算法之回溯法实现
迷宫生成算法 回溯法

迷宫生成算法回溯法的具体实现过程如下:
1.定义一个数组path来存储迷宫的路径,初始时,将迷宫的起点
位置标记为已访问,并将其加入到path数组中。
2.定义一个递归函数generateMaze,该函数用于生成迷宫的路径。
在该函数中,首先判断当前位置是否为迷宫的终点,如果是,
则返回true表示找到了一个可行的路径;否则,继续向下搜索。
3.在向下搜索的过程中,首先判断当前位置的上方、下方、左方
和右方是否存在障碍物,如果存在障碍物,则无法继续向下搜
索,回溯到上一层,继续搜索其他方向。
4.如果当前位置的上方、下方、左方和右方都没有障碍物,则将
其中一个方向标记为已访问,并将其加入到path数组中。
然后
递归调用generateMaze函数继续向下搜索。
5.如果递归调用返回false,则表示当前路径不可行,需要回溯到
上一层。
回溯时,需要将之前加入到path数组中的方向标记为
未访问,并尝试其他方向。
6.重复步骤3-5,直到找到一条可行的路径或者搜索完所有可能的
方向。
7.输出最终生成的迷宫路径。
需要注意的是,回溯法的时间复杂度较高,因此在处理大规模的迷宫问题时可能会比较耗时。
为了提高算法的效率,可以采用一些优化策略,例如剪枝、限制搜索深度等。
回溯法详解

回溯法详解回溯法(Backtracking)是一种解决问题的算法,也称为试探法。
它是一种基于深度优先策略的搜索方法,用于在一个大型的搜索空间中找到所有可能的解。
回溯法常用于解决组合问题、优化问题、排列问题、路径问题等等。
回溯法的实现方法是:从一个初始状态开始,不断地向前搜索,直到找到一个合法的解或者所有的搜索空间都被遍历结束。
在搜索的过程中,如果发现当前的搜索路径不可能得到合法的解,就会回溯到上一个状态,继续向其他方向搜索。
回溯法仍然是一种穷举算法,但它通过剪枝操作排除大部分不必要的搜索路径,从而减少了搜索的时间和空间复杂度。
回溯法的实现过程中,我们需要完成以下三个步骤:1. 选择基于当前的状态,选择一个可能的方向,继续向前搜索。
这意味着我们需要对问题进行建模,找到一些限制条件或者选择条件,来指导我们如何选择下一个状态。
2. 约束在选择方向之后,我们需要考虑当前方向是否可行。
这称为约束条件。
如果当前的方向违反了某些约束条件,那么我们需要回溯到上一个状态,重新选择一个合法的方向。
3. 回溯如果当前方向无法得到一个合法解,我们就需要回溯到上一个状态,并尝试其他的方向。
回溯操作的核心是恢复状态,也就是将当前状态的改变撤回。
这意味着我们需要记录每一个状态的改变,从而能够正确地回溯。
回溯法的优点在于它的适用范围比较广泛,在解决复杂问题时能够得到很好的效果。
但同时回溯法也存在一些缺点,例如在搜索效率方面并不是最优的,在搜索空间比较大的情况下,时间和空间复杂度也会非常高。
因此,在实践中,我们需要结合具体问题来选择合适的算法。
回溯算法

【问题】 组合问题
问题描述:找出从自然数1,2,…,n中任取r个数的所有组合。
采用回溯法找问题的解,将找到的组合以从小到大顺序存于a[0],a[1],…,a[r-1]中,组合的元素满足以下性质:
(1) a[i+1]>a[i],后一个数字比前一个大;
(2) a[i]-i<=n-r+1。
例如n=5,r=3的所有组合为:
(1)1、2、3 (2)1、2、4 (3)1、2、5
(4)1、3、4 (5)1、3、5 (6)1、4、5
(7)2、3、4 (8)2、3、5 (9)2、4、5
(10)3、4、5
则该问题的状态空间为:
E={(x1,x2,x3)∣xi∈S ,i=1,2,3 } 其中:S={1,2,3,4,5}
【程序】
# include <stdio.h>
# define N 12
void write(int a[ ])
{ int i,j;
for (i=0;i<3;i++)
{ for (j=0;j<3;j++)
printf(“%3d”,a[3*i+j]);
printf(“\n”);
算法分析与设计实验报告--回溯法

算法分析与设计实验报告--回溯法实验目的:通过本次实验,掌握回溯法的基本原理和应用,能够设计出回溯法算法解决实际问题。
实验内容:1.回溯法概述回溯法全称“试探回溯法”,又称“逐步退化法”。
它是一种通过不断试图寻找问题的解,直到找到解或者穷尽所有可能的解空间技术。
回溯法的基本思路是从问题的某一个初始状态开始,搜索可行解步骤,一旦发现不满足求解条件的解就回溯到上一步,重新进行搜索,直到找到解或者所有可能的解空间已经搜索完毕。
2.回溯法的基本应用回溯法可用于求解许多 NP 问题,如 0/1 背包问题、八皇后问题、旅行商问题等。
它通常分为两种类型:一种是通过枚举所有可能的解空间来寻找解;另一种则是通过剪枝操作将搜索空间减少到若干种情况,大大减少了搜索时间。
3.回溯法的解题思路(1)问题分析:首先需要对问题进行分析,确定可行解空间和搜索策略;(2)状态表示:将问题的每一种状况表示成一个状态;(3)搜索策略:确定解空间的搜索顺序;(4)搜索过程:通过逐步试探,不断扩大搜索范围,更新当前状态;(5)终止条件:在搜索过程中,如果找到了满足要求的解,或者所有的可行解空间都已搜索完毕,就结束搜索。
4.八皇后问题八皇后问题是指在一个 8x8 的棋盘上放置八个皇后,使得任意两个皇后都不在同一行、同一列或同一对角线上。
通过回溯法可以求解出所有的可能解。
实验过程:回溯法的实现关键在于搜索空间的剪枝,避免搜索无用的解;因此,对于八皇后问题,需要建立一个二维数组来存放棋盘状态,以及一个一维数组来存放每行放置的皇后位置。
从第一行开始搜索,按照列的顺序依次判断当前的空位是否可以放置皇后,如果可以,则在相应的位置标记皇后,并递归到下一行;如果不能,则回溯到上一行,重新搜索。
当搜索到第八行时,获取一组解并返回。
代码实现:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or abs(board[i] - col) == abs(i - row):return Falsereturn True实验结果:当 n=4 时,求得的所有可行解如下:```[[1, 3, 0, 2],[2, 0, 3, 1]]```本次实验通过实现回溯法求解八皇后问题,掌握了回溯法的基本原理和应用,并对回溯法的核心思想进行了深入理解。
回溯法详解

回溯法详解
回溯法是一种常用的算法思想,通常用于解决一些组合问题,如排列、组合、子集等。
回溯法的基本思想是从一组可能的解中逐一尝试,如果发现当前尝试的解不符合要求,则回溯到上一步继续尝试其他解。
回溯法可以看作是一种深度优先搜索算法,它的搜索过程类似于一棵树的遍历。
在搜索过程中,从根节点开始,逐层向下搜索,直到找到符合条件的解或者搜索完所有的可能情况。
回溯法的实现通常采用递归的方式,具体步骤如下:
1. 定义一个解空间,即所有可能的解的集合。
2. 逐步扩展解空间,直到找到符合条件的解或者搜索完所有可
能的情况。
3. 在扩展解空间的过程中,对于每个扩展的状态,检查它是否
符合要求,如果符合要求,则继续扩展;否则回溯到上一步。
回溯法的时间复杂度通常很高,因为它需要搜索所有的可能情况。
但是在实际应用中,回溯法的效率往往比暴力枚举要高,因为它能够利用一些剪枝策略,避免搜索无用的状态。
例如,在求解八皇后问题时,回溯法可以通过剪枝策略,避免搜索一些不可能的状态,从而大大缩短搜索时间。
回溯法也是一种非常灵活的算法思想,可以应用于各种问题的求解。
在实际应用中,需要根据具体问题的特点,设计合适的解空间和剪枝策略,以提高算法效率。
回溯法的几种算法框架

回溯法的几种算法框架回溯法是一种经典的求解问题的算法框架,通常用于解决组合优化、搜索和排列问题。
下面将介绍回溯法的几种常见算法框架。
1. 全排列问题:全排列问题是指对给定的一组数字或字符,求出所有可能的排列方式。
回溯法可以通过递归的方式实现。
首先选择一个初始位置,然后从剩余的数字中选择下一个位置,依次类推,直到所有位置都被填满。
当所有位置都填满时,得到一个排列。
随后继续回溯,在上一次选择的位置后面选择下一个数字,直到得到所有的排列。
2. 子集问题:子集问题是指对给定的一组数字或字符,求出所有可能的子集。
回溯法可以通过递归的方式实现。
从给定的集合中选择一个元素,可以选择将其添加到当前正在构建的子集中,也可以选择跳过。
递归地遍历所有可能的选择路径,直到得到所有的子集。
3. 组合问题:组合问题是指在给定的一组数字或字符中,取出若干个元素进行组合,求解出所有不重复的组合方式。
回溯法可以通过递归的方式实现。
从给定的集合中选择一个元素,将其添加到当前正在构建的组合中,然后以当前选择元素的下一个位置为起点,递归地构建后续的组合。
如果当前组合已经满足条件或者已经遍历完所有可能的位置,则回溯到上一次选择的位置,继续尝试其他可能的选择。
4. 搜索问题:搜索问题是指在给定的搜索空间中,找到满足特定条件的解。
回溯法可以通过递归的方式实现。
从初始状态开始,选择一个操作或移动方式,然后递归地探索所有可能的状态转移路径。
每次探索时,进行剪枝操作,排除一些不符合条件的状态。
当找到满足条件的解或搜索空间遍历完时,回溯到上一次选择的位置,继续探索其他可能的路径。
总结:回溯法是一种求解问题的经典算法框架,适用于组合优化、搜索和排列问题。
通过选择和回溯的方式,可以遍历所有可能的解空间,并找到满足特定条件的解。
在实际应用中,可以根据具体问题的特点,选择合适的算法框架和相应的优化策略,以提高算法的效率和准确性。
《算法设计与分析》课程实验报告 (回溯法(二))

《算法设计与分析》课程实验报告实验序号:10实验项目名称:实验十一回溯法(二)一、实验题目1.图的着色问题问题描述:给定无向连通图G和m种不同的颜色。
用这些颜色为图G的各顶点着色,每个顶点着一种颜色。
如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的。
图的m着色问题是对于给定图G和m种颜色,找出所有不同的着色法。
2.旅行商问题问题描述:给出一个n个顶点的带权无向图,请寻找一条从顶点1出发,遍历其余顶点一次且仅一次、最后回到顶点1的最小成本的回路——即最短Hamilton回路。
3.拔河比赛问题描述:某公司的野餐会上将举行一次拔河比赛。
他们想把参与者们尽可能分为实力相当的两支队伍。
每个人都必须在其中一只队伍里,两队的人数差距不能超过一人,且两队的队员总体重应该尽量接近。
4.批处理作业调度问题描述:给定n个作业的集合J=(J1,J2, .. Jn)。
每个作业J都有两项任务分别在两台机器上完成。
每个作业必须先由机器1处理,再由机器2处理。
作业i需要机器j的处理时间为tji(i=1,2, ..n; j=1,2)。
对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间,则所有作业在机器2上完成处理的时间和,称为该作业调度的完成时间和。
批处理作业调度问题要求,对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。
二、实验目的(1)通过练习,理解回溯法求解问题的解状态空间树与程序表达的对应关系,熟练掌握排列树、子集树的代码实现。
(2)通过练习,体会减少搜索解空间中节点的方法,体会解的状态空间树的组织及上界函数的选取对搜索的影响。
(3)通过练习,深入理解具体问题中提高回溯算法效率的方法。
(4)(选做题):在掌握回溯法的基本框架后,重点体会具体问题中解的状态空间搜索时的剪枝问题。
三、实验要求(1)每题都必须实现算法、设计测试数据、记录实验结果,并给出时间复杂度分析。
四、实验过程(算法设计思想、源码)1.图的着色问题(1)算法设计思想用邻接矩阵a[i][j]存储无向图,对于每一个顶点有m种颜色可以涂。
回溯法原理

回溯法原理
回溯法是一种用于解决问题的算法,它的核心思想是在解空间中进行深度优先搜索,通过不断地试错和回溯,找到问题的解。
回溯法通常应用于求解组合优化问题、排列组合问题、图论问题等。
回溯法的具体实现过程,一般包括以下几个步骤:
1. 定义问题的解空间:首先需要明确问题的解空间,即指所有可能的解构成的空间。
2. 确定扩展解策略:在解空间中选择一个可行解作为起点,然后通过一定的扩展策略生成新的可行解,这些新的可行解将被加入到搜索树中。
3. 搜索解空间:从起点开始,按照扩展策略不断生成新的可行解,并将这些新的可行解加入到搜索树中,然后深入搜索直到找到问题的解或者搜索完整个解空间。
4. 回溯:如果某个可行解无法继续扩展,或者扩展后发现不合法,那么就需要回溯到上一个可行解,重新选择扩展策略,并继续搜索。
回溯法的优点在于能够找到所有解,但缺点也很明显,就是时间复杂度很高,因为需要搜索整个解空间。
为了减少搜索时间,可以采用一些剪枝技巧,如约束传播、可行性剪枝等。
总之,回溯法是一种通用的求解算法,它的基本思想和实现方式可以应用于各种类型的问题,但要注意在实际应用中需要根据具体问题进行合理的优化和改进。
算法分析与设计回溯法

组织解空间(3)
子集和数问题
解空间由根结点到叶结点旳全部途径拟定
状态空间树
– 对于任何一种问题,一旦设想出一种状态空间 树,那么就能够先系统地生成问题状态,接着 拟定这些问题状态中旳哪些是解状态,最终拟 定哪些解状态是答案状态从而将问题解出
– 生成问题状态旳两种措施 便于问题旳描述,给出下列概念:
索过程中用剪枝函数防止无效搜索;
回溯算法旳形式描述
假设回溯算法要找出全部旳答案结点而不是仅 仅只找出一种。 ① 设(x1,x2,…,xi-1)是状态空间树中由根到一种 结点(问题状态)旳途径。 ② T(x1,x2,…,xi-1)是下述全部结点旳xi旳集合, 它使得对于每一种xi, (x1,x2,…,xi)是一条由 根到结点xi旳途径 ③ 存在某些限界函数Bi(能够表达成某些谓词), 假如途径(x1,x2,…,xi)不可能延伸到一种答案 结点,则Bi(x1,x2,…,xi)取假值,不然取真值。
end BACKTRACK
回溯算法旳递归表达
procedure RBACKTRACK(k)
global n, X(1:n) for 满足下式旳每个X(k)
X(k) ∈T(X(1),…X(k-1)) and B(X(1),…X(k))=true do
if(X(1),…,X(k)) 是一条已到达一答案结点旳途 径
m=1+m1+m1m2+m1m2m3+…
Monte Carlo效率估计算法
procedure ESTIMATE m1; r 1; k 1 loop Tk{X(k):X(k)∈ T(X(1),…X(k-1)) and B(X(1),…X(k))} if SIZE(Tk)=0 then exit endif rr*SIZE(Tk) mm+r X(k)CHOOSE(Tk) KK+1 repeat return(m)
回溯算法-算法介绍

回溯算法-算法介绍回溯法1、有许多问题,当需要找出它的解集或者要求回答什么解是满⾜某些约束条件的最佳解时,往往要使⽤回溯法。
2、回溯法的基本做法是搜索,或是⼀种组织得井井有条的,能避免不必要搜索的穷举式搜索法。
这种⽅法适⽤于解⼀些组合数相当⼤的问题。
3、回溯法在问题的解空间树中,按深度优先策略,从根结点出发搜索解空间树。
算法搜索⾄解空间树的任意⼀点时,先判断该结点是否包含问题的解。
如果肯定不包含(剪枝过程),则跳过对该结点为根的⼦树的搜索,逐层向其祖先结点回溯;否则,进⼊该⼦树,继续按深度优先策略搜索。
问题的解空间问题的解向量:回溯法希望⼀个问题的解能够表⽰成⼀个n元式(x1,x2,…,xn)的形式。
显约束:对分量xi的取值限定。
隐约束:为满⾜问题的解⽽对不同分量之间施加的约束。
解空间:对于问题的⼀个实例,解向量满⾜显式约束条件的所有多元组,构成了该实例的⼀个解空间。
注意:同⼀个问题可以有多种表⽰,有些表⽰⽅法更简单,所需表⽰的状态空间更⼩(存储量少,搜索⽅法简单)。
下⾯是n=3时的0-1背包问题⽤完全⼆叉树表⽰的解空间:⽣成问题状态的基本⽅法扩展结点:⼀个正在产⽣⼉⼦的结点称为扩展结点活结点:⼀个⾃⾝已⽣成但其⼉⼦还没有全部⽣成的节点称做活结点死结点:⼀个所有⼉⼦已经产⽣的结点称做死结点深度优先的问题状态⽣成法:如果对⼀个扩展结点R,⼀旦产⽣了它的⼀个⼉⼦C,就把C当做新的扩展结点。
在完成对⼦树C(以C为根的⼦树)的穷尽搜索之后,将R重新变成扩展结点,继续⽣成R的下⼀个⼉⼦(如果存在)宽度优先的问题状态⽣成法:在⼀个扩展结点变成死结点之前,它⼀直是扩展结点回溯法:为了避免⽣成那些不可能产⽣最佳解的问题状态,要不断地利⽤限界函数(bounding function)来处死(剪枝)那些实际上不可能产⽣所需解的活结点,以减少问题的计算量。
具有限界函数的深度优先⽣成法称为回溯法。
(回溯法 = 穷举 + 剪枝)回溯法的基本思想(1)针对所给问题,定义问题的解空间;(2)确定易于搜索的解空间结构;(3)以深度优先⽅式搜索解空间,并在搜索过程中⽤剪枝函数避免⽆效搜索。
回溯算法的实现

回溯算法的实现回溯算法:从⼀条路往前⾛,能进则进,不能进则退回来,换⼀条路再试。
(以深度优先⽅式搜索)回溯法是⼀种选优搜索法,按选优条件向前搜索,以达到⽬标。
但当探索到某⼀步时,发现原先选择并不优或达不到⽬标,就退回⼀步重新选择。
使⽤回溯法求任⼀个解时,只要搜索到问题的⼀个解就可以结束⽤回溯法求问题的所有解时,要回溯到根,且根结点的所有可⾏的⼦树都要已被搜索遍才结束。
回溯法的实现⽅法有两种:递归和递推(也称迭代)。
⼀般来说,⼀个问题两种⽅法都可以实现,只是在算法效率和设计复杂度上有区别。
递归思路简单,设计容易,但效率低。
递推算法设计相对复杂,但效率⾼。
集合求幂集函数:public class Test{public static void main(String []args){List<String> list = new ArrayList<String>();list.add("A");list.add("B");list.add("C");List<String> li = new ArrayList<String>();print(0,list,li);}public static void print(int i, List<String> list, List<String> li){if(i > list.size()-1){System.out.println(li);}else{li.add(list.get(i)); //左⼦树的处理print(i+1,list,li); //递归遍历li.remove(list.get(i)); //右⼦树的处理print(i+1,list,li); //递归遍历}}}皇后问题:public class Test{static int max = 8; //放置⼏个皇后static int num = 0; //总共有⼏种存放⽅式static int[] array = new int[max]; //⽤数组存放皇后的摆放位置⽤来判断是否摆放正确public static void main(String[] args){check(0); //先放第⼀个皇后System.out.println(num);}public static void check(int n){if(n == max){ //如果皇后全部摆放完成,总数+1 并跳出该⽅法num++;return;}for (int i = 0; i < max; i++) { //从第⼀列开始放,到第max列为⽌array[n] = i; //默认该皇后都是从该⾏的第⼀列开始摆放if (ok(n)) { //判断该皇后的摆放位置是否正确check(n + 1); //如果正确,则递归下⼀个皇后的摆放}}}private boolean ok(int n) {for (int i = 0; i < n; i++) { //从第⼀列开始放值,然后判断是否和本⾏本列本斜线有冲突,如果OK,就进⼊下⼀⾏的逻辑//array[i] == array[n] 判断是否在同⼀斜线上//Math.abs(n - i) == Math.abs(array[n] - array[i]) 判断是否在同⼀⾏或列if (array[i] == array[n] || Math.abs(n - i) == Math.abs(array[n] - array[i])) {return false;}}return true;}}。
回溯法实验报告

回溯法实验报告回溯法实验报告一、引言回溯法是一种经典的算法解决方法,广泛应用于组合优化、图论、人工智能等领域。
本实验旨在通过实际案例,深入探讨回溯法的原理、应用和优化方法。
二、实验背景回溯法是一种通过不断尝试和回退的方式,寻找问题的解的方法。
它适用于那些问题空间巨大且难以直接求解的情况。
回溯法通过逐步构建解空间树,深度优先地搜索可能的解,并在搜索过程中剪枝,以提高搜索效率。
三、实验过程我们选择了一个经典的回溯法问题——八皇后问题作为实验案例。
该问题要求在一个8x8的棋盘上放置8个皇后,使得它们两两之间无法互相攻击。
我们采用了递归的方式实现回溯法,并通过剪枝操作来减少搜索空间。
具体实验步骤如下:1. 定义一个8x8的棋盘,并初始化为空。
2. 从第一行开始,逐行放置皇后。
在每一行中,尝试将皇后放置在每一个位置上。
3. 检查当前位置是否与已放置的皇后冲突。
如果冲突,则回溯到上一行,并尝试下一个位置。
4. 如果成功放置了8个皇后,则找到了一个解,将其保存。
5. 继续尝试下一个位置,直到所有可能的解都被找到。
四、实验结果通过实验,我们找到了92个不同的解,符合八皇后问题的要求。
这些解展示了八皇后问题的多样性,每个解都有其独特的棋盘布局。
五、实验分析回溯法的优点在于可以找到所有解,而不仅仅是一个解。
然而,在问题空间较大时,回溯法的搜索时间会变得非常长。
因此,为了提高搜索效率,我们可以采用一些优化方法。
1. 剪枝操作:在搜索过程中,当发现当前位置与已放置的皇后冲突时,可以立即回溯到上一行,而不是继续尝试下一个位置。
这样可以减少不必要的搜索。
2. 启发式搜索:通过引入启发函数,可以在搜索过程中优先考虑最有希望的分支,从而更快地找到解。
例如,在八皇后问题中,可以优先考虑放置在当前行与已放置皇后冲突最少的位置。
3. 并行计算:对于一些复杂的问题,可以利用并行计算的优势,同时搜索多个分支,从而加快搜索速度。
六、实验总结通过本次实验,我们深入了解了回溯法的原理和应用。
回溯法 迷宫 python

回溯法迷宫 python回溯法是一种求解约束满足问题的经典算法,常用于解决迷宫问题。
在迷宫问题中,我们需要找到一条从起点到终点的路径,使得在移动过程中不违反迷宫的规则(例如,不能走到墙上)。
下面是一个使用Python实现的回溯法求解迷宫问题的示例代码:pythondef is_valid(maze, row, col, visited):"""判断当前位置是否合法"""return (row >= 0 and row < len(maze) andcol >= 0 and col < len(maze[0]) andmaze[row][col] == 0 andnot visited[row][col])def solve_maze(maze, start, end):"""使用回溯法求解迷宫问题"""rows, cols = len(maze), len(maze[0])visited = [[False] * cols for _ in range(rows)]visited[start[0]][start[1]] = Truedirections = [(0, 1), (0, -1), (1, 0), (-1, 0)] # 右、左、下、上def backtrack(row, col):if row == end[0] and col == end[1]:return True # 找到终点visited[row][col] = True # 标记当前位置已访问for dx, dy in directions:new_row, new_col = row + dx, col + dyif is_valid(maze, new_row, new_col, visited): if backtrack(new_row, new_col):return Truevisited[row][col] = False # 回溯,撤销标记return Falseif backtrack(start[0], start[1]):return visitedelse:return None # 无解# 示例maze = [[0, 0, 0, 0, 0],[1, 1, 0, 1, 0],[0, 0, 0, 1, 0],[0, 1, 1, 1, 1],[0, 0, 0, 0, 0]]start = (0, 0)end = (4, 4)result = solve_maze(maze, start, end)if result:print("找到路径:")for row in result:for col in row:if col:print("*", end="")else:print(" ", end="")print()else:print("无解")在这个示例中,maze是一个二维数组,表示迷宫的布局。
回溯法实验报告

一、实验目的1. 理解回溯法的概念和基本原理。
2. 掌握回溯法的应用场景和实现方法。
3. 通过具体实例,验证回溯法在解决实际问题中的有效性。
二、实验内容本次实验主要围绕回溯法进行,通过以下实例来验证回溯法在解决实际问题中的有效性:1. 八皇后问题2. 0/1背包问题3. 数独游戏三、实验步骤1. 八皇后问题(1)定义问题:在8×8的国际象棋棋盘上,放置8个皇后,使得它们不能相互攻击。
(2)设计回溯算法:① 初始化棋盘为全空状态。
② 从第一行开始,尝试将皇后放置在每一列。
③ 如果某一列放置皇后后,不会与已放置的皇后发生冲突,则继续在下一行尝试放置。
④ 如果某一列放置皇后后,与已放置的皇后发生冲突,则回溯至上一个放置皇后的行,尝试在下一列放置。
⑤ 当所有行都放置了皇后,则找到一个解。
(3)实现代码:```pythondef is_valid(board, row, col):for i in range(row):if board[i] == col or \board[i] - i == col - row or \board[i] + i == col + row:return Falsereturn Truedef solve_n_queens(board, row):if row == len(board):return Truefor col in range(len(board)):if is_valid(board, row, col):board[row] = colif solve_n_queens(board, row + 1):return Trueboard[row] = -1return Falsedef print_board(board):for row in board:print(' '.join(['Q' if x == row else '.' for x in range(len(board))]))def n_queens():board = [-1] 8if solve_n_queens(board, 0):print_board(board)else:print("No solution exists")n_queens()```2. 0/1背包问题(1)定义问题:给定n个物品,每个物品有重量和价值,背包容量为W,求出能够装入背包的物品组合,使得背包内物品的总价值最大。
回溯法 ppt课件

回溯法举例:
[旅行商问题] 在这个问题中 ,给出一个n 顶点网络(有向 或无向) ,要求找出一个包含所有n 个顶点的具有最小耗 费的环路 。任何一个包含网络中所有n 个顶点的环路被称 作一个旅行(t o u r )。在旅行商问题中 ,要设法找到一 条最小耗费的旅行。 [分析]图给出了一个四顶点网络 。在这个网络中 ,一些旅
Bound(t) : 返回的值为true时 , 在当前扩展节点处 x[1: t]的取值为时 目标函数越界 , 还需由Backtrack(t+1) 对其相应的子树做进一步搜索 。否则 , 当前扩展节点处 x[1: t]的取值是目标函数越界 ,可剪去相应的子树
for循环作用: 搜索遍当前扩展的所有未搜索过的 子树。
si+1均不满足约束条件,则去掉xi , 回溯到(x 1 , x 2 , … xi-1), 添加尚 未考虑过的xi , 如此反复进行,直到(x1 , x2 , … xk) k n满足所有的 约束条件或证明无解.
E= { (x1 , x2 , … xn), xi si , si为有限集 }称为问题的解空间.
5. 1 回溯法基本思想
穷举法技术建议我们先生成所有的候选解 , 然后找出那个 具有需要特性的元素
1 、 回溯法主要思想是每次只构造解的一个分量 ,然后按照 鲜明的方法来评估这个部分构造解 。如果一个部分构造解可以进一 步构造而不会违反问题的约束 , 我们就接受对下一个分量所作的第 一个合法选择 。如果无法对下一个分量进行合法的选择 , 就不对剩 下的任何分量再做任何选择了 。在这种情况下 ,该算法进行回溯 , 把部分构造解的最后一个分量替换为它的下一个选择。
算法模式 Procedure BACKTRACK (n); {k := l;
算法——回溯法

算法——回溯法回溯法回溯法有“通⽤的解题法”之称。
⽤它可以系统地搜索⼀个问题的所有解或任⼀解。
回溯法是⼀种即带有系统性⼜带有跳跃性的搜索算法。
它在问题的解空间树中,按深度优先策略,从根节点出发搜索解空间树。
算法搜索⾄解空间树的任⼀结点时,先判断该节点是否包含问题的解。
如果不包含,则跳过对以该节点为根的⼦树的搜索,逐层向其它祖先节点回溯。
否则,进⼊该⼦树,继续按照深度优先策略搜索。
回溯法求问题的所有解时,要回溯到根,且根节点的所有⼦树都已被搜索遍才结束。
回溯法求问题的⼀个解时,只要搜索到问题的⼀个解就可结束。
这种以深度优先⽅式系统搜索问题的算法称为回溯法,它是⽤于解组合数⼤的问题。
问题的解空间⽤回溯法解问题时,应明确定义问题的解空间。
问题的解空间⾄少包含问题的⼀个(最优)解。
例如对于有n种可选择物品的0-1背包问题,其解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有可能的0-1赋值。
例如n=3时,其解空间是{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}定义了问题的解空间后,还应该将解空间很好地组织起来,使得能⽤回溯法⽅便地搜索整个解空间。
通常将解空间组织成树或者图的形式。
例如,对于n=3时的0-1背包问题,可⽤⼀颗完全的⼆叉树表⽰其解空间,如下图。
解空间树的第i层到第i+1层边上的标号给出了变量的值。
从树根到叶⼦的任⼀路径表⽰解空间中的⼀个元素。
例如,从根节点到节点H的路径相当与解空间中的元素(1,1,1)。
回溯法的基本思想确定了解空间的组织结构后,回溯法从根节点出发,以深度优先搜索⽅式搜索整个解空间。
回溯法以这种⼯作⽅式递归地在解空间中搜索,直到找到所要求的解或解空间所有解都被遍历过为⽌。
回溯法搜索解空间树时,通常采⽤两种策略避免⽆效搜索,提⾼回溯法的搜索效率。
其⼀是⽤约束函数在当前节点(扩展节点)处剪去不满⾜约束的⼦树;其⼆是⽤限界函数剪去得不到最优解的⼦树。
C语言中的回溯算法实现

C语言中的回溯算法实现回溯算法是一种常见的解决问题的方法,它通过穷举所有可能的解,并逐步构建有效解决方案。
在C语言中,我们可以通过递归来实现回溯算法。
本文将探讨如何在C语言中实现回溯算法,以及一些常见问题的示例。
回溯算法的基本原理是系统地搜索问题的所有解空间,并通过剪枝策略以提高搜索效率。
回溯算法一般具有以下步骤:1. 定义问题的解空间:首先,我们需要定义问题的解空间。
解空间是问题所有可能解的集合,可以用树状结构来表示。
每个节点表示一个可能的解,通过遍历树的节点来搜索解空间。
2. 判断解的可行性:对于问题的每个可能解,我们需要对其进行判断,确定它是否满足问题的约束条件。
如果不满足约束条件,则可以进行剪枝,跳过该节点的子节点。
3. 深度优先搜索:回溯算法一般使用深度优先搜索来遍历解空间树。
通过递归地遍历每个节点的子节点,我们可以穷举所有可能解。
下面是一个在C语言中实现回溯算法的示例,解决一个典型的组合求和问题。
```c#include <stdio.h>#define MAX_NUM 10void backtrack(int currNum, int target, int* nums, int index, int* path, int depth) {if (target == 0) {// 找到一个满足条件的解// 处理解的逻辑for (int i = 0; i < depth; i++) {printf("%d ", path[i]);}printf("\n");return;}if (target < 0 || currNum == MAX_NUM) {// 剪枝策略:当前路径不满足条件,返回上一层return;}for (int i = index; i < MAX_NUM; i++) {path[depth] = nums[i];backtrack(currNum + 1, target - nums[i], nums, i, path, depth + 1);}}void combinationSum(int target) {int nums[MAX_NUM] = {2, 3, 6, 7, 1, 4, 5, 8, 9, 10};int path[MAX_NUM] = {0};backtrack(0, target, nums, 0, path, 0);}int main() {int target = 10;combinationSum(target);return 0;}```以上代码实现了一个组合求和问题的回溯算法。
回溯算法原理和几个常用的算法实例

回溯算法思想:回溯(backtracking)是一种系统地搜索问题解答的方法。
为了实现回溯,首先需要为问题定义一个解空间(solution space),这个空间必须至少包含问题的一个解(可能是最优的)。
下一步是组织解空间以便它能被容易地搜索。
典型的组织方法是图(迷宫问题)或树(N皇后问题)。
一旦定义了解空间的组织方法,这个空间即可按深度优先的方法从开始节点进行搜索。
回溯方法的步骤如下:1) 定义一个解空间,它包含问题的解。
2) 用适于搜索的方式组织该空间。
3) 用深度优先法搜索该空间,利用限界函数避免移动到不可能产生解的子空间。
回溯算法的一个有趣的特性是在搜索执行的同时产生解空间。
在搜索期间的任何时刻,仅保留从开始节点到当前节点的路径。
因此,回溯算法的空间需求为O (从开始节点起最长路径的长度)。
这个特性非常重要,因为解空间的大小通常是最长路径长度的指数或阶乘。
所以如果要存储全部解空间的话,再多的空间也不够用。
算法应用:回溯算法的求解过程实质上是一个先序遍历一棵"状态树"的过程,只是这棵树不是遍历前预先建立的,而是隐含在遍历过程中。
(1) 幂集问题(组合问题)(参见《数据结构》(严蔚敏))求含N个元素的集合的幂集。
如对于集合A={1,2,3},则A的幂集为p(A)={{1,2,3},{1,2},{1,3},{1},{2,3},{2},{3},Φ}幂集的每个元素是一个集合,它或是空集,或含集合A中的一个元素,或含A 中的两个元素,或者等于集合A。
反之,集合A中的每一个元素,它只有两种状态:属于幂集的元素集,或不属于幂集元素集。
则求幂集P(A)的元素的过程可看成是依次对集合A中元素进行“取”或“舍”的过程,并且可以用一棵状态树来表示。
求幂集元素的过程即为先序遍历这棵状态树的过程。
程序:#include <stdio.h>#include <malloc.h>#define ERROR 0#define OK 1typedef int ElemType;typedef struct LNode{ElemType data;struct LNode *next;} LNode,*LinkList;//初始化LinkList ListInit(){LNode *base=(LinkList)malloc(sizeof(LNode)); base->data=0;base->next=NULL;return base;}//插入一个元素int ListInsert(LinkList L,int i,ElemType e){LNode *p,*s;int j=0;p=(LNode *)L;while(p&&j<i-1){p=p->next;++j;}if(!p||j>i-1)return ERROR;s=(LNode *)malloc(sizeof(LNode));s->data=e;s->next=p->next;p->next=s;return OK;}//删除一个结点int ListDelete(LinkList &L,int i,ElemType &e) {LinkList p=L,q;int j=0;while(p->next&&j<i-1){p=p->next;++j;}if(!(p->next)||j>i-1)return ERROR;q=p->next;p->next=q->next;e=q->data;free(q);}//长度int ListLength(LinkList L){LinkList p=L;int j=0;if(!L)return ERROR;while(p->next){p=p->next;++j;}return j;}//查找一个元素int GetElem(LinkList L,int i,ElemType &e) {LNode *p=L;int j=0;while(p->next&&j<i){p=p->next;++j;}if(!p||j>i)return ERROR;e=p->data;return OK;}//输出链表元素void Display(LinkList L){LNode *p=L;if(!(p->next)){printf("NULL,");return;}elsep=p->next;while(p){printf("%d,",p->data);p=p->next;}}//求幂集void PowerSet(int i,LinkList A,LinkList &B) {int k=0;ElemType e=0;if(i>ListLength(A)){Display(B);printf("\n");}else{GetElem(A,i,e);k=ListLength(B);ListInsert(B,k+1,e);PowerSet(i+1,A,B);ListDelete(B,k+1,e);PowerSet(i+1,A,B);}}int main(){LinkList list=ListInit(); //初始化LinkList list2=ListInit();//初始化ListInsert(list,1,1);//插入元素ListInsert(list,2,2);ListInsert(list,3,3);Display(list);//输出元素printf("\npower set is:\n");PowerSet(1,list,list2);//求幂集}(2)迷宫问题(参见《数据结构》(严蔚敏))计算机解迷宫时,通常用的是"试探和回溯"的方法,即从入口出发,顺某一方向向前探索,若能走通,则继续往前走;否则沿原路退回,换一个方向再继续探索,直至所有可能的通路都探索到为止,如果所有可能的通路都试探过,还是不能走到终点,那就说明该迷宫不存在从起点到终点的通道。
java实现回溯算法

java实现回溯算法最近有在leetcode上⾯做算法题,已经遇到了两道回溯算法的题⽬,感觉⼀点思路都没有,现决定将java如何实现回溯算法做⼀次总结。
⼀、什么叫做回溯算法(摘抄于百度百科)回溯算法实际上⼀个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满⾜求解条件时,就“回溯”返回,尝试别的路径。
回溯法是⼀种选优搜索法,按选优条件向前搜索,以达到⽬标。
但当探索到某⼀步时,发现原先选择并不优或达不到⽬标,就退回⼀步重新选择,这种⾛不通就退回再⾛的技术为回溯法,⽽满⾜回溯条件的某个状态的点称为“回溯点”。
许多复杂的,规模较⼤的问题都可以使⽤回溯法,有“通⽤解题⽅法”的美称。
(摘抄于他⼈博客)在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。
当探索到某⼀结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。
(其实回溯法就是对隐式图的深度优先搜索算法)。
若⽤回溯法求问题的所有解时,要回溯到根,且根结点的所有可⾏的⼦树都要已被搜索遍才结束。
⽽若使⽤回溯法求任⼀个解时,只要搜索到问题的⼀个解就可以结束。
⼆、如何使⽤回溯算法回溯我认为也就是⼀种递归,有以下四个参数,当然不⼀定是我所举例的类型,要看题⽬⽽定⼀个全局变量集合保存所有满⾜条件的答案,举例:List<List<Integer>> list⼀个集合保存⼀个满⾜条件的答案,举例:List<Integer> tempList算法问题给所给的输⼊条件,这个可能是⼀个字符串,也可能是⼀个数组附加参数(可有可⽆,视题⽬⽽定)下⾯具体以leetcode上的⼀道题⽬为例,这样能更好的理解import java.util.ArrayList;import java.util.List;public class Permutations {//题⽬描述:Given a collection of distinct integers, return all possible permutations.(给定⼀组不同的整数,返回其所有的可能组合)public List<List<Integer>> permute(int[] nums) {//⼀个全局变量,⽤于保存所有集合List<List<Integer>> list = new ArrayList<>();//传⼊三个参数,没有附加参数backtrack(list, new ArrayList<>(), nums);return list;}private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums){//⼀个终结条件,也就是满⾜条件的时候if(tempList.size() == nums.length){//全局变量添加⼀个满⾜条件的集合list.add(new ArrayList<>(tempList));} else{for(int i = 0; i < nums.length; i++){if(tempList.contains(nums[i])) continue;//如果tempList没有包含nums[i]才添加tempList.add(nums[i]);//递归调⽤,此时的tempList⼀直在变化,直到满⾜终结条件才结束backtrack(list, tempList, nums);System.out.println("tempList的内容:"+tempList+"-------"+"i的值:"+i);//它移除tempList最后⼀个元素的作⽤就是返回上⼀次调⽤时的数据,也就是希望返回之前的节点再去重新搜索满⾜条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验4回溯法实现一、实验目标:1.熟悉回溯法应用场景及实现的基本方法步骤;2.学会回溯法的实现方法和分析方法:二、实验内容1.旅行售货员问题:当结点数为4,权重矩阵为0110239429340660,求最优路径及开销。
2.0-1背包问题:对于n=5,C=10,vi={6,3,5,4,6},wi={2,2,6,5,4},计算xi及最优价值V。
分别利用动态规划、回溯法和分支限界法解决此问题,比较并分析这三种算法实现!三、实验过程1.源代码旅行售货员问题(回溯法):#include<iostream>using namespace std;class travel //回溯{friend int TSP(int **, int[], int, int);private:void Backtrack(int i);int n, //顶点数*x,*bestx;int **a,cc,bestc,NoEdge;};void S a, int b){int temp;temp = a;a = b;b = temp;return;}void travel::Backtrack(int i){if (i == n){if (a[x[n - 1]][x[n]] != NoEdge && a[x[n]][1] != NoEdge &&(cc + a[x[n - 1]][x[n]] + a[x[n]][1]) < bestc || bestc == NoEdge){for (int j = 1; j <= n; j++) bestx[j] = x[j];bestc = cc + a[x[n - 1]][x[n]] + a[x[n]][1];}}else{for (int j = i; j <= n; j++){if (a[x[i - 1]][j] != NoEdge && a[x[n]][1] != NoEdge&& (cc + a[x[i - 1]][x[j]] < bestc || bestc == NoEdge)) {swap(x[i], x[j]);cc += a[x[i - 1]][x[i]];Backtrack(i + 1);cc -= a[x[i - 1]][x[i]];swap(x[i], x[j]);}}}}int TSP(int** a,int v[], int n, int NoEdge){travel Y;Y.x = new int[n + 1];for (int i = 1; i <= n; i++)Y.x[i] = i;Y.a = a;Y.n = n;Y.bestc = NoEdge;Y.bestx = v; = 0;Y.NoEdge = NoEdge;Y.Backtrack(2);delete[] Y.x;return Y.bestc;}int main(){int const max = 10000;cout << "请输入节点数:" << endl;int n;cin >> n;int *v = new int[n];//保存路径int NoEdge = 0;int **p = new int*[max];for (int i = 0; i < n+1; i++)//生成二维数组p[i] = new int[n+1];cout << "请依次输入各城市之间的路程:" << endl;for (int i = 0; i < n; i++)for (int j = 0; j < n; j++)cin >> p[i+1][j+1];cout << "最短路径长度:" << TSP(p, v, 4, 1000) << endl;cout << "路径为:";for (int i = 1; i < 5; i++)cout << v[i] <<' ';cout << endl;return 0;}运行截图:旅行售货员问题(分支限界法):#include<iostream>using namespace std;#define MAX_CITY_NUMBER 10 //城市最大数目#define MAX_COST 1000 //两个城市之间费用的最大值int City_Graph[MAX_CITY_NUMBER][MAX_CITY_NUMBER];//表示城市间边权重的数组int City_Size; //表示实际输入的城市数目int Best_Cost; //最小费用int Best_Cost_Path[MAX_CITY_NUMBER];//结点typedef struct Node {int lcost; //优先级int cc; //当前费用int rcost; //剩余所有结点的最小出边费用的和int s; //当前结点的深度,也就是它在解数组中的索引位置int x[MAX_CITY_NUMBER]; //当前结点对应的路径struct Node* pNext; //指向下一个结点}Node;//堆typedef struct MiniHeap {Node* pHead; //堆的头}MiniHeap;//初始化void InitMiniHeap(MiniHeap* pMiniHeap) {pMiniHeap->pHead = new Node;pMiniHeap->pHead->pNext = NULL;}//入堆void put(MiniHeap* pMiniHeap, Node node) {Node* next;Node* pre;Node* pinnode = new Node; //将传进来的结点信息copy一份保存//这样在函数外部对node的修改就不会影响到堆了pinnode->cc = ;pinnode->lcost = node.lcost;pinnode->pNext = node.pNext;pinnode->rcost = node.rcost;pinnode->s = node.s;pinnode->pNext = NULL;for (int k = 0; k<City_Size; k++) {pinnode->x[k] = node.x[k];}pre = pMiniHeap->pHead;next = pMiniHeap->pHead->pNext;if (next == NULL) {pMiniHeap->pHead->pNext = pinnode;}else {while (next != NULL) {if ((next->lcost) >(pinnode->lcost)) { //发现一个优先级大的,则置于其前面pinnode->pNext = pre->pNext;pre->pNext = pinnode;break; //跳出}pre = next;next = next->pNext;}pre->pNext = pinnode; //放在末尾}}//出堆Node* RemoveMiniHeap(MiniHeap* pMiniHeap) {Node* pnode = NULL;if (pMiniHeap->pHead->pNext != NULL) {pnode = pMiniHeap->pHead->pNext;pMiniHeap->pHead->pNext = pMiniHeap->pHead->pNext->pNext;}return pnode;}//分支限界法找最优解void Traveler() {int i, j;int temp_x[MAX_CITY_NUMBER];Node* pNode = NULL;int miniSum; //所有结点最小出边的费用和int miniOut[MAX_CITY_NUMBER];//保存每个结点的最小出边的索引MiniHeap* heap = new MiniHeap; //分配堆InitMiniHeap(heap); //初始化堆miniSum = 0;for (i = 0; i<City_Size; i++) {miniOut[i] = MAX_COST; //初始化时每一个结点都不可达for (j = 0; j<City_Size; j++) {if (City_Graph[i][j]>0 && City_Graph[i][j]<miniOut[i]) {//从i到j可达,且更小miniOut[i] = City_Graph[i][j];}}if (miniOut[i] == MAX_COST) {// i 城市没有出边Best_Cost = -1;return;}miniSum += miniOut[i];}for (i = 0; i<City_Size; i++) { //初始化的最优路径就是把所有结点依次走一遍Best_Cost_Path[i] = i;}Best_Cost = MAX_COST; //初始化的最优费用是一个很大的数pNode = new Node; //初始化第一个结点并入堆pNode->lcost = 0; //当前结点的优先权为0 也就是最优pNode->cc = 0; //当前费用为0(还没有开始旅行)pNode->rcost = miniSum; //剩余所有结点的最小出边费用和就是初始化的miniSumpNode->s = 0; //层次为0pNode->pNext = NULL;for (int k = 0; k<City_Size; k++) {pNode->x[k] = Best_Cost_Path[k]; //第一个结点所保存的路径也就是初始化的路径}put(heap, *pNode); //入堆while (pNode != NULL && (pNode->s) < City_Size - 1) {//堆不空不是叶子for (int k = 0; k<City_Size; k++) {Best_Cost_Path[k] = pNode->x[k]; //将最优路径置换为当前结点本身所保存的}/** * pNode 结点保存的路径中的含有这条路径上所有结点的索引* * x路径中保存的这一层结点的编号就是x[City_Size-2]* * 下一层结点的编号就是x[City_Size-1]*/if ((pNode->s) == City_Size - 2) { //是叶子的父亲int edge1 = City_Graph[(pNode->x)[City_Size - 2]][(pNode->x)[City_Size - 1]];int edge2 = City_Graph[(pNode->x)[City_Size - 1]][(pNode->x)[0]];if (edge1 >= 0 && edge2 >= 0 && (pNode->cc + edge1 + edge2) < Best_Cost) {//edge1 -1 表示不可达//叶子可达起点费用更低Best_Cost = pNode->cc + edge1 + edge2;pNode->cc = Best_Cost;pNode->lcost = Best_Cost; //优先权为Best_CostpNode->s++; //到达叶子层}}else { //内部结点for (i = pNode->s; i<City_Size; i++) { //从当前层到叶子层if (City_Graph[pNode->x[pNode->s]][pNode->x[i]] >= 0) { //可达//pNode的层数就是它在最优路径中的位置int temp_cc = pNode->cc + City_Graph[pNode->x[pNode->s]][pNode->x[i]];int temp_rcost = pNode->rcost - miniOut[pNode->x[pNode->s]];//下一个结点的剩余最小出边费用和//等于当前结点的rcost减去当前这个结点的最小出边费用if (temp_cc + temp_rcost<Best_Cost) { //下一个结点的最小出边费用和小于当前的最优解,说明可能存在更优解for (j = 0; j<City_Size; j++) { //完全copy路径,以便下面修改temp_x[j] = Best_Cost_Path[j];}temp_x[pNode->x[pNode->s + 1]] = Best_Cost_Path[i];//将当前结点的编号放入路径的深度为s+1的地方temp_x[i] = Best_Cost_Path[pNode->s + 1];//将原路//径中的深度为s+1的结点编号放入当前路径的//相当于将原路径中的的深度为i的结点与深度W为s+1的结点交换Node* pNextNode = new Node;pNextNode->cc = temp_cc;pNextNode->lcost = temp_cc + temp_rcost;pNextNode->rcost = temp_rcost;pNextNode->s = pNode->s + 1;pNextNode->pNext = NULL;for (int k = 0; k<City_Size; k++) {pNextNode->x[k] = temp_x[k];}put(heap, *pNextNode);delete pNextNode;}}}}pNode = RemoveMiniHeap(heap);}for (int k = 0; k<City_Size; k++) {//复制路径Best_Cost_Path[k] = temp_x[k];}}int main() {cout << "请输入节点数:" << endl;cin >> City_Size;cout << "请依次输入各城市之间的距离" << endl;for (int i = 0; i < City_Size; i++)for (int j = 0; j < City_Size; j++){cin >> City_Graph[i][j];if (City_Graph[i][j] == 0)City_Graph[i][j] = 1000;}Traveler();cout <<"最短路径长度:" <<Best_Cost << endl;cout << "路径为:";for (int i = 0; i < 4; i++)cout << Best_Cost_Path[i]+1 << ' ';return 0;}运行截图:0-1背包问题(动态规划):#include<iomanip>#include<iostream>using namespace std;void knapsack(int v[], int *w, int c, int n, int**m) {int jmax = min(w[n] - 1, c); //1) 仅可选物品n时,容量为j的子问题的最优值for (int j = 0; j <= jmax; j++) m[n][j] = 0; //注意j为整数for (int j = w[n]; j <= c; j++) m[n][j] = v[n];for (int i = n - 1; i>0; i--) { //2) 逐步增加物品数至n及容量至cjmax = min(w[i] - 1, c); //仅可选物品i时,容量为j的子问题的最优值for (int j = 0; j <= jmax; j++) m[i][j] = m[i + 1][j];for (int j = w[i]; j <= c; j++) m[i][j] = max(m[i + 1][j], m[i + 1][j - w[i]] + v[i]);}m[1][c] = m[2][c]; //处理物品1,最后一件的边界情况if (c >= w[1]) m[1][c] = max(m[1][c], m[2][c - w[1]] + v[1]); }void traceback(int **m, int *w, int c, int n, int *x){for (int i = 1; i<n; i++) {if (m[i][c] == m[i + 1][c])x[i] = 0; //二者相等说明物品i不装入else {x[i] = 1;c = c - w[i];}x[n] = (m[n][c]) ? 1 : 0;}}int max(int a, int b){return a > b ? a : b;}int min(int a, int b){return a > b ? b : a;}int main(){int n, c;cout << "请输入物品数:" << endl;cin >> n;cout << "请输入背包容量:" << endl;cin >> c;int *v = new int[n + 1];int *w = new int[n + 1];cout << "请输入物品重量数组:" << endl;for (int i = 1; i < n + 1; i++)cin >> w[i];cout << "请输入物品价值数组:" << endl;for (int i = 1; i < n + 1; i++)cin >> v[i];int **p = new int*[n + 1];//子问题最优解for (int i = 1; i < n + 1; i++)p[i] = new int[c+1];int *x = new int[n + 1];knapsack(v, w, c, n, p);traceback(p, w, c, n, x);cout << "m(i,j):" << endl;for (int i = 5; i > 0; i--){for (int j = 0; j < 11; j++)cout <<setw(2)<< p[i][j] << ' ';cout << endl;}cout << "xi = ";for (int i = 1; i < 6; i++)cout << x[i] << ' ';cout << endl;cout << "V=" << p[1][c] << endl;for (int i = 1; i < n + 1; i++)//delete delete p[i];delete p;delete v, w;return 0;}运行截图:0-1背包问题(回溯法)#include<iostream>using namespace std;int n, c, bestp; //物品的个数,背包的容量,最大价值int p[10000], w[10000], x[10000], bestx[10000]; //物品的价值,物品的重量,x[i]暂存物品的选中情况,物品的选中情况void Backtrack(int i, int cp, int cw){ //cw当前包内物品重量,cp当前包内物品价值int j;if (i>n) //回溯结束{if (cp>bestp){bestp = cp;for (i = 0; i <= n; i++) bestx[i] = x[i];}}elsefor (j = 0; j <= 1; j++){x[i] = j;if (cw + x[i] * w[i] <= c){cw += w[i] * x[i];cp += p[i] * x[i];Backtrack(i + 1, cp, cw);cw -= w[i] * x[i];cp -= p[i] * x[i];}}}int main(){int i;bestp = 0;cout << "请输入物品数:" << endl;;cin >> n;cout << "请输入背包容量:" << endl;cin >> c;cout << "请输入物品重量数组:" << endl;;for (i = 1; i <= n; i++)cin >> w[i];cout << "请输入物品价值数组:" << endl;for (i = 1; i <= n; i++)cin >> p[i];Backtrack(1, 0, 0);cout << "V = "<< bestp << endl;cout << "xi = ";for (i = 1; i <= n; i++)cout << bestx[i] << ' ';cout << endl;system("pause");return 0;}运行截图:0-1背包问题(分支限界法):#include <iostream>using namespace std;class Object {friend int Knapsack(int *, int *, int, int, int *); public:int operator <= (Object a) const {return (d >= a.d);}private:int ID; //物品编号float d; //单位重量价值};class bbnode {friend class Knap;friend int Knapsack(int *, int *, int, int, int *);private:bbnode * parent; //指向父节点的指针int LChild; //如果是左儿子结点取1,也即说明该物品已装进背包};class HeapNode {friend class Knap;friend class MaxHeap;public:operator int()const { return uprofit; };private:int uprofit, //结点的价值上界profit; //结点所相应的价值int weight; //结点所相应的重量int level; //活结点在子集树中所处的层序号bbnode *ptr; //指向该活结点在子集树中相应结点的指针};class MaxHeap {public:MaxHeap(int maxElem){HeapElem = new HeapNode*[maxElem + 1]; //下标为0的保留capacity = maxElem;size = 0;}void InsertMax(HeapNode *newNode);HeapNode DeleteMax(HeapNode* &N);private:int capacity;int size;HeapNode **HeapElem;};//0-1背包问题的主类class Knap {//Knapsack主函数功能:解决初始化、求解最优值和最优解、回收内存friend int Knapsack(int *, int *, int, int, int *);public:int MaxKnapsack();private:MaxHeap * H;//Bound辅助Maxknapsack函数:计算结点价值上界int Bound(int i);//AddLiveNode辅助Maxknapsack函数:将活结点插入子集树和优先队列中void AddLiveNode(int up, int cp, int cw, int ch, int level);bbnode *E; //指向扩展结点的指针int c; //背包容量int n; //物品总数int *w; //物品重量数组(以单位重量价值降序)int *p; //物品价值数组(以单位重量价值降序)int cw; //当前装包重量int cp; //当前装包价值int *bestx; //最优解};void MaxHeap::InsertMax(HeapNode *newNode){//极端情况下暂未考虑,比如堆容量已满等等int i = 1;for (i = ++size; i / 2 > 0 && HeapElem[i / 2]->uprofit < newNode->uprofit;i /= 2){HeapElem[i] = HeapElem[i / 2];}HeapElem[i] = newNode;}HeapNode MaxHeap::DeleteMax(HeapNode *&N){//极端情况下暂未考虑if (size >0){N = HeapElem[1];//从堆顶开始调整int i = 1;while (i < size){if (((i * 2 + 1) <= size) && HeapElem[i * 2]->uprofit > HeapElem[i * 2 + 1]->uprofit){HeapElem[i] = HeapElem[i * 2];i = i * 2;}else{if (i * 2 <= size){HeapElem[i] = HeapElem[i * 2];i = i * 2;}elsebreak;}}if (i < size)HeapElem[i] = HeapElem[size];}size--;return *N;}int Knap::MaxKnapsack(){H = new MaxHeap(1000);bestx = new int[n + 1];//初始化,为处理子集树中的第一层做准备,物品i处于子集树中的第i层int i = 1; //生成子集树中的第一层的结点E = 0; //将首个扩展点设置为null,也就是物品1的父节点cw = 0;cp = 0;int bestp = 0; //当前最优值int up = Bound(1); // 选取物品1之后的价值上界//当选择左儿子结点时,上界约束up不用关心,重量约束wt需要考虑。