算法思想之5回溯法
第5章 回溯法
教学要求
回溯
了解回溯算法的概念与回溯设计要领 掌握应用回溯算法求解桥本分数式、素数环、 数码串珠以及情侣拍照等典型案例
本章重点
理解回溯法 “向前走,碰壁回头”的实现
5.1 回溯概述
1. 回溯的概念
(1) 回溯法(Back track method)有“通用解题法”之美 称,是一种比枚举“聪明”的效率更高的搜索技术。
4. 4皇后问题的回溯举例
如何在4×4的方格棋盘上放置4个皇后,使它们互不攻击:
4皇后问题回溯描述
i=1;a[i]=1; while
(1) { g=1;for(k=i-1;k>=1;k--) if(a[i]=a[k] || abs(a[i]-a[k])=i-k) g=0; // 检测约束条件,不满足则返回 if(g && i==4) printf(a[1:4]); // 输出一个解 if(i<4 && g) {i++;a[i]=1;continue;} while(a[i]==4 && i>1) i--; // 向前回溯 if(a[i]==4 && i==1) break; //退出循环结束探索 else a[i]=a[i]+1; }
(2) 回溯描述 对于一般含参量m,n的搜索问题,输入正整数n,m,(n≥m) i=1;a[i]=<元素初值>; while (1) {for(g=1,k=i-1;k>=1;k--) if( <约束条件1> ) g=0; // 检测约束条件,不满足则返回 if(g && <约束条件2>) printf(a[1:m]); // 输出解 if(i<n && g) {i++;a[i]=<取值点>;continue;} while(a[i]=<回溯点> && i>1) i--; // 向前回溯 if(a[i]==n && i==1) break; // 退出循环,结束 else a[i]=a[i]+1; }
第5章回溯法PPT课件
二、回溯的一般描述
一旦某个j元组(x1,x2,…,xj)违反D中仅涉及 x1,x2,…,xj 的一个约束,就可以肯定,以(x1, x2,…,xj)为前缀的任何n元组
(x1,x2,…,xj,xj+1,…,xn)都不会是问题P 的解。
三、回溯的一般步骤
回溯法正是针对这类问题,利用这类问题的 上述性质而提出来的比枚举法效率更高的算 法。
由于这是第一次用计算机证明数学定理,所以哈肯 和阿佩尔的工作,不仅是解决了一个难题,而且从 根本上拓展了人们对“证明”的理解,引发了数学 家从数学及哲学方面对“证明”的思考。
实例—n皇后问题
在一个n×n的棋盘上放置n个国际象棋中 的皇后,要求所有的皇后之间都不形成攻 击。请你给出所有可能的排布方案数。
n
4
5
6
7
8
总数
2
10
4
40
92
n皇后问题
对于n皇后问题而言,我们很难找出很合适的方法 来快速的得到解,因此,我们只能采取最基本的枚 举法来求解。
但我们知道,在n×n的棋盘上放置n个棋子的所有
回溯算法(一)
什么是回溯
入口回溯
▪迷宫游戏
回溯
➢什么是回溯法
回溯
▪回溯法是一个既带
有系统性又带有跳跃
性的的搜索算法
回溯
▪回溯法是以深度优先的方式系统地搜索问题 出口 的解, 它适用于解一些组合数较大的问题。
回溯(Trackback)是什么?
为什么回溯?
怎样回溯?
What
Why
How
一、回溯的概念
解问题P的最朴素的方法就是枚举法,即对E 中的所有n元组逐一地检测其是否满足D的全 部约束,显然,其计算量是相当大的。
回溯法详解
回溯法详解
回溯法是一种常用的算法思想,通常用于解决一些组合问题,如排列、组合、子集等。
回溯法的基本思想是从一组可能的解中逐一尝试,如果发现当前尝试的解不符合要求,则回溯到上一步继续尝试其他解。
回溯法可以看作是一种深度优先搜索算法,它的搜索过程类似于一棵树的遍历。
在搜索过程中,从根节点开始,逐层向下搜索,直到找到符合条件的解或者搜索完所有的可能情况。
回溯法的实现通常采用递归的方式,具体步骤如下:
1. 定义一个解空间,即所有可能的解的集合。
2. 逐步扩展解空间,直到找到符合条件的解或者搜索完所有可
能的情况。
3. 在扩展解空间的过程中,对于每个扩展的状态,检查它是否
符合要求,如果符合要求,则继续扩展;否则回溯到上一步。
回溯法的时间复杂度通常很高,因为它需要搜索所有的可能情况。
但是在实际应用中,回溯法的效率往往比暴力枚举要高,因为它能够利用一些剪枝策略,避免搜索无用的状态。
例如,在求解八皇后问题时,回溯法可以通过剪枝策略,避免搜索一些不可能的状态,从而大大缩短搜索时间。
回溯法也是一种非常灵活的算法思想,可以应用于各种问题的求解。
在实际应用中,需要根据具体问题的特点,设计合适的解空间和剪枝策略,以提高算法效率。
五大常见算法策略之——回溯策略
五⼤常见算法策略之——回溯策略回溯策略欢迎⼤家访问我的个⼈搭建的博客回溯是五⼤常⽤算法策略之⼀,它的核⼼思想其实就是将解空间看作是⼀棵树的结构,从树根到其中⼀个叶⼦节点的路径就是⼀个可能的解,根据约束条件,即可得到满⾜要求的解。
求解问题时,发现到某个节点⽽不满⾜求解的条件时,就“回溯”返回,尝试别的路径。
回溯法是⼀种选优搜索法,按选优条件向前搜索,以达到⽬标。
下⾯通过⼏个例⼦来讨论这个算法策略。
货郎问题有⼀个推销员,要到n个城市推销商品,他要找出⼀个包含所有n个城市的具有最短路程的环路。
(最后回到原来的城市),也就是说给⼀个⽆向带权图G<V,E>,⽤⼀个邻接矩阵来存储两城市之间的距离(即权值),要求⼀个最短的路径。
我们设置⼀组数据如下:4个城市,之间距离如下图所⽰,默认从0号城市出发由此我们可以画出⼀棵解空间树:(只画了⼀部分,右边同理)按照这个解空间树,对其进⾏深度优先搜索,通过⽐较即可得到最优结果(即最短路径)package BackTrack;//解法默认从第0个城市出发,减⼩了问题难度,主要⽬的在于理解回溯策略思想public class Saleman {//货郎问题的回溯解法static int[][] map = {{ 0,10,5,9},{10,0,6,9},{ 5,6,0,3},{ 9,9,3,0}}; //邻接矩阵public static final int N = 4; //城市数量static int Min = 10000; //记录最短的长度static int[] city = {1,0,0,0}; //默认第0个城市已经⾛过static int[] road = new int[N]; //路线,road[i] = j表⽰第i个城市是第j个经过的/**** @param city 保存城市是否被经过,0表⽰未被⾛过,1表⽰已经⾛过* @param j 上⼀层⾛的是第⼏个城市* @param len 此时在当前城市⾛过的距离总和* @param level 当前所在的层数,即第⼏个城市*/public static void travel(int[] city, int j, int len, int level) {if(level == N - 1) { //到达最后⼀个城市/*do something*/if(len+map[j][0] < Min) {Min = len + map[j][0];for (int i = 0; i < city.length; i++) {road[i] = city[i];}}return;}for(int i = 0; i < N; i++) {if(city[i] == 0 && map[j][i] != 0) { //第i个城市未被访问过,且上⼀层访问的城市并不是此城市city[i] = level+2; //将此城市置为已访问travel(city, i, len+map[j][i], level+1);city[i] = 0; //尝试完上⼀层的路径后,将城市⼜置为未访问,以免影响后⾯的尝试情况,避免了clone数组的情况,节省内存开销}}}public static void main(String[] args) {travel(city,0,0,0);System.out.println(Min);for (int i = 0; i < N; i++) {System.out.print(road[i]+" ");}System.out.println("1");}}⼋皇后问题要在n*n的国际象棋棋盘中放n个皇后,使任意两个皇后都不能互相吃掉。
回溯法的基本概念
回溯法的基本概念回溯法,也叫试探法,是一种基于深度优先搜索的算法。
它是一种非常实用的解决问题的方法,通常用来解决那些需要尝试许多可能性的问题。
在回溯法中,我们需要枚举所有的可能性,并根据条件进行深度搜索,直到找到所有的解或达到终止条件。
回溯法的基本思想是:将问题分成多个小问题来解决,每个小问题都需要尝试不同的解决方案,直到找到最优解或达到终止条件。
当我们尝试的方案不符合要求时,我们需要“回溯”(撤销上一步的操作),尝试其他解决方案。
回溯法的应用非常广泛,比如在图形学、人工智能、网络协议设计等领域都有广泛的应用。
在算法竞赛中,回溯法是一个非常重要的算法,也是我们必须要掌握的算法之一。
使用回溯法的关键在于如何组织搜索空间。
我们需要确定搜索树的遍历顺序和搜索深度,以及如何剪枝搜索空间。
通常情况下,我们可以使用递归函数来实现回溯算法。
这个递归函数需要接收状态参数,在每一次递归调用中,我们需要将状态参数进行更新,并考虑是否达到了终止条件。
在回溯算法的实现中,通常要注意以下几点:1. 前缀和预处理:如果我们需要快速传递状态信息,可以使用前缀和预处理技术。
2. 剪枝:剪枝是一种优化手段,可以在搜索中减少不必要的计算。
比如我们可以根据当前状态进行剪枝,减少搜索量。
3. 记忆化搜索:如果我们需要多次查询相同的状态,可以使用记忆化搜索来优化。
这样可以避免重复计算,提高算法效率。
4. 双向搜索:双向搜索可以从起点和终点同时进行搜索,这样可以减少搜索时间和空间复杂度。
总之,回溯法是一种非常实用的算法,在实际问题求解中具有广泛的应用。
要想掌握回溯法,需要多做题、多思考,掌握其基本原理和常见技巧,逐步提高自己的解题能力。
第5章 回溯法
(1)如果X=(x1, x2, …, xi+1)是问题的最终解,则输出这个解。 如果问题只希望得到一个解,则结束搜索,否则继续搜索其 他解; (2)如果X=(x1, x2, …, xi+1)是问题的部分解,则继续构造解 向量的下一个分量; (3)如果X=(x1, x2, …, xi+1)既不是问题的部分解也不是问题 的最终解,则存在下面两种情况: ① 如果xi+1= ai+1k不是集合Si+1的最后一个元素,则令xi+1= ai+ 1k+1,即选择Si+1的下一个元素作为解向量X的第i+1个分量; ② 如果xi+1= ai+1k是集合Si+1的最后一个元素,就回溯到X=(x1, x2, …, xi),选择Si的下一个元素作为解向量X的第i个分量,假 设xi= aik,如果aik不是集合Si的最后一个元素,则令xi= aik+1; 否则,就继续回溯到X=(x1, x2, …, xi-1); 15
2 3
4
3
4
1
3ห้องสมุดไป่ตู้
1
4
2
4
1
2
1
2
3
3
1
2
1
10 12 15 17 21 23 26 28 31 33 37 39 42 44 47 49 52 54 57 59 62 64 n=4的TSP问题的解空间树
8
解空间树的动态搜索(1)
回溯法从根结点出发,按照深度优先策略遍历 解空间树,搜索满足约束条件的解。 在搜索至树中任一结点时,先判断该结点对应 的部分解是否满足约束条件,或者是否超出目标函 数的界,也就是判断该结点是否包含问题的(最优) 解,如果肯定不包含,则跳过对以该结点为根的子 树的搜索,即所谓剪枝( Pruning );否则,进入 以该结点为根的子树,继续按照深度优先策略搜索。
第五章 回溯法
• Cr=C=30,V=0
C为容量,Cr为剩余空间,V为价值。 • A为唯一活结点,也是当前扩展结点。
H D 1 0 I 1
1 B 0 E 1 0 J K
A
0 C 1 F 1 0 L M N 0 G 1 0 O
5.1 回溯法的算法框架
• n=3, C=30, w={16,15,15}, v={45,25,25}
理论上
寻找问题的解的一种可靠的方法是首先列出所有候选解,然后依次检查每一个, 在检查完所有或部分候选解后,即可找到所需要的解。
但是
当候选解数量有限并且通过检查所有或部分候选解能够得到所需解时,上述方
法是可行的。
若候选解的数量非常大(指数级,大数阶乘),即便采用最快的计算机也只能 解决规模很小的问题。
显约束
对分量xi的取值限定。
隐约束 为满足问题的解而对不同分量之间施加的约束。
5.1 回溯法的算法框架
解空间(Solution Space)
对于问题的一个实例,解向量满足显式约束条件的所有多元组,构成了该 实例的一个解空间。 注意:同一问题可有多种表示,有些表示更简单,所需状态空间更小(存储 量少,搜索方法简单)。
回溯法引言
以深度优先的方式系统地搜索问题的解的算法称为回溯法 使用场合
对于许多问题,当需要找出它的解的集合或者要求回答什么解是满足某些
约束条件的最佳解时,往往要使用回溯法。 这种方法适用于解一些组合数相当大的问题,具有“通用解题法”之称。 回溯法的基本做法 是搜索,或是一种组织得井井有条的,能避免不必要搜索的穷举式搜索法。
一个正在产生儿子的结点称为扩展结点
活结点(L-结点,Live Node)
一个自身已生成但其儿子还没有全部生成的节点称做活结点
回溯法原理
回溯法原理
回溯法是一种用于解决问题的算法,它的核心思想是在解空间中进行深度优先搜索,通过不断地试错和回溯,找到问题的解。
回溯法通常应用于求解组合优化问题、排列组合问题、图论问题等。
回溯法的具体实现过程,一般包括以下几个步骤:
1. 定义问题的解空间:首先需要明确问题的解空间,即指所有可能的解构成的空间。
2. 确定扩展解策略:在解空间中选择一个可行解作为起点,然后通过一定的扩展策略生成新的可行解,这些新的可行解将被加入到搜索树中。
3. 搜索解空间:从起点开始,按照扩展策略不断生成新的可行解,并将这些新的可行解加入到搜索树中,然后深入搜索直到找到问题的解或者搜索完整个解空间。
4. 回溯:如果某个可行解无法继续扩展,或者扩展后发现不合法,那么就需要回溯到上一个可行解,重新选择扩展策略,并继续搜索。
回溯法的优点在于能够找到所有解,但缺点也很明显,就是时间复杂度很高,因为需要搜索整个解空间。
为了减少搜索时间,可以采用一些剪枝技巧,如约束传播、可行性剪枝等。
总之,回溯法是一种通用的求解算法,它的基本思想和实现方式可以应用于各种类型的问题,但要注意在实际应用中需要根据具体问题进行合理的优化和改进。
算法设计与分析课件--回溯法-图的m着色问题
4
5
C
C
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
X3=3
D
9
5.6 图的m着色问题
GCP示例
1
A
AA
A
A X1=1
2
3
X1=1
X1=1 X1=1
B
B
B
B X2=2
4
5
X2=2
C
X2=2
C
C X3=3
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
7
5.6 图的m着色问题
GCP示例
1
AA
A
2
3
X1=1
X1=1
B
B
X2=2
4
5
C
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
8
5.6 图的m着色问题
GCP示例
1
AA
A
A
2
3
X1=1
X1=1 X1=1
B
B
B
X2=2 X2=2
A
X1=1
2
3
B
X2=2 X2=3
4
5
C
X3=3
G
X3=2
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
D
X4=1
E
X5=3
F
H
X4=1
第5章 回溯法
算法设计与分析<<回溯法
小结
回溯法解题的特征
在深度优先搜索过程中动态产生问题的解空间。 几个术语
扩展结点:一个正在产生儿子的结点称为扩展结点 活结点:一个自身已生成但其儿子还没有全部生成的
结点称做活结点 死结点:一个所有儿子已经产生的结点称做死结点。
有限集, 设已有满足约束条件的部分解(x1, x2,… xi)添 加xi+1 si+1,
若(x1, x2,… xi xi+1)满足约束条件, 则继续添加xi+2 ; 若所有可能的xi+1 si+1均不满足约束条件,则去掉xi ,
回溯到(x1, x2,… xi-1), 添加尚未考虑过的xi;
回溯法 分支限界法
◎四川师范大学 计算机科学学院 刘芳 3
算法设计与分析<<回溯法
问题的解空间
问题的解向量:
问题的解可以表示成一个n元式(x1, x2,… xn)的形式。
问题的解空间
E={(x1, x2,… xn)| xi si , si为有限集 }称为问题的解空
间
约束条件
分析:
可能解由一个等长向量(x1, x2, …, xn)组成, 其中 如:
xi=1(1≤i≤n)表示物品i装入背包 xi=0(1≤i≤n)表示物品i没有装入背包 当n=3时,其解空间是:
{ (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1) }
骤,而每一个步骤都有若干种可能的分支,为了完成 这一过程,又必须遵守一些规则,
05回溯法
第5章回溯法回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。
当发现当前候选解不可能是解时,就选择下一个候选解;倘若当前候选解除了还不满足问题规模要求外,满足所有其他要求时,继续扩大当前候选解的规模,并继续试探。
如果当前候选解满足包括问题规模在内的所有要求时,该候选解就是问题的一个解。
在回溯法中,放弃当前候选解,寻找下一个候选解的过程称为回溯。
扩大当前候选解的规模,以继续试探的过程称为向前试探。
回溯法的基本思想:确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。
这个开始结点就成为一个活结点,同时也成为当前的扩展结点。
在当前的扩展结点处,搜索向纵深方向移至一个新结点。
这个新结点就成为一个新的活结点,并成为当前扩展结点。
如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。
换句话说,这个结点不再是一个活结点。
此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。
回溯法即·96· ACM 程序设计培训教程以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。
运用回溯法解题通常包含以下三个步骤: (1)针对所给问题,定义问题的解空间; (2)确定易于搜索的解空间结构;(3)以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索;5.1〖案例1〗组合问题找出从自然数1、2、……、n 中任取r 个数的所有组合。
例如n=5,r=3的所有组合为:(1)1、2、3 (2)1、2、4 (3)1、2、5 (4)1、3、4 (5)1、3、5 (6)1、4、5 (7)2、3、4 (8)2、3、5 (9)2、4、5 (10)3、4、5则该问题的状态空间为:E={(x1,x2,x3)∣xi ∈S ,i=1,2,3},其中:S={1,2,3,4,5} 约束集为:x1<x2<x3显然该约束集具有完备性。
5 回溯法
5 回溯法回朔法即是:若在当前位置探测到一条通路则继续向前,若在当前位置探测不到一条通路则回朔侄前一位置继续探测尚未探测的反向,直到找到一条通路或探测出无通路存在为止。
定义:也叫试探法,它是一种系统地搜索问题的解的方法。
回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。
用回溯算法解决问题的一般步骤为:一、定义一个解空间,它包含问题的解。
二、利用适于搜索的方法组织解空间。
三、利用深度优先法搜索解空间。
四、利用限界函数避免移动到不可能产生解的子空间。
问题的解空间通常是在搜索问题的解的过程中动态产生的,这是回溯算法的一个重要特性。
回溯法是一个既带有系统性又带有跳跃性的的搜索算法。
它在包含问题的所有解的解空间树中,按照深度优先的策略,从根结点出发搜索解空间树。
算法搜索至解空间树的任一结点时,总是先判断该结点是否肯定不包含问题的解。
如果肯定不包含,则跳过对以该结点为根的子树的系统搜索,逐层向其祖先结点回溯。
否则,进入该子树,继续按深度优先的策略进行搜索。
回溯法在用来求问题的所有解时,要回溯到根,且根结点的所有子树都已被搜索遍才结束。
而回溯法在用来求问题的任一解时,只要搜索到问题的一个解就可以结束。
这种以深度优先的方式系统地搜索问题的解的算法称为回溯法,它适用于解一些组合数较大的问题。
例题:1、排列的实现,对于n个不同数的排列并输出。
定义一个数组a[n],开始从第一个元素填入1开始,每进一步都是从1开始,并检查是否把n个元素填完和n个元素都没有重复的,如果是则输出一个解。
如果欲填入的数与之前已经填入的数重复,则增加1再比较,直到没有重复(除非已到了上限),如果已经到达了上限n,否回朔回上一个元素,值到其值不为上限n,然后上一个元素,下一个元素从1重新开始。
C++程序1#include<stdio.h>void main(){int n,m,i=0,j=0,k=0,flag=0,f=0;static int a[40];printf("输入N:");scanf("%d",&n);a[1]=1;k=1;while(1){flag=1;for(i=1;i<k;i++)if(a[k]==a[i]){flag=0;break;}if(flag&&k==n){for(j=1;j<=n;j++)printf("%d",a[j]);printf("\n");}if(k<n&&flag) {k++;a[k]=1;continue;}while(a[k]==n&&k>1){k--;}if(a[k]==n&&k==1)break;else{a[k]++;}}}C++程序2、排列的算法差不多,为了不重复,加了一个条件,也就是递增数列#include<stdio.h>void main(){int n,m,i=0,j=0,k=0,flag=0,f=0;static int a[40];printf("输入N,M:");scanf("%d%d",&n,&m);a[1]=1;k=1;while(1){flag=1;for(i=1;i<k;i++)if(a[k]==a[i]||a[k]<a[i])//a[k]<a[i]条件为了限制递增{flag=0;break;}if(flag&&k==m){for(j=1;j<=m;j++)printf("%d",a[j]);printf("\n");}if(k<n&&flag){k++;a[k]=1;continue;}while(a[k]==n&&k>1){k--;}if(a[k]==n&&k==1)break;else{a[k]++;}}}C++程序3#include <stdio.h>#include <string.h>void main() {int n,i=1;printf("请输入N值=?");scanf("%d",&n);int a[30]={0}; //C语言中完成数组定义并初始化不能用变量N,只能用具体数字,这儿采用比较大的30a[1]=1;while(i<=n){if (i==n){for (int j=1;j<n;j++) printf("%d ",a[j]);printf("%d\n",a[n]); //输出一组解}if (i<n) {i++;a[i]=1;continue;}while (a[i]==n && i>1) i--; //向前回溯if (a[i]==n && i==1) break; //结束else a[i]=a[i]+1;}}JA V A程序用回溯法求任意1到N个数字的全排列。
第5章 回溯法
4
C 20 D
10
求赋权图G 的具有最小 权 的 Hamilton圈
B
C D B
C
D B
D
C
D
C
D
B
C
B
A
5
5.1回溯法的算法框架—基本思想
例2.定和子集问题:
已知一个正实数的集合 A={w1,w2,……wn},和正实数M.试求A的所有子集S,使得S中 的数之和等于M。 这个问题的解可以表示成0/1数组{x1,x2,……xn},依据w1是 否属于S,x1分别取值1或0。故解空间中共有2n个元素。它的树 1 结构是一棵完全二叉树。
7
5.1回溯法的算法框架—基本思想
从例3来看,解空间的确定与我们对问题的描述有关。 如何组织解空间的结构会直接影响对问题的求解效率。这是 因为回溯方法的基本思想是通过搜索解空间来找到问题的可 行解以至最优解。 当所给的问题是从n个元素的集合S中找出满足某种性质 的子集时,相应的解空间树称为子集合树。此时,解空间有 2n 个元素,遍历子集树的任何算法均需Ω(2n)的计算时间。 如例2。 当所给的问题是确定n个元素的满足某种性质的排列时, 相应的解空间树称为排列树,此时,解空间有n!个元素。遍 历排列树的任何算法均需Ω(n!)计算时间,如例1和例3。本 章只讨论具有上两类解空间树的求解问题。
11
5.1回溯法的算法框架—递归回溯
回溯法对解空间作深度优先搜索,因此,在一般情况下 用递归方法实现回溯法。 void backtrack (int t) { if (t>n) output(x); else for (int i=f(n,t); i<=g(n,t);i++) { x[t]=h(i); if (constraint(t) && bound(t)) backtrack(t+1); } } f(n,t)和g(n,t)分别表示在当前扩展结点处未搜索过子 树的起始编号与终止编号,h(i)表示当前扩展结点处x[t]的 第i个可选值。
回溯法 ppt课件
回溯法举例:
[旅行商问题] 在这个问题中 ,给出一个n 顶点网络(有向 或无向) ,要求找出一个包含所有n 个顶点的具有最小耗 费的环路 。任何一个包含网络中所有n 个顶点的环路被称 作一个旅行(t o u r )。在旅行商问题中 ,要设法找到一 条最小耗费的旅行。 [分析]图给出了一个四顶点网络 。在这个网络中 ,一些旅
Bound(t) : 返回的值为true时 , 在当前扩展节点处 x[1: t]的取值为时 目标函数越界 , 还需由Backtrack(t+1) 对其相应的子树做进一步搜索 。否则 , 当前扩展节点处 x[1: t]的取值是目标函数越界 ,可剪去相应的子树
for循环作用: 搜索遍当前扩展的所有未搜索过的 子树。
si+1均不满足约束条件,则去掉xi , 回溯到(x 1 , x 2 , … xi-1), 添加尚 未考虑过的xi , 如此反复进行,直到(x1 , x2 , … xk) k n满足所有的 约束条件或证明无解.
E= { (x1 , x2 , … xn), xi si , si为有限集 }称为问题的解空间.
5. 1 回溯法基本思想
穷举法技术建议我们先生成所有的候选解 , 然后找出那个 具有需要特性的元素
1 、 回溯法主要思想是每次只构造解的一个分量 ,然后按照 鲜明的方法来评估这个部分构造解 。如果一个部分构造解可以进一 步构造而不会违反问题的约束 , 我们就接受对下一个分量所作的第 一个合法选择 。如果无法对下一个分量进行合法的选择 , 就不对剩 下的任何分量再做任何选择了 。在这种情况下 ,该算法进行回溯 , 把部分构造解的最后一个分量替换为它的下一个选择。
算法模式 Procedure BACKTRACK (n); {k := l;
算法——回溯法
算法——回溯法回溯法回溯法有“通⽤的解题法”之称。
⽤它可以系统地搜索⼀个问题的所有解或任⼀解。
回溯法是⼀种即带有系统性⼜带有跳跃性的搜索算法。
它在问题的解空间树中,按深度优先策略,从根节点出发搜索解空间树。
算法搜索⾄解空间树的任⼀结点时,先判断该节点是否包含问题的解。
如果不包含,则跳过对以该节点为根的⼦树的搜索,逐层向其它祖先节点回溯。
否则,进⼊该⼦树,继续按照深度优先策略搜索。
回溯法求问题的所有解时,要回溯到根,且根节点的所有⼦树都已被搜索遍才结束。
回溯法求问题的⼀个解时,只要搜索到问题的⼀个解就可结束。
这种以深度优先⽅式系统搜索问题的算法称为回溯法,它是⽤于解组合数⼤的问题。
问题的解空间⽤回溯法解问题时,应明确定义问题的解空间。
问题的解空间⾄少包含问题的⼀个(最优)解。
例如对于有n种可选择物品的0-1背包问题,其解空间由长度为n的0-1向量组成。
该解空间包含对变量的所有可能的0-1赋值。
例如n=3时,其解空间是{(0,0,0),(0,0,1),(0,1,0),(0,1,1),(1,0,0),(1,0,1),(1,1,0),(1,1,1)}定义了问题的解空间后,还应该将解空间很好地组织起来,使得能⽤回溯法⽅便地搜索整个解空间。
通常将解空间组织成树或者图的形式。
例如,对于n=3时的0-1背包问题,可⽤⼀颗完全的⼆叉树表⽰其解空间,如下图。
解空间树的第i层到第i+1层边上的标号给出了变量的值。
从树根到叶⼦的任⼀路径表⽰解空间中的⼀个元素。
例如,从根节点到节点H的路径相当与解空间中的元素(1,1,1)。
回溯法的基本思想确定了解空间的组织结构后,回溯法从根节点出发,以深度优先搜索⽅式搜索整个解空间。
回溯法以这种⼯作⽅式递归地在解空间中搜索,直到找到所要求的解或解空间所有解都被遍历过为⽌。
回溯法搜索解空间树时,通常采⽤两种策略避免⽆效搜索,提⾼回溯法的搜索效率。
其⼀是⽤约束函数在当前节点(扩展节点)处剪去不满⾜约束的⼦树;其⼆是⽤限界函数剪去得不到最优解的⼦树。
第5章 回溯法(1-例子)
{ if ((count>half)||(t*(t-1)/2-count>half)) return; if (t>n) sum++;
-++-+ -
else for (int i=0;i<2;i++) { p[1][t]=i;
-+
count+=i;
for (int j=2;j<=t;j++) { p[j][t-j+1]=p[j-1][t-j+1]^p[j-1][t-j+2]; count+=p[j][t-j+1];
批处理作业调度问题要求对于给定的n个作业,制定最佳作 业调度方案,使其完成时间和达到最小。
tji 作业1 作业2 作业3
机器1 2 3 2
机器2 1 1 3
这3个作业的6种可能的调度方案是1,2,3;1,3,2;2,1,3; 2,3,1;3,1,2;3,2,1;它们所相应的完成时间和分别是19, 18,20,21,19,19。易见,最佳调度方案是1,3,2,其完成
}
n后问题
在n×n格的棋盘上放置彼此不受攻击的n个皇后。按照国际象
棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线 上的棋子。n后问题等价于在n×n格的棋盘上放置n个皇后,任 何2个皇后不放在同一行或同一列或同一斜线上。
1
Q1
2
Q2
3
Q3
4
Q4
5
Q5
6 Q6
7
Q7
8
Q8
1 2345678
13
x1=1
2
x2=2 3
4
1
第5章 回溯法
6
迭代回溯
采用树的非递归深度优先遍历算法,可将回溯法表示为一个非 递归迭代过程. void iterativeBacktrack () { int t=1; while (t>0) { if (f(n,t)<=g(n,t)) for (int i=f(n,t);i<=g(n,t);i++) { x[t]=h(i); if (constraint(t)&&bound(t)) { if (solution(t)) output(x); else t++;} } else t--; } }
第5章 回溯法
1
回溯法
有许多问题,当需要找出它的解集或者要求回答什么 解是满足某些约束条件的最佳解时,往往要使用回溯 法. 回溯法的基本做法是搜索,或是一种组织得井井有条 的,能避免不必要搜索的穷举式搜索法.这种方法适 用于解一些组合数相当大的问题. 回溯法在问题的解空间树中,按深度优先策略,从根 结点出发搜索解空间树.算法搜索至解空间树的任意 一点时,先判断该结点是否包含问题的解.如果肯定 不包含,则跳过对该结点为根的子树的搜索,逐层向 其祖先结点回溯;否则,进入该子树,继续按深度优 先策略搜索.
批处理作业调度
解空间:排列树
private static void backtrack(int i) { if (i > n) { for (int j = 1; j <= n; j++) bestx[j] = x[j]; bestf = f; } else for (int j = i; j <= n; j++) { f1+=m[x[j]][1]; f2[i]=((f2[i-1]>f1)?f2[i-1]:f1)+m[x[j]][2]; f+=f2[i]; public class FlowShop if (f < bestf) { static int n, // 作业数 MyMath.swap(x,i,j); f1, // 机器1完成处理时间 backtrack(i+1); f, // 完成时间和 MyMath.swap(x,i,j); bestf; // 当前最优值 } static int [][] m; // 各作业所需的处理时间 f1-=m[x[j]][1]; static int [] x; // 当前作业调度 f-=f2[i]; static int [] bestx; // 当前最优作业调度 } static int [] f2; // 机器2完成处理时间 }
5 回溯法
29
批处理作业调度问题的一个常见例子是在计算机
系统中完成一批n个作业,每个作业都要完成先计
算、然后将计算机结果打印输出这两项任务。
完成,否则继续试探,直到找到某一个或者多个解。
这种“试探着走”的思想也就是回溯法的基本思想。
如果试的成功则继续下一步试探。如果试的不成功则 退回一步,再换一个办法继续试。如此反复进行试探 性选择与返回纠错的过程,直到求出问题的解。
6
“马”每一步的跳法共有四个方向可供选择:右下1, 右下2,右上1, 右上2。 •从起点A出发,按跳法1试走一步
•解空间: • 比较装载该集装箱和不装该集装箱引起 的装载方案的区别。 初始状态
装入第一个 装入第二个 不装第二个 不装第一个 不装第二个
装入第二个
23
•
约束函数(选择装入当前元素):
w x
i 1 i
n
i
c1
•
限界函数(不选择装入当前元素):
•
设bestw为当前已经计算出的最优装载重量,Cw 是装载到目前为止的总量。
就有若干个可供选择的后继结点。没有任何“必
定行”的暗示,只好走着瞧。不行了回溯上一层
结节(此时需要恢复该结点有关数据),换一种
方法,继续试。
8
首先暂时放弃关于问题规模大小的限制,并将问
题的候选解(部分解)按某种顺序逐一枚举和检 验。
当发现当前候选解不可能是解时,就选择下一个
候选解;倘若当前候选解除了还不满足问题规模 要求外,满足所有其他要求时,继续扩大当前候 选解的规模,并继续试探。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业2
作业3
3
2
1
3
if (t>n) output(x);
else for (int i=t;i<=n;i++) { swap(x[t], x[i]); if (legal(t)) backtrack(t+1);
这3个作业的6种可能的调度方 案是1,2,3;1,3,2; 2,1,3; 2,3,1; 3,1,2;3,2,1;对应 的完成时间和分别是19, 18, 20,21,19,19。最佳调度方 案是1,3,2。
起始点 1
6 4 30 5 10
生成问题状态的基本方法
活结点 :已生成且其儿子没有全部生成的点 扩展结点 :正在产生儿子的结点 死结点 :所有儿子已经全部产生的结点
活结点 扩展结点 死结点
2
3
20
4
5
6
1
生成问题状态的基本方法
采用深度优先法生成解空间树:如果对一
用回溯法搜索解空间时,可以采用两种 策略避免无效搜索:
f=3+7+8=18
swap(x[t], x[i]); } }
M1
M2
f=4+6+10=20
25
int n, f1, f, bestf; int [][] m; int [] x; int [] bestx; int [] f2;
// 作业数 // 机器 1完成处理时间 // 完成时间和 // 当前最优值 // 各作业所需的处理时间 // 当前作业调度 // 当前最优作业调度 // 机器 2完成处理时间
约束函数
界限函数
void backtrack (int i) { // 搜索第 i层结点 if (i > n) { // 到达叶结点 if (cw>bestw) { 将 x数组的内容拷贝到bestx数组中; bestw = cw; } return ; } r -= w[i]; if (cw + w[i] <= c) { // 搜索左子树 x[i] = 1; cw += w[i]; 增加两个数组: backtrack(i + 1); int[ ] x:记录搜索路径 cw -= w[i]; int[ ] bestx:记录最优路径 } if (cw+r>bestw) { x[i] = 0; backtrack(i + 1); } r += w[i]; }
第 5 章 回溯算法
5.1 回溯算法框架 5.2 装载问题 5.3 批处理作业问题 5.4 n后问题
回溯算法
回溯算法是一种搜索思路,基本做法是在问题 的解空间树中,采用深度优先策略,从根结点
出发搜索解空间树。算法搜索至解空间树的任
意结点时,先判断该结点是否包含问题的解。 如果肯定不包含,则跳过对该结点为根的子树 的搜索,并向其祖先结点回溯;否则,进入该 子树,继续按深度优先策略搜索。
i 1 n
n=3; c1 = c2 = 50; w = [10,40,40]
int n; int[] w; int c; int cw;
//集装箱数 //集装箱重量数组 //第 1艘轮船的载重量 //当前载重量
界限函数 (不选择当前元素 ):
当前载重量cw+剩余集装箱的重量 r当前最优载重量bestw
tji 作业1 作业2 作业3
机器1 2 3 2 2 3 2
机器2 1 1 3 1 1 3
m
x
1
23bestx Nhomakorabeaf2
27
28
5.4 n 后问题
在n× n格的棋盘上放置彼此 不受攻击的n个皇后。按照国 际象棋的规则,皇后可以攻 击与之处在同行或同列或同 对角线上的棋子。n 后问题等 价于在 n×n格的棋盘上放置n 1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 1 2 3 4 5 6 7 8
5.5 地图着色问题
5.6 货郎担问题
1
2
5.1 回溯算法框架
问题的解空间:回溯算法将问题的解表示成一 个n元式(x1,x2,…,xn) 。 xi的取值范围为某个有穷集 S。 xi的所有取值范围的组合被称为解空间。 例如: 0/1背包问题的 S={0,1} 解空间 : { (0,0,0),(0,0,1),(0,1,0),(0,1,1), (1,0,0),(1,0,1),(1,1,0),(1,1,1) }
2
10
4
(1)针对所给问题,定义问题的解空间; (2)确定易于搜索的解空间结构; (3)以深度优先方式搜索解空间,并在搜索过程 中利用剪枝函数避免无效地搜索。
3
20
4
例如:①->④->②->③ -> ① 总费用为25 ①->④->③->② 此刻费用为29, 利用界限函数剪掉
9
10
回溯算法解题特征
用回溯法解题的显著特征是在搜索过程 中动态产生问题的解空间。在任何时刻, 算法只保存从根结点到当前扩展结点的 路径。如果解空间树中从根结点到叶结 点的最长路径的长度为h(n),则回溯法 所需的计算空间约为O(h(n))。
19
增加界限函数优化算法
增加一个记录当前剩余集装箱重量的变量 r。
r
j i 1
w
n
j
当cw + r ≦bestw 剪掉右枝。 r的初始值为:
r wj
j 1 n
20
void backtrack (int i) { // 搜索第 i层结点 if (i > n) { // 到达叶结点 if (cw > bestw) bestw = cw; return ; } r -= w[i]; if (cw + w[i] <= c) { // 搜索左子树 cw += w[i]; backtrack(i + 1); cw -= w[i]; } if (cw+r>bestw) backtrack(i + 1); r += w[i]; }
递归回溯 算法框架
t:表示当前的递归深度; n:控制递归深度 constraint(t):约束函数; bound(t):界限函数 h(i):当前状态第i个可选值 f(n,t):在当前扩展结点处未搜索的子树的起始编号 g(n,t):在当前扩展结点处未搜索的子树的终止编号
12
2
子集树
当给定的问题是从 n个元素的集合中找出满足某 种性质的子集时,相应的解空间树为子集树。 遍历子集树需要的时间复杂性为 O(2n)
26
void backtrack(int i) { if (i > n) { for (int j = 1; j <= n; j++) bestx[j] = x[j]; void backtrack (int t) { bestf = f; if (t>n) output(x); } else for (int j = i; j <= n; j++) { else f1+=m[x[j]][1]; for (int i=t;i<=n;i++) { f2[i]=((f2[i-1]>f1)?f2[i-1]:f1)+m[x[j]][2]; swap(x[t], x[i]); f += f2[i]; if (legal(t)) backtrack(t+1); if (f < bestf) { swap(x,i,j); swap(x[t], x[i]); backtrack(i+1); } swap(x,i,j); } } f1 -= m[x[j]][1]; f -= f2[i]; } }
void backtrack(int i) { if (i > n) { for (int j = 1; j <= n; j++) bestx[j] = x[j]; bestf = f; } else for (int j = i; j <= n; j++) { f1+=m[x[j]][1]; f2[i]=((f2[i-1]>f1)?f2[i-1]:f1)+m[x[j]][2]; f+=f2[i]; if (f < bestf) { swap(x,i,j); backtrack(i+1); swap(x,i,j); } f1-=m[x[j]][1]; f-=f2[i]; } }
void backtrack (int t) { if (t>n) output(x); else for (int i=1;i>=0;i--) { //取值范围 x[t]=i; if (legal(t)) // 合法 backtrack(t+1); } }
13
排列树
当给定的问题是确定n个元素满足某种性质 的排列时,相应的解空间树为排列树。 遍历排列树需要的时间复杂性为 O(n!)
f F2 i
i 1 n
t1i
t2 i
作业1 作业2 作业3
2 3 2
1 1 3
批处理作业调度问题要求对于给定的 n 个 作业,制定最佳作业调度方案,使其完成 时间总和达到最短。
24
4
t1i 作业1 2
t2i 1
M1 M2 f=3+6+10=19 M1 M2
void backtrack (int t) {
用约束函数在扩展结点处剪去不满足
个扩展结点 R,一旦产生了一个儿子 C,就 将 C 当做新的扩展结点。在完成对子树 C 的穷尽搜索后,将 R 再次变成扩展结点, 继续生成 R 的下一个儿子。
R C
约束条件的子树。