCD 的周长.24.(本题10分)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林。

离入口处的路程y (米)与时间x (分)的函数关系如图2所示. (1)求第一班车离入口处的路程y (米)与时间x (分)的函数表达式;(2)求第一班车从人口处到达塔林所蓄的时间;(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟(假设每一班车速度均相同,小聪步行速度不变)25.(本题12分)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在ABC △中,AB=AC ,AD 是ABC △的角平分线,E ,F 分别是BD ,AD 上的点.求证:四边形ABEF 是邻余四边形。

(2)如图2,在5×4的方格纸中,A ,B 在格点上,请画出一个符合条件的邻余四边形ABEF ,使AB 是邻余线,E ,F 在格点上,(3)如图3,在(1)的条件下,取EF 中点M ,连结DM 并延长交AB 于点Q ,延长EF 交AC 于点N.若N 为AC 的中点,DE=2BE ,QB=3,求邻余线AB 的长。

26.(本题14分)如图1,e O 经过等边ABC △的顶点A ,C (圆心O 在ABC △内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F. (1)求证:BD=BE.(2)当AF EF=3:2:,AC=6时,求AE 的长。

(3)设AFEFx =,tan DAE=y.∠ ①求y 关于x 的函数表达式;②如图2,连结OF,OB ,若AEC △的面积是OFB △面积的10倍,求y 的值2019年宁波市中考数学答案解析1.【答案】B 【解析】解:22-=故答案为:B【考点】绝对值及有理数的绝对值 2.【答案】D【解析】解:A 、∵2a 和3a 不是同类项,∴不能加减,故此答案错误,不符合题意; B 、∵3256a a a a ⋅=≠,∴此答案错误,不符合题意;C 、∵()3265a a a =≠,∴此答案错误,不符合题意;D 、∵624a a a ÷=,∴此答案正确,符合题意。

故答案为:D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方 3.【答案】C【解析】解:91526000000=1.52610⨯。

故答案为:C【考点】科学记数法—表示绝对值较大的数 4.【答案】B【解析】解:由题意得:20x -≠,解得: 2.x ≠ 故答案为:B【考点】分式有意义的条件 5.【答案】C【解析】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

故答案为:C 。

【考点】简单几何体的三视图 6.【答案】A【解析】解:去分母得:32x x ->,移项得:23x x --->,合并同类项得:33x -->,系数化为1得: 1.x﹤ 故答案为:A【考点】解一元一次不等式7.【答案】D【解析】解:∵()2²44410b ac m -=--⨯⨯≥,解不等式得:4x ≤,由一元二次方程的根的判别式可知:当x≤4时,方程有实数根,∴当5m =时,方程²40x x m -+=没有实数根。

故答案为:D【考点】一元二次方程根的判别式及应用 8.【答案】B【解析】解:∵从平均数可知:甲、乙比丙和丁大,∴排除选项C 和D ;从方差看,乙的方差比甲的小,∴排除选项A 。

故答案为:B【考点】平均数及其计算,方差 9.【答案】C【解析】解:设直线n 与AB 的交点为E 。

∵∠AED 是△BED 的一个外角,1AED B ∴∠=∠+∠,45125B ∠=︒∠=︒Q ,, 452570AED ∴∠=︒+︒=︒m n Q P ,270AED ∴∠=∠=︒。

故答案为:C 。

【考点】平行线的性质,三角形的外角性质 10.【答案】B【解析】解:设AB=x ,由题意,得()906180xx ⋅=-ππ,解得 4.x =. 故答案为:B 。

【考点】圆锥的计算11.【答案】A【解析】解:设玫瑰花每支x元,百合花每支y元,小慧带的钱数是a元,由题意,得5310 3+54x y ax y a+=-⎧⎨=+⎩,将两方程相减得7 y x-=,7, y x∴=+将7y x=+代入5310x y a+=-得8x=a-31,∴若只买8支玫瑰花,则她所带的钱还剩31元。

故答案为:A【考点】三元一次方程组解法及应用12.【答案】C【解析】解:根据勾股定理及正方形的面积计算方法可知:较小两个直角三角形的面积之和=较大正方形的面积,所以将三个正方形按图2方式放置的时候,较小两正方形重叠部分的面积=阴影部分的面积,所以知道了图2阴影部分的面积即可知道两小正方形重叠部分的面积。

相关文档
最新文档