2019- 2020学年福州时代中学中考数学模拟考试(含答案)
2020年福建省中考数学模拟试题含答案
2019-2020学年度福建省初中毕业学业考试试卷数 学(满分:150分;考试时间:120分钟)友情提示:请把所有答案填写(涂)到答题卡上!请不要错位、越界答题!!注意:在解答题中,凡是涉及到画图,可先用铅笔画在答题卡上,后必须用黑色签字笔.....重描确认,否则无效.一、选择题(共10小题,每小题4分,满分40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂)1.﹣2是2的( )A .平方根B .倒数C .绝对值D .相反数 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .题号一 二三 四 五 六 总分得分学校 班级 姓名 考号3.如图所示,该几何体的俯视图是( )4.将直尺和直角三角板按如图方式摆放,已知∠1=30°,则∠2的大小是( )A .30°B .45°C .60°D .65° 5.在一个不透明的盒子里有2个红球和n 个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n 的值为( )A .3B .5C .8D .10 6.估算27-2的值( )A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间7.下列运算结果正确的是( )A. (2x 3)2=4x 6B.(-x )-1=x1C. 326x x x =÷D.63222a a a =•-8.自然数4,5,5,x ,y 从小到大排列后,其中位数为4,如果这组数据唯一的众数是5,那么,所有满足条件的x ,y 中,x+y 的最大值是( )A .3B .4C .5D .69.如图,已知ABC ∆的三个顶点均在格点上,则cos A 的值为( )3.3A5.5B 23.3C25.5D1,10m x 1n x 2,y 1,m n m ny m n m n+-≥⎧=+=+=⎨-+⎩.已知,﹣,若规定则的最小值为( )<A .0B . 1C .﹣1D . 2 二、填空题(本大题共6小题,每小题4分,共24分.) 11.计算:218-=_______ .12.位于我国东海的台湾岛是我国第一大岛,面积约36000平方千米,数36000用科学记数法表示为 .13.九年级1班9名学生参加学校的植树活动,活动结束后,统计每人植树的情况,植了2棵树的有5人,植了4棵树的有3人,植了5棵树的有1人,那么平均每人植树 棵.图2CAB14.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是 .15.如图,在方格纸中,每个小方格都是边长为1cm的正方形,△ABC 的三个顶点都在格点上,将△ABC绕点O逆时针旋转90°后得到△A′B′C′(其中A、B、C的对应点分别为A′,B′,C′,则点B在旋转过程中所经过的路线的长是cm.(结果保留π)16.如图,定点A(﹣2,0),动点B在直线y=x上运动,当线段AB 最短时,点B的坐标为.三、解答题(本大题有9小题,8+8+8+8+8+10+10+12+14=86分.)17.化简:22227332(21)x y xy x y xy--+-+,并说出化简过程中所用到的运算律.23218.2112.323x xxx>-⎧⎪-⎨≥-⎪⎩,解不等式组:19.如图,AB∥DE,AB=DE,BF=EC.(1)求证:AC∥DF;(2)若CF=1个单位长度,能由△ABC经过图形变换得到△DEF吗若能,请你用轴对称、平移或旋转等描述你的图形变换过程;若不能,说明理由.20.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.21.为倡导“低碳出行”,环保部门对某城市居民日常出行使用交通方式的情况进行了问卷调查,将调查结果整理后,绘制了如下不完整的统计图,其中“骑自行车、电动车”所在扇形的圆心角是162°.请根据以上信息解答下列问题:(1)本次调查共收回多少张问卷(2)补全条形统计图,在扇形统计图中,“其他”对应扇形的圆心角是度;(3)若该城市有32万居民,通过计算估计该城市日常出行“骑自行车、电动车”和“坐公交车”的共有多少人22.如图,在△ABC中,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC于点E,且∠BDE=∠A.(1)判断DE与⊙O的位置关系并说明理由;(2)若AC=16,tan A=,求⊙O的半径.23.某中学要进行理、化实验加试,需用2017届九年级两个班级的学生整理实验器材.已知一班单独整理需要30分钟完成.(1)如果一班与二班共同整理15分钟后,一班另有任务需要离开,剩余工作由二班单独整理15分钟才完成任务,求二班单独整理这批实验器材需要多少分钟(2)如果一、二的工作效率不变,先由二班单独整理,时间不超过20分钟,剩余工作再由一班独立完成,那么整理完这批器材一班至少还需要多少分钟24.如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少m(x+1)(x﹣3)(m 25.如图,已知经过点D(2,3)的抛物线y=3为常数,且m>0)与x轴交于点A、B(点A位于B的左侧),与y 轴交于点C.(1)填空:m的值为,点A的坐标为;(2)根据下列描述,用尺规完成作图(保留作图痕迹,不写作法):连接AD,在x轴上方作射线AE,使∠BAE=∠BAD,过点D作x轴的垂线交射线AE于点E;(3)动点M、N分别在射线AB、AE上,求ME+MN的最小值;(4)t是过点A平行于y轴的直线,P是抛物线上一点,过点P作t 的垂线,垂足为点G,请你探究:是否存在点P,使以P、G、A为顶点的三角形与△ABD相似若存在,求出点P的坐标;若不存在,说明理由.数学参考答案一、选择题二、填空题π16.11. 2212. 3.6×10413. 3 14.06015.32(﹣1,﹣1)三、解答题17.解原式=2222+---+……………………………………2分x y x y xy xy743232=2222++--+-+……………………x y x y xy xy(74)(32)(32)………4分=22--. ………………………x y xy1151……………6分∴化简过程中所用到的运算律有分配律、加法交换律、加法结合律. …8分18.解:由①得,x<2 ,……………………………………………………………3分由②得,x≥﹣2 ,……………………………………………………………6分∴不等式组的解集为:﹣2≤x<2 .………………………………………………8分19.解:(1)∵AB∥DE,∴∠B=∠E,……………………………………………1分∵BF=CE,∴BF﹣FC=CE﹣FC,即BC=EF,∵在△ABC和△DEF中,,, AB DEB E BC EF=⎧⎪∠=∠⎨⎪=⎩∴△ABC≌△DEF (SAS), (4)分∴∠ACB=∠DFE,∴∠ACF=∠DFC,∴AC∥DF;…………………………………………………………………………6分(2)△ABC先向右平移1个单位长度,再绕点C旋转180°即可得到△DEF.………8分20. 解:(1)如图所示:△A1B1C1,即为所求;……………………………………4分(2)如图所示:△A2B2C2,即为所求.……………………………………8分21.解:(1)本次调查的学生数是:80÷40%=200(人),即本次调查共收回200张问卷;…3分(2)25112.5%==,162÷360=45%,200×45%=90,8081﹣40%﹣45%﹣%=%,200×%=5,360°×%=9°,…………………………6分(3)32万×(40%+45%)=万.……………………………………8分22.解:(1)DE与⊙O相切.理由如下:连接DO,BD,如图,∵∠BDE=∠A,∠A=∠ADO,∴∠ADO=∠EDB,∵AB为⊙O的直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ODB+∠EDB=90°,即∠ODE=90°,∴OD⊥DE,∴DE为⊙O的切线;………………………5分(2)∵∠BDE=∠A,∴∠ABD=∠EBD,AC=8,而BD⊥AC,∴△ABC为等腰三角形,∴AD=CD=12在Rt△ABD 中,∵3tan 4BD A AD ==, ∴BD=34×8=6, ∴228610,AB =+= ∴⊙O 的半径为5.………………………………………………………………………10分23.解:(1)设二班单独整理这批实验器材需要x 分钟,则111515130x x++=(),解得x=60. 经检验,x=60是原分式方程的根.答:二班单独整理这批实验器材需要60分钟; ……………………………………5分(2)方法一:设一班需要m 分钟,则2013060m +≥,解得m≥20, 答:一班至少需要20分钟. 方法二:设一班需要m 分钟,则2013060m +=,解得m=20. 答:一班至少需要20分钟. ……………………………………………………………10分24.解:(1)DF=DE .理由如下:如图1,连接BD .∵四边形ABCD 是菱形, ∴AD=AB.又∵∠A=60°, ∴△ABD 是等边三角形,∴AD=BD,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°,∴∠ADF=∠BDE.∵在△ADF 与△BDE 中,,ADF BDE AD BDA DBE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF≌△BDE(ASA ),∴DF=DE;……………………………………4分 (2)DF=DE .理由如下:如图2,连接BD .∵四边形ABCD 是菱形,∴AD=AB. 又∵∠A=60°, ∴△ABD 是等边三角形, ∴AD=BD,∠ADB=60°, ∴∠DBE=∠A=60° ∵∠EDF=60°, ∴∠ADF=∠BDE.∵在△ADF 与△BDE 中,,ADF BDEAD BDA DBE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF≌△BDE(ASA ),∴DF=DE;……………………………………8分(3)由(2)知,△ADF≌△BDE.则S △ADF =S △BDE ,AF=BE=x .依题意得:2BEF ABD 21133y S S 2x xsin6022sin60x 12233y x 1∆∆=+=+︒+⨯⨯︒=++=++()().即().∵34>0, ∴该抛物线的开口方向向上, ∴当x=0即点E 、B 重合时,y 最小值=3.……………………………………12分 25.解:(1)∵抛物线y=3m(x+1)(x ﹣3)经过点D (2,3-),∴3m =,把3m =代入y=3m(x+1)(x ﹣3),得y=33(x+1)(x ﹣3),即23233y x x =--; 令y=0,得(x+1)(x ﹣3)=0, 解得x=﹣1或3,∴A(﹣1,0),B (3,0);………………………………3分 (2)如图1所示; ……………………………………6分 (3)过点D 作射线AE 的垂线,垂足为N ,交AB于点M ,设DE 与x 轴交于点H ,如图2,由(1)(2)得点D 与点E 关于x 轴对称, ∴MD=ME,∵AH=3, DH=3, ∴AD=23,∴∠BAD=∠BAE=30°, ∴∠DAN=60°,∴sin∠DAN=DNAD , ∴sin60°=23DN , ∴DN=3, ∵此时DN 的长度即为ME+MN 的最小值,∴ME+MN 的最小值为3;……………………………………8分 (4)假设存在点P ,使以P 、G 、A 为顶点的三角形与△ABD 相似,如图3,∵P 是抛物线上一点,∴设点P 坐标(x ,2323333x x --); ∴点G 坐标(-1,2323333x x --),∵A(﹣1,0),B(3,0),D(2);∴AB=4,BD=2,∴△ABD为直角三角形的形状,△ABD与以P、G、A为顶点的三角形………………10分分两种情况:①当△ABD∽△PAG时,∴BD AD=,AG PG∴2(x+1)=2x x--,解得x1=4,x2=﹣1(舍去),∴P(4,;…………………………………………………………………………12分②当△ABD∽△APG时,∴BD AD=,PG AG∴x+1)=22x x--,解得x1=6,x2=﹣1(舍去),∴P(6,;)或(6,∴点P坐标(4,3.…………………………………………………………………………………14分。
福建省福州市2019-2020学年第四次中考模拟考试数学试卷含解析
福建省福州市2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列二次根式中,是最简二次根式的是( ) A .48B .22x y +C .15D .0.32.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元B .赔了10元C .赚了50元D .不赔不赚3.已知二次函数2 45y x x =-++的图象如图所示,若()1 3A y -,,()()2301B y C y ,,,是这个函数图象上的三点,则123y y y ,,的大小关系是( )A .123 y y y <<B .213 y y y <<C .312 y y y <<D .132y y y <<4.下列各式计算正确的是( ) A .a 2+2a 3=3a 5B .a•a 2=a 3C .a 6÷a 2=a 3D .(a 2)3=a 55.对于反比例函数y=﹣,下列说法不正确的是( ) A .图象分布在第二、四象限 B .当x >0时,y 随x 的增大而增大 C .图象经过点(1,﹣2)D .若点A (x 1,y 1),B (x 2,y 2)都在图象上,且x 1<x 2,则y 1<y 26.如图,⊙O 的直径AB=2,C 是弧AB 的中点,AE ,BE 分别平分∠BAC 和∠ABC ,以E 为圆心,AE 为半径作扇形EAB ,π取3,则阴影部分的面积为( )A 1324﹣4 B .2﹣4C .6﹣524D 325-7.下列各数中,最小的数是()A.﹣4 B.3 C.0 D.﹣28.若M(2,2)和N(b,﹣1﹣n2)是反比例函数y=kx的图象上的两个点,则一次函数y=kx+b的图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限9.下列天气预报中的图标,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.10.小颖随机抽样调查本校20名女同学所穿运动鞋尺码,并统计如表:尺码/cm 21.5 22.0 22.5 23.0 23.5 人数 2 4 3 8 3学校附近的商店经理根据统计表决定本月多进尺码为23.0cm的女式运动鞋,商店经理的这一决定应用的统计量是()A.平均数B.加权平均数C.众数D.中位数11.下列计算正确的是().A.(x+y)2=x2+y2B.(-12xy2)3=-16x3y6C.x6÷x3=x2D.2(2)=212.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是()A. B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.点A(a,b)与点B(﹣3,4)关于y轴对称,则a+b的值为_____.14.某市居民用电价格如表所示:用电量不超过a 千瓦时 超过a 千瓦时的部分 单价(元/千瓦时)0.50.6小芳家二月份用电200千瓦时,交电费105元,则a=______.15.如图,在平面直角坐标系xOy 中,A (-2,0),B (0,2),⊙O 的半径为1,点C 为⊙O 上一动点,过点B 作BP ⊥直线AC ,垂足为点P ,则P 点纵坐标的最大值为 cm .16.如图,已知抛物线和x 轴交于两点A 、B ,和y 轴交于点C ,已知A 、B 两点的横坐标分别为﹣1,4,△ABC 是直角三角形,∠ACB=90°,则此抛物线顶点的坐标为_____.17.因式分解:3x 2-6xy+3y 2=______.18.如图,以扇形OAB 的顶点O 为原点,半径OB 所在的直线为x 轴,建立平面直角坐标系,点B 的坐标为(2,0),若抛物线21y x k 2=+与扇形OAB 的边界总有两个公共点,则实数k 的取值范围是 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:补全条形统计图;求扇形统计图扇形D 的圆心角的度数;若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?20.(6分)如图,在平面直角坐标系中,点 A 和点 C 分别在x 轴和 y 轴的正半轴上,OA=6,OC=4,以 OA ,OC 为邻边作矩形 OABC , 动点 M ,N 以每秒 1 个单位长度的速度分别从点 A 、C 同时出发,其中点 M 沿 AO 向终点 O 运动,点 N 沿 CB 向终点 B 运动,当两个动点运动了 t 秒时,过点 N 作NP ⊥BC ,交 OB 于点 P ,连接 MP .(1)直接写出点 B 的坐标为 ,直线 OB 的函数表达式为 ;(2)记△OMP 的面积为 S ,求 S 与 t 的函数关系式()06t <<;并求 t 为何值时,S 有最大值,并求出最大值.21.(6分)如图,AD 是⊙O 的直径,AB 为⊙O 的弦,OP ⊥AD ,OP 与AB 的延长线交于点P ,过B 点的切线交OP 于点C .求证:∠CBP=∠ADB .若OA=2,AB=1,求线段BP 的长.22.(8分)如图,AB 是⊙O 的直径,BE 是弦,点D 是弦BE 上一点,连接OD 并延长交⊙O 于点C ,连接BC ,过点D 作FD ⊥OC 交⊙O 的切线EF 于点F . (1)求证:∠CBE =12∠F ; (2)若⊙O 的半径是3D 是OC 中点,∠CBE =15°,求线段EF 的长.23.(8分)解不等式组223252x x x x ≤+⎧⎨-≤+⎩①②,请结合题意填空,完成本题的解答.(1)解不等式①,得; (2)解不等式②,得 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式的解集为.24.(10分)(感知)如图①,四边形ABCD 、CEFG 均为正方形.可知BE=DG . (拓展)如图②,四边形ABCD 、CEFG 均为菱形,且∠A=∠F .求证:BE=DG .(应用)如图③,四边形ABCD 、CEFG 均为菱形,点E 在边AD 上,点G 在AD 延长线上.若AE=2ED ,∠A=∠F ,△EBC 的面积为8,菱形CEFG 的面积是_______.(只填结果)25.(10分)如图,△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 相交于点D ,与CA 的延长线相交于点E ,过点D 作DF ⊥AC 于点F .(1)试说明DF 是⊙O 的切线; (2)若AC=3AE ,求tanC .26.(12分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座AE ⊥直线L 且25AE cm =,手臂60AB BC cm ==,末端操作器35CD cm =,AF P 直线L .当机器人运作时,45,75,60BAF ABC BCD ∠=︒∠=︒∠=︒,求末端操作器节点D 到地面直线L 的距离.(结果保留根号)27.(12分)计算:(1-n)03|+(-13)-1+4cos30°.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式判断即可.【详解】A483,不符合题意;B22x y是最简二次根式,符合题意;C 155,不符合题意;D0.330,不符合题意;故选B.【点睛】本题考查最简二次根式的定义.最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.A【解析】试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元. 考点:一元一次方程的应用 3.A 【解析】 【分析】先求出二次函数的对称轴,结合二次函数的增减性即可判断. 【详解】解:二次函数245y x x =-++的对称轴为直线422(1)x =-=⨯-,∵抛物线开口向下,∴当2x <时,y 随x 增大而增大, ∵301-<<,∴123y y y << 故答案为:A . 【点睛】本题考查了根据自变量的大小,比较函数值的大小,解题的关键是熟悉二次函数的增减性. 4.B 【解析】 【分析】根据幂的乘方,底数不变指数相乘;同底数幂相除,底数不变,指数相减;同底数幂相乘,底数不变指数相加,对各选项分析判断利用排除法求解 【详解】A.a 2与2a 3不是同类项,故A 不正确;B.a•a 2=a 3,正确;C .原式=a 4,故C 不正确;D .原式=a 6,故D 不正确; 故选:B . 【点睛】此题考查同底数幂的乘法,幂的乘方与积的乘方,解题的关键在于掌握运算法则. 5.D 【解析】 【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解.【详解】A. k=−2<0,∴它的图象在第二、四象限,故本选项正确;B. k=−2<0,当x>0时,y随x的增大而增大,故本选项正确;C.∵,∴点(1,−2)在它的图象上,故本选项正确;D. 若点A(x1,y1),B(x2,y2)都在图象上,,若x1<0< x2,则y2<y1,故本选项错误. 故选:D.【点睛】考查了反比例函数的图象与性质,掌握反比例函数的性质是解题的关键.6.A【解析】∵O的直径AB=2,∴∠C=90°,∵C是弧AB的中点,∴»»AC BC,∴AC=BC,∴∠CAB=∠CBA=45°,∵AE,BE分别平分∠BAC和∠ABC,∴∠EAB=∠EBA=22.5°,∴∠AEB=180°−12(∠BAC+∠CBA)=135°,连接EO,∵∠EAB=∠EBA,∴EA=EB,∵OA=OB,∴EO⊥AB,∴EO为Rt△ABC内切圆半径,∴S △ABC =12(AB+AC+BC)⋅EO=12AC ⋅BC ,∴−1,∴AE 2=AO 2+EO 2=12−1)2,∴扇形EAB 的面积=135(4360π-=9(24-,△ABE 的面积=12AB ⋅−1,∴弓形AB 的面积=扇形EAB 的面积−△ABE 的面积=224-,∴阴影部分的面积=12O 的面积−弓形AB 的面积=32−(224-)=4−4,故选:A. 7.A 【解析】 【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可 【详解】根据有理数比较大小的方法,可得 ﹣4<﹣2<0<3∴各数中,最小的数是﹣4 故选:A 【点睛】本题考查了有理数大小比较的方法,解题的关键要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小 8.C 【解析】 【分析】把(2,2)代入k y x =得k=4,把(b ,﹣1﹣n 2)代入ky x=得,k=b (﹣1﹣n 2),即 241b n =--根据k 、b 的值确定一次函数y=kx+b 的图象经过的象限.【详解】解:把(2,2)代入k y x=, 得k=4,把(b ,﹣1﹣n 2)代入ky x=得: k=b (﹣1﹣n 2),即241b n=--, ∵k=4>0,241b n =--<0,∴一次函数y=kx+b 的图象经过第一、三、四象限, 故选C . 【点睛】本题考查了反比例函数图象的性质以及一次函数经过的象限,根据反比例函数的性质得出k ,b 的符号是解题关键. 9.A 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】解:A 、是轴对称图形,也是中心对称图形,符合题意; B 、是轴对称图形,不是中心对称图形,不合题意; C 、不是轴对称图形,也不是中心对称图形,不合题意; D 、不是轴对称图形,不是中心对称图形,不合题意. 故选:A . 【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 10.C 【解析】 【分析】根据众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数. 【详解】解:根据商店经理统计表决定本月多进尺码为23.0cm 的女式运动鞋,就说明穿23.0cm 的女式运动鞋的最多,则商店经理的这一决定应用的统计量是这组数据的众数.故选:C .【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.11.D【解析】分析:根据完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义计算,判断即可. 详解:(x+y )2=x 2+2xy+y 2,A 错误;(-12xy 2)3=-18x 3y 6,B 错误; x 6÷x 3=x 3,C 错误;=2,D 正确;故选D .点睛:本题考查的是完全平方公式、积的乘方、同底数幂的除法以及算术平方根的计算,掌握完全平方公式、积的乘方法则、同底数幂的除法法则和算术平方根的定义是解题的关键.12.A【解析】【分析】由一次函数y 1=x 与二次函数y 2=ax 2+bx+c 图象相交于P 、Q 两点,得出方程ax 2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax 2+(b-1)x+c 与x 轴有两个交点,根据方程根与系数的关系得出函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0,即可进行判断. 【详解】点P 在抛物线上,设点P (x ,ax 2+bx+c ),又因点P 在直线y=x 上,∴x=ax 2+bx+c ,∴ax 2+(b-1)x+c=0;由图象可知一次函数y=x 与二次函数y=ax 2+bx+c 交于第一象限的P 、Q 两点,∴方程ax 2+(b-1)x+c=0有两个正实数根.∴函数y=ax 2+(b-1)x+c 与x 轴有两个交点, 又∵-2b a>0,a >0 ∴-12b a -=-2b a +12a >0 ∴函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0,∴A 符合条件,故选A .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:∵点(,)A a b 与点()3,4B - 关于y 轴对称,∴3,4a b ==7a b +=故答案为1.【点睛】考查关于y 轴对称的点的坐标特征,纵坐标不变,横坐标互为相反数.14.150【解析】【分析】根据题意可得等量关系:不超过a 千瓦时的电费+超过a 千瓦时的电费=105元;根据等量关系列出方程,解出a 的值即可.【详解】∵0.5×200=100<105,∴a<200.由题意得:0.5a+0.6(200-a)=105,解得:a=150.故答案为:150【点睛】此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程.15 【解析】【分析】【详解】当AC 与⊙O 相切于点C 时,P 点纵坐标的最大值,如图,直线AC 交y 轴于点D ,连结OC ,作CH ⊥x轴于H,PM⊥x轴于M,DN⊥PM于N,∵AC为切线,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴333,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=12BD=12(233在Rt△DPN中,∵∠PDN=30°,∴PN=12DP=123而MN=OD=33,∴PM=PN+MN=1-36+233=132,即P 13 +.【点睛】本题是圆的综合题,先求出OD的长度,最后根据两点之间线段最短求出PN+MN的值.16.(32,258)【解析】【分析】连接AC,根据题意易证△AOC∽△COB,则AO OCOC OB=,求得OC=2,即点C的坐标为(0,2),可设抛物线解析式为y=a(x+1)(x﹣4),然后将C点坐标代入求解,最后将解析式化为顶点式即可. 【详解】解:连接AC,∵A、B两点的横坐标分别为﹣1,4,∴OA=1,OB=4,∵∠ACB=90°,∴∠CAB+∠ABC=90°,∵CO⊥AB,∴∠ABC+∠BCO=90°,∴∠CAB=∠BCO,又∵∠AOC=∠BOC=90°,∴△AOC∽△COB,∴AO OC OC OB=,即1OC=4OC,解得OC=2,∴点C的坐标为(0,2),∵A、B两点的横坐标分别为﹣1,4,∴设抛物线解析式为y=a(x+1)(x﹣4),把点C的坐标代入得,a(0+1)(0﹣4)=2,解得a=﹣12,∴y=﹣12(x+1)(x﹣4)=﹣12(x2﹣3x﹣4)=﹣12(x﹣32)2+258,∴此抛物线顶点的坐标为(32,258).故答案为:(32,258).【点睛】本题主要考查相似三角形的判定与性质,抛物线的顶点式,解此题的关键在于熟练掌握其知识点,利用相似三角形的性质求得关键点的坐标.17.3(x ﹣y )1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x 1﹣6xy+3y 1=3(x 1﹣1xy+y 1)=3(x ﹣y )1.考点:提公因式法与公式法的综合运用18.-2<k <12。
福建省福州市2019-2020学年第二次中考模拟考试数学试卷含解析
福建省福州市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 、B 两地相距180km ,新修的高速公路开通后,在A 、B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1h .若设原来的平均车速为xkm/h ,则根据题意可列方程为 A .1801801(150%)x x-=+ B .1801801(150%)x x-=+C .1801801(150%)x x -=- D .1801801(150%)x x-=- 2.下列各组数中,互为相反数的是( ) A .﹣1与(﹣1)2B .(﹣1)2与1C .2与12D .2与|﹣2|3.关于x 的一元二次方程x 2+2x+k+1=0的两个实根x 1,x 2,满足x 1+x 2﹣x 1x 2<﹣1,则k 的取值范围在数轴上表示为( ) A . B . C .D .4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为( ) A .8×1012B .8×1013C .8×1014D .0.8×10135.若二次函数22y x x m =-+的图像与x 轴有两个交点,则实数m 的取值范围是( ) A .m 1≥B .1m £C .1m >D .1m <6.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B .从一副扑克牌中任意抽取一张,这张牌是“红色的”C .掷一枚质地均匀的硬币,落地时结果是“正面朝上”D .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是67.郑州地铁Ⅰ号线火车站站口分布如图所示,有A ,B ,C ,D ,E 五个进出口,小明要从这里乘坐地铁去新郑机场,回来后仍从这里出站,则他恰好选择从同一个口进出的概率是( )A.13B.14C.15D.168.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm9.如图,O为直线AB上一点,OE平分∠BOC,OD⊥OE 于点O,若∠BOC=80°,则∠AOD的度数是()A.70°B.50°C.40°D.35°10.估计56﹣24的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间11.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.4848944x x+=+-B.4848944+=+-x xC.48x+4=9 D.9696944+=+-x x12.不论x、y为何值,用配方法可说明代数式x2+4y2+6x﹣4y+11的值()A.总不小于1 B.总不小于11C.可为任何实数D.可能为负数二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.14.点A(x1,y1)、B(x1,y1)在二次函数y=x1﹣4x﹣1的图象上,若当1<x1<1,3<x1<4时,则y1与y1的大小关系是y1_____y1.(用“>”、“<”、“=”填空)15.计算2×32结果等于_____.16.如图,矩形OABC的边OA,OC分别在轴、轴上,点B在第一象限,点D在边BC上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应),若AB=1,反比例函数(0)ky k x=≠的图象恰好经过点A′,B ,则的值为_________.17.已知图中Rt △ABC ,∠B=90°,AB=BC,斜边AC 上的一点D ,满足AD=AB ,将线段AC 绕点A 逆时针旋转α (0°<α <360°),得到线段AC’,连接DC’,当DC’//B C 时,旋转角度α 的值为_________,18.分式方程32xx 2--+22x-=1的解为________. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)已知,抛物线y =14x 2﹣x+34与x 轴分别交于A 、B 两点(A 点在B 点的左侧),交y 轴于点F .(1)A 点坐标为 ;B 点坐标为 ;F 点坐标为 ;(2)如图1,C 为第一象限抛物线上一点,连接AC ,BF 交于点M ,若BM =FM ,在直线AC 下方的抛物线上是否存在点P ,使S △ACP =4,若存在,请求出点P 的坐标,若不存在,请说明理由;(3)如图2,D 、E 是对称轴右侧第一象限抛物线上的两点,直线AD 、AE 分别交y 轴于M 、N 两点,若OM•ON =14,求证:直线DE 必经过一定点.20.(6分)解方程:3x 2﹣2x ﹣2=1.21.(6分)如图,在▱ABCD 中,AB=4,AD=5,tanA=43,点P 从点A 出发,沿折线AB ﹣BC 以每秒1个单位长度的速度向中点C 运动,过点P 作PQ ⊥AB ,交折线AD ﹣DC 于点Q ,将线段PQ 绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与▱ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3)当点R落在▱ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.22.(8分)为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:车型起步公里数起步价格超出起步公里数后的单价普通燃油型 3 13元 2.3元/公里纯电动型 3 8元2元/公里张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.23.(8分)2018年平昌冬奥会在2月9日到25日在韩国平昌郡举行,为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A、非常了解B、比较了解C、基本了解D、不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对冬奥会了解程度的统计表对冬奥会的了解程度百分比A非常了解10%B比较了解15%C基本了解35%D不了解n%(1)n= ;(2)扇形统计图中,D 部分扇形所对应的圆心角是 ; (3)请补全条形统计图;(4)根据调查结果,学校准备开展冬奥会的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4然后放到一个不透明的袋中,一个人先从袋中摸出一个球,另一人再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.24.(10分)如图所示,一堤坝的坡角62ABC ∠=︒,坡面长度25AB =米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角50ADB ∠=︒,则此时应将坝底向外拓宽多少米?(结果保留到0.01 米)(参考数据:sin620.88︒≈,cos620.47︒≈,tan50 1.20︒≈)25.(10分)解方程:(x ﹣3)(x ﹣2)﹣4=1.26.(12分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.27.(12分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天; 信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【详解】解:设原来的平均车速为xkm/h,则根据题意可列方程为:180 x ﹣180150%x()=1.故选A.【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键.2.A【解析】【分析】根据相反数的定义,对每个选项进行判断即可.【详解】解:A 、(﹣1)2=1,1与﹣1 互为相反数,正确; B 、(﹣1)2=1,故错误; C 、2与12互为倒数,故错误; D 、2=|﹣2|,故错误; 故选:A . 【点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义. 3.D 【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集. 解:∵关于x 的一元二次方程x 2+2x+k+1=0有两个实根, ∴△≥0,∴4﹣4(k+1)≥0, 解得k≤0,∵x 1+x 2=﹣2,x 1•x 2=k+1, ∴﹣2﹣(k+1)<﹣1, 解得k >﹣2,不等式组的解集为﹣2<k≤0, 在数轴上表示为:,故选D .点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键. 4.B 【解析】80万亿用科学记数法表示为8×1. 故选B .点睛:本题考查了科学计数法,科学记数法的表示形式为10n a ⨯ 的形式,其中110a ≤< ,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 5.D 【解析】 【分析】由抛物线与x轴有两个交点可得出△=b2-4ac>0,进而可得出关于m的一元一次不等式,解之即可得出m 的取值范围.【详解】∵抛物线y=x2-2x+m与x轴有两个交点,∴△=b2-4ac=(-2)2-4×1×m>0,即4-4m>0,解得:m<1.故选D.【点睛】本题考查了抛物线与x轴的交点,牢记“当△=b2-4ac>0时,抛物线与x轴有2个交点”是解题的关键.6.D【解析】【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B选项不符合题意,掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C选项不符合题意,掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D选项符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.7.C【解析】【分析】列表得出进出的所有情况,再从中确定出恰好选择从同一个口进出的结果数,继而根据概率公式计算可得.【详解】解:列表得:A B C D EA AA BA CA DA EAB AB BB CB DB EBC AC BC CC DC ECD AD BD CD DD EDE AE BE CE DE EE ∴一共有25种等可能的情况,恰好选择从同一个口进出的有5种情况,∴恰好选择从同一个口进出的概率为525=15,故选C.【点睛】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.B【解析】(1)如图1,当点C在点A和点B之间时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=12AB=4cm,BN=12BC=1cm,∴MN=MB-BN=3cm;(2)如图2,当点C在点B的右侧时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=12AB=4cm,BN=12BC=1cm,∴MN=MB+BN=5cm.综上所述,线段MN的长度为5cm或3cm.故选B.点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.9.B【解析】分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数. 详解:∵OE是∠BOC的平分线,∠BOC=80°,∴∠COE=12∠BOC=12×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故选B.点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=12∠AOB或∠AOB=2∠AOC=2∠BOC.10.C【解析】【分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】=,∵49<54<64,∴,∴7和8之间,故选C.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.11.A【解析】【分析】根据轮船在静水中的速度为x千米/时可进一步得出顺流与逆流速度,从而得出各自航行时间,然后根据两次航行时间共用去9小时进一步列出方程组即可.【详解】∵轮船在静水中的速度为x千米/时,∴顺流航行时间为:484x+,逆流航行时间为:484x-,∴可得出方程:4848944x x+=+-,故选:A.【点睛】本题主要考查了分式方程的应用,熟练掌握顺流与逆流速度的性质是解题关键.12.A【解析】【分析】利用配方法,根据非负数的性质即可解决问题;【详解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,又∵(x+3)2≥0,(2y-1)2≥0,∴x2+4y2+6x-4y+11≥1,故选:A.【点睛】本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.±1.【解析】【分析】根据根的判别式求出△=0,求出a1+b1=1,根据完全平方公式求出即可.【详解】解:∵关于x的方程x1+1ax-b1+1=0有两个相等的实数根,∴△=(1a)1-4×1×(-b1+1)=0,即a1+b1=1,∵常数a与b互为倒数,∴ab=1,∴(a+b)1=a1+b1+1ab=1+3×1=4,∴a+b=±1,故答案为±1.【点睛】本题考查了根的判别式和解高次方程,能得出等式a1+b1=1和ab=1是解此题的关键.14.<【解析】【分析】先根据二次函数的解析式判断出抛物线的开口方向及对称轴,根据图象上的点的横坐标距离对称轴的远近来判断纵坐标的大小.【详解】由二次函数y=x 1-4x-1=(x-1)1-5可知,其图象开口向上,且对称轴为x=1,∵1<x 1<1,3<x 1<4,∴A 点横坐标离对称轴的距离小于B 点横坐标离对称轴的距离,∴y 1<y 1.故答案为<.15.1【解析】【分析】根据二次根式的乘法法则进行计算即可.【详解】23236=⨯=⨯=. 故答案为:1.【点睛】考查二次根式的乘法,掌握二次根式乘法的运算法则是解题的关键.16【解析】【详解】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E ⊥OA 于E ,∴OE=12m ,A′E=2m ,∴A′(12m,3m),∵反比例函数y=kx(k≠0)的图象恰好经过点A′,B,∴12m•3m=m,∴m=43,∴k=43.【点睛】本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.17.15或255°【解析】如下图,设直线DC′与AB相交于点E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=22AC,∴AE=22AD,又∵AD=AB,AC′=AC,∴AE=22AB=2222⨯AC=12AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即当DC′∥BC时,旋转角α=15°;同理,当DC′′∥BC时,旋转角α=180°-45°-60°=255°;综上所述,当旋转角α=15°或255°时,DC′//BC.故答案为:15°或255°.18.x 1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)(1,0),(3,0),(0,34);(2)在直线AC 下方的抛物线上不存在点P ,使S △ACP =4,见解析;(3)见解析【解析】【分析】(1)根据坐标轴上点的特点建立方程求解,即可得出结论;(2)在直线AC 下方轴x 上一点,使S △ACH =4,求出点H 坐标,再求出直线AC 的解析式,进而得出点H 坐标,最后用过点H 平行于直线AC 的直线与抛物线解析式联立求解,即可得出结论; (3)联立直线DE 的解析式与抛物线解析式联立,得出213(1)044x k x m -++-=,进而得出44a b k ++=,34ab m -=,再由DAG MAO ∆∆∽得出DG AG MO AO =,进而求出1(3)4OM a -=,同理可得1(3)4ON b -=,再根据111(3)(3)444OM ON a b ⋅-⋅-==,即可得出结论.【详解】(1)针对于抛物线21344y x x =-+, 令x =0,则34y =, ∴3(0)4F ,,令y =0,则213044x x -+=, 解得,x =1或x =3,∴(10)(30)A B ,,,, 综上所述:0(1)A ,,(30)B ,,3(0)4F ,; (2)由(1)知,(30)B ,,3(0)4F ,, ∵BM =FM , ∴33(,)28M , ∵0(1)A ,, ∴直线AC 的解析式为:33y x 44=-, 联立抛物线解析式得:233441344y x y x x ⎧=-⎪⎪⎨⎪=-+⎪⎩, 解得:1110x y =⎧⎨=⎩或226154x y =⎧⎪⎨=⎪⎩, ∴15(6,)4C , 如图1,设H 是直线AC 下方轴x 上一点,AH =a 且S △ACH =4, ∴115424a ⨯=, 解得:3215a =, ∴47(,0)15H , 过H 作l ∥AC ,∴直线l 的解析式为347420y x =-, 联立抛物线解析式,解得2535620x x -+=,∴4949.60.60∆--<==,即:在直线AC 下方的抛物线上不存在点P ,使4ACP S V =;(3)如图2,过D ,E 分别作x 轴的垂线,垂足分别为G ,H , 设213(,)44D a a a -+,213(,)44E b b b -+,直线DE 的解析式为y kx m +=, 联立直线DE 的解析式与抛物线解析式联立,得213(1)044x k x m -++-=, ∴44a b k ++=,34ab m -=,∵DG ⊥x 轴,∴DG ∥OM ,∴DAG MAO ∆∆∽, ∴DG AG MO AO=, 即1(1)(3)141a a a OM ---=, ∴1(3)4OM a -=,同理可得1(3)4ON b -= ∴111(3)(3)444OM ON a b ⋅-⋅-==, ∴3()50ab a b -++=,即343(44)50m k --++=,∴31m k =--,∴直线DE 的解析式为31(3)1y kx k k x ----==, ∴直线DE 必经过一定点(3,1)-.【点睛】本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.20.121717x x +-== 【解析】【分析】先找出a ,b ,c ,再求出b 2-4ac=28,根据公式即可求出答案.【详解】解:x 22-2-43-2±⨯⨯()() 17± 即121717x x +-== ∴原方程的解为121717x x +-==. 【点睛】本题考查对解一元二次方程-提公因式法、公式法,因式分解法等知识点的理解和掌握,能熟练地运用公式法解一元二次方程是解此题的关键.21.(1)127;(2)45(9﹣t );(3)①S =﹣23t 2+163t ﹣327;②S=﹣27t 2+1.③S=24175(9﹣t )2;(3)3或215或4或173. 【解析】【分析】(1)根据题意点R 与点B 重合时t+43t=3,即可求出t 的值; (2)根据题意运用t 表示出PQ 即可;(3)当点R 落在□ABCD 的外部时可得出t 的取值范围,再根据等量关系列出函数关系式;(3)根据等腰三角形的性质即可得出结论.【详解】解:(1)∵将线段PQ绕点P顺时针旋转90°,得到线段PR,∴PQ=PR,∠QPR=90°,∴△QPR为等腰直角三角形.当运动时间为t秒时,AP=t,PQ=PQ=AP•tanA=43t.∵点R与点B重合,∴AP+PR=t+43t=AB=3,解得:t=127.(2)当点P在BC边上时,3≤t≤9,CP=9﹣t,∵tanA=43,∴tanC=43,sinC=45,∴PQ=CP•sinC=45(9﹣t).(3)①如图1中,当127<t≤3时,重叠部分是四边形PQKB.作KM⊥AR于M.∵△KBR∽△QAR,∴KMQP=BRAR,∴KM4t3=74373tt,∴KM=47(73t﹣3)=43t﹣167,∴S=S△PQR﹣S△KBR=12×(43t)2﹣12×(73t﹣3)(43t﹣167)=﹣23t2+163t﹣327.②如图2中,当3<t≤3时,重叠部分是四边形PQKB.S=S △PQR ﹣S △KBR =12×3×3﹣12×t×47t=﹣27t 2+1. ③如图3中,当3<t <9时,重叠部分是△PQK .S=47•S △PQC =47×12×35(9﹣t )•45(9﹣t )=24175(9﹣t )2. (3)如图3中,①当DC=DP 1=3时,易知AP 1=3,t=3.②当DC=DP 2时,CP 2=2•CD•324=55, ∴BP 2=15, ∴t=3+121=55. ③当CD=CP 3时,t=4.④当CP 3=DP 3时,CP 3=2÷310=53, ∴t=9﹣103=173.综上所述,满足条件的t的值为3或215或4或173.【点睛】本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题.22.8.2 km【解析】【分析】首先设小明家到单位的路程是x千米,根据题意列出方程进行求解.【详解】解:设小明家到单位的路程是x千米.依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.解得:x=8.2答:小明家到单位的路程是8.2千米.【点睛】本题考查一元一次方程的应用,找准等量关系是解题关键.23.(1)40;(2)144°;(3)作图见解析;(4)游戏规则不公平.【解析】【分析】(1)根据统计图可以求出这次调查的n的值;(2)根据统计图可以求得扇形统计图中D部分扇形所对应的圆心角的度数;(3)根据题意可以求得调查为D的人数,从而可以将条形统计图补充完整;(4)根据题意可以写出树状图,从而可以解答本题.【详解】解:(1)n%=1﹣10%﹣15%﹣35%=40%,故答案为40;(2)扇形统计图中D部分扇形所对应的圆心角是:360°×40%=144°,故答案为144°;(3)调查的结果为D等级的人数为:400×40%=160,故补全的条形统计图如右图所示,(4)由题意可得,树状图如右图所示,P(奇数)82, 123 ==P(偶数)41, 123 ==故游戏规则不公平.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.6.58米【解析】试题分析:过A点作AE⊥CD于E.在Rt△ABE中,根据三角函数可得AE,BE,在Rt△ADE中,根据三角函数可得DE,再根据DB=DE﹣BE即可求解.试题解析:过A点作AE⊥CD于E.在Rt△ABE中,∠ABE=62°.∴AE=AB•sin62°=25×0.88=22米,BE=AB•cos62°=25×0.47=11.75米,在Rt△ADE中,∠ADB=50°,∴DE==18米,∴DB=DE﹣BE≈6.58米.故此时应将坝底向外拓宽大约6.58米.考点:解直角三角形的应用-坡度坡角问题.25.x 1=5+172,x 2=5172- 【解析】试题分析:方程整理为一般形式,找出a ,b ,c 的值,代入求根公式即可求出解.试题解析:解:方程化为2520x x -+=,1a =,5b =-,2c =.224(5)41217b ac ∆=-=--⨯⨯=>1.24(5)175172212b b ac x a -±---±±===⨯. 即1517x +=,2517x -=. 26.这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F 作FG ⊥AB 于G ,交CE 于H ,利用相似三角形的判定得出△AGF ∽△EHF ,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x .过F 作FG ⊥AB 于G ,交CE 于H (如图).所以△AGF ∽△EHF .因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x ﹣1.1.由△AGF ∽△EHF ,得AG GF EH HF=, 即 1.53023x -=, 所以x ﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF ∽△EHF 是解题关键. 27.(1)生产一件甲产品需要15分,生产一件乙产品需要20分;(2)小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【解析】【分析】(1)设生产一件甲种产品需x 分,生产一件乙种产品需y 分,利用待定系数法求出x ,y 的值.(2)设生产甲种产品用x 分,则生产乙种产品用(25×8×60-x )分,分别求出甲乙两种生产多少件产品. 【详解】(1)设生产一件甲种产品需x 分,生产一件乙种产品需y 分.由题意得:10103503020850x y x y +=⎧⎨+=⎩, 解这个方程组得:1520x y =⎧⎨=⎩, 答:生产一件甲产品需要15分,生产一件乙产品需要20分.(2)设生产甲种产品共用x 分,则生产乙种产品用(25×8×60-x )分. 则生产甲种产品15x 件,生产乙种产品2586020x ⨯⨯-件. ∴w 总额=1.5×15x +2.8×2586020x ⨯⨯-=0.1x+1200020x -×2.8=0.1x+1680-0.14x=-0.04x+1680, 又15x ≥60,得x≥900, 由一次函数的增减性,当x=900时w 取得最大值,此时w=0.04×900+1680=1644(元),则小王该月收入最多是1644+1900=3544(元), 此时甲有90015=60(件), 乙有:2586090020⨯⨯-=555(件), 答:小王该月最多能得3544元,此时生产甲、乙两种产品分别60,555件.【点睛】考查了一次函数和二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.。
福建省福州市2019-2020学年中考数学模拟试题(3)含解析
福建省福州市2019-2020学年中考数学模拟试题(3)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下图是某几何体的三视图,则这个几何体是( )A .棱柱B .圆柱C .棱锥D .圆锥2.如图⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( )A .B .4C .D .83.如图,在边长为的等边三角形ABC 中,过点C 垂直于BC 的直线交∠ABC 的平分线于点P ,则点P 到边AB 所在直线的距离为( )A .B .C .D .14.如图,在△ABC 中,BC=8,AB 的中垂线交BC 于D ,AC 的中垂线交BC 于E ,则△ADE 的周长等于( )5.甲、乙两超市在1月至8月间的盈利情况统计图如图所示,下面结论不正确的是()A.甲超市的利润逐月减少B.乙超市的利润在1月至4月间逐月增加C.8月份两家超市利润相同D.乙超市在9月份的利润必超过甲超市6.如图,反比例函数y=-的图象与直线y=-x的交点为A、B,过点A作y轴的平行线与过点B作的x轴的平行线相交于点C,则△ABC的面积为( )A.8 B.6 C.4 D.27.如图所示的几何体,它的左视图是()A.B.C.D.8.把不等式组11xx<-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是()A.B.C.D.9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形的长为()A.6 B.5 C.4 D.3311.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.有下列结论:①abc<0;②3b+4c<0;③c>﹣1;④关于x的方程ax2+bx+c=0有一个根为﹣1a,其中正确的结论个数是()A.1 B.2C.3 D.412.按一定规律排列的一列数依次为:﹣23,1,﹣107,179、﹣2611、3713…,按此规律,这列数中的第100个数是()A.﹣9997199B.10001199C.10001201D.9997201二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知抛物线y=x2﹣x+3与y轴相交于点M,其顶点为N,平移该抛物线,使点M平移后的对应点M′与点N重合,则平移后的抛物线的解析式为_____.14.64的立方根是_______.15.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=_____°.16.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD 沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为_____.17.我们定义:关于x 的函数y=ax 2+bx 与y=bx 2+ax (其中a≠b )叫做互为交换函数.如y=3x 2+4x 与y=4x 2+3x 是互为交换函数.如果函数y=2x 2+bx 与它的交换函数图象顶点关于x 轴对称,那么b=_____.18.2017年端午小长假的第一天,永州市共接待旅客约275 000人次,请将275 000用科学记数法表示为___________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(10分)如图,AB 是⊙O 的直径,OD ⊥弦BC 于点F ,交⊙O 于点E ,连结CE 、AE 、CD ,若∠AEC=∠ODC .(1)求证:直线CD 为⊙O 的切线;(2)若AB=5,BC=4,求线段CD 的长.20.(6分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O ,A ,B 均为网格线的交点.在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2倍,得到线段11A B (点A ,B 的对应点分别为11A B 、).画出线段11A B ;将线段11A B 绕点1B 逆时针旋转90°得到线段21A B .画出线段21A B ;以112A A B A 、、、为顶点的四边形112AA B A 的面积是 个平方单位.21.(6分)某中学开展“汉字听写大赛”活动,为了解学生的参与情况,在该校随机抽取了四个班级学生进行调查,将收集的数据整理并绘制成图1和图2两幅尚不完整的统计图,请根据图中的信息,解答下列(1)这四个班参与大赛的学生共__________人;(2)请你补全两幅统计图;(3)求图1中甲班所对应的扇形圆心角的度数;(4)若四个班级的学生总数是160人,全校共2000人,请你估计全校的学生中参与这次活动的大约有多少人.22.(8分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.请画出平移后的△DEF.连接AD、CF,则这两条线段之间的关系是________.23.(8分)如图所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE交BC于点E,连接DE.24.(10分)如图,已知反比例函数1k yx=和一次函数21y ax =+的图象相交于第一象限内的点A ,且点A 的横坐标为1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.求反比例函数和一次函数的解析式.若一次函数21y ax =+的图象与x 轴相交于点C ,求∠ACO 的度数.结合图象直接写出:当1y >2y >0时,x 的取值范围.25.(10分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A )、白鹿原(记为B )、兴庆公园(记为C )、秦岭国家植物园(记为D )中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.求小明选择去白鹿原游玩的概率;用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率.26.(12分)如图所示,一次函数y=kx+b 与反比例函数y=m x的图象交于A (2,4),B (﹣4,n )两点.分别求出一次函数与反比例函数的表达式;过点B 作BC ⊥x 轴,垂足为点C ,连接AC ,求△ACB 的面积.27.(12分)解不等式组22(4)113x x x x -≤+⎧⎪-⎨+⎪⎩<,并写出该不等式组的最大整数解.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.故选D.【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力以及对立体图形的认识.2.C【解析】【详解】∵直径AB垂直于弦CD,∴CE=DE=12 CD,∵∠A=22.5°,∴∠BOC=45°,∴OE=CE,设OE=CE=x,∵OC=4,∴x2+x2=16,解得:x=22,即:CE=22,∴CD=42,故选C.3.D【解析】试题分析:∵△ABC为等边三角形,BP平分∠ABC,∴∠PBC=∠ABC=30°,∵PC⊥BC,∴∠PCB=90°,在Rt△PCB中,PC=BC•tan∠PBC==1,∴点P到边AB所在直线的距离为1,故选D.考点:1.角平分线的性质;2.等边三角形的性质;3.含30度角的直角三角形;4.勾股定理.4.A【解析】∵AB的中垂线交BC于D,AC的中垂线交BC于E,∴DA=DB,EA=EC,则△ADE的周长=AD+DE+AE=BD+DE+EC=BC=8,故选A.5.D【解析】【分析】根据折线图中各月的具体数据对四个选项逐一分析可得.【详解】A、甲超市的利润逐月减少,此选项正确,不符合题意;B、乙超市的利润在1月至4月间逐月增加,此选项正确,不符合题意;C、8月份两家超市利润相同,此选项正确,不符合题意;D、乙超市在9月份的利润不一定超过甲超市,此选项错误,符合题意,故选D.【点睛】本题主要考查折线统计图,折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.6.A【解析】试题解析:由于点A、B在反比例函数图象上关于原点对称,则△ABC的面积=2|k|=2×4=1.故选A.考点:反比例函数系数k的几何意义.7.D【解析】分析:根据从左边看得到的图形是左视图,可得答案.详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D.点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左视图.8.C【解析】【分析】求得不等式组的解集为x<﹣1,所以C是正确的.【详解】解:不等式组的解集为x<﹣1.【点睛】本题考查了不等式问题,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.D【解析】【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.故选D.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED是BC的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,∴故选D.【点睛】等,结合图形熟练应用相关的性质及定理是解题的关键.11.B【解析】【分析】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a 、b 、c 的符号,从而可判断①;由对称轴2b a -=2可知a=14b -,由图象可知当x=1时,y >0,可判断②;由OA=OC ,且OA <1,可判断③;把-1a代入方程整理可得ac 2-bc+c=0,结合③可判断④;从而可得出答案. 【详解】解:∵图象开口向下,∴a <0,∵对称轴为直线x=2,∴2b a->0,∴b >0, ∵与y 轴的交点在x 轴的下方,∴c <0,∴abc >0,故①错误.∵对称轴为直线x=2,∴2b a -=2,∴a=14b -, ∵由图象可知当x=1时,y >0, ∴a+b+c >0,∴4a+4b+4c>0,∴4⨯(14b -)+4b+4c>0,∴3b+4c>0,故②错误.∵由图象可知OA <1,且OA=OC ,∴OC <1,即-c <1,∴c >-1,故③正确.∵假设方程的一个根为x=-1a ,把x=-1a 代入方程可得1b a a -+c=0, 整理可得ac-b+1=0,两边同时乘c 可得ac 2-bc+c=0,∴方程有一个根为x=-c ,由③可知-c=OA ,而当x=OA 是方程的根,∴x=-c 是方程的根,即假设成立,故④正确.综上可知正确的结论有三个:③④.故选B.【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC ,是解题的关键.【解析】【分析】 根据按一定规律排列的一列数依次为:23-,1,107-,179,2611-,3713…,可知符号规律为奇数项为负,偶数项为正;分母为3、7、9、……,21n +型;分子为21n +型,可得第100个数为210011000121001201+=⨯+. 【详解】 按一定规律排列的一列数依次为:23-,1,107-,179,2611-,3713…,按此规律,奇数项为负,偶数项为正,分母为3、7、9、……,21n +型;分子为21n +型,可得第n 个数为2121n n ++, ∴当100n =时,这个数为2211001100012121001201n n ++==+⨯+, 故选:C .【点睛】本题属于规律题,准确找出题目的规律并将特殊规律转化为一般规律是解决本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.y=(x ﹣1)2+52【解析】【分析】直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出M 、N 点坐标,进而得出平移方向和距离,即可得出平移后解析式.【详解】 解:y=x 2-x+3=(x-12)2+114, ∴N 点坐标为:(12,114), 令x=0,则y=3,∴M 点的坐标是(0,3).∵平移该抛物线,使点M 平移后的对应点M′与点N 重合, ∴抛物线向下平移14个单位长度,再向右平移12个单位长度即可, ∴平移后的解析式为:y=(x-1)2+52.故答案是:y=(x-1)2+52.【点睛】此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.14.4.【解析】【分析】根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.15.1【解析】【分析】先根据同旁内角互补两直线平行知AB∥CD,据此依据平行线性质知∠APM=∠CQM=118°,由邻补角定义可得答案.【详解】解:∵∠A+∠C=180°,∴AB∥CD,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案为:1.【点睛】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.16.32或34【解析】试题分析:如图4所示;点E与点C′重合时.在Rt△ABC中,.由翻折的性质可知;AE=AC=3、DC=DE.则EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x 2+22=(4﹣x )2.解得:x=32.∴DE=32.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.∴DB=BC ﹣DC=4﹣3=4.∵DE ∥AC ,∴△BDE ∽△BCA .∴14DE DB AC CB ==,即134ED =.解得:DE=34.点D 在CB 上运动,∠DBC′<90°,故∠DBC′不可能为直角.考点:翻折变换(折叠问题).17.﹣1【解析】【分析】根据题意可以得到交换函数,由顶点关于x 轴对称,从而得到关于b 的方程,可以解答本题.【详解】由题意函数y=1x 1+bx 的交换函数为y=bx 1+1x .∵y=1x 1+bx=222()48b b x +-, y=bx 1+1x=211()b x b b+-, 函数y=1x 1+bx 与它的交换函数图象顶点关于x 轴对称,∴﹣4b =﹣22b 且218b b-=, 解得:b=﹣1.故答案为﹣1.【点睛】本题考查了二次函数的性质.理解交换函数的意义是解题的关键.18.1.75×2【解析】试题解析:175 000=1.75×2.考点:科学计数法----表示较大的数三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见试题解析;(2)103.【解析】试题分析:(1)利用圆周角定理结合等腰三角形的性质得出∠OCF+∠DCB=90°,即可得出答案;(2)利用圆周角定理得出∠ACB=90°,利用相似三角形的判定与性质得出DC的长.试题解析:(1)连接OC,∵∠CEA=∠CBA,∠AEC=∠ODC,∴∠CBA=∠ODC,又∵∠CFD=∠BFO,∴∠DCB=∠BOF,∵CO=BO,∴∠OCF=∠B,∵∠B+∠BOF=90°,∴∠OCF+∠DCB=90°,∴直线CD 为⊙O的切线;(2)连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠DCO=∠ACB,又∵∠D=∠B,∴△OCD∽△ACB,∵∠ACB=90°,AB=5,BC=4,∴AC=3,∴CO CDAC BC=,即2.534CD=,解得;DC=103.考点:切线的判定.20.(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=所以四边形AA1 B1 A2的面积为:(2=20,故答案为20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.21.(1)100;(2)见解析;(3)108°;(4)1250.【解析】试题分析:(1)根据乙班参赛30人,所占比为20%,即可求出这四个班总人数;(2)根据丁班参赛35人,总人数是100,即可求出丁班所占的百分比,再用整体1减去其它所占的百分比,即可得出丙所占的百分比,再乘以参赛得总人数,即可得出丙班参赛得人数,从而补全统计图;(3)根据甲班级所占的百分比,再乘以360°,即可得出答案;(4)根据样本估计总体,可得答案.试题解析:(1)这四个班参与大赛的学生数是:30÷30%=100(人);故答案为100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,则丙班得人数是:100×15%=15(人);如图:(3)甲班级所对应的扇形圆心角的度数是:30%×360°=108°;(4)根据题意得:2000×=1250(人).答:全校的学生中参与这次活动的大约有1250人.考点:条形统计图;扇形统计图;样本估计总体.22.见解析【解析】(1)如图:(2)连接AD、CF,则这两条线段之间的关系是AD=CF,且AD∥CF.23.见解析【解析】试题分析:(1)先证得四边形ABED是平行四边形,又AB=AD,邻边相等的平行四边形是菱形;(2)四边形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC 是直角三角形.试题解析:梯形ABCD中,AD∥BC,∴四边形ABED是平行四边形,又AB=AD,∴四边形ABED是菱形;(2)∵四边形ABED是菱形,∠ABC=60°,∴∠DEC=60°,AB=ED,又EC=2BE,∴EC=2DE,∴△DEC是直角三角形,考点:1.菱形的判定;2.直角三角形的性质;3.平行四边形的判定24.(1)y1=2x;y2=x+1;(2)∠ACO=45°;(3)0<x<1.【解析】【分析】(1)根据△AOB的面积可求AB,得A点坐标.从而易求两个函数的解析式;(2)求出C点坐标,在△ABC中运用三角函数可求∠ACO的度数;(3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x的值即为取值范围.【详解】(1)∵△AOB的面积为1,并且点A在第一象限,∴k=2,∴y1=2x;∵点A的横坐标为1,∴A(1,2).把A(1,2)代入y2=ax+1得,a=1.∴y2=x+1.(2)令y2=0,0=x+1,∴x=−1,∴C(−1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由图象可知,在第一象限,当y1>y2>0时,0<x<1.在第三象限,当y1>y2>0时,−1<x<0(舍去).【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.25.(1)14;(2)116【解析】【分析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【详解】(1)∵小明准备到西安的大雁塔(记为A)、白鹿原(记为B)、兴庆公园(记为C)、秦岭国家植物园(记为D)中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=14;(2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=1 16.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.26.(1)反比例函数解析式为y=8x,一次函数解析式为y=x+2;(2)△ACB的面积为1.【解析】【分析】(1)将点A坐标代入y=mx可得反比例函数解析式,据此求得点B坐标,根据A、B两点坐标可得直线解析式;(2)根据点B坐标可得底边BC=2,由A、B两点的横坐标可得BC边上的高,据此可得.【详解】解:(1)将点A(2,4)代入y=mx,得:m=8,则反比例函数解析式为y=8x,当x=﹣4时,y=﹣2,则点B(﹣4,﹣2),将点A(2,4)、B(﹣4,﹣2)代入y=kx+b,得:2442k bk b+=⎧⎨-+=-⎩,解得:12kb=⎧⎨=⎩,则一次函数解析式为y=x+2;(2)由题意知BC=2,则△ACB的面积=12×2×1=1.【点睛】本题主要考查一次函数与反比例函数的交点问题,熟练掌握待定系数法求函数解析式及三角形的面积求法是解题的关键.27.﹣2,﹣1,0【解析】分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.本题解析:()224113x x x x ⎧-≤+⎪⎨-<+⎪⎩①②, 解不等式①得,x≥−2, 解不等式②得,x<1,∴不等式组的解集为−2≤x<1. ∴不等式组的最大整数解为x=0,。
福建省福州市2019-2020学年中考第五次模拟数学试题含解析
福建省福州市2019-2020学年中考第五次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,则列方程正确的是( ) A .1201806x x=+ B .1201806x x =- C .1201806x x =+ D .1201806x x=- 2.通州区大运河森林公园占地面积10700亩,是北京规模最大的滨河森林公园,将10700用科学记数法表示为( )A .10.7×104B .1.07×105C .1.7×104D .1.07×1043.解分式方程2x 23x 11x++=--时,去分母后变形为 A .()()2x 23x 1++=-B .()2x 23x 1-+=-C .()()2x 231?x -+=- D .()()2x 23x 1-+=-4.一个六边形的六个内角都是120°(如图),连续四条边的长依次为 1,3,3,2,则这个六边形的周长是( )A .13B .14C .15D .165.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是( )A .B .C .D .6.一个圆的内接正六边形的边长为 2,则该圆的内接正方形的边长为( ) A 2B .2C .3D .47.如图,在△ABC 中,∠C=90°,∠B=30°,AD 是△ABC 的角平分线,DE ⊥AB,垂足为点E,DE=1,则BC=( )A .3B .2C .3D .3+28.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表: 步数(万步) 1.0 1.2 1.1 1.4 1.3 天数335712在每天所走的步数这组数据中,众数和中位数分别是( ) A .1.3,1.1B .1.3,1.3C .1.4,1.4D .1.3,1.49.等腰三角形的一个外角是100°,则它的顶角的度数为( ) A .80°B .80°或50°C .20°D .80°或20°10.一次函数y kx k =-与反比例函数(0)ky k x=≠在同一个坐标系中的图象可能是( ) A . B . C . D .11.如图,在△ABC 中,∠AED=∠B ,DE=6,AB=10,AE=8,则BC 的长度为( )A .152B .154C .3D .83122(3)3b b -=-,则( ) A .3b >B .3b <C .3b ≥D .3b ≤二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果两个相似三角形对应边上的高的比为1:4,那么这两个三角形的周长比是___.14.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第n 根图形需要____________根火柴.15.计算:()()a a b b a b +-+=_____________.16.如果关于x 的方程2x 2x m 0-+=(m 为常数)有两个相等实数根,那么m =______. 17.不等式1﹣2x <6的负整数解是___________.18.如果a 2﹣a ﹣1=0,那么代数式(a ﹣21a a -)2•1aa -的值是 .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax 2+bx+c (a≠0)相交于点A (1,0)和点D (﹣4,5),并与y 轴交于点C ,抛物线的对称轴为直线x=﹣1,且抛物线与x 轴交于另一点B . (1)求该抛物线的函数表达式;(2)若点E 是直线下方抛物线上的一个动点,求出△ACE 面积的最大值;(3)如图2,若点M 是直线x=﹣1的一点,点N 在抛物线上,以点A ,D ,M ,N 为顶点的四边形能否成为平行四边形?若能,请直接写出点M 的坐标;若不能,请说明理由.20.(6分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见. 21.(6分)(1)解方程:11122x x --+=0;(2)解不等式组32193(1)x x x ->⎧⎨+<+⎩ ,并把所得解集表示在数轴上.22.(8分)计算22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭23.(8分)如图,在Rt △ABC 中,∠C =90°,AB 的垂直平分线交AC 于点D ,交AB 于点E . (1)求证:△ADE ~△ABC ;(2)当AC =8,BC =6时,求DE 的长.24.(10分)如图,已知抛物线过点A (4,0),B (﹣2,0),C (0,﹣4). (1)求抛物线的解析式;(2)在图甲中,点M 是抛物线AC 段上的一个动点,当图中阴影部分的面积最小值时,求点M 的坐标; (3)在图乙中,点C 和点C 1关于抛物线的对称轴对称,点P 在抛物线上,且∠PAB=∠CAC 1,求点P 的横坐标.25.(10分)如图,△ACB 与△ECD 都是等腰直角三角形,∠ACB=∠ECD=90°,点D 为AB 边上的一点,(1)求证:△ACE ≌△BCD ;(2)若DE=13,BD=12,求线段AB 的长.26.(12分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB 和线段CD ,点A 、B 、C 、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;(2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N 均在小正方形的顶点上;(3)连接ME,并直接写出EM的长.27.(12分)已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得1201806x x=+,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.2.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:10700=1.07×104, 故选:D . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 3.D 【解析】 试题分析:方程22311x x x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D. 考点:解分式方程的步骤. 4.C 【解析】 【详解】解:如图所示,分别作直线AB 、CD 、EF 的延长线和反向延长线使它们交于点G 、H 、I .因为六边形ABCDEF 的六个角都是120°,所以六边形ABCDEF 的每一个外角的度数都是60°. 所以AFI BGC DHE GHI V V V V 、、、都是等边三角形. 所以31AI AF BG BC ====,. 3317GI GH AI AB BG ∴==++=++=, 7232DE HE HI EF FI ==--=--=, 7124CD HG CG HD .=--=--= 所以六边形的周长为3+1+4+2+2+3=15; 故选C . 5.D 【解析】 【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.6.B【解析】【分析】圆内接正六边形的边长是1,即圆的半径是1,则圆的内接正方形的对角线长是2,进而就可求解.【详解】解:∵圆内接正六边形的边长是1,∴圆的半径为1.那么直径为2.圆的内接正方形的对角线长为圆的直径,等于2.∴圆的内接正方形的边长是.故选B.【点睛】本题考查正多边形与圆,关键是利用知识点:圆内接正六边形的边长和圆的半径相等;圆的内接正方形的对角线长为圆的直径解答.7.C【解析】试题分析:根据角平分线的性质可得CD=DE=1,根据Rt△ADE可得AD=2DE=2,根据题意可得△ADB 为等腰三角形,则DE为AB的中垂线,则BD=AD=2,则BC=CD+BD=1+2=1.考点:角平分线的性质和中垂线的性质.8.B【解析】【分析】在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.【详解】在这组数据中出现次数最多的是1.1,即众数是1.1.要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.故选B.【点睛】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.9.D【解析】【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.10.B【解析】当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=kx的图象在一、三象限,∴A、C不符合题意,B符合题意;当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=k x的图象在二、四象限,∴D不符合题意.故选B.11.A【解析】∵∠AED=∠B,∠A=∠A∴△ADE∽△ACB∴AE DE AB BC,∵DE=6,AB=10,AE=8,∴8610BC=, 解得BC =152.故选A. 12.D 【解析】 【分析】等式左边为非负数,说明右边3b 0-≥,由此可得b 的取值范围. 【详解】解:3b =-Q,3b 0∴-≥,解得b 3.≤故选D . 【点睛】()0a 0≥≥()a a 0=≥.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1:4 【解析】∵两个相似三角形对应边上的高的比为1∶4, ∴这两个相似三角形的相似比是1:4 ∵相似三角形的周长比等于相似比, ∴它们的周长比1:4, 故答案为:1:4.【点睛】本题考查了相似三角形的性质,相似三角形对应边上的高、相似三角形的周长比都等于相似比. 14.62n + 【解析】 【分析】根据图形可得每增加一个金鱼就增加6根火柴棒即可解答. 【详解】第一个图中有8根火柴棒组成, 第二个图中有8+6个火柴棒组成, 第三个图中有8+2×6个火柴组成, ……∴组成n 个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2. 故答案为6n+2 【点睛】本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键. 15.22a b - 【解析】分析:按单项式乘以多项式的法则将括号去掉,在合并同类项即可. 详解:原式=2222a ab ab b a b +--=-. 故答案为:22a b -.点睛:熟记整式乘法和加减法的相关运算法则是正确解答这类题的关键. 16.1 【解析】析:本题需先根据已知条件列出关于m 的等式,即可求出m 的值. 解答:解:∵x 的方程x 2-2x+m=0(m 为常数)有两个相等实数根 ∴△=b 2-4ac=(-2)2-4×1?m=0 4-4m=0 m=1 故答案为1 17.﹣2,﹣1【解析】试题分析:根据不等式的性质求出不等式的解集,找出不等式的整数解即可. 解:1﹣2x <6, 移项得:﹣2x <6﹣1, 合并同类项得:﹣2x <5,不等式的两边都除以﹣2得:x >﹣, ∴不等式的负整数解是﹣2,﹣1, 故答案为:﹣2,﹣1.点评:本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键. 18.1 【解析】分析:先由a 2﹣a ﹣1=0可得a 2﹣a=1,再把(a ﹣21a a - )2)1a a ⋅-(的第一个括号内通分,并把分子分解因式后约分化简,然后把a 2﹣a=1代入即可.详解:∵a 2﹣a ﹣1=0,即a 2﹣a=1,∴原式=22211a a a a a -+⋅- =()2211a a a a -⋅- =a (a ﹣1)=a 2﹣a=1,故答案为1点睛:本题考查了分式的化简求值,解题的关键是正确掌握分式混合运算的顺序:先算乘除,后算加减,有括号的先算括号里,整体代入法是求代数式的值常用的一种方法.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=x2+2x ﹣3;(2)258;(3)详见解析. 【解析】试题分析:(1)先利用抛物线的对称性确定出点B 的坐标,然后设抛物线的解析式为y=a (x+3)(x-1),将点D 的坐标代入求得a 的值即可;(2)过点E 作EF ∥y 轴,交AD 与点F ,过点C 作CH ⊥EF ,垂足为H .设点E (m ,m 2+2m-3),则F (m ,-m+1),则EF=-m 2-3m+4,然后依据△ACE 的面积=△EFA 的面积-△EFC 的面积列出三角形的面积与m 的函数关系式,然后利用二次函数的性质求得△ACE 的最大值即可;(3)当AD 为平行四边形的对角线时.设点M 的坐标为(-1,a ),点N 的坐标为(x ,y ),利用平行四边形对角线互相平分的性质可求得x 的值,然后将x=-2代入求得对应的y 值,然后依据2y a +=052+,可求得a 的值;当AD 为平行四边形的边时.设点M 的坐标为(-1,a ).则点N 的坐标为(-6,a+5)或(4,a-5),将点N 的坐标代入抛物线的解析式可求得a 的值.试题解析:(1)∴A(1,0),抛物线的对称轴为直线x =-1,∴B(-3,0),设抛物线的表达式为y =a(x +3)(x -1),将点D(-4,5)代入,得5a =5,解得a =1,∴抛物线的表达式为y =x 2+2x -3;(2)过点E 作EF ∥y 轴,交AD 与点F ,交x 轴于点G ,过点C 作CH ⊥EF ,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1).∴EF=-m+1-m2-2m+3=-m2-3m+4.∴S△ACE=S△EFA-S△EFC=12EF·AG-12EF·HC=12EF·OA=-12(m+32)2+258.∴△ACE的面积的最大值为258;(3)当AD为平行四边形的对角线时:设点M的坐标为(-1,a),点N的坐标为(x,y).∴平行四边形的对角线互相平分,∴12x-+=()142+-,2y a+=052+,解得x=-2,y=5-a,将点N的坐标代入抛物线的表达式,得5-a=-3,解得a=8,∴点M的坐标为(-1,8),当AD为平行四边形的边时:设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,∴M(-1,16),将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,∴M(-1,26),综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.20.()1200名;()2见解析;()336o;(4)375.【解析】【分析】()1根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;()2根据()1中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;()3根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;()4根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.【详解】解:()113065%200÷=,答:此次抽样调查中,共调查了200名学生;()2反对的人数为:2001305020--=,补全的条形统计图如右图所示;()3扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:2036036200⨯=o o ; (4)501500375200⨯=, 答:该校1500名学生中有375名学生持“无所谓”意见.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.21.(1)x=13;(2)x >3;数轴见解析; 【解析】【分析】(1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:(1)方程两边都乘以(1﹣2x )(x+2)得:x+2﹣(1﹣2x )=0,解得:1,3x =-检验:当13x =-时,(1﹣2x )(x+2)≠0,所以13x =-是原方程的解,所以原方程的解是13x =-; (2)()321931x x x ->⎧⎪⎨+<+⎪⎩①② , ∵解不等式①得:x >1,解不等式②得:x >3,∴不等式组的解集为x >3,在数轴上表示为:.【点睛】本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键. 22.21(2)x - 【解析】【分析】先把括号内通分,再把除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【详解】原式=()()221[]?242x x x x x x x +-----, =()()()()2221•42x x x x x x x x +-----, =()24•42x x x x x ---, =()212x -.【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.23.(1)见解析;(2)154DE =. 【解析】【分析】(1)根据两角对应相等,两三角形相似即可判定;(2)利用相似三角形的性质即可解决问题.【详解】(1)∵DE ⊥AB ,∴∠AED=∠C=90°.∵∠A=∠A ,∴△AED ∽△ACB .(2)在Rt △ABC 中,∵AC=8,BC=6,∴AB =1.∵DE 垂直平分AB ,∴AE=EB=2.∵△AED ∽△ACB ,∴DE AE BC AC =,∴568DE =,∴DE 154=. 【点睛】本题考查了相似三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.24.(1)y=x2-x-4(2)点M的坐标为(2,-4)(3)-或-【解析】【分析】(1)设交点式y=a(x+2)(x-4),然后把C点坐标代入求出a即可得到抛物线解析式;(2) 连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM+S△OCM-(m-2)2+12. 当m=2时,四边形OAMC面积最大,此时阴影部分面积最小;(3) 抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C 1作C1D⊥AC于D,则CC1=2.先求AC=4,CD=C1D=,AD=4-=3;设点P,过P作PQ垂直于x轴,垂足为Q. 证△PAQ∽△C 1AD,得,即,解得解得n=-,或n=-,或n=4(舍去).【详解】(1)抛物线的解析式为y=(x-4)(x+2)=x2-x-4.(2)连接OM,设点M的坐标为.由题意知,当四边形OAMC面积最大时,阴影部分的面积最小.S四边形OAMC=S△OAM+S△OCM=× 4m+× 4=-m2+4m+8=-(m-2)2+12.当m=2时,四边形OAMC面积最大,此时阴影部分面积最小,所以点M的坐标为(2,-4).(3)∵抛物线的对称轴为直线x=1,点C与点C1关于抛物线的对称轴对称,所以C1(2,-4).连接CC1,过C1作C1D⊥AC于D,则CC1=2.∵OA=OC,∠AOC=90°,∠CDC1=90°,∴AC=4,CD=C 1D=,AD=4-=3,设点P,过P作PQ垂直于x轴,垂足为Q.∵∠PAB=∠CAC1,∠AQP=∠ADC1,∴△PAQ∽△C1AD,∴,即,化简得=(8-2n),即3n2-6n-24=8-2n,或3n2-6n-24=-(8-2n),解得n=-,或n=-,或n=4(舍去),∴点P的横坐标为-或-.【点睛】本题考核知识点:二次函数综合运用. 解题关键点:熟记二次函数的性质,数形结合,由所求分析出必知条件.25.(3)证明见解析; (3)AB=3.【解析】【分析】(3)由等腰直角三角形得出AC=BC,CE=CD,∠ACB=∠ECD=90°,得出∠BCD=∠ACE,根据SAS 推出△ACE≌△BCD即可;(3)求出AD=5,根据全等得出AE=BD=33,在Rt△AED中,由勾股定理求出DE即可.【详解】证明:(3)如图,∵△ACB与△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∵∠ACB=∠ECD=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠BCD=∠ACE,在△BCD和△ACE中,∵BC=AC,∠BCD=∠ACE,CD=CE,∴△BCD≌△ACE(SAS);(3)由(3)知△BCD≌△ACE,则∠DBC=∠EAC,AE=BD=33,∵∠CAD+∠DBC=90°,∴∠EAC+∠CAD=90°,即∠EAD=90°,∵AE=33,ED=33,∴AD=22=5,1312∴AB=AD+BD=33+5=3.【点睛】本题考查了全等三角形的判定与性质,也考查了等腰直角三角形的性质和勾股定理的应用.考点:3.全等三角形的判定与性质;3.等腰直角三角形.26.(1)画图见解析;(2)画图见解析;(3)5.【解析】【分析】(1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;(2)根据矩形的性质画出符合题意的图形;(3)根据题意利用勾股定理得出结论.【详解】(1)如图所示;(2)如图所示;(3)如图所示,在直角三角形中,根据勾股定理得5【点睛】本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理. 27.(1)c>﹣2;(2) x1=﹣1,x2=1.【解析】【分析】(1)根据抛物线与x轴有两个交点,b2-4ac>0列不等式求解即可;(2)先求出抛物线的对称轴,再根据抛物线的对称性求出抛物线与x轴的另一个交点坐标,然后根据二次函数与一元二次方程的关系解答.【详解】(1)解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得抛物线的对称轴为直线x=1,∵抛物线经过点(﹣1,0),∴抛物线与x轴的另一个交点为(1,0),∴方程﹣2x2+4x+c=0的根为x1=﹣1,x2=1.【点睛】考查了抛物线与x轴的交点问题、二次函数与一元二次方程,解题关键是运用了根与系数的关系以及二次函数的对称性.。
福建省福州市2019-2020学年中考数学模拟试题(1)含解析
福建省福州市2019-2020学年中考数学模拟试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有( )A .4个B .5个C .6个D .7个2.对于函数y=21x,下列说法正确的是( ) A .y 是x 的反比例函数 B .它的图象过原点 C .它的图象不经过第三象限D .y 随x 的增大而减小3.如图,在平面直角坐标系中,矩形ABOC 的两边在坐标轴上,OB =1,点A 在函数y =﹣2x(x <0)的图象上,将此矩形向右平移3个单位长度到A 1B 1O 1C 1的位置,此时点A 1在函数y =kx(x >0)的图象上,C 1O 1与此图象交于点P ,则点P 的纵坐标是( )A .53B .34C .43D .234.如图,将△ABC 绕点C 旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB 扫过的图形面积为( )A .32πB .83π C .6π D .以上答案都不对5.已知5a =27b =,且a b a b +=+,则-a b 的值为( )A.x4+x4=2x8B.(x2)3=x5C.(x﹣y)2=x2﹣y2D.x3•x=x47.已知点A(1,y1)、B(2,y2)、C(﹣3,y3)都在反比例函数y=6x的图象上,则y1、y2、y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y28.如图所示的几何体的主视图正确的是()A.B.C.D.9.若一个三角形的两边长分别为5和7,则该三角形的周长可能是()A.12 B.14 C.15 D.2510.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE等于()A.40°B.70°C.60°D.50°11.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18, 1.5OE ,则四边形EFCD的周长为()A.14 B.13 C.12 D.1012.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为()A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,⊙C 经过原点且与两坐标轴分别交于点 A 与点 B ,点 B 的坐标为(﹣3,0),M 是圆上一点,∠BMO=120°.⊙C 圆心 C 的坐标是_____.14.二次函数y=(a-1)x 2-x+a 2-1 的图象经过原点,则a 的值为______.15.甲、乙两人分别从A ,B 两地相向而行,他们距B 地的距离s (km )与时间t (h )的关系如图所示,那么乙的速度是__km/h .16.计算(32)3+-的结果是_____17.如图①,在矩形ABCD 中,对角线AC 与BD 交于点O ,动点P 从点A 出发,沿AB 匀速运动,到达点B 时停止,设点P 所走的路程为x ,线段OP 的长为y ,若y 与x 之间的函数图象如图②所示,则矩形ABCD 的周长为_____.18.如图,在O e 中,AB 为直径,点C 在O e 上,ACB ∠的平分线交O e 于D ,则ABD ∠=______.o销量p(万台)与月份x之间成一次函数关系,其中1﹣6月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p) 3.9万台 4.0万台 4.1万台 4.2万台 4.3万台 4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也比去年12月份下降了1.5m%.今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台.若今年2月份这种品牌手机的销售额为6400万元,求m的值.20.(6分)数学活动小组的小颖、小明和小华利用皮尺和自制的两个直角三角板测量学校旗杆MN的高度,如示意图,△ABC和△A′B′C′是他们自制的直角三角板,且△ABC≌△A′B′C′,小颖和小明分别站在旗杆的左右两侧,小颖将△ABC的直角边AC平行于地面,眼睛通过斜边AB观察,一边观察一边走动,使得A、B、M共线,此时,小华测量小颖距离旗杆的距离DN=19米,小明将△A′B′C′的直角边B′C′平行于地面,眼睛通过斜边B′A′观察,一边观察一边走动,使得B′、A′、M共线,此时,小华测量小明距离旗杆的距离EN=5米,经测量,小颖和小明的眼睛与地面的距离AD=1米,B′E=1.5米,(他们的眼睛与直角三角板顶点A,B′的距离均忽略不计),且AD、MN、B′E均与地面垂直,请你根据测量的数据,计算旗杆MN的高度.21.(6分)如图1,在四边形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90°得到PQ.(1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;(2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留π);(3)若点Q落在AB或AD边所在直线上,请直接写出BP的长.22.(8分)某校数学综合实践小组的同学以“绿色出行”为主题,把某小区的居民对共享单车的了解和使路程不超过8千米,并将调查结果制作成统计图,如下图所示:本次调查人数共人,使用过共享单车的有人;请将条形统计图补充完整;如果这个小区大约有3000名居民,请估算出每天的骑行路程在2~4千米的有多少人?23.(8分)如图,∠AOB=45°,点M,N在边OA上,点P是边OB上的点.(1)利用直尺和圆规在图1确定点P,使得PM=PN;(2)设OM=x,ON=x+4,①若x=0时,使P、M、N构成等腰三角形的点P有个;②若使P、M、N构成等腰三角形的点P恰好有三个,则x的值是____________.24.(10分)如图,在平面直角坐标系中,抛物线y=x2+mx+n经过点A(3,0)、B(0,-3),点P是直线AB上的动点,过点P作x轴的垂线交抛物线于点M,设点P的横坐标为t.分别求出直线AB和这条抛物线的解析式.若点P在第四象限,连接AM、BM,当线段PM最长时,求△ABM的面积.是否存在这样的点P,使得以点P、M、B、O为顶点的四边形为平行四边形?若存在,请直接写出点P的横坐标;若不存在,请说明理由.25.(10分)计算:|2|82﹣π)0+2cos45°.解方程:33xx-=1﹣13x-D是直线l上一点,过点D作DE⊥CB交CB延长线于点E,连接AD,交⊙O于点F,连接BF、CD交于点G.(1)求证:△ACB∽△BED;(2)当AD⊥AC时,求DGCG的值;(3)若CD平分∠ACB,AC=2,连接CF,求线段CF的长.27.(12分)下面是小星同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程:已知:如图,直线l和直线l外一点A求作:直线AP,使得AP∥l作法:如图①在直线l上任取一点B(AB与l不垂直),以点A为圆心,AB为半径作圆,与直线l交于点C.②连接AC,AB,延长BA到点D;③作∠DAC的平分线AP.所以直线AP就是所求作的直线根据小星同学设计的尺规作图过程,使用直尺和圆规,补全图形(保留作图痕迹)完成下面的证明证明:∵AB=AC,∴∠ABC=∠ACB(填推理的依据)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依据)∴∠DAC=2∠ABC∵AP平分∠DAC,∴AP ∥l (填推理的依据)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:则搭成这个几何体的小正方体最少有5个, 故选B .【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键. 【详解】请在此输入详解! 【点睛】 请在此输入点睛! 2.C 【解析】 【分析】直接利用反比例函数的性质结合图象分布得出答案. 【详解】 对于函数y=21x,y 是x 2的反比例函数,故选项A 错误;它的图象分布在第一、二象限,不经过第三象限,故选项C正确;第一象限,y随x的增大而减小,第二象限,y随x的增大而增大,故选C.【点睛】此题主要考查了反比例函数的性质,正确得出函数图象分布是解题关键.3.C【解析】分析:先求出A点坐标,再根据图形平移的性质得出A1点的坐标,故可得出反比例函数的解析式,把O1点的横坐标代入即可得出结论.详解:∵OB=1,AB⊥OB,点A在函数2yx=-(x<0)的图象上,∴当x=−1时,y=2,∴A(−1,2).∵此矩形向右平移3个单位长度到1111A B O C的位置,∴B1(2,0),∴A1(2,2).∵点A1在函数kyx=(x>0)的图象上,∴k=4,∴反比例函数的解析式为4yx=,O1(3,0),∵C1O1⊥x轴,∴当x=3时,43y=,∴P4 (3,).3故选C.点睛:考查反比例函数图象上点的坐标特征, 坐标与图形变化-平移,解题的关键是运用双曲线方程求出点A的坐标,利用平移的性质求出点A1的坐标.4.D【解析】【分析】从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.阴影面积=()603616103603π⨯-=π. 故选D . 【点睛】本题的关键是理解出,线段AB 扫过的图形面积为一个环形. 5.D 【解析】 【分析】 【详解】根据a =5=7,得a 5,b 7=±=±,因为a b a b +=+,则a 5,b 7=±=,则-a b =5-7=-2或-5-7=-12. 故选D. 6.D【解析】A. x 4+x 4=2x 4 ,故错误;B. (x 2)3=x 6 ,故错误;C. (x ﹣y )2=x 2﹣2xy+y 2 ,故错误; D. x 3•x=x 4 ,正确,故选D. 7.B 【解析】 【分析】分别把各点代入反比例函数的解析式,求出y 1,y 2,y 3的值,再比较出其大小即可. 【详解】∵点A (1,y 1),B (2,y 2),C (﹣3,y 3)都在反比例函数y=6x的图象上, ∴y 1=61=6,y 2=62=3,y 3=63-=-2,∵﹣2<3<6, ∴y 3<y 2<y 1, 故选B . 【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟练掌握反比例函数图象上的点的坐标满足函数的解析式是解题的关键. 8.D 【解析】 【分析】主视图是从前向后看,即可得图像.主视图是一个矩形和一个三角形构成.故选D.9.C【解析】【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项.【详解】∴三角形的两边长分别为5和7,∴2<第三条边<12,∴5+7+2<三角形的周长<5+7+12,即14<三角形的周长<24,故选C.【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可.10.D【解析】【分析】根据线段垂直平分线性质得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【详解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故选D.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.11.C【详解】∵平行四边形ABCD ,∴AD ∥BC ,AD=BC ,AO=CO ,∴∠EAO=∠FCO ,∵在△AEO 和△CFO 中,AEO CFO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEO ≌△CFO ,∴AE=CF ,EO=FO=1.5,∵C 四边形ABCD =18,∴CD+AD=9,∴C 四边形CDEF =CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF 的周长进行转化.12.A【解析】【分析】转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可【详解】奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:P (奇数)= = .故此题选A .【点睛】此题主要考查了几何概率,正确应用概率公式是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.312) 【解析】【分析】连接AB ,OC ,由圆周角定理可知AB 为⊙C 的直径,再根据∠BMO=120°可求出∠BAO 以及∠BCO 的度数,在Rt △COD 中,解直角三角形即可解决问题;【详解】连接AB ,OC ,∵∠AOB=90°,∴AB为⊙C的直径,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,过C作CD⊥OB于D,则OD=12OB,∠DCB=∠DCO=60°,∵B(30),∴3在Rt△COD中.CD=OD•tan30°=12,∴C(312),故答案为C(312).【点睛】本题考查的是圆心角、弧、弦的关系及圆周角定理、直角三角形的性质、坐标与图形的性质及特殊角的三角函数值,根据题意画出图形,作出辅助线,利用数形结合求解是解答此题的关键.14.-1【解析】【分析】将(2,2)代入y=(a-1)x2-x+a2-1 即可得出a的值.【详解】解:∵二次函数y=(a-1)x2-x+a2-1 的图象经过原点,∴a2-1=2,∴a=±1,∵a-1≠2,∴a≠1,∴a的值为-1.故答案为-1.【点睛】本题考查了二次函数图象上点的坐标特征,图象过原点,可得出x=2时,y=2.15.3.6【解析】分析:根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.详解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为xkm/h4.5×6+2.5x=36解得x=3.6故答案为3.6点睛:本题为一次函数实际应用问题,考查一次函数图象在实际背景下所代表的意义.解答这类问题时,也可以通过构造方程解决问题.16【解析】【分析】根据二次根式的运算法则进行计算即可求出答案.【详解】-,.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.17.1【解析】分析:根据点P的移动规律,当OP⊥BC时取最小值2,根据矩形的性质求得矩形的长与宽,易得该矩形的周长.详解:∵当OP⊥AB时,OP最小,且此时AP=4,OP=2,∴AB=2AP=8,AD=2OP=6,∴C矩形ABCD=2(AB+AD)=2×(8+6)=1.故答案为1.点睛:本题考查了动点问题的函数图象,关键是根据所给函数图象和点的运动轨迹判断出AP=4,OP=2.18.1【解析】【分析】由AB 为直径,得到ACB 90∠=o ,由因为CD 平分ACB ∠,所以ACD 45∠=o ,这样就可求出ABD ∠.【详解】解:AB Q 为直径,ACB 90∠∴=o ,又CD Q 平分ACB ∠,ACD 45∠∴=o ,ABD ACD 45o ∠∠∴==.故答案为1.【点睛】本题考查了圆周角定理:在同圆和等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角是它所对的圆心角的一半.同时考查了直径所对的圆周角为90度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)p =0.1x+3.8;(2)该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)m 的值为1.【解析】【分析】(1)直接利用待定系数法求一次函数解析式即可;(2)利用销量×售价=销售金额,进而利用二次函数最值求法求出即可;(3)分别表示出1,2月份的销量以及售价,进而利用今年2月份这种品牌手机的销售额为6400万元,得出等式求出即可.【详解】(1)设p =kx+b ,把p=3.9,x=1;p=4.0,x=2分别代入p=kx+b 中,得: 3.92 4.0,k b k b +=⎧⎨+=⎩ 解得:0.13.8k b =⎧⎨=⎩, ∴p=0.1x+3.8;(2)设该品牌手机在去年第x 个月的销售金额为w 万元,w=(﹣50x+2600)(0.1x+3.8)=﹣5x2+70x+9880=﹣5(x﹣7)2+10125,当x=7时,w最大=10125,答:该品牌手机在去年七月份的销售金额最大,最大为10125万元;(3)当x=12时,y=100,p=5,1月份的售价为:100(1﹣m%)元,则2月份的售价为:0.8×100(1﹣m%)元;1月份的销量为:5×(1﹣1.5m%)万台,则2月份的销量为:[5×(1﹣1.5m%)+1.5]万台;∴0.8×100(1﹣m%)×[5×(1﹣1.5m%)+1.5]=6400,解得:m1%=53(舍去),m2%=15,∴m=1,答:m的值为1.【点睛】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式,根据题意表示出2月份的销量与售价是解题关键.20.11米【解析】【分析】过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,根据相似三角形的性质即可得到结论.【详解】解:过点C作CE⊥MN于E,过点C′作C′F⊥MN于F,则EF=B′E−AD=1.5−1=0.5(m),AE=DN=19,B′F=EN=5,∵△ABC≌△A′B′C′,∴∠MAE=∠B′MF,∵∠AEM=∠B′FM=90°,∴△AMF∽△MB′F,∴,∴∴MF=,∵∴答:旗杆MN的高度约为11米.【点睛】本题考查了相似三角形的应用,正确的作出辅助线是解题的关键.21.(1);(2)5π;(3)PB的值为或.【解析】【分析】(1)如图1中,作AM⊥CB用M,DN⊥BC于N,根据题意易证Rt△ABM≌Rt△DCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;(2)连接AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;(3)当点Q落在直线AB上时,根据相似三角形的性质可得对应边成比例,即可求出PB的值;当点Q 在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13﹣x,再根据全等三角形的性质可得对应边相等,即可求出PB的值.【详解】解:(1)如图1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四边形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如图2中,连接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的长==5π.(3)如图3中,当点Q落在直线AB上时,∵△EPB∽△AMB,∴==,∴==,∴PB=.如图4中,当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G.设PB=x,则AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.综上所述,满足条件的PB的值为或.【点睛】本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.22.(1)200,90 (2)图形见解析(3)750人【解析】试题分析:(1)用对于共享单车不了解的人数20除以对于共享单车不了解的人数所占得百分比即可得本次调查人数;用总人数乘以使用过共享单车人数所占的百分比即可得使用过共享单车的人数;(2)用使用过共享单车的总人数减去0~2,4~6,6~8的人数,即可得2~4的人数,再图上画出即可;(3)用3000乘以骑行路程在2~4千米的人数所占的百分比即可得每天的骑行路程在2~4千米的人数.试题解析:(1)20÷10%=200,200×(1-45%-10%)=90 ;(2)90-25-10-5=50,补全条形统计图(3)503000200=750(人)答: 每天的骑行路程在2~4千米的大约750人23.(1)见解析;(2)①1;②:x=0或x=42﹣4或4<x<42;【解析】【分析】(1)分别以M、N为圆心,以大于12MN为半径作弧,两弧相交与两点,过两弧交点的直线就是MN的垂直平分线;(2)①分为PM=PN,MP=MN,NP=NM三种情况进行判断即可;②如图1,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;如图4,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.【详解】解:(1)如图所示:(2)①如图所示:故答案为1.②如图1,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴42=OM,当M与D重合时,即424=-=-时,同理可知:点P恰好有三个;x OM DM如图4,取OM=4,以M为圆心,以OM为半径画圆.则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当442<<M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;x综上所述,若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 的值是:x=0或424x =-或442x <<.故答案为x=0或424x =-或442x <<.【点睛】本题考查了等腰三角形的判定,有难度,本题通过数形结合的思想解决问题,解题的关键是熟练掌握已知一边,作等腰三角形的画法. 24. (1)抛物线的解析式是223y x x =--.直线AB 的解析式是3y x =-.(2) 278. (3)P 点的横坐标是3212+或3212-. 【解析】【分析】(1)分别利用待定系数法求两函数的解析式:把A (3,0)B (0,﹣3)分别代入y=x 2+mx+n 与y=kx+b ,得到关于m 、n 的两个方程组,解方程组即可;(2)设点P 的坐标是(t ,t ﹣3),则M (t ,t 2﹣2t ﹣3),用P 点的纵坐标减去M 的纵坐标得到PM 的长,即PM=(t ﹣3)﹣(t 2﹣2t ﹣3)=﹣t 2+3t ,然后根据二次函数的最值得到当t=﹣=时,PM 最长为=,再利用三角形的面积公式利用S △ABM =S △BPM +S △APM 计算即可;(3)由PM ∥OB ,根据平行四边形的判定得到当PM=OB 时,点P 、M 、B 、O 为顶点的四边形为平行四边形,然后讨论:当P 在第四象限:PM=OB=3,PM 最长时只有,所以不可能;当P 在第一象限:PM=OB=3,(t 2﹣2t ﹣3)﹣(t ﹣3)=3;当P 在第三象限:PM=OB=3,t 2﹣3t=3,分别解一元二次方程即可得到满足条件的t 的值.【详解】解:(1)把A (3,0)B (0,-3)代入2y x mx n =++,得 093{3m n n =++-=解得2{3m n =-=- 所以抛物线的解析式是223y x x =--.设直线AB 的解析式是y kx b =+,把A (3,0)B (0,3-)代入y kx b =+,得 03{3k b b =+-=解得1{3k b ==-所以直线AB 的解析式是3y x =-.(2)设点P 的坐标是(3p p -,),则M (p ,223p p --),因为p 在第四象限,所以PM=22(3)(23)3p p p p p ----=-+,当PM 最长时94PM =,此时3,2p = ABM BPM APM S S S =+V V V =19324⨯⨯=278. (3)若存在,则可能是:①P 在第四象限:平行四边形OBMP ,PM=OB=3, PM 最长时94PM =,所以不可能.②P 在第一象限平行四边形OBPM : PM=OB=3,233p p -=,解得1p =,2p =去),所以P 点的横坐标是32.③P 在第三象限平行四边形OBPM :PM=OB=3,233p p -=,解得132p =(舍去),①232p =,所以P 点的横坐标是32-.所以P 点的横坐标是32+或32. 25.(1)﹣1;(2)x=﹣1是原方程的根.【解析】【分析】(1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;(2)直接去分母再解方程得出答案.【详解】(1)原式﹣﹣1+2×2==﹣1;(2)去分母得:3x=x ﹣3+1,解得:x=﹣1,检验:当x=﹣1时,x ﹣3≠0,故x=﹣1是原方程的根.【点睛】此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键.26.(1)详见解析;(2)14;(3)855.【解析】【分析】(1)只要证明∠ACB=∠E,∠ABC=∠BDE即可;(2)首先证明BE:DE:BC=1:2:4,由△GCB∽△GDF,可得DGCG=14;(3)想办法证明AB垂直平分CF即可解决问题.【详解】(1)证明:如图1中,∵DE⊥CB,∴∠ACB=∠E=90°,∵BD是切线,∴AB⊥BD,∴∠ABD=90°,∴∠ABC+∠DBE=90°,∠BDE+∠DBE=90°,∴∠ABC=∠BDE,∴△ACB∽△BED;(2)解:如图2中,∵△ACB∽△BED;四边形ACED是矩形,∴BE:DE:BC=1:2:4,∵DF∥BC,∴△GCB∽△GDF,∴DGCG=14;(3)解:如图3中,∵tan∠ABC=ACBC=12,AC=2,∴BC=4,BE=4,DE=8,AB=25,BD=45,易证△DBE≌△DBF,可得BF=4=BC,∴AC=AF=2,∴CF⊥AB,设CF交AB于H,则CF=2CH=2×855 AC BCAB⨯=.【点睛】本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.27.(1)详见解析;(2)(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【解析】【分析】(1)根据角平分线的尺规作图即可得;(2)分别根据等腰三角形的性质、三角形外角的性质和平行线的判定求解可得.【详解】解:(1)如图所示,直线AP即为所求.(2)证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角),∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(三角形外角性质),∴∠DAC=2∠ABC,∵AP平分∠DAC,∴∠DAC=2∠DAP,∴∠DAP=∠ABC,∴AP∥l(同位角相等,两直线平行),故答案为(等边对等角),(三角形外角性质),(同位角相等,两直线平行).【点睛】本题主要考查作图能力,解题的关键是掌握角平分线的尺规作图、等腰三角形的性质、三角形外角的性质和平行线的判定.。
福建省福州市2019-2020学年中考数学考前模拟卷(2)含解析
福建省福州市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤2.如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A .(3,2)B .(3,1)C .(2,2)D .(4,2)3.已知函数y=1x的图象如图,当x≥﹣1时,y 的取值范围是( )A .y <﹣1B .y≤﹣1C .y≤﹣1或y >0D .y <﹣1或y≥04.如图所示,有一条线段是ABC ∆(AB AC >)的中线,该线段是( ).A .线段GHB .线段ADC .线段AED .线段AF5.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >46.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 出发,以2cm/s 的速度沿AB 方向运动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC →CB 方向运动到点B .设△APQ 的面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是 ( )A .B .C .D .7.在0.3,﹣3,0,﹣3这四个数中,最大的是( ) A .0.3B .﹣3C .0D .﹣38.已知点()P m,n ,为是反比例函数3y=-x上一点,当-3n<-1≤时,m 的取值范围是( ) A .1m<3≤B .-3m<-1≤C .1<m 3≤D .-3<m -1≤9.如图,E 为平行四边形ABCD 的边AB 延长线上的一点,且BE:AB=2:3,△BEF 的面积为4,则平行四边形ABCD 的面积为()A.30 B.27 C.14 D.3210.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是()A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>011.如图,I是∆ABC的内心,AI向延长线和△ABC的外接圆相交于点D,连接BI,BD,DC下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI熏合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合12.关于x的方程x2+(k2﹣4)x+k+1=0的两个根互为相反数,则k值是()A.﹣1 B.±2 C.2 D.﹣2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q14.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.15.如图,AB是⊙O的直径,CD是⊙O的弦,∠BAD=60°,则∠ACD=_____°.16.不等式组()3241213x x x x ⎧--<⎪⎨+-≤⎪⎩的解集为______.17.如图,a ∥b ,∠1=110°,∠3=40°,则∠2=_____°.18.若代数式5xx +有意义,则实数x 的取值范围是____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组:21512x xx x +>⎧⎪⎨+-≥⎪⎩,并把解集在数轴上表示出来.20.(6分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A 处水平飞行至B 处需10秒,A 在地面C 的北偏东12°方向,B 在地面C 的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)21.(6分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?22.(8分)第二十四届冬季奧林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有400名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整. [收集数据]从甲、乙两校各随机抽取20名学生,在这次竞赛中他们的成绩如下: 甲:30 60 60 70 60 80 30 90 100 6060 100 80 60 70 60 60 90 60 60乙:80 90 40 60 80 80 90 40 80 5080 70 70 70 70 60 80 50 80 80[整理、描述数据]按如下分数段整理、描述这两组样本数据:(说明:优秀成绩为80100x <≤,良好成绩为5080,x <≤合格成绩为3050x ≤≤.) [分析数据]两组样本数据的平均分、中位数、众数如下表所示: 其中a = . [得出结论](1)小明同学说:“这次竞赛我得了70分,在我们学校排名属中游略偏上!”由表中数据可知小明是 _校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取--名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为_ ;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由: ; (至少从两个不同的角度说明推断的合理性)23.(8分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?24.(10分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.(1)求甲组加工零件的数量y与时间x之间的函数关系式.(2)求乙组加工零件总量a的值.25.(10分)如图,在五边形ABCDE中,∠C=100°,∠D=75°,∠E=135°,AP平分∠EAB,BP平分∠ABC,求∠P的度数.26.(12分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.求证:PD是⊙O的切线;求证:△ABD∽△DCP;当AB=5cm,AC=12cm时,求线段PC的长.27.(12分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线点F.问:图中△APD与哪个三角形全等?并说明理由;求证:△APE∽△FPA;猜想:线段PC,PE,PF之间存在什么关系?并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】由抛物线的开口方向判断a 与2的关系,由抛物线与y 轴的交点判断c 与2的关系,然后根据对称轴判定b 与2的关系以及2a+b=2;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >2. 【详解】①∵对称轴在y 轴右侧, ∴a 、b 异号, ∴ab <2,故正确; ②∵对称轴1,2bx a=-= ∴2a+b=2;故正确; ③∵2a+b=2, ∴b=﹣2a ,∵当x=﹣1时,y=a ﹣b+c <2, ∴a ﹣(﹣2a )+c=3a+c <2,故错误; ④根据图示知,当m=1时,有最大值; 当m≠1时,有am 2+bm+c≤a+b+c , 所以a+b≥m (am+b )(m 为实数). 故正确.⑤如图,当﹣1<x <3时,y 不只是大于2. 故错误. 故选A . 【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定 抛物线的开口方向,当a >2时,抛物线向上开口;当a <2时,抛物线向下开口;②一次项 系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >2),对称轴在y 轴 左; 当a 与b 异号时(即ab <2),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛 物线与y 轴交点,抛物线与y 轴交于(2,c ).【解析】【详解】∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为13,∴ADBG=13,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴OAOB=13,∴2OAOA=13,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选A.3.C【解析】试题分析:根据反比例函数的性质,再结合函数的图象即可解答本题.解:根据反比例函数的性质和图象显示可知:此函数为减函数,x≥-1时,在第三象限内y的取值范围是y≤-1;在第一象限内y的取值范围是y>1.故选C.考点:本题考查了反比例函数的性质点评:此类试题属于难度一般的试题,考生在解答此类试题时一定要注意分析反比例函数的基本性质和知识,反比例函数y=kx的图象是双曲线,当k>1时,图象在一、三象限,在每个象限内y随x的增大而减小;当k<1时,图象在二、四象限,在每个象限内,y随x的增大而增大4.B【解析】【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知:线段AD是△ABC的中线.故选B.【点睛】本题考查了三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中5.C 【解析】 【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可. 【详解】∵直线y 1=kx+b 与直线y 2=mx+n 分别交x 轴于点A(﹣1,0),B(4,0), ∴不等式(kx+b)(mx+n)>0的解集为﹣1<x <4, 故选C . 【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变. 6.D 【解析】 【分析】在△ABC 中,∠C=90°,AC=BC=3cm ,可得AB=A=∠B=45°,分当0<x≤3(点Q 在AC 上运动,点P 在AB 上运动)和当3≤x≤6时(点P 与点B 重合,点Q 在CB 上运动)两种情况求出y 与x 的函数关系式,再结合图象即可解答. 【详解】在△ABC 中,∠C=90°,AC=BC=3cm ,可得AB=A=∠B=45°,当0<x≤3时,点Q 在AC 上运动,点P 在AB 上运动(如图1), 由题意可得x ,AQ=x ,过点Q 作QN ⊥AB 于点N ,在等腰直角三角形AQN 中,求得QN=2x ,所以y=12AP QN ⋅=211=222x x ⨯(0<x≤3),即当0<x≤3时,y 随x 的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P 与点B 重合,点Q 在CB 上运动(如图2),由题意可得PQ=6-x ,,过点Q 作QN ⊥BC 于点N ,在等腰直角三角形PQN 中,求得QN=2(6-x),所以y=12AP QN ⋅=13)=922x x ⨯--+(3≤x≤6),即当3≤x≤6时,y 随x 的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D 符合要求,故选D.【点睛】本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.7.A【解析】【分析】根据正数大于0,0大于负数,正数大于负数,比较即可【详解】∵-3<30<0.3∴最大为0.3故选A.【点睛】本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.8.A【解析】【分析】直接把n的值代入求出m的取值范围.【详解】解:∵点P(m,n),为是反比例函数y=-3x图象上一点,∴当-1≤n<-1时,∴n=-1时,m=1,n=-1时,m=1,则m的取值范围是:1≤m<1.故选A.【点睛】。
福建省福州市2019-2020学年中考数学三月模拟试卷含解析
福建省福州市2019-2020学年中考数学三月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.计算(x -2)(x+5)的结果是 A .x 2+3x+7 B .x 2+3x+10C .x 2+3x -10D .x 2-3x -102.计算:9115()515÷⨯-得( ) A .-95B .-1125C .-15D .11253.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是( )A .国B .厉C .害D .了4.如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .56°C .66°D .54°5.将抛物线()2y x 13=-+向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( ) A .()2y x 2=-B .()2y x 26=-+ C .2y x 6=+D .2y x =6.将二次函数2y x =的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )A .2(1)2y x =++B .2(1)2y x =+-C .2(1)2y x =--D .2(1)2y x =-+7.在实数﹣3.5、、0、﹣4中,最小的数是( ) A .﹣3.5B .C .0D .﹣48.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是( ) A .B .C .D .9.已知二次函数2 45y x x =-++的图象如图所示,若()1 3A y -,,()()2301B y C y ,,,是这个函数图象上的三点,则123y y y ,,的大小关系是( )A .123 y y y <<B .213 y y y <<C .312 y y y <<D .132y y y <<10.下列汽车标志中,不是轴对称图形的是( )A .B .C .D .11.关于x 的方程x 2+(k 2﹣4)x+k+1=0的两个根互为相反数,则k 值是( ) A .﹣1B .±2C .2D .﹣212.如图,平行四边形ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 直径BE 上,连结AE ,若∠E=36°,则∠ADC 的度数是( )A .44°B .53°C .72°D .54°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将三角形AOC 绕点O 顺时针旋转120°得三角形BOD ,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)14.如图,将△AOB 绕点O 按逆时针方向旋转45︒后得到COD ∆,若15AOB ∠=︒,则AOD ∠的度数是 _______.15.分解因式:4a 3b ﹣ab =_____.16.若分式22xx 的值为正,则实数x 的取值范围是__________________. 17.已知点A (x 1, y 1)、B(x 2, y 2)在直线y=kx+b 上,且直线经过第一、二、四象限,当x 1<x 2时,y 1与y 2的大小关系为________.18.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)列方程解应用题:某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1600万元.从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?20.(6分) “足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A ,B ,C ,D 四个等级进行统计,制成了如下不完整的统计图.(说明:A 级:8分﹣10分,B 级:7分﹣7.9分,C 级:6分﹣6.9分,D 级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C 对应的扇形的圆心角是 度; (2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在 等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A 级的学生有多少人?21.(6分)元旦放假期间,小明和小华准备到西安的大雁塔(记为A )、白鹿原(记为B )、兴庆公园(记为C )、秦岭国家植物园(记为D )中的一个景点去游玩,他们各自在这四个景点中任选一个,每个景点被选中的可能性相同.(1)求小明选择去白鹿原游玩的概率;(2)用树状图或列表的方法求小明和小华都选择去秦岭国家植物园游玩的概率. 22.(8分)△ABC 在平面直角坐标系中的位置如图所示.画出△ABC关于y轴对称的△A1B1C1;将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.23.(8分)某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次调查一共抽取了名学生,其中安全意识为“很强”的学生占被调查学生总数的百分比是;(2)请将条形统计图补充完整;(3)该校有1800名学生,现要对安全意识为“淡薄”、“一般”的学生强化安全教育,根据调查结果,估计全校需要强化安全教育的学生约有名.24.(10分)清朝数学家梅文鼎的《方程论》中有这样一题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:若有山田3亩,场地6亩,其产粮相当于实田4.7亩;若有山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?25.(10分)小敏参加答题游戏,答对最后两道单选题就顺利通关.第一道单选题有3个选项a,b,c,第二道单选题有4个选项A,B,C,D,这两道题小敏都不会,不过小敏还有一个“求助”机会,使用“求助”可以去掉其中一道题的一个错误选项.假设第一道题的正确选项是b,第二道题的正确选项是D,解答下列问题:(1)如果小敏第一道题不使用“求助”,那么她答对第一道题的概率是________;(2)如果小敏将“求助”留在第二道题使用,用画树状图或列表的方法,求小敏顺利通关的概率;(3)小敏选第________道题(选“一”或“二”)使用“求助”,顺利通关的可能性更大.26.(12分)随着信息技术的快速发展,“互联网+”渗透到我们日常生活的各个领域,网上在线学习交流已不再是梦,现有某教学网站策划了A,B两种上网学习的月收费方式:收费方式月使用费/元包时上网时间/h 超时费/(元/min)A 7 25 0.01B m n 0.01设每月上网学习时间为x小时,方案A,B的收费金额分别为y A,y B.(1)如图是y B与x之间函数关系的图象,请根据图象填空:m=;n=;(2)写出y A与x之间的函数关系式;(3)选择哪种方式上网学习合算,为什么.27.(12分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1),C(2,0).点P (m,n)为△ABC内一点,平移△ABC得到△A1B1C1,使点P(m,n)移到P(m+6,n+1)处.(1)画出△A1B1C1(2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;(3)在(2)的条件下求BC扫过的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C 【解析】 【分析】根据多项式乘以多项式的法则进行计算即可. 【详解】故选:C. 【点睛】考查多项式乘以多项式,掌握多项式乘以多项式的运算法则是解题的关键. 2.B 【解析】 【分析】同级运算从左向右依次计算,计算过程中注意正负符号的变化. 【详解】919111551551515⎛⎫⎛⎫÷⨯-=⨯⨯-= ⎪ ⎪⎝⎭⎝⎭-1125故选B. 【点睛】本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键. 3.A 【解析】 【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答. 【详解】∴有“我”字一面的相对面上的字是国. 故答案选A. 【点睛】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字. 4.B 【解析】试题分析:∵AB ∥CD , ∴∠D=∠1=34°,∵DE ⊥CE , ∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°. 故选B .考点:平行线的性质. 5.D 【解析】根据“左加右减、上加下减”的原则,将抛物线()2y x 13=-+向左平移1个单位所得直线解析式为:()22y x 113y x 3=-++⇒=+; 再向下平移3个单位为:22y x 33y x =+-⇒=.故选D . 6.B 【解析】 【分析】抛物线平移不改变a 的值,由抛物线的顶点坐标即可得出结果. 【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h )1+k , 代入得:y=(x+1)1-1.∴所得图象的解析式为:y=(x+1)1-1; 故选:B . 【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标. 7.D 【解析】 【分析】根据任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可 【详解】 在实数﹣3.5、、0、﹣4中,最小的数是﹣4,故选D .【点睛】掌握实数比较大小的法则8.C 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解. 【详解】A .不是轴对称图形,也不是中心对称图形.故错误;B .不是轴对称图形,也不是中心对称图形.故错误;C .是轴对称图形,也是中心对称图形.故正确;D .不是轴对称图形,是中心对称图形.故错误. 故选C . 【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合; 中心对称图形是要寻找对称中心,旋转180°后与原图重合. 9.A 【解析】 【分析】先求出二次函数的对称轴,结合二次函数的增减性即可判断. 【详解】解:二次函数245y x x =-++的对称轴为直线422(1)x =-=⨯-,∵抛物线开口向下,∴当2x <时,y 随x 增大而增大, ∵301-<<,∴123y y y << 故答案为:A . 【点睛】本题考查了根据自变量的大小,比较函数值的大小,解题的关键是熟悉二次函数的增减性. 10.C 【解析】 【分析】根据轴对称图形的概念求解. 【详解】A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.11.D【解析】【分析】根据一元二次方程根与系数的关系列出方程求解即可.【详解】设方程的两根分别为x1,x1,∵x1+(k1-4)x+k-1=0的两实数根互为相反数,∴x1+x1,=-(k1-4)=0,解得k=±1,当k=1,方程变为:x1+1=0,△=-4<0,方程没有实数根,所以k=1舍去;当k=-1,方程变为:x1-3=0,△=11>0,方程有两个不相等的实数根;∴k=-1.故选D.【点睛】本题考查的是根与系数的关系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的两根时,x1+x1=−ba,x1x1=ca,反过来也成立.12.D【解析】【分析】根据直径所对的圆周角为直角可得∠BAE=90°,再根据直角三角形的性质和平行四边形的性质可得解. 【详解】根据直径所对的圆周角为直角可得∠BAE=90°,根据∠E=36°可得∠B=54°,根据平行四边形的性质可得∠ADC=∠B=54°.故选D【点睛】本题考查了平行四边形的性质、圆的基本性质.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.5π 【解析】 【分析】根据旋转的性质可以得到阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积,利用扇形的面积公式计算即可求解. 【详解】∵△AOC ≌△BOD ,∴阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积2212041201360360ππ⨯⨯⨯⨯=-=5π.故答案为:5π. 【点睛】本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB 的面积﹣扇形OCD 的面积是解题的关键. 14.60° 【解析】 【分析】根据题意可得AOD AOB BOD ∠=∠+∠,根据已知条件计算即可. 【详解】根据题意可得:AOD AOB BOD ∠=∠+∠Q 15AOB ∠=︒,45BOD ︒∠=451560AOD ︒︒︒∴∠=+=故答案为60° 【点睛】本题主要考查旋转角的有关计算,关键在于识别那个是旋转角. 15.ab(2a+1)(2a-1) 【解析】 【分析】先提取公因式再用公式法进行因式分解即可. 【详解】4a 3b- ab= ab(4a 2-1)=ab(2a+1)(2a-1) 【点睛】此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.16.x>0【解析】【分析】分式值为正,则分子与分母同号,据此进行讨论即可得.【详解】∵分式2xx2的值为正,∴x与x2+2的符号同号,∵x2+2>0,∴x>0,故答案为x>0.【点睛】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键.17.y1>y1【解析】分析:直接利用一次函数的性质分析得出答案.详解:∵直线经过第一、二、四象限,∴y随x的增大而减小,∵x1<x1,∴y1与y1的大小关系为:y1>y1.故答案为:>.点睛:此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.18.1【解析】【分析】首先连接BE,由题意易得BF=CF,△ACP∽△BDP,然后由相似三角形的对应边成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:1,在Rt△PBF中,即可求得tan∠BPF的值,继而求得答案.【详解】如图:,连接BE,∵四边形BCED是正方形,∴DF=CF=CD,BF=BE,CD=BE,BE⊥CD,∴BF=CF,根据题意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:1,∴DP=PF=CF=BF,在Rt△PBF中,tan∠BPF==1,∵∠APD=∠BPF,∴tan∠APD=1.故答案为:1【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.从2015年到2017年,该地投入异地安置资金的年平均增长率为50%.【解析】【分析】设年平均增长率为x,根据:2016年投入资金×(1+增长率)2=2018年投入资金,列出方程求解可得. 【详解】解:设该地投入异地安置资金的年平均增长率为x.根据题意得:1280(1+x)2=1280+1600.解得x1=0.5=50%,x2=-2.5(舍去),答:从2016年到2018年,该地投入异地安置资金的年平均增长率为50%.【点睛】本题考查了一元二次方程的应用,由题意准确找出相等关系并据此列出方程是解题的关键.20.(1)117(2)见解析(3)B(4)30【解析】【分析】(1)先根据B等级人数及其百分比求得总人数,总人数减去其他等级人数求得C等级人数,继而用360°乘以C等级人数所占比例即可得;(2)根据以上所求结果即可补全图形;(3)根据中位数的定义求解可得;(4)总人数乘以样本中A等级人数所占比例可得.【详解】解:(1)∵总人数为18÷45%=40人, ∴C 等级人数为40﹣(4+18+5)=13人,则C 对应的扇形的圆心角是360°×1340=117°, 故答案为117;(2)补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21个数据均落在B 等级, 所以所抽取学生的足球运球测试成绩的中位数会落在B 等级,故答案为B .(4)估计足球运球测试成绩达到A 级的学生有300×440=30人. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(1)14;(2)116 【解析】【分析】(1)利用概率公式直接计算即可;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小明和小华都选择去同一个地方游玩的情况,再利用概率公式即可求得答案.【详解】(1)∵小明准备到西安的大雁塔(记为A )、白鹿原(记为B )、兴庆公园(记为C )、秦岭国家植物园(记为D )中的一个景点去游玩,∴小明选择去白鹿原游玩的概率=14; (2)画树状图分析如下:两人选择的方案共有16种等可能的结果,其中选择同种方案有1种,所以小明和小华都选择去秦岭国家植物园游玩的概率=1 16.【点睛】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.22.(1)见解析;(2)见解析,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1,见解析.【解析】【分析】(1)根据轴对称图形的性质,找出A、B、C的对称点A1、B1、C1,画出图形即可;(2)根据平移的性质,△ABC向右平移6个单位,A、B、C三点的横坐标加6,纵坐标不变;(1)根据轴对称图形的性质和顶点坐标,可得其对称轴是l:x=1.【详解】(1)由图知,A(0,4),B(﹣2,2),C(﹣1,1),∴点A、B、C关于y轴对称的对称点为A1(0,4)、B1(2,2)、C1(1,1),连接A1B1,A1C1,B1C1,得△A1B1C1;(2)∵△ABC向右平移6个单位,∴A、B、C三点的横坐标加6,纵坐标不变,作出△A2B2C2,A2(6,4),B2(4,2),C2(5,1);(1)△A1B1C1和△A2B2C2是轴对称图形,对称轴为图中直线l:x=1.【点睛】本题考查了轴对称图形的性质和作图﹣平移变换,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.23.(1)120,30%;(2)作图见解析;(3)1.【解析】试题分析:(1)用安全意识分“一般”的人数除以安全意识分“一般”的人数所占的百分比即可得这次调查一共抽取的学生人数;用安全意识分“很强”的人数除以这次调查一共抽取的学生人数即可得安全意识“很强”的学生占被调查学生总数的百分比;(2)用这次调查一共抽取的学生人数乘以安全意识分“较强”的人数所占的百分比即可得安全意识分“较强”的人数,在条形统计图上画出即可;(3)用总人数乘以安全意识为“淡薄”、“一般”的学生一共所占的百分比即可得全校需要强化安全教育的学生的人数.试题解析:(1) 12÷15%=120人;36÷120=30%;(2)120×45%=54人,补全统计图如下:(3)1800×=1人.考点:条形统计图;扇形统计图;用样本估计总体.24.每亩山田产粮相当于实田0.9亩,每亩场地产粮相当于实田13亩.【解析】【分析】设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩,根据山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,列二元一次方程组求解.【详解】解:设每亩山田产粮相当于实田x亩,每亩场地产粮相当于实田y亩.可列方程组为36 4.7 53 5.5 x yx y+=⎧⎨+=⎩解得0.913 xy=⎧⎪⎨=⎪⎩答:每亩山田相当于实田0.9亩,每亩场地相当于实田13亩.25.(1)13;(2)19;(3)一.【解析】【分析】(1)直接利用概率公式求解;(2)画树状图(用Z表示正确选项,C表示错误选项)展示所有9种等可能的结果数,找出小敏顺利通关的结果数,然后根据概率公式计算出小敏顺利通关的概率;(3)与(2)方法一样求出小颖将“求助”留在第一道题使用,小敏顺利通关的概率,然后比较两个概率的大小可判断小敏在答第几道题时使用“求助”.【详解】解:(1)若小敏第一道题不使用“求助”,那么小敏答对第一道题的概率=13;故答案为13;(2)若小敏将“求助”留在第二道题使用,那么小敏顺利通关的概率是19.理由如下:画树状图为:(用Z表示正确选项,C表示错误选项)共有9种等可能的结果数,其中小颖顺利通关的结果数为1,所以小敏顺利通关的概率=19;(3)若小敏将“求助”留在第一道题使用,画树状图为:(用Z表示正确选项,C表示错误选项)共有8种等可能的结果数,其中小敏顺利通关的结果数为1,所以小敏将“求助”留在第一道题使用,小敏顺利通关的概率=18,由于18>19,所以建议小敏在答第一道题时使用“求助”.【点睛】本题考查了用画树状图的方法求概率,掌握其画法是解题的关键.26.(1)10,50;(2)见解析;(3)当0<x<30时,选择A方式上网学习合算,当x=30时,选择哪种方式上网学习都行,当x>30时,选择B方式上网学习合算.【解析】【分析】(1)由图象知:m=10,n=50;(2)根据已知条件即可求得y A与x之间的函数关系式为:当x≤25时,y A=7;当x>25时,y A=7+(x﹣25)×0.01;(3)先求出y B与x之间函数关系为:当x≤50时,y B=10;当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20;然后分段求出哪种方式上网学习合算即可.【详解】解:(1)由图象知:m=10,n=50;故答案为:10;50;(2)y A与x之间的函数关系式为:当x≤25时,y A=7,当x>25时,y A=7+(x﹣25)×60×0.01,∴y A=0.6x﹣8,∴y A=7(025){0.68(25)xx x<≤->;(3)∵y B与x之间函数关系为:当x≤50时,y B=10,当x>50时,y B=10+(x﹣50)×60×0.01=0.6x﹣20,当0<x≤25时,y A=7,y B=50,∴y A<y B,∴选择A方式上网学习合算,当25<x≤50时.y A=y B,即0.6x﹣8=10,解得;x=30,∴当25<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当30<x≤50,y A>y B,选择B方式上网学习合算,当x>50时,∵y A=0.6x﹣8,y B=0.6x﹣20,y A>y B,∴选择B方式上网学习合算,综上所述:当0<x<30时,y A<y B,选择A方式上网学习合算,当x=30时,y A=y B,选择哪种方式上网学习都行,当x>30时,y A>y B,选择B方式上网学习合算.【点睛】本题考查一次函数的应用.27.(1)见解析;(2)见解析;(3)194π.【解析】【分析】(1)根据P(m,n)移到P(m+6,n+1)可知△ABC向右平移6个单位,向上平移了一个单位,由图形平移的性质即可得出点A1,B1,C1的坐标,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形即可;(3)先求出BC长,再利用扇形面积公式,列式计算即可得解.【详解】解:(1)平移△ABC得到△A1B1C1,点P(m,n)移到P(m+6,n+1)处,∴△ABC向右平移6个单位,向上平移了一个单位,∴A 1(4,4),B 1(2,0),C 1(8,1);顺次连接A 1,B 1,C 1三点得到所求的△A 1B 1C 1(2)如图所示:△A 2B 2C 即为所求三角形.(3)BC 2222(42)(10)(6)137--+--=-+=BC 扫过的面积21137944ππ= 【点睛】 本题考查了利用旋转变换作图,利用平移变换作图,比较简单,熟练掌握网格结构,准确找出对应点的位置是解题的关键.。
最新2019年福州市中考数学模拟试题与答案
2019年福州市中考数学模拟试题与答案(试卷满分150分,考试用时120分钟)第一部分 选择题(共40分)一、选择题(本大题10小题,每小题4分,共40分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-12的倒数等于A .-2 B.12 C .-12D .22. 某桑蚕丝的直径约为0.000016米,将0.000016用科学计数法表示是A .41.610-⨯B .51.610-⨯C .71.610-⨯D .41610-⨯3.二次函数7)2(2+-=x y 的顶点坐标是A .(﹣2,7)B .(2,7)C .(﹣2,﹣7)D .(2,﹣7)4.已知一组数据:3,4,6,7,8,8,下列说法正确的是 A .众数是2 B .众数是8C .中位数是6D .中位数是75. 关于x 的一元二次方程(a -1)x 2+x +a 2-1=0的一个根是0, 则a 的值为 A .1 B .-1 C .1或-1 D .126.在方程组中,若未知数x ,y 满足x+y >0,则m 的取值范围在数轴上的表示应是如图所示的 A .B .C .D .7.已知A 样本的数据如下:72,73,76,76,77,78,78,78,B 样本的数据恰好是A 样本数据每个都加2,则A ,B 两个样本的下列统计量对应相同的是 A .平均数 B .方差 C .中位数 D .众数 8. 如图,是反比例函数y=和y=(k 1<k 2)在第一象限的图象,直线AB ∥x 轴,并分别交两条曲线于A ,B 两点,若S △AOB =2,则 k 2-k 1的值是A. 1B. 2C. 4D. 89. 下面的统计图反映了我市2011-2016年气温变化情况,下列说法不合理的是A .2011-2014年最高温度呈上升趋势;B .2014年出现了这6年的最高温度;C .2011-2015年的温差成下降趋势;D .2016年的温差最大.10. 下列关于函数2610y x x =-+的四个命题: ①当0x =时,y 有最小值10;②n 为任意实数,3x n =+时的函数值大于3x n =-时的函数值; ③若3n >,且n 是整数,当1n x n ≤≤+时,y 的整数值有(24)n -个; ④若函数图象过点0(,)a y 和0(,1)b y +,其中0a >,0b >,则a b <. 其中真命题的序号是 A .①B .②C .③D .④第二部分(非选择题 共110分)二、填空题(本大题6小题,每小4分,共24分) 11.因式分解:2x 2-18=______.12. 正n 边形的一个外角为45°,则n = .13.为迎接五月份中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天训练时的个数,如下表:年份温度/℃5040302010-20-10o201620152014201320122011-15.2-9.2-11.2-14.1-13.7-11.637.838.941.138.23835.9北京市2011-2016年气温变化情况最高气温最低气温其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是________.14.观察如图给出的四个点阵,请按照图形中的点的个数变化规律,猜想第n个点阵中的点的个数为个.15.在同一时刻物体的高度与它的影长成比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为 3米,某一高楼的影长为20米,那么高楼的实际高度是米.16.如图,在ABC△中,DE AB∥,DE分别与AC,BC交于D,E两点.若49DECABCSS=△△,3AC=,则DC=__________.EDCBA三、解答题(本大题共8个小题,满分86分)17.(本小题满分9分)计算: +(﹣)-1﹣2sin60°﹣(π﹣2018)0+|1﹣|.18.(本小题满分9分)先化简,再求值:1112122-÷-++-xxxxx,其中5=x.19.(本小题满分10分)如图,△ABC是等腰三角形,AB=BC,点D为BC的中点.(1)用圆规和没有刻度的直尺作图,并保留作图痕迹:①过点B作AC的平行线BP;②过点D作BP的垂线,分别交AC,BP,BQ于点E,F,G;(2)在(1)所作的图中,连结BE,CF.求证:四边形BFCE是平行四边形.20. (本小题满分10分)已知关于x 的方程(k +1)x 2-2(k -1)x +k =0有两个实数根x 1,x 2. (1)求k 的取值范围; (2)若12122x x x x +=+,求k 的值.21.(本小题满分10分)如图,在ABC △中,8cm AB =,点D 是AC 边的中点,点P 是边AB 上的一个动点,过点P 作射线BC 的垂线,垂足为点E ,连接DE .设cm PA x =,cm ED y =.EDC小石根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:/cm x 0 1 2 3 4 5 6 7 8 /cm y3.02.41.91.82.13.44.25.0(说明:补全表格时相关数据保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:点E 是BC 边的中点时,PA 的长度约为 cm .22.(本小题满分10分)停车难已成为合肥城市病之一,主要表现在居住停车位不足,停车资源结构性失衡,中心城区供需差距大等等.如图是张老师的车与墙平行停放的平面示意图,汽车靠墙一侧OB 与墙MN 平行且距离为0.8米,已知小汽车车门宽AO 为 1.2 米,当车门打开角度∠AOB 为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin 40°≈0.64,cos 40°≈0.77,tan 40°≈0.84)23.(本小题满分14分)如图,已知正方形ABCD 的边长为4,点P 是AB 边上的一个动点,连接CP ,过点P 作PC 的垂线交AD 于点E ,以PE 为边作正方形PEFG ,顶点G 在线段PC 上. 对角线EG 、FP 相交于点O . (1)若AP =3,求AE 的长;(2)连接AC ,判断点O 是否在AC 上,并说明理由;(3)在点P 从点A 到点B 的运动过程中,正方形PEFG 也随之运动,求DE 的最小值.24.(本小题满分14分)如图,直线3y x =-+与x 轴、y 轴分别交于点B 、C ,抛物线2(1)y a x k =-+经过点B 、C ,并与x 轴交于另一点A .(1)求此抛物线及直线AC 的函数表达式;(2)垂直于y 轴的直线l 与抛物线交于点P (1x ,1y ),Q (2x ,2y ),与直线BC 交于点N (3x ,3y ),若3x <1x <2x ,结合函数的图象,求123x x x ++的取值范围;(3)经过点D (0,1)的直线m 与射线AC 、射线OB 分别交于点M 、N .当直线m 绕点D 旋转时,102AN+ 是否为定值,若是,求出这个值,若不是,说明理由.第24题图备用图参考答案第一部分 选择题(共30分)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.A2.B3.B4.B5.B6.A7.B8.C9.C 10.C第二部分(非选择题 共120分)二、填空题(本大题6小题,每小题3分,共18分)11. 2(x+3)(x-3) 12. 8 13. 78 14.(4n ﹣3) 15. 12 16. 2三、解答题(本大题 共9个小题,满分102分) 17.解:原式=2﹣2﹣2×﹣1+﹣1…………6分=﹣2.…………9分18.解:原式xx x x x 1)1)(1()1(12-⋅-++-=---------------------------------------3分xx 11+-=---------------------------------------------------5分 x1-=,----------------------------------------------------6分当5=x 时,原式55511-=-=-=x .--------------------------9分 19.(1)如图1:图1 图2(2)证明:如图2:∵BP∥AC,∴∠ACB =∠PBC,在△ECD 和△FBD 中,⎩⎪⎨⎪⎧∠ACB =∠PBC,CD =BD ,∠CDE =∠BDF,∴△ECD ≌△FBD , ∴CE =BF ,∴四边形ECFB 是平行四边形.20.解:(1)∵(k +1)x 2-2(k -1)x +k =0有两个实数根∴Δ≥0且k +1≠0 ………………………………1分 即[-2(k -1)]2-4k (k +1)≥0 k ≤31………………………………2分 又k +1≠0,∴k ≠-1 …………………………3分 ∴k ≤31且k ≠-1…………………………………4分 (2)x 1+x 2=1)1(2+-k k ,x 1·x 2=1+k k……………………6分 ∵x 1+x 2=x 1·x 2+2 即1)1(2+-k k =1+k k +2 解得,k =-4 ………………………………8分 21.解:(1)2.7 ………………………… 4分(2)……………………… 8分(3)6.8 ……………………… 12分22. 过点A 作OB 的垂线AE ,垂足是 E ,Rt △AEO ,AO =1.2,∠AOE =40° ∵sin40°=OAAE, ∴AE = OA sin40°≈0.64×1.2=0.768<0.8 (8分) ∵汽车靠墙一侧OB 与墙MN 平行且距离为0.8米,∴车门不会碰到墙. (10分)23.(14分)(1)∵四边形ABCD 、四边形PEFG 是正方形,∴∠A=∠B=∠EPG=90°,PF ⊥EG ,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠BPC ,∴△APE ∽△BCP(3分),∴,即,解得:AE=;(3分)(2)点O 在AC 上(1分).理由:过点O 分别作AD 、AB 的垂线,垂足分别为M 、N,证得OM=ON ,(1分),证得点O 在∠BAD 的平分线上(1分),证得AC 是∠BAD 的平分线,所以,点O 在AC 上。
福建省福州市2019-2020学年中考数学模拟试题(5)含解析
福建省福州市2019-2020学年中考数学模拟试题(5)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设0<k<2,关于x的一次函数y=(k-2)x+2,当1≤x≤2时,y的最小值是()A.2k-2 B.k-1 C.k D.k+12.一个多边形的每个内角均为120°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形3.如图所示是由几个完全相同的小正方体组成的几何体的三视图.若小正方体的体积是1,则这个几何体的体积为()A.2 B.3 C.4 D.54.下列计算正确的是()A.﹣2x﹣2y3•2x3y=﹣4x﹣6y3B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy5.下列运算结果正确的是()A.3a﹣a=2 B.(a﹣b)2=a2﹣b2C.a(a+b)=a2+b D.6ab2÷2ab=3b6.去年12月24日全国大约有1230000人参加研究生招生考试,1230000这个数用科学记数法表示为()A.1.23×106B.1.23×107C.0.123×107D.12.3×1057.如图所示的几何体,它的左视图是()A.B.C.D.8.计算111xx x---结果是( )A.0 B.1 C.﹣1 D.x9.为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位.已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为()10.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为( )A .30°B .45°C .60°D .75°11.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x 米/秒,则所列方程正确的是( )A .4 1.2540800x x ⨯-=B.800800402.25x x-= C .800800401.25x x -= D .800800401.25x x -= 12.如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .56°C .66°D .54°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组32132x x x ->⎧⎪⎨≤⎪⎩的解是____. 14.如图,是用火柴棒拼成的图形,则第n 个图形需_____根火柴棒.15.如图,点A 、B 、C 在圆O 上,弦AC 与半径OB 互相平分,那么∠AOC 度数为_____度.16.若点(a ,1)与(﹣2,b )关于原点对称,则b a =_______.17.一个圆锥的母线长15CM.高为9CM.则侧面展开图的圆心角________。