大数据处理技术ppt讲课稿
大数据技术及应用简介PPT课件
随机样本划分的数据块分布
42
大数据逼近式集成学习计算框架
子集Ɗ 子集Ɗ 子集Ɗ
大数据 Ɗ
子集Ɗ
子集Ɗ 子集Ɗ 子集Ɗ
子集Ɗ
计算操作
大数据划分 子集抽样
子集Ɗ
子模型
返回计算新 一批子模型
子集Ɗ
子模型
集成模型Π
子集Ɗ
子模型
子集Ɗ
子模型
子模型计算
子模型加入 Π + {πj´}
集成模型测试 输出模型Π
区域智能数据中心
支持多种终端访问
区域智能数据中心
46
大数据分析平台集群
47
支撑海量数据处理 、
挖掘与分析运算
云计算引擎
Open API
提供数据挖掘平台 与第三方应用系统
的扩展接口
关键技术
数据处理分析流程图形 化
设计数据处理分析流程 自动执行资源调度及优
化 工作流引擎
大数据分析平台
提供海量复杂数据 处理、分析与挖掘
14
• 人工采集
数据采集 • 自动化采集
数据 采集
数据 存储
数据 处理
分析 挖掘
应用
15
中央磁盘存储
数据存储
云存储
数据 采集
数据 存储
数据 处理
分析 挖掘
应用
16
数据处理、转换和融合
数据 采集
数据 存储
数据 处理
分析 挖掘
应用
17
关联分析
数据分析与挖掘
分类模型
聚类分析
数据 采集
数据 存储
数据 处理
基础性战略资源,全面实施促进大数据发展行动,加快推动 数据资源共享开放和开发应用。建设国家大数据平台、数据 中心等基础设施。
大数据培训课件ppt
欧盟《通用数据保护条例》(GDPR)
01
对个人数据的收集、存储和使用进行严格规定,违反者将面临
重罚。
中国《网络安全法》
02
强调保护个人信息安全,对网络运营者、用户等各方责任和义
务进行明确规定。
美国《加州消费者隐私法》(CCPA)
03
赋予消费者对个人信息的更多权利,对企业的数据收集和使用
进行限制。
隐私保护技术与实践案例分享
利用大数据技术对交易数据、客户行为等进行分析,以识别和预防 金融欺诈和洗钱行为。
医疗行业大数据应用实践案例分享
精准医疗与个性化治疗
通过对大量医疗数据的挖掘和分析,为患者提供更精准、个性化 的治疗方案。
疾病预测与预防
通过对历史病例、流行病学数据等进行分析,预测疾病的发生和传 播趋势,为预防措施提供科学依据。
大数据培训课件
汇报人:可编辑
2023-12-22
CATALOGUE
目 录
• 大数据概述 • 大数据处理技术 • 大数据挖掘与分析 • 大数据安全与隐私保护 • 大数据应用实践与案例分析
01
CATALOGUE
大数据概述
大数据的定义与特点
定义
大数据是指数据量巨大、复杂度 高、处理速度快的数据集合。
医疗健康
利用大数据进行疾病预防、诊 断和治疗方案的优化。
商业智能
通过大数据分析,提高企业决 策效率和准确性。
智慧城市
通过大数据实现城市资源优化 配置,提高城市管理效率。
科研领域
大数据在科研领域的应用包括 数据挖掘、知识发现和科研协 作等方面。
02
CATALOGUE
大数据处理技术
数据采集与清洗
数据采集
大数据培训讲义PPT(共 75张)
大数据生态:软件是引擎
大数据技术要解决的问题
企业用以分析的数据越全面,分析的结果就越接近于真实。大数据分析意 味着企业能够从这些新的数据中获取新的洞察力,并将其与已知业务的各 个细节相融合。
大数据技术被设计用于在 成本可承受的条件下,通 过非常快速(velocity) 地采集、发现和分析,从 大量(volumes)、多 类别(variety)的数据 中提取价值(value), 将是IT 领域新一代的技 术与架构。
大数据
主讲人:刘永磊
大数据的定义理解
1
大数据时代的背景
什么是大数据 2
大数据的“4V”特征
3
大数据的构成
大数据时代的背景
半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到 了一个开始引发变革的程度。它不仅使世界充斥着比以往更多的信息,而且其 增长速度也在加快。互联网(社交、搜索、电商)、移动互联网(微博)、物 联网(传感器,智慧地球)、车联网、GPS、医学影像、安全监控、金融(银 行、股市、保险)、电信(通话、短信)都在疯狂产生着数据。
• 统计和分析:A/B test; top N排行榜;地域占比; 海量数据的查询、统计、更新等操作效率低
文本情感分析
• 非结构化数据
• 数据挖掘:关联规则分析;分类;聚类
图片、视频、word、pdf、ppt等文件存储
• 模型预测:预测模型;机器学习;建模仿真
不利于检索、查询和存储
• 半结构化数据
• 非关系数据库
(NoSQL)
• 数据仓库
• 云计算和云存储
• 实时流处理
分布式文件系统
分布式文件系统(Distributed File System)是指文件系统管理 的物理存储资源不一定直接连接在本地节点上,而是通过计算机 网络与节点相连。
大数据培训课件pptx
数据挖掘过程
包括数据准备、数据挖掘、结果评估和应用四个阶段。
数据挖掘任务
分类、聚类、关联规则挖掘、预测等。
常用数据挖掘算法介绍
分类算法
决策树、朴素贝叶斯、支持向量机等。
关联规则挖掘算法
线性回归、逻辑回归、时间序列分析 等。
聚类算法
K-means、层次聚类、DBSCAN等。
预测算法
Apriori、FP-Growth等。
在线教育
大数据和云计算技术使得 在线教育得以普及,学生 可以通过网络随时随地学 习各种课程。
教育评估与改进
通过分析学生的表现和成 绩等数据,教育机构可以 评估教学效果并不断改进 教学方法和课程。
其他行业应用实践
01
智慧城市
大数据和物联网技术被广泛应用于智慧城市建设中,包括交通管理、环
境监测、公共安全等方面。
数据分析方法及应用案例
数据分析方法
描述性统计、推断性统 计、可视化分析等。
应用案例
电商用户行为分析、金 融风险控制、医疗健康
数据分析等。
数据分析工具
Excel、Python、R语言 等。
05
大数据在各行各业应用实践
金融行业应用实践
风险管理与合规
高频交易与算法交易
利用大数据分析技术,金融机构可以 更有效地识别、评估和管理风险,包 括信用风险、市场风险和操作风险等。
存储技术
01
分布式文件系统
HDFS、GFS等
02
NoSQL数据库
HBase、 Cassandra等
03
分布式数据库
MySQL Cluster、 Oracle RAC等
04
云存储技术
Amazon S3、 Google Cloud
大数据处理技术简介(PPT 37张)
本与网民增长等速或超过网民的增速,网络国际出口带宽达到1,182,261.45Mb
学习 · 创造
国内外相关研究
实时计算(数据驱动) VS. 批处理计算(任务驱动)
数据流计算的典型模式之一是不确定数据速率的数据流流入系统,系统处 能力必须与数据流量大小相匹配。 Hadoop(MapReduce)框架为批处理做了高度优化,数据存储在分布式文 系统中,系统典型地通过调度批量任务来操作分布式文件系统静态数据。
数据源 任务1
任务2.1
计算单元3 任务2.1
计算单元2 任务2 任务3.1 任务2.2
任务3.2 基于文件/消息传输的 分布式并行计算
应用 普通集群 云计算 数据流 实时云计算
计算模型与通信机制 基于消息传递的分布式模型 基于文件传输的并行计算模型 基于消息(封装文件)传输的 并行计算
数据规模 TB级/百台 PB级/千台 PB级/千台
3、海量异构的数据(包括文本、图像、声音等)。
大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)
3
学习 · 创造
大数据处理技术的应用
近年来,一种新的数据密集型应用已经得到了广泛的认同,这些应用
括:网络监控、电信数据管理、Web应用、传感检测等等。在这种数据流
据以大量、快速、时变(可能是不可预知)的数据流持续到达,如何对海 动数据建模并处理,产生了一些新的基础性研究问题。
计算模型 MPI
MapReduc
Online MapReduc
11
学习 · 创造
实时计算系统的改造
• • • • •ຫໍສະໝຸດ • • • • • • •
第一类方法,Hadoop改造: [1] Yingyi Bu等在Hadoop MapReduce工作的基础上设计了HaLoop,主要克服了Hadoo 迭代计算时需要设置收敛条件以及每次迭代均需要重新加载数据的缺点; [2] 伯克利大学的Tyson Condie等对Hadoop进行改进,设计了Hadoop Online Prototype 系统,支持连续查询、事件监测以及流处理等功能; [3] Facebook在SIGMOD’ 2011上发表了利用Hbase/Hadoop进行实时处理数据的论文,通 些实时性改造,力图使hadoop批处理计算平台也具备实时计算的能力。 [4] Google在新一代内容索引系统中放弃了MapReduce,替代者是尚不为人知的分布式数据 系统Percolator,Percolator是一种增量处理平台,它能持续更新索引系统,无需从头重新处 遍整个系统。 [5] Wang Lam等开发了类似于Map-reduce框架、专注于快速处理数据的Muppet; 第二类方法,实时云计算系统: [6] MIT等三所高校的研究人员联合研发了第二代分布式流处理系统Borealis; [7] Sheheryar Malik设计了具有良好错误容忍机制的实时云计算系统;Harmeek Singh BFacebook Puma,Twitter Storm,Yahoo! S4 [9] 2011年组织了以实时云计算和虚拟化为主题的国际讨论组会RTSOAA(Real-Time Cloud Computing and Virtualization)。 [10] 2011年度的Hadoop China大会一个热点议题就是数据流计算,在MapReduce计算模型 全球之后,Stream Processing将会是下一个研究热点,无论是在工业界还是学术界。
大数据专题(共43张PPT)
MapReduce广泛应用于大数据处理领域,如日志分析、数据挖掘、机器学习等。
分布式数据库HBase
概述
HBase(Hadoop Database)是一个高可扩展性的列存储系统,构建在Hadoop分布 式文件系统之上。它提供了对大规模结构化数据的随机、实时读写访问能力。
特点
HBase采用列式存储,支持动态扩展,具有良好的伸缩性和高性能。它支持ACID事务, 提供了高可用性和数据一致性保证。
对数据进行分组、汇总等 操作。
Part
04
大数据分析方法与应用
统计分析方法
描述性统计
对数据进行整理和描述, 包括数据的中心趋势、离 散程度、分布形态等。
推论性统计
通过样本数据推断总体特 征,包括参数估计和假设 检验等方法。
多元统计分析
研究多个变量之间的关系, 包括回归分析、因子分析、 聚类分析等。
Hadoop的核心组件之一,为大 数据应用提供了一个高度容错、
可扩展的分布式文件系统。
架构
HDFS采用主从架构,包括一个 NameNode和多个DataNode。 NameNode负责管理文件系统 的元数据,而DataNode负责存
储实际的数据。
特点
HDFS支持大规模数据存储,具 有高度的容错性和可扩展性。它 采用流式数据访问模式,适合处
加密技术
采用加密算法对敏感数据进行加密处理,确保数 据在传输和存储过程中的安全性。
企业如何保障大数据安全
制定完善的大数据安全管理制度 和流程,明确各部门职责和权限。
加强员工安全意识教育和培训, 提高全员大数据安全意识。
加强大数据安全技术研发和投入, 提高安全防护能力和水平。
建立大数据安全应急响应机制, 及时应对和处理安全事件。
大数据分析讲稿ppt教案
一致性
不同来源的数据是否 能够相互匹配和验证 。
03 大数据分析技术
CHAPTER
数据预处理
01
02
03
数据清洗
去除重复、异常、缺失数 据,确保数据质量。
数据转换
将数据从一种格式或结构 转换为另一种格式或结构 ,以便于分析。
数据集成
将多个数据源的数据整合 到一个统一的数据仓库中 。
数据分析方法
特点
大数据分析具有数据量大、处理速度 快、数据类型多样等特点,能够为企 业提供更精准、全面的数据分析结果 ,帮助企业做出更好的决策。
大数据分析的重要性
提高决策效率
大数据分析能够快速处理大量数 据,为企业提供及时、准确的分 析结果,从而提高决策效率和准
确性。
发现潜在机会
通过对数据的深入挖掘和分析,企 业可以发现隐藏在数据中的机会和 趋势,从而制定更具针对性的市场 策略。
大数据伦理、法律与社会责任
总结词
大数据的伦理、法律和社会责任是大数 据发展中不可忽视的重要问题。
VS
详细描述
随着大数据技术的广泛应用,数据隐私、 信息安全、算法公正等问题也日益凸显。 因此,在大数据的发展过程中,需要关注 和解决这些伦理、法律和社会责任问题。 例如,加强数据隐私保护、建立数据安全 标准、推动算法公正等,以确保大数据技 术的健康发展。
以更好地了解客户需求,提高客户满意度和忠诚度,降低营销成本。
03
精准营销工具
精准营销工具包括用户画像、推荐系统、A/B测试等,可以帮助企业实
现个性化推荐、优化广告投放等。
风险管理与控制
风险管理概述
风险管理工具
风险管理是指对企业面临的各种风险 进行识别、评估、控制和监控的过程 。
大数据处理技术ppt讲课稿
大数据处理技术ppt讲课稿科信办刘伟第一节Mapreduce编程模型:1.技术背景:分布式并行计算是大数据(pb)处理的有效方法,编写正确高效的大规模并行分布式程序是计算机工程领域的难题:分布式并行计算是大数据(pb)处理的有效方法,编写正确高效的大规模并行分布式程序是计算机工程领域的难题。
并行计算的模型、计算任务分发、计算机结果合并、计算节点的通讯、计算节点的负载均衡、计算机节点容错处理、节点文件的管理等方面都要考虑。
谷歌的关于mapreduce论文里这么形容他们遇到的难题:由于输入的数据量巨大,因此要想在可接受的时间内完成运算,只有将这些计算分布在成百上千的主机上。
如何处理并行计算、如何分发数据、如何处理错误?所有这些问题综合在一起,需要大量的代码处理,因此也使得原本简单的运算变得难以处理,普通程序员无法进行大数据处理。
为了解决上述复杂的问题,谷歌设计一个新的抽象模型,使用这个抽象模型,普通程序员只要表述他们想要执行的简单运算即可,而不必关心并行计算、容错、数据分布、负载均衡等复杂的细节,这些问题都被封装了,交个了后台程序来处理。
这个模型就是mapreduce。
谷歌2004年公布的mapreduce编程模型,在工业、学术界产生巨大影响,以至于谈大数据必谈mapreduce。
学术界和工业界就此开始了漫漫的追赶之路。
这期间,工业界试图做的事情就是要实现一个能够媲美或者比Google mapreduce更好的系统,多年的努力下来,Hadoop(开源)脱颖而出,成为外界实现MapReduce计算模型事实上的标准,围绕着Hadoop,已经形成了一个庞大的生态系统2. mapreduce的概念:MapReduce是一个编程模型,一个处理和生成超大数据集的算法模型的相关实现。
简单的一句话解释MapReduce就是“任务的分解与结果的汇总”。
MapReduce从它名字上来看就大致可以看出个缘由,两个动词Map和Reduce,“Map(展开)”就是将一个任务分解成为多个任务,“Reduce”就是将分解后多任务处理的结果汇总起来,得出最后的分析结果。
(2024年)大数据介绍pptppt课件
Flink
03
一个流处理和批处理的开源框架,提供了高吞吐、低延迟的数
据处理能力。
8
数据存储与管理技术
2024/3/26
Hadoop HDFS
一个分布式文件系统,设计用来存储和处理大规模数据集,具有 高容错性和高吞吐量。
HBase
一个高可扩展性的列存储系统,用于存储非结构化和半结构化的 稀疏数据。
Cassandra
一个高度可扩展的NoSQL数据库,提供高可用性和无单点故障 的数据存储服务。
9
数据处理与分析技术
SQL与NoSQL数据库
用于数据的存储和查询,包括关系型数据库 (如MySQL、PostgreSQL)和非关系型数 据库(如MongoDB、Redis)。
2024/3/26
数据挖掘与机器学习
通过统计学、计算机视觉、自然语言处理等技术, 从数据中提取有用信息和预测未来趋势。
金融科技
金融机构利用大数据分析进行 风险评估、信用评级、反欺诈 等。
商业智能
通过大数据分析,帮助企业了 解市场趋势、客户需求和行为 模式,为决策提供支持。
2024/3/26
医疗健康
大数据在医疗健康领域的应用 包括疾病预测、个性化医疗、 药物研发等。
物联网
物联网产生的海量数据需要大 数据技术进行处理和分析,以 实现智能化应用。
6
02
大数据技术基础
Chapter
2024/3/26
7
分布式计算技术
2024/3/26
MapReduce
01
一种编程模型,用于大规模数据集的并行计算,将问题拆分为
若干个可以在集群中并行处理的小任务。
Spark
02
大数据分析讲稿ppt教案 (2)
05
大数据挑战与解决方案
数据安全与隐私保护
总结词
数据安全与隐私保护是大数据分析中最重要的挑战之一,需要采取有效的措施来保护数 据的安全和隐私。
详细描述
随着大数据的普及,数据安全和隐私保护问题越来越突出。为了确保数据的安全,需要 采取一系列的安全措施,如数据加密、访问控制和安全审计等。同时,为了保护用户的 隐私,需要遵循隐私法规和政策,如欧盟的通用数据保护条例(GDPR),以避免数据
分类和预测
利用已知数据进行训练,对未知数据进行分类或预测。
机器学习
监督学习
利用已知结果的数据进行训练,对未知结果 的数据进行预测。
无监督学习
对没有标签的数据进行学习,发现数据的内 在结构和关系。
强化学习
通过与环境的交互进行学习,以最大化奖励 或最小化惩罚。
数据可视化
图表
使用柱状图、折线图、饼图等基本图表展示 数据。
泄露和滥用。
数据质量与准确性
总结词
数据质量与准确性是大数据分析的关键因素,需要采取有效的数据清洗和校验措施来提高数据的质量和准确性 。
详细描述
在大数据分析中,数据质量参差不齐,需要进行数据清洗和校验。数据清洗主要包括去除重复数据、处理缺失 值和异常值等。数据校验则主要是通过数据验证规则和业务规则等来确保数据的准确性和一致性。这些措施能 够提高数据的质量和准确性,从而为后续的数据分析提供更好的基础。
总结词
商业智能通过数据可视化工具呈现分析结果,便于理解和 使用。
详细描述
商业智能通常通过数据可视化工具(如仪表盘、报表、图 表等)呈现分析结果,使得分析结果更加直观易懂,方便 企业决策者快速了解业务状况,做出更好的决策。
总结词
大数据分析讲稿PPT
何谓大?
(数据度量)
1Byte = 8 Bit 1 KB = 1,024 Bytes = 8192 bit 1 MB = 1,024 KB = 1,048,576 Bytes 1 GB = 1,024 MB = 1,048,576 KB 1 TB = 1,024 GB = 1,048,576 MB 1 PB = 1,024 TB = 1,048,576 GB 1 EB = 1,024 PB = 1,048,576 TB 1 ZB = 1,024 EB = 1,048,576 PB 1 YB = 1,024 ZB = 1,048,576 EB 1 BB = 1,024 YB = 1,048,576 ZB 1 NB = 1,024 BB = 1,048,576 YB 1 DB = 1,024 NB = 1,048,576 BB
基于内部应用多年的机器学习算法库,提供实用 的行业大数据解决方案
深度学习
针对海量数据提供的云端托管的分布式深度学习 平台,助力客户轻松使用深度学习技术,打造智 能应用和服务
自然语言
基于自然语言处理技术,对人类自然语言进行分 析、理解、生成、翻译,实现自然的人机对话交 互
大数据的发展趋势
云计算的深度结合:大数据离不开云处理,
斯诺登的爆料引起一片哗然,根据他提供的资料,被卷入“棱镜门”事件的公司包括微 软、雅虎、谷歌、苹果、Facebook等9大IT业巨头。在“棱镜门”事件开始发酵之后, 这些公司先是赶紧出面否认与美国政府的监视项目进行过合作,并相继发表声明,呼吁 政府采取更透明态度,以证明他们的“清白”。
大数据给信息安全带来新挑战
海量
“大数据”是需要新处理模 式才能具有更强的决策力、 洞察发现力和流程优化能力。
大数据技术概述ppt
大数据的发展
大数据处理技术的不断发展,如分布式计算、云计算、数据挖掘等,为大数据的应用提供了更加广阔的空间。
大数据已经成为企业和政府部门的重要资源,能够为其决策提供更加准确、及时的数据支持。
大数据还催生了很多创新性的应用,如个性化推荐、智能客服、精准营销等,为人们的生产生活带来了便利。
大数据的架构与技术
大数据的产生
社交媒体、电子商务、在线视频等互联网应用产生了大量的数据。
互联网
企业数据
移动设备
物联网
企业通过各种业务活动(如销售、财务、人力资源等)积累了大量的数据。
智能手机、平板电脑等移动设备的使用越来越普遍,产生了大量的位置数据、用户行为数据等。
物联网设备(如智能家居、智能城市等)产生的数据也属于大数据的范畴。
预测拥堵
通过对历史交通数据和实时交通数据进行大数据分析,预测交通拥堵地点和时间,提前制定应对措施。
智能交通
通过大数据分析借款人的信用历史、财务状况、社交行为等信息,更精准地评估借款人的信用风险。
金融行业
风险控制
通过对金融市场的历史数据、实时数据和宏观经济数据进行大数据分析,预测市场趋势,为企业制定更为合理的投资策略。
分布式文件系统
如HBase、Cassandra等,具有高性能、高并发访问能力,适用于存储半结构化和非结构化数据
NoSQL数据库
如MySQL、PostgreSQL等,具有高可靠性、高性能,适用于存储结构化数据
关系型数据库
大数据处理技术
大数据处理技术是指对海量数据进行处理和分析,以便从数据中提取有价值的信息
互联网与电子商务
用户行为分析
根据用户的兴趣、偏好和历史行为,进行个性化推荐,提高用户满意度和粘性。
大数据培训课件ppt
详细描述
总结词:城市管理、政策制定、社会治理
详细描述
政府机构利用大数据分析城市运行状况、交通流量和环境质量,提高城市管理的科学性和精细化水平。
大数据可以为政策制定提供实证依据,评估政策实施效果,优化资源配置和提高公共服务的效率。
通过大数据分析社会舆情、犯罪率和公共安全事件等,有助于提高社会治理的针对性和有效性。
数据存储
去除重复、无效、错误数据,对缺失数据进行填充或删除,确保数据质量。
将不同来源的数据进行整合,形成统一的数据视图,便于后续的数据分析和挖掘。
数据整合
数据清洗
利用机器学习、统计学等方法,从大量数据中发现隐藏的模式和规律。
数据挖掘
运用可视化工具和统计分析方法,对数据进行深入分析,揭示数据背后的意义和趋势。
大数据可以帮助企业实时监控库存情况,预测未来需求,优化库存管理,避免缺货或积压现象。
总结词:提升营销效果、优化库存管理、个性化推荐
通过大数据分析疾病流行趋势和药物疗效,有助于药物研发和临床试验,加速新药上市进程。
大数据可以实时监测患者的生理指标和健康状况,实现远程监控和预警,提高医疗服务质量。
医疗机构通过大数据分析患者的症状、病史和治疗反应,为医生提供辅助诊断依据。
大数据培训课件
目录
contents
大数据概述大数据处理技术大数据应用案例大数据安全与隐私保护大数据未来发展展望
大数据概述
CATALOGUE
01
总结词
大数据是指数据量巨大、类型多样、处理复杂的数据集合,具有4V(体量、速度、多样性和价值)的特点。
要点一
要点二
详细描述
大数据通常指数据量达到TB级别以上的数据集合,这些数据可能来自各种不同的源,包括社交媒体、企业数据库、物联网设备等。大数据的特点可以概括为4V,即体量(Volume)、速度(Velocity)、多样(Variety)和价值(Value)。体量指数据的庞大数量,速度指数据处理的速度快,多样指数据的种类繁多,价值指从大数据中挖掘出的有用信息。
大数据技术及应用PPT课件
.
17
大数据技术介绍
何为大数据
技术能力视角
大数据指的是规模超过现有数据库工具获取、 存储、管理和分析能力的数据集额,并同时强 调并不是超过某个特定数量级的数据集才是大 数据
大数据内涵视角
大数据是具备海量、高速、多样、可变等特征 的多维数据集,需要通过可伸缩的体系结构实 现高效的存储、处理和分析。
.
• 实时数据流处理的要求,是区别大数 据引用和传统数据仓库技术,BI技术 的关键差别之一;
• 1s 是临界点,对于大数据应用而言, 必须要在1秒钟内形成答案,否则处 理结果就是过时和无效的;
.
30
中央政府对大数据的重视程度
习近平 政府管理不仅要讲究策略,还要讲究手段,比如大数据技术
的应用,2014年3月8日 “大数据”首次写入政府工作报告
该是一种什么样的体验。(其实你的信息,什么时候想要什么东西都
已经被商户预测啦,已经提前将商品运往目的地。甚至你路过的广告
屏,视频网站,包括使用的APP都将引导你消费。)
3.数据足够大就称呼其为大数据吗?(其实不然,关键在于其中承载
的信息。数据处理之后才可以称之为信息或者叫做知识。其实大数据
可以这样理解,当数据增长速度超过了计算机处理能力的增长速度,
大量的不相关信息;对未来趋势与模式的可预测分析;深度 复杂分析(机器学习、人工智能Vs传统商务智能)
实时分析而非批量式分析;数据输入、处理与丢弃; 立竿见影而非事后见效
.
26
大数据技术
Volume
1Bity
1K B
1 M B
1G B
1T B
1P B
1E B
1Z B
1Y B
1PB相当于50%的全美学术研究图书馆藏书信息内容 5EB相当于至今全世界人类所讲过的话语 1ZB如同全世界海滩上的沙子数量总和 1YB相当于7000位人类体内的微细胞总和
大数据技术入门ppt课件模板
MLlib:提供机器学 习算法库,支持分 类、回归、聚类等 常见机器学习任务
Flink生态系统
01
Flink是一个开源的分布式流处理 02
Flink生态系统包括Flink Core、
框架,用于处理大规模、低延迟的
Flink SQL、Flink Streaming、
数据流。
Flink Machine Learning等组件。
和隐私保护得到有效保障
数据可视化与交互技术的创新发展
数据可视化:将复杂数据转化为直观易懂的图表, 便于分析与决策
交互技术:通过人机交互,实现数据与信息的实 时交互与反馈
创新点:结合大数据技术,实现数据可视化与交 互技术的智能化、个性化和实时化
应用领域:广泛应用于金融、医疗、教育、交通 等领域,提高工作效率和决策质量
实时数据流
02
StormSQL:基 于Storm的实时 计算工具,支持
SQL查询
03
应用场景:实时 数据处理、实时 分析、实时监控
等
04
特点:高可用性、 高扩展性、低延
迟、高吞吐量
HBase、Cassandra等分布式存储系统
HBase:基于 Hadoop的分布式数 据库,适用于大规模 结构化数据存储
数据处理:金融风控预警系统需 要对采集到的数据进行清洗、转 换、整合等处理,为风险评估提 供高质量的数据。
预警机制:金融风控预警系统需 要根据风险评估结果,设定预警 阈值,一旦风险超过阈值,系统 将自动发出预警信息,提醒相关 部门采取措施。
智能交通管理系统
01
实时监控:通过大数据技术, 实时监控道路交通状况,提 高实时性:大数据技术需要处理海量数据,实时性 是提高数据处理效率的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据处理技术ppt讲课稿科信办刘伟第一节Mapreduce编程模型:1.技术背景:分布式并行计算是大数据(pb)处理的有效方法,编写正确高效的大规模并行分布式程序是计算机工程领域的难题:分布式并行计算是大数据(pb)处理的有效方法,编写正确高效的大规模并行分布式程序是计算机工程领域的难题。
并行计算的模型、计算任务分发、计算机结果合并、计算节点的通讯、计算节点的负载均衡、计算机节点容错处理、节点文件的管理等方面都要考虑。
谷歌的关于mapreduce论文里这么形容他们遇到的难题:由于输入的数据量巨大,因此要想在可接受的时间内完成运算,只有将这些计算分布在成百上千的主机上。
如何处理并行计算、如何分发数据、如何处理错误?所有这些问题综合在一起,需要大量的代码处理,因此也使得原本简单的运算变得难以处理,普通程序员无法进行大数据处理。
为了解决上述复杂的问题,谷歌设计一个新的抽象模型,使用这个抽象模型,普通程序员只要表述他们想要执行的简单运算即可,而不必关心并行计算、容错、数据分布、负载均衡等复杂的细节,这些问题都被封装了,交个了后台程序来处理。
这个模型就是mapreduce。
谷歌2004年公布的mapreduce编程模型,在工业、学术界产生巨大影响,以至于谈大数据必谈mapreduce。
学术界和工业界就此开始了漫漫的追赶之路。
这期间,工业界试图做的事情就是要实现一个能够媲美或者比Google mapreduce更好的系统,多年的努力下来,Hadoop(开源)脱颖而出,成为外界实现MapReduce计算模型事实上的标准,围绕着Hadoop,已经形成了一个庞大的生态系统2. mapreduce的概念:MapReduce是一个编程模型,一个处理和生成超大数据集的算法模型的相关实现。
简单的一句话解释MapReduce就是“任务的分解与结果的汇总”。
MapReduce从它名字上来看就大致可以看出个缘由,两个动词Map和Reduce,“Map(展开)”就是将一个任务分解成为多个任务,“Reduce”就是将分解后多任务处理的结果汇总起来,得出最后的分析结果。
mapreduce成功的最大因素是它简单的编程模型。
程序员只要按照这个框架的要求,设计map和reduce函数,剩下的工作,如分布式存储、节点调度、负载均衡、节点通讯、容错处理和故障恢复都由mapreduce框架(比如hadoop)自动完成,设计的程序有很高的扩展性。
所以,站在计算的两端来看,与我们通常熟悉的串行计算没有任何差别,所有的复杂性都在中间隐藏了。
它让那些没有多少并行计算和分布式处理经验的开发人员也可以开发并行应用,开发人员只需要实现map 和reduce 两个接口函数,即可完成TB级数据的计算,这也就是MapReduce的价值所在,通过简化编程模型,降低了开发并行应用的入门门槛,并行计算就可以得到更广泛的应用。
3.mapreduce的编程模型原理开发人员用两个函数表达这个计算:Map和Reduce,首先创建一个Map函数处理一个基于key/value pair的数据集合,输出中间的基于key/value pair的数据集合,然后再创建一个Reduce函数用来合并所有的具有相同中间key值的中间value值,就完成了大数据的处理,剩下的工作由计算机集群自动完成。
即:(input)<k1, v1> ====> map(k1,v1) ->list(k2,v2) ===> combine---> <k2, v2[List]> => reduce(k2,list(v2)) ->list(v2) >(output)一共分为map(分解)shuffle(洗牌)reduce(归并)三个阶段。
map阶段,每个节点调用程序员编写的map函数,作用于每一个在此节点存放的键值对,map函数的输出同样是一些键值对,中间结果进入shuffle阶段,shuffle系统自动完成,程序员无须也无法控制,shuffle阶段会把所有中间结果里的键相同的所有键-值对通过网络传递给同一个目标节点。
在最后的reduce阶段,每个节点会对所有键相同的键值对调用程序员编写的reduce函数,输出最终结果。
reduce函数也可以选择再次输出一些键值对,从而可以启动新一轮的mapreduce过程,如此往复。
示例1:WordCount计算一个大的文档集合中每个单词出现的次数,下面是伪代码段:map(String key, String value):// key: document name// value: document contentsfor each word w in value:EmitIntermediate(w, “1″);reduce(String key, Iterator values):// key: a word// values: a list of countsint result = 0;for each v in values:result += ParseInt(v);Emit(AsString(result));Map函数输出文档中的每个词、以及这个词的出现次数(在这个简单的例子里就是1)。
Reduce函数把Map函数产生的每一个特定的词的计数累加起来。
4.mapreduce工作流程红线中间部分是shuffle部分,计算机自动完成,但是我们必须理解shuffle做了什么,我们才能正确的理解map的结果和reduce的输入之间的关系。
Map阶段:数据经过分片化成M个数据集,每个数据集由一个maper节点经过map函数处理成key-value对形式的数据集。
Shuffle阶段:map输出的结果放在maper节点本地内存缓存区,缓存区先按照key进行分区(如果有R个reducer,hash(key) mod R分成R个分区,初步划分,分区是排序的,分区内对key排序(排序后可附加combiner合并操作,减少写磁盘数据量),缓冲区快要溢出时,溢写文件,多个溢写文件合并,合并过程再次排序(排序后可附加combiner合并操作),最后形成一个已经分区的、已经排序(对key的排序)的文件。
Reduce端会把属于本区的数据取(fetch)到内存,进行合并,合并过程再次排序,缓冲区快要溢出时,溢写文件,多个溢写文件合并,合并过程再次排序,合并为更大的排序文件,最终实现reduce输入数据是经过排序(对key的排序)的数据。
其实不管在map端还是reduce端,MapReduce都是反复地执行排序,合并操作,所以说:排序是mapreduce的灵魂。
Reduce阶段:最后一次合并的数据总是直接送到Reduce 函数那里,Reduce 函数会作用在排序输入的每一个key-list(value)上,最后的输出key-value对被直接写到HDFS上(分布式文件系统)。
有R个reduce任务,就会有R个最终结果,很多情况下这R个最终结果并不需要合并成一个最终结果,因为这R个最终结果可以作为另一个计算任务的输入,开始另一个并行计算任务。
这就形成了上面图中多个输出数据片段(HDFS副本)。
5.mapreduce的局限实验人员发现,一个mapreduce任务的瓶颈往往在中间的shuffle阶段,特别是系统中节点数量多,并发任务多的时候,原因在于:map和reduce阶段的各节点都是独立工作,有很高的并行性;shuffle阶段各节点需要交互,共享网络带宽。
故而大数据算法的瓶颈在于数据的移动。
为此,在设计mapreduce算法的时候,需要尽可能减少中间结果,在map 和reduce阶段每个节点多做一些工作。
但是编程模型的简单,也大大限制了程序员的自由度,很多较复杂的任务难以完成,这是mapreduce的最大的弱点。
此外,还存在如下问题:1启动开销大,简单任务也要尽力map-shuffle-redcuce三个阶段,无法实时响应,2只能处理静态数据,对于变化快的数据无能为力,3mapreduce的系统实现是谷歌的机密,据说2007年谷歌mapreduce版本比2012年hadoop快一个数量级。
所以突破上述的的三个方面的限制,成为学术界和工业界研究热点,比如有人尝试把rmdb与mapreduce结合起来,解决编程模式简单的局限,谷歌自己有dremel系统可以用于大规模数据分析和查询的实事化,但技术细节没有公布。
Hadoop的mapreduce框架在2013年升级mapreduceV2,yarn。
第二节hdfs经典漫画讲解HDFS原理分布式文件系统比较出名的有HDFS 和 GFS,其中HDFS比较简单一点。
HDFS和GFS都是专门为对应的MapReduce框架设计的DFS,因此设计上的一些特点也是为了适应MapReduce计算环境的需要。
HDFS设计:1)运行于商用硬件集群上:硬件错误是常态而不是异常。
错误检测并快速自动恢复是HDF S的最核心设计目标。
2)流式数据访问。
运行在HDFS上的应用主要是以流式读为主,做批量处理;更注重数据访问的高吞吐量。
3)超大规模数据集。
HDFS的一般企业级的文件大小可能都在TB级别或者PB级别,支持大文件存储,而且提供整体上高的数据传输带宽,一个单一的HDFS实例应该能支撑数以千万计的文件,并且能在一个集群里扩展到数百个节点。
4)简单一致性模型。
HDFS的应用程序一般对文件实行一次写、多次读的访问模式。
5)移动计算比移动数据更简单。
对于大文件来说,移动数据比移动计算的代价要高。
操作海量数据时效果越加明显,这样可以提高系统的吞吐量和减少网络的拥塞。
6)异构软硬平台间的可移植性。
这种特性便于HDFS作为大规模数据应用平台的推广。
1、三个部分: 客户端、nameserver(可理解为主控和文件索引,类似linux的inode)、datanode(存放实际数据)HDFS集群有两类节点,并以管理者-工作者模式运行,即:一个namenode(管理者)和多个datanode(工作者)。
namenode管理文件系统的命名空间(管理元数据),他维护着文件系统树以及整棵树内所有的文件和目录,这些信息以两个文件形式永久保存在本地磁盘上:命名空间镜像文件fsima ge和编辑日志文件editlog。
namenode也记录着每个文件中各个块所在的数据节点信息,但他并不永久保存块的位置信息,因为这些信息会在系统启动的时候由数据节点重新建立。
datanode是文件系统的工作节点(存储实际数据),他们根据需要存储并检索数据块,并定期向namenode发送他们所存储的块的列表。
客户端联系NameNode以获取文件的元数据,而真正的文件I/O操作是直接和DataNode进行交互的。