高中数学综合法和分析法
高中数学 第二章《综合法和分析法》教案1 新人教A版
1 高中数学 第二章《综合法和分析法》教案1 新人教A 版2.2.1 综合法和分析法(一)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用综合法证明问题;了解综合法的思考过程.教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法. 教学过程:一、复习准备:1. 已知 “若12,a a R +∈,且121a a +=,则12114a a +≥”,试请此结论推广猜想. (答案:若12,.......n a a a R +∈,且12....1n a a a +++=,则12111....n a a a +++≥ 2n ) 2. 已知,,a b c R +∈,1a b c ++=,求证:1119a b c++≥. 先完成证明 → 讨论:证明过程有什么特点?二、讲授新课:1. 教学例题:① 出示例1:已知a , b , c 是不全相等的正数,求证:a (b 2 + c 2) + b (c 2 + a 2) + c (a 2 + b 2) > 6abc .分析:运用什么知识来解决?(基本不等式) → 板演证明过程(注意等号的处理)→ 讨论:证明形式的特点② 提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立框图表示: 要点:顺推证法;由因导果.③ 练习:已知a ,b ,c 是全不相等的正实数,求证3b c a a c b a b c a b c+-+-+-++>. ④ 出示例2:在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形.分析:从哪些已知,可以得到什么结论? 如何转化三角形中边角关系? → 板演证明过程 → 讨论:证明过程的特点.→ 小结:文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件(内角和)2. 练习:① ,A B 为锐角,且tan tan 3tan tan 3A B A B ++=,求证:60A B +=. (提示:算tan()A B +)② 已知,a b c >> 求证:114.a b b c a c+≥--- 3. 小结:综合法是从已知的P 出发,得到一系列的结论12,,Q Q ⋅⋅⋅,直到最后的结论是Q . 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题.三、巩固练习:1. 求证:对于任意角θ,44cos sin cos2θθθ-=. (教材P 52 练习 1题) (两人板演 → 订正 → 小结:运用三角公式进行三角变换、思维过程)2. ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c+=++++. 3. 作业:教材P 54 A 组 1题.。
2.2.1 综合法和分析法 第2课时 分析法
所以
B=60°.所以
cos
B=
������2+������2-������2 2������������
=
12.
所以 a2+c2-b2=ac.所以原式成立.
-17-
题型一
题型二
题型三
目标导航 题型四
知识梳理
重难聚焦
证法二:(综合法) 因为△ABC的三个内角A,B,C成等差数列,
所以B=60°.由余弦定理,得b2=c2+a2-2accos 60°, 所以c2+a2=ac+b2. 两边同时加上ab+bc,得
-16-
题型一
题型二
题型三
目标导航 题型四
知识梳理
重难聚焦
典例透析
证法一:(分析法)
要证(a+b)-1+(b+c)-1=3(a+b+c)-1,
即证
1 ������+������
+
1 ������+������
=
������+3������+������,
只需证
������+������+������ ������+������
A.综合法 B.类比法 C.分析法 D.归纳法
解析:从要证明的不等式不易发现证明的出发点,类比法、归纳
法更不可行,故应选择分析法,选C.
答案:C
-3-
目标导航
知识梳理
重难聚焦
典例透析
1.怎样理解分析法? 剖析(1)分析法是由结论到条件的逆推证法,它的思维特点是从 “未知”看“需知”,逐步靠拢“已知”,其逐步推理实际上是寻求它的充 分条件.分析法是“执果索因”,一步步寻求使上一步成立的充分条件, 因此分析法又叫做逆推证法或执果索因法. (2)当不知从何入手时,有时可以运用分析法去获得解析,特别是 对于条件简单而结论复杂的题目,往往更是行之有效的方法.另外, 对于恒等式的证明,也同样可以运用分析法. (3)分析法的书写形式一般为“因为……,所以证明……,只需 证……,即证……,因此,只需证明…….因为……成立,所以……成 立”.
高中数学知识点精讲精析 综合法与分析法
4.3.2综合法与分析法1.综合法利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出定理1 如果a,b R,那么a2+b2≥2ab(当且仅当a=b 时取"="号) 证明:a2+b2-2ab=(a-b)2≥0 当且仅当a=b 时取等号.所以 a2+b2≥2ab(当且仅当a=b 时取等号).定理2 如果a,b,c R+,那么a3+b3+c3≥3abc(当且仅当a=b=c 时取"="号) 证明:∵a3+b3+c3-3abc =(a+b)3+c3-3a2b-3ab2-3abc =(a+b+c)(a2+b2+c2-ab-bc-ac) =(a+b+c)[(a-b)2+(b-c)2+(a-c)2]≥0 ∴ a3+b3+c3≥3abc,很明显,当且仅当a=b=c 时取等号.用综合法证明不等式的逻辑关系是:12n A B B B B ⇒⇒⇒⇒⇒综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,2.分析法从要证明的不等式出发,寻找使这个不等式成立的某一"充分的"条件,为此逐步往前追溯(执果索因),一直追溯到已知条件或一些真命题为止.例如要证a2+b2≥2ab 我们通过分析知道,使a2+b2≥2ab 成立的某一"充分的"条件是a2-2ab+b2≥0,即(a-b)2≥0就行了.由于是真命题,所以a2+b2≥2ab 成立.分析法的证明过程表现为一连串的"要证……,只要证……",最后推至已知条件或真命题证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定用分析法证明不等式的逻辑关系是:12n B B B B A ⇐⇐⇐⇐⇐分析法的书写格式: 要证明命题B 为真,只需要证明命题1B 为真,从而有…… 这只需要证明命题2B 为真,从而又有…… ……这只需要证明命题A 而已知A 为真,故命题B 1.已知a 、b 、c 都是正数,求证:+>证明:观察原不等式中含有a 2+ab +b 2即a 2+b 2+ab 的形式,联想到余弦定理:c 2=a 2+b 2-2ab •CosC ,为了得到a 2+b 2+ab 的形式,只要C =120°,这样:可以看成a 、b 为邻边,夹角为120°的的三角形的第三边可以看成b 、c 为邻边,夹角为120°的的三角形的第三边 可以看成a 、c 为邻边,夹角为120°的的三角形的第三边构造图形如下,AB =, BC =, AC =显然AB +BC >AC ,故原不等式成立。
高中数学—综合法与分析法
高中数学—综合法与分析法综合法与分析法是高中数学中常用的解题方法。
综合法强调整体把握和综合思考问题,而分析法则注重细致分析和逐步解决问题。
两者有各自的特点和应用场景,在解题过程中可以根据题目的要求和条件选择合适的方法。
综合法是先整体把握问题,然后思考解决方法的一种方法。
在解题过程中,先要明确问题的目标和条件,并将其整合为一个整体。
通过对整体的分析和思考,找出解决问题的关键点和方法。
综合法注重的是整体思考,不仅需要对问题进行全面的分析,还需要将各个条件和要求进行综合考虑,从而制定出解决问题的方案。
在高中数学中,综合法常常用于解决复杂的几何问题以及应用题中。
以解决几何问题为例,综合法的思路一般是先整体观察图形的性质和特点,然后从中找出关键的性质或定理,再利用这些性质或定理进行推理和证明。
通过整体把握,可以避免在解题过程中忽略一些重要的条件或关键点,从而提高解题的准确性和有效性。
分析法是逐步解决问题的一种方法。
分析法注重的是从问题中逐步抽象、归纳和推理,通过分解问题,逐步解决问题的各个部分,从而得到最终的解答。
分析法在高中数学中常常用于解决复杂的代数问题和一些特殊的几何问题。
以解决代数问题为例,分析法的思路一般是从已知条件出发,逐步推导出未知量的表达式或等式。
通过对问题的分析和推理,可以逐步解决问题,将复杂的问题分解为简单的步骤,提高解题的可行性和有效性。
在实际的解题过程中,综合法与分析法通常不是相互排斥的,而是相互补充的。
综合法注重整体把握,可以帮助我们快速了解问题的背景和要求;而分析法则注重细致分析,可以帮助我们逐步解决问题的各个部分。
在解题过程中,我们可以根据具体的情况综合运用这两种方法,选择合适的方法和策略来解决问题。
综合法与分析法在高中数学中的应用是非常广泛的。
通过综合法和分析法的学习和应用,我们可以更好地理解和掌握数学的基本概念和方法,提高解题的能力和水平。
同时,综合法和分析法也是培养我们综合思考和分析问题的能力的重要手段之一、通过不断的练习和实践,我们可以逐步提高综合法和分析法的应用水平,更好地解决数学问题。
【高中数学】综合法与分析法 、反证法
题型 用反证法证明“至多”,“至少”等存在性问题
π
π
若 a,b,c 均为实数,且 a=x2-2y+ 2 ,b=y2-2z+ 3 ,c=z2
π -2x+ 6 ,求证:a,b,c 中至少有一个大于 0.
证明:假设 a,b,c 都不大于 0,即 a≤0,b≤0,c≤0,则 a+b+c
≤0.
而 a+b+c=x2-2y+π2 +y2-2z+π3 +z2-2x+π6 =(x-1)2+(y -1)2+(z-1)2+π-3.
a(a-1) ,
所以 a+1- a< a-1- aC 成等差数列,且角 A,B,C 的对 边分别为 a,b,c,求证:(a+b)-1+(b+c)-1=3(a+b+c)-1.
证明:方法一 (分析综合法) 要证(a+b)-1+(b+c)-1=3(a+b+c)-1 成立, 即证a+1 b+b+1 c=a+3b+c成立,
反证法证明时反设不全面致误.
【典例】 已知a,b,c是互不相等的非零实 数.求证:三个方程ax2+2bx+c=0,bx2+ 2cx+a=0,cx2+2ax+b=0至少有一个方程有 两个相异实根.
解析:假设三个方程都没有两个相异实根, 则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0. 相加有 a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0, 即(a-b)2+(b-c)2+(c-a)2≤0,(*) 由题意 a,b,c 互不相等,所以(*)式不能成立. 所以假设不成立,即三个方程中至少有一个方程有两个相异实 根.
即a+a+b+b c+a+b+b+c c=3,化简得a+c b+b+a c=1, 又需证 c(b+c)+(a+b)a=(a+b)(b+c), 即 c2+a2=b2+ac. 又△ABC 的三个内角 A,B,C 成等数列,所以 B=60°. 由余弦定理,得 cos B=a2+2ca2c-b2=21. 所以 a2+c2-b2=ac,所以原命题成立.
高中数学新湘教版选修2-2 直接证明:分析法与综合法
6.2直接证明与间接证明6.2.1 直接证明:分析法与综合法[读教材·填要点]综合法和分析法[小问题·大思维]1.综合法与分析法的推理过程是合情推理还是演绎推理?提示:综合法与分析法的推理过程是演绎推理,因为综合法与分析法的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”.2.综合法与分析法有什么区别?提示:综合法是从已知条件出发,逐步推向未知,每步寻找的是必要条件;分析法是从待求结论出发,逐步靠拢已知,每步寻找的是充分条件.已知a ,b 是正数,且a +b =1,求证:1a +1b ≥4.[自主解答] 法一:∵a ,b ∈R +且a +b =1, ∴a +b ≥2ab ,当且仅当a =b 时等号成立. ∴ab ≤12.∴1a +1b =a +b ab =1ab ≥4. 法二:∵a ,b ∈R +,∴a +b ≥2ab >0,1a +1b ≥21ab>0,当且仅当a =b 时等号成立. ∴(a +b )⎝⎛⎭⎫1a +1b ≥4. 又∵a +b =1,∴1a +1b≥4.法三:∵a ,b ∈R +,且a +b =1, ∴1a +1b =a +b a +a +b b =1+b a +ab +1≥2+2a b ·b a =4.当且仅当a =b 时,取“=”号.保持例题条件不变,求证:4a +1b ≥9.证明:法一:∵a >0,b >0,且a +b =1. ∴4a +1b =4(a +b )a +a +bb =4+4b a +a b +1 ≥5+24b a ·ab =5+4=9.当且仅当4b a =a b ,即a =2b =23时等号成立.法二:∵a >0,b >0,且a +b =1. ∴4a +1b =(a +b )·⎝⎛⎭⎫4a +1b =4+4b a +a b +1 ≥5+24b a ·ab =5+4=9.当且仅当4b a =a b ,即a =2b =23时等号成立.综合法证明问题的步骤(1)分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等. (2)转化条件,组织过程:将条件合理转化,书写出严密的证明过程. 特别地,根据题目特点选取合适的证法可以简化解题过程.1.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a 2=b (b +c ),求证:A =2B . 证明:∵a 2=b (b +c ),∴cos A =b 2+c 2-a 22bc =b 2+c 2-(b 2+bc )2bc =c -b 2b,cos 2B =2cos 2B -1=2⎝⎛⎭⎫a 2+c 2-b 22ac 2-1=2⎝⎛⎭⎫b +c 2a 2-1=(b +c )2-2b (b +c )2b (b +c )=c -b 2b ,∴cos A =cos 2B .又A ,B 是三角形的内角,∴A =2B .当a +b [自主解答] 要证 a 2+b 2≥22(a +b ), 只需证(a 2+b 2)2≥⎣⎡⎦⎤22(a +b )2, 即证a 2+b 2≥12(a 2+b 2+2ab ),即证a 2+b 2≥2ab .因为a 2+b 2≥2ab 对一切实数恒成立, 所以a 2+b 2≥22(a +b )成立. 综上所述,不等式得证.分析法的证明过程及书写形式(1)证明过程:确定结论与已知条件间的联系,合理选择相关定义、定理对结论进行转化,直到获得一个显而易见的命题即可.(2)书写形式:要证…,只需证…,即证…,然后得到一个明显成立的条件,所以结论 成立.2.已知a >6,求证:a -3-a -4<a -5-a -6. 证明:法一:要证a -3-a -4<a -5-a -6, 只需证a -3+a -6<a -5+a -4 ⇐(a -3+a -6)2<(a -5+a -4)2⇐2a -9+2(a -3)(a -6)<2a -9+2(a -5)(a -4) ⇐(a -3)(a -6)<(a -5)(a -4) ⇐(a -3)(a -6)<(a -5)(a -4) ⇐18<20.因为18<20显然成立,所以原不等式a -3-a -4<a -5-a -6成立. 法二:要证a -3-a -4<a -5-a -6, 只需证1a -3+a -4<1a -5+a -6,只需证a -3+a -4>a -5+a -6. ∵a >6,∴a -3>0,a -4>0,a -5>0,a -6>0. 又∵a -3>a -5,∴a -3>a -5, 同理有a -4>a -6,则a -3+a -4>a -5+a -6. ∴a -3-a -4<a -5-a -6.已知△ABC 的三个内角A ,B ,C 为等差数列,且a ,b ,c 分别为角A ,B ,C 的对边,求证:(a +b )-1+(b +c )-1=3(a +b +c )-1.[自主解答] 法一:要证(a +b )-1+(b +c )-1=3(a +b +c )-1,只需证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3,化简,得c a +b +a b +c=1,即c (b +c )+(a +b )a =(a +b )(b +c ). 所以只需证c 2+a 2=b 2+ac .因为△ABC 的三个内角A ,B ,C 成等差数列,所以B =60°, 所以cos B =a 2+c 2-b 22ac =12.所以a 2+c 2-b 2=ac ,所以原式成立.法二:因为△ABC 的三个内角A ,B ,C 成等差数列, 所以B =60°. 由余弦定理,有b 2=c 2+a 2-2ac cos 60°, 所以c 2+a 2=ac +b 2. 两边加ab +bc ,得c (b +c )+a (a +b )=(a +b )(b +c ),两边同时除以(a +b )(b +c ),得 c a +b +a b +c=1, 所以⎝⎛⎭⎫c a +b +1+⎝⎛⎭⎫ab +c +1=3.即1a +b +1b +c =3a +b +c. 所以(a +b )-1+(b +c )-1=3(a +b +c )-1.综合法与分析法的适用范围(1)综合法适用的范围:①定义明确的题型,如证明函数的单调性、奇偶性,求证无条件的等式或不等式问题等;②已知条件明确,且容易通过找已知条件的必要条件逼近欲得结论的题型. (2)分析法适用的范围:已知条件不明确,或已知条件简便而结论式子较复杂的问题.3.(1)设x ≥1,y ≥1,证明:x +y +1xy ≤1x +1y +xy ;(2)设1<a ≤b ≤c ,证明:log a b +log b c +log c a ≤log b a +log c b +log a c . 证明:(1)由于x ≥1,y ≥1,所以 x +y +1xy ≤1x +1y +xy ⇔xy (x +y )+1≤y +x +(xy )2. 将上式中的右式减左式,得 [y +x +(xy )2]-[xy (x +y )+1] =[(xy )2-1]-[xy (x +y )-(x +y )] =(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1). 又x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0, 从而所要证明的不等式成立.(2)设log a b =x ,log b c =y ,由对数的换底公式得 log c a =1xy ,log b a =1x ,log c b =1y ,log a c =xy . 于是,所要证明的不等式即为x +y +1xy ≤1x +1y +xy ,其中x =log a b ≥1,y =log b c ≥1. 故由(1)可知所要证明的不等式成立.已知a ,b ,c ∈R 且不全相等,求证:a 2+b 2+c 2>ab +bc +ca . [证明] 法一:(分析法) 要证a 2+b 2+c 2>ab +bc +ca , 只需证2(a 2+b 2+c 2)>2(ab +bc +ca ),只需证(a 2+b 2-2ab )+(b 2+c 2-2bc )+(c 2+a 2-2ca )>0, 只需证(a -b )2+(b -c )2+(c -a )2>0, 因为a ,b ,c ∈R ,所以(a -b )2≥0,(b -c )2≥0,(c -a )2≥0. 又因为a ,b ,c 不全相等, 所以(a -b )2+(b -c )2+(c -a )2>0.所以原不等式a 2+b 2+c 2>ab +bc +ca 成立. 法二:(综合法) 因为a ,b ,c ∈R ,所以(a -b )2≥0,(b -c )2≥0,(c -a )2≥0. 又因为a ,b ,c 不全相等, 所以(a -b )2+(b -c )2+(c -a )2>0.所以(a 2+b 2-2ab )+(b 2+c 2-2bc )+(c 2+a 2-2ca )>0. 所以2(a 2+b 2+c 2)>2(ab +bc +ca ). 所以a 2+b 2+c 2>ab +bc +ca .1.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明过程:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”,此过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证明法解析:结合推理及分析法和综合法的定义可知,B 正确. 答案:B2.在△ABC 中,若sin B sin C =cos 2A2,则下列等式一定成立的是( )A .A =BB .A =CC .B =CD .A =B =C解析:∵sin B sin C =cos 2A 2=1+cos A 2=1-cos (B +C )2,∴cos(B +C )=1-2sin B sin C ,∴cos B cos C -sin B sin C =1-2sin B sin C , ∴cos B cos C +sin B sin C =1,∴cos(B -C )=1. 又0<B <π,0<C <π, ∴-π<B -C <π,∴B =C . 答案:C3.分析法又称执果索因法,若用分析法证明“设a >b >c ,且a +b +c =0,求证: b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0解析:b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2 ⇔a 2+2ac +c 2-ac -3a 2<0 ⇔-2a 2+ac +c 2<0 ⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0. 故选C. 答案:C4.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x - x ln x 求导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.解析:由证明过程可知,该证明方法为综合法. 答案:综合法5.将下面用分析法证明a 2+b 22≥ab 的步骤补充完整:要证a 2+b 22≥ab ,只需证a 2+b 2≥2ab ,也就是证______,即证________,由于________显然成立,因此原不等式成立.答案:a 2+b 2-2ab ≥0 (a -b )2≥0 (a -b )2≥06.已知x >0,y >0,且x +y =1,试分别用综合法与分析法证明⎝⎛⎭⎫1+1x ⎝⎛⎭⎫1+1y ≥9. 证明:法一:(综合法)左边=⎝⎛⎭⎫1+x +y x ⎝⎛⎭⎫1+x +y y =⎝⎛⎭⎫2+y x ⎝⎛⎭⎫2+x y=4+2⎝⎛⎭⎫y x +x y +1≥5+4=9.法二:(分析法)要证⎝⎛⎭⎫1+1x ⎝⎛⎭⎫1+1y ≥9成立, ∵x ,y ∈R +且x +y =1,∴y =1-x . 只需证明⎝⎛⎭⎫1+1x ⎝⎛⎭⎫1+11-x ≥9成立, 即证(1+x )(1-x +1)≥9x (1-x ),即证2+x -x 2≥9x -9x 2,即证4x 2-4x +1≥0, 即证(2x -1)2≥0,此式显然成立,所以原不等式成立.一、选择题1.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a c >bc ,则a >bC .若a 3>b 3且ab <0,则1a >1b D .若a 2>b 2且ab >0,则1a <1b解析:对于A :若c =0,则A 不成立,故A 错; 对于B :若c <0,则B 不成立,B 错; 对于C :若a 3>b 3且ab <0,则⎩⎪⎨⎪⎧a >0,b <0,所以1a >1b ,故C 对;对于D :若⎩⎪⎨⎪⎧a <0,b <0,则D 不成立.答案:C2.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( ) A .8 B .4 C .1D .14解析:3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b =3⇒a +b =1,因为a >0,b >0,所以ab ≤a +b 2=12⇒ab ≤14, 所以1a +1b =a +b ab =1ab ≥114=4.答案:B3.已知△ABC 中,cos A +cos B >0,则必有( ) A .0<A +B <πB .0<A +B <π2C.π2<A +B <πD.π2≤A +B <π 解析:由cos A +cos B >0,得cos A >-cos B , ∴cos A >cos(π-B ). ∵0<A <π,0<B <π,且y =cos x 在x ∈(0,π)上单调递减. ∴A <π-B .∴A +B <π,即0<A +B <π. 答案:A4.已知实数a ,b ,c 满足a +b +c =0,abc >0,则1a +1b +1c 的值( )A .一定是正数B .一定是负数C .可能是零D .正、负不能确定解析:∵a +b +c =0,∴(a +b +c )2=0. ∴a 2+b 2+c 2+2(ab +bc +ac )=0. ∴ab +bc +ac =-12(a 2+b 2+c 2)<0.又abc >0,∴1a +1b +1c =ab +bc +acabc <0. 答案:B 二、填空题5.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是________________. 解析:a a +b b >a b +b a ⇔a a -a b >b a -b b ⇔a (a -b )>b (a -b ) ⇔(a -b )(a -b )>0 ⇔(a +b )(a -b )2>0,故只需a ≠b 且a ,b 都不小于零即可. 答案:a ≥0,b ≥0且a ≠b 6.若a =ln 22,b =ln 33,c =ln 55,则a ,b ,c 的大小关系是______________. 解析:利用函数单调性.设f (x )=ln xx ,则f ′(x )=1-ln x x 2,∴0<x <e 时,f ′(x )>0,f (x )单调递增; x >e 时,f ′(x )<0,f (x )单调递减. 又a =ln 44,∴b >a >c .答案:c <a <b7.已知p =a +1a -2(a >2),q =2-a 2+4a -2(a >2),则p 与q 的大小关系是________.解析:p =a -2+1a -2+2≥2(a -2)·1a -2+2=4,-a 2+4a -2=2-(a -2)2<2,∴q <22=4≤p . 答案:p >q 8.若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.解析:∵a ≥xx 2+3x +1=1x +1x +3对任意x >0恒成立, 设μ=x +1x +3(x >0).∴只需a ≥1μ恒成立即可.又∵μ=x +1x +3≥5,当且仅当x =1时“=”成立.∴0<1μ≤15.∴a ≥15.答案:⎣⎡⎭⎫15,+∞ 三、解答题9.已知数列{a n }的首项a 1=5,S n +1=2S n +n +5,(n ∈N *). (1)证明数列{a n +1}是等比数列. (2)求a n .解:(1)证明:由条件得S n =2S n -1+(n -1)+5(n ≥2)①又S n +1=2S n +n +5,②②-①得a n +1=2a n +1(n ≥2),所以a n +1+1a n +1=(2a n +1)+1a n +1=2(a n +1)a n +1=2. 又n =1时,S 2=2S 1+1+5,且a 1=5,所以a 2=11,所以a 2+1a 1+1=11+15+1=2, 所以数列{a n +1}是以2为公比的等比数列.(2)因为a 1+1=6,所以a n +1=6×2n -1=3×2n , 所以a n =3×2n -1.10.已知a ,b ,m 为非零实数,且a 2+b 2+2-m =0,1a 2+4b 2+1-2m =0. (1)求证:1a 2+4b 2≥9a 2+b 2; (2)求证:m ≥72. 证明:(1)(分析法)要证1a 2+4b 2≥9a 2+b 2成立, 只需证⎝⎛⎭⎫1a 2+4b 2(a 2+b 2)≥9,即证1+4+b 2a 2+4a 2b 2≥9,即证b 2a 2+4a 2b 2≥4. 根据基本不等式,有b 2a 2+4a 2b 2≥2 b 2a 2·4a 2b 2=4成立, 当且仅当b 2=2a 2时等号成立.所以原不等式成立.(2)(综合法)因为a 2+b 2=m -2,1a 2+4b2=2m -1, 由(1),知(m -2)(2m -1)≥9,即2m 2-5m -7≥0,解得m ≤-1或m ≥72. 因为a 2+b 2=m -2>0,1a 2+4b2=2m -1>0, 所以m ≥72.。
高中数学第二讲第2节综合法与分析法创新应用教学案新人教A版选修38
第2节综合法与分析法创新应用[核心必知]1.综合法一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法,又叫顺推证法或由因导果法.2.分析法证明命题时,我们还常常从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法,这是一种执果索因的思考和证明方法.[问题思考]1.如何理解分析法寻找的是充分条件?提示:用分析法证题时,语气总是假定的,常用“欲证A只需证B”表示,说明只要B 成立,就一定有A成立,所以B必须是A的充分条件才行,当然B是A的充要条件也可.2.用综合法和分析法证明不等式有怎样的逻辑关系?提示:综合法:A⇒B1⇒B2⇒…⇒B n⇒B(逐步推演不等式成立的必要条件),即由条件出发推导出所要证明的不等式成立.分析法:B⇐B1⇐B2⇐…⇐B n⇐A(步步寻求不等式成立的充分条件),总之,综合法与分析法是对立统一的两种方法.已知a ,b ,c ∈R +,且互不相等,又abc =1.求证:a +b +c <1a +1b +1c.[精讲详析] 本题考查用综合法证明不等式,解答本题可从左到右证明,也可从右到左证明.由左端到右端,应注意左、右两端的差异,这种差异正是我们思考的方向.左端含有根号,脱去根号可通过a =1bc <1b +1c2实现;也可以由右到左证明,按上述思路逆向证明即可.法一:∵a ,b ,c 是不等正数,且abc =1, ∴a +b +c =1bc+1ac+1ab<1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c.法二:∵a ,b ,c 是不等正数,且abc =1, ∴1a +1b +1c=bc +ca +ab=bc +ca 2+ca +ab 2+ab +bc2> abc 2+a 2bc +ab 2c=a +b +c ——————————————————(1)用综合法证明不等式时,主要利用基本不等式,函数的单调性以及不等式的性质等知识,在严密的演绎推理下推导出结论.(2)综合法证明不等式中所依赖的已知不等式主要是重要不等式,其中常用的有如下几个:①a 2≥0(a ∈R ②(a -b )2≥0(a ,b ∈R ),其变形有:a 2+b 2≥2ab ,⎝ ⎛⎭⎪⎫a +b 22≥ab .a 2+b 2≥12(a +b )2.③若a ,b 为正实数,a +b 2≥ab .特别b a +a b≥2.④a 2+b 2+c 2≥ab +bc +ca .1.已知x ,y ,z 均为正数.求证:x yz +y zx +z xy ≥1x +1y +1z. 证明:因为x ,y ,z 均为正数.所以x yz +y zx =1z (x y +y x)≥2z,同理可得y zx +z xy ≥2x ,z xy +x yz ≥2y, 当且仅当x =y =z 时, 以上三式等号都成立.将上述三个不等式两边分别相加,并除以2, 得x yz +y zx +z xy ≥1x +1y +1z.a ,b ∈R +,且2c >a +b .求证:c -c 2-ab <a <c +c 2-ab .[精讲详析] 本题考查分析法在证明不等式中的应用.解答本题需要对原不等式变形为-c 2-ab <a -c <c 2-ab ,然后再证明.要证c -c 2-ab <a <c +c 2-ab , 只需证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab ,两边平方得a 2-2ac +c 2<c 2-ab , 也即证a 2+ab <2ac ,即a (a +b )<2ac .∵a ,b ∈R +,且a +b <2c ,∴a (a +b )<2ac 显然成立. ∴原不等式成立.——————————————————(1)当所证不等式与重要不等式、基本不等式没有什么直接联系,或很难发现条件与结论之间的关系时,可用分析法来寻找证明途径.(2)对于无理不等式的证明,常采用分析法通过乘方将 其有理化,但在乘方的过程中,要注意其变形的等价性.(3)分析法证题的本质是从被证的不等式出发寻求使结论成立的充分条件,证明的关键是推理的每一步都必须可逆.2.已知x >0,y >0,求证:(x 2+y 2)12>(x 3+y 3)13.证明:要证明(x 2+y 2)12>(x 3+y 3)13,只需证(x 2+y 2)3>(x 3+y 3)2,即证x 6+3x 4y 2+3x 2y 4+y 6>x 6+2x 3y 3+y 6, 即证3x 4y 2+3x 2y 4>2x 3y 3. ∵x >0,y >0,∴x 2y 2>0, 即证3x 2+3y 2>2xy . ∵3x 2+3y 2>x 2+y 2≥2xy ,∴3x 2+3y 2>2xy 成立,∴(x 2+y 2)12>(x 3+y 3)13.已知a ,b ,c 为不全相等的正实数,且b 2=ac .求证:a 4+b 4+c 4>(a 2-b 2+c 2)2. [精讲详析] 本题考查综合法与分析法的综合应用.解答本题可先采用分析法将所要证明的不等式转化为较易证明的不等式,然后再用综合法证明.欲证原不等式成立,只需证a 4+b 4+c 4>a 4+b 4+c 4-2a 2b 2+2a 2c 2-2b 2c 2, 即证a 2b 2+b 2c 2-a 2c 2>0,∵b 2=ac ,故只需证(a 2+c 2)ac -a 2c 2>0.∵a 、c >0,故只需证a 2+c 2-ac >0, 又∵a 2+c 2>2ac ,∴a 2+c 2-ac >0显然成立. ∴原不等式成立. ——————————————————(1)通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式易于证明.(2)有些不等式的证明,需要一边分析一边综合,称之为分析综合法,或称“两头挤”法,如本例,这种方法充分表明了分析与综合之间互为前提,互相渗透,相互转化的辩证统一关系.3.若a ,b ,c 是不全相等的正数,求证lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .证明:要证lg a +b2+lgb +c2+lgc +a2>lg a +lg b +lg c ,只需证lg ⎝ ⎛⎭⎪⎫a +b 2·b +c 2·c +a 2>lg(a ·b ·c ),即证a +b 2·b +c 2·c +a2>a ·b ·c .又∵a ,b ,c 是不全相等的正数, ∴由基本不等式得:a +b2≥ab >0,b +c2≥bc >0,c +a2≥ac >0,以上三式中由于a ,b ,c 不全相等, 故等号不同时成立. ∴a +b 2·b +c 2·c +a2>a ·b ·c .∴lga +b2+lgb +c2+lgc +a2>lg a +lg b +lg c .数学证明是数学高考的核心问题,有时单独考查,有时以解答题的一问出现,综合法是解决数学证明问题的基本方法,而分析法又为综合法的使用提供了思路,因此,综合法与分析法是解决数学证明问题的重要工具.[考题印证]设a,b为非负实数,求证:a3+b3≥ab(a2+b2).[命题立意] 本题考查综合法的应用,考查学生分类讨论的思想和转化化归思想的应用.[证明] 由a,b是非负实数,作差得a3+b3-ab(a2+b2)=a2a(a-b)+b2b(b-a)=(a-b)((a)5-(b)5).当a≥b时,a≥b,从而(a)5≥(b)5,得(a-b)·((a)5-(b)5)≥0;当a<b时,a<b,从而(a)5<(b)5,得(a-b)·((a)5-(b)5)>0.所以a3+b3≥ab(a2+b2).一、选择题1.设a,b∈R+,A=a+b,B=a+b,则A、B的大小关系是( )A.A≥B B.A≤BC.A>B D.A<B解析:选C 用综合法(a+b)2=a+2ab+b,所以A2-B2>0.又A >0,B >0, ∴A >B .2.已知a ,b ,c 满足c <b <a 且ac <0,那么下列选项中一定成立的是( ) A .ab >ac B .c (b -a )<0 C .b 2<ab 2D .ac (a -c )>0解析:选A ⎩⎪⎨⎪⎧ac <0,c <a ⇒⎩⎪⎨⎪⎧a >0,c <0. 又b >c ,∴ab >ac ,故A 正确. ∵b -a <0,c <0,∴c (b -a )>0, 故B 错误.由b 2=0,可验证C 不正确, 而ac <0,a -c >0, ∴ac (a -c )<0,故D 错误.3.设a =⎝ ⎛⎭⎪⎫3525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫2525,则a ,b ,c 的大小关系是( ) A .a >c >b B .a >b >c C .c >a >b D .b >c >a解析:选A 构造指数函数y =⎝ ⎛⎭⎪⎫25x(x ∈R ),由该函数在定义域内单调递减可得b <c ;又y =⎝ ⎛⎭⎪⎫25x (x ∈R )与y =⎝ ⎛⎭⎪⎫35x (x ∈R )之间有如下结论:当x >0时,有⎝ ⎛⎭⎪⎫35x >⎝ ⎛⎭⎪⎫25x,故⎝ ⎛⎭⎪⎫3525>⎝ ⎛⎭⎪⎫2525,所以a >c ,故a >c >b .4.已知a 、b 、c 为三角形的三边且S =a 2+b 2+c 2,P =ab +bc +ca ,则( ) A .S ≥2P B .P <S <2P C .S >P D .P ≤S <2P解析:选D ∵a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca , ∴a 2+b 2+c 2≥ab +bc +ca ,即S ≥P .又三角形中|a -b |<c ,∴a 2+b 2-2ab <c 2, 同理b 2-2bc +c 2<a 2,c 2-2ac +a 2<b 2, ∴a 2+b 2+c 2<2(ab +bc +ca ),即S <2P . 二、填空题5.设a >2,x ∈R ,M =a +1a -2,N =⎝ ⎛⎭⎪⎫12x 2-2,则M ,N 的大小关系是________.解析:∵a >2, ∴M =a +1a -2=(a -2)+1a -2+2≥2+2=4. ∵x 2-2≥-2,∴N =⎝ ⎛⎭⎪⎫12x 2-2≤⎝ ⎛⎭⎪⎫12-2=4, ∴M ≥N . 答案:M ≥N6.设a ,b ,c 都是正实数,且a +b +c =1,若M =⎝ ⎛⎭⎪⎫1a-1·⎝ ⎛⎭⎪⎫1b-1·⎝ ⎛⎭⎪⎫1c-1,则M 的取值范围是________.解析:∵a +b +c =1,∴M =⎝ ⎛⎭⎪⎫1a-1·⎝ ⎛⎭⎪⎫1b-1·⎝ ⎛⎭⎪⎫1c-1=⎝⎛⎭⎪⎫a +b +c a -1·⎝ ⎛⎭⎪⎫a +b +c b -1·⎝ ⎛⎭⎪⎫a +b +c c -1=⎝ ⎛⎭⎪⎫b a +c a ·⎝ ⎛⎭⎪⎫a b +c b ·⎝ ⎛⎭⎪⎫a c +b c≥2bca 2·2ac b 2·2ab c 2=8.即M 的取值范围是[8,+∞). 答案:[8,+∞)7.已知a >0,b >0,若P 是a ,b 的等差中项,Q 是a ,b 的正的等比中项,1R 是1a ,1b的等差中项,则P 、Q 、R 按从大到小的排列顺序为________.解析:由已知P =a +b2,Q =ab ,1R =1a +1b 2=a +b2ab,即R =2aba +b,显然P ≥Q , 又2ab a +b ≤2ab2ab=ab , ∴Q ≥R .∴P ≥Q ≥R . 答案:P ≥Q ≥R 8.若不等式1a -b +1b -c +λc -a>0在条件a >b >c 时恒成立,则λ的取值范围是________. 解析:不等式可化为1a -b +1b -c >λa -c. ∵a >b >c ,∴a -b >0,b -c >0,a -c >0, ∴λ<a -c a -b +a -cb -c恒成立. ∵a -c a -b +a -c b -c =(a -b )+(b -c )a -b +(a -b )+(b -c )b -c =2+b -c a -b +a -bb -c≥2+2=4.∴λ<4. 答案:(-∞,4) 三、解答题9.(新课标全国卷Ⅱ)设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a≥1.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1, 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c .所以a 2b +b 2c +c 2a≥1. 10.已知a >b >0,求证:(a -b )28a <a +b 2-ab <(a -b )28b .证明:要证(a -b )28a <a +b 2-ab <(a -b )28b ,只要证(a -b )24a <a +b -2ab <(a -b )24b,即证⎝ ⎛⎭⎪⎫a -b 2a 2<(a -b )2<⎝ ⎛⎭⎪⎫a -b 2b 2, 即证0<a -b 2a <a -b <a -b 2b ,即证a +b a <2<a +bb , 即证1+b a <2<1+ab,即证 b a<1< ab成立. 因为a >b >0,所以ab>1,b a<1,故b a <1, a b>1成立, 所以有(a -b )28a <a +b 2-ab <(a -b )28b成立.11.已知实数a 、b 、c 满足c <b <a ,a +b +c =1,a 2+b 2+c 2=1.求证:1<a +b <43.证明:∵a +b +c =1,∴欲证结论等价于 1<1-c <43,即-13<c <0.又a 2+b 2+c 2=1,则有 ab =(a +b )2-(a 2+b 2)2=(1-c )2-(1-c 2)2=c 2-c .①又a +b =1-c .②由①②得a 、b 是方程x 2-(1-c )x +c 2-c =0的两个不等精心制作仅供参考 鼎尚出品鼎尚出品 实根,从而Δ=(1-c )2-4(c 2-c )>0,解得-13<c <1. ∵c <b <a ,∴(c -a )(c -b )=c 2-c (a +b )+ab=c 2-c (1-c )+c 2-c >0,解得c <0或c >23(舍). ∴-13<c <0,即1<a +b <43.。
高中数学PPT课件-综合法和分析法
此时,如果能把角和边统一起来,那么就可以进一步寻找角和边之间的关系,进而判断三角形 的形状,余弦定理正好满足要求.于是,可以用余弦定理为工具进行证明.
新知探究
证明:由A,B,C成等差数列,有 2B=A+C. ①
因为A,B,C为△ABC的内角,所以 A+B+C=180°. ②
新知探究
请对综合法与分析法进行比较,说出它们各自的特点.回顾以往的数学学习,说说你对这两种证 明方法的新认识.
综合法就是利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所 要证明的结论成立. 分析法最大的特点就是执果索因. 注意
事实上,在解决问题时,我们把综合法和分析法结合起来使用:根据条件的结构特点去转化结
新知探究
知识要点 一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要 证明的结论成立,这种证明方法叫做综合法.其特点是“由因导果”.
新知探究
你能用框图 表示综合法
吗?
用P表示已知条件、已有的定义、 公理、定理等,Q表示所要证明的 结论.
则综合法可用框图表示如下:
于是尝试转化结论:统一函数名称,即把正切函数化为正(余)弦函数.把结论
转化为
cos2α
-
sin2α
=
1 2
(cos2β
-
sin2β)
再与
4sin2α - 2sin2β = 1 比较,发现只要把
cos2α - sin2α = 1 (cos2β - sin2β)的角的余弦转化为正弦,就能达到目的.
2
新知探究
=
1
-
高中数学:综合法与分析法(一)含解析
B.2
C.3
D.4
4.设 a,b∈R+,且 a≠b,a+b=2,则必有
( )
a2+b2 A.1≤ab≤ 2
a2+b2 B.ab<1< 2
a2+b2 C.ab< 2 <1
a2+b2 D. 2 <ab<1
ab 5.已知 a,b 为非零实数,则使不等式:b+a≤-2 成立的一个充分不必要条件是( )
A.ab>0
高中数学
高中数学
答案
1.C 2.C 3.B 4.B 5.C 6.C 7.B 8.a>c>b
9.p>q 10.解 a a+b b>a b+b a
⇔a a-a b>b a-b b ⇔a( a- b)>b( a- b) ⇔(a-b)( a- b)>0 ⇔( a+ b)( a- b)2>0,
只需 a≠b 且 a,b 都不小于零即可.
即 a≥0,b≥0,且 a≠b.
11.证明 方法一 3a3+2b3-(3a2b+2ab2)
=3a2(a-b)+2b2(b-a)
=(3a2-2b2)(a-b).
因为 a≥b>0,
所以 a-b≥0,3a2-2b2>0,
从而(3a2-2b2)(a-b)≥0,
所以 3a3+2b3≥3a2b+2ab2.
方法二 要证 3a3+2b3≥3a2b+2ab2,
高中数学
§2.2 直接证明与间接证明
2.2.1 综合法与分析法(一)
一、基础过关
1.已知 a,b,c∈R,那么下列命题中正确的是 A.若 a>b,则 ac2>bc2 ab B.若c>c,则 a>b 11 C.若 a3>b3 且 ab<0,则a>b 11 D.若 a2>b2 且 ab>0,则a<b
高中数学第一章推理与证明1综合法和分析法教材基础素材
§2 综合法和分析法在数学中,常用推理和证明来证明一个命题,证明是引用一些真实的命题来确定某一命题真实性的思维形式,在过去的学习中,我们曾经用直接证明或间接证明两类方法证明过许多命题.本节的内容就是学习直接证明的两种方法:综合法和分析法。
高手支招1细品教材一、演绎推理1.概念:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理。
2。
演绎推理的特点(1)演绎的前提是一般性原理,演绎所得的结论是蕴涵于前提之中的个别、特殊事实,结论完全蕴涵于前提之中.(2)在演绎推理中,前提与结论之间存在必然的联系.只要前提是真实的,推理的形式是正确的,那么结论也必定是正确的.因而演绎推理是数学中严格证明的工具。
(3)演绎推理是一种收敛性的思维方法,它缺少创造性,但却具有条理清晰、令人信服的论证作用,有助于科学的理论化和系统化。
状元笔记演绎推理是由一般到特殊的推理;演绎推理的特征是:当前提为真时,结论必然为真.【示例】判断下列推理,哪些为合情推理,哪些不是合情推理。
(1)a//b,b//c,则a//c;(2)a⊥b,b⊥c,则a⊥c;(3)三角形的内角和为180°,四边形的内角和为360°,五边形的内角和为540°,……,所以n 边形的内角和为(n-2)×180°;(4)今天是星期日,7天之后也是星期日。
思路分析:根据实际问题中推理所得问题的真假来判断是否为合情推理。
答案:合情推理为(1)(3)(4),不是合情推理的是(2).二、直接证明1.概念直接从原命题的条件逐步推得结论成立,这种证明方法叫直接证明.2.答案:直接证明的一般形式本题结论已知定理已知公理已知定义本题条件 ⇒⎪⎪⎭⎪⎪⎬⎫ 三、综合法1。
定义:一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种思维方法叫做综合法.综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题。
高中数学2.2.1 综合法和分析法
-16-
2.2.1 综合法与分析法
探究一
探究二
探究三
课前篇自主预习 课课堂堂篇篇探探究究学学习习 规范解答 当堂检测
综合法与分析法的综合应用 例3已知a、b、c是不全相等的正数,且0<x<1.
求证:logx������+2������+logx������+2 ������+logx������+2 ������<logxa+logxb+logxc. 分析:解答本题的关键是利用对数运算法则和对数函数性质将题 目转化成整式不等式证明.
①综合法的特点是从“已知”看“未知”,其逐步推理实际上是寻找
已知条件的必要条件.
②综合法从命题的条件出发,利用定义、公理、定理和运算法则,
通过演绎推理,一步一步完成命题的证明.
-3-
2.2.1 综合法与分析法
课前篇自主预习 课堂篇探究学习
【做一做 1】 命题“求证:tan θ+ta1n������ = sin22������”的证明过程“tan
-17-
2.2.1 综合法与分析法
课前篇自主预习 课课堂堂篇篇探探究究学学习习
探究一
探究二
探究三
规范解答 当堂检测
解:要证明 logx������+2������+logx������+2 ������+logx������+2 ������<logxa+logxb+logxc,
只需要证明 logx
①分析法的特点是从“未知”看“需知”,逐步靠拢“已知”,其逐步推
理实际上是寻找使结论成立的充分条件.
②分析法从命题的结论入手,寻求结论成立的条件,直至归结为
高中数学第二讲证明不等式的基本方法综合法与分析法
2。
2.2 分析法课堂导学三点剖析一,利用分析法证明不等式【例1】 (1)设a>b 〉0,求证:333b a b a ->-。
(2)已知0〈α〈π,证明2sin2α≤cot 2α,并指出等号成立的条件。
证明:(1)要证333b a b a ->-,∵a>b〉0,有3b a ->0, ∴需证(3b a -)3>(33b a -)3,展开得a —b 〉a —323b a +b ab -323, 即证明)(3333b a ab -〉0, 也就是证33b a ->0,在题设条件下这一不等式显然成立,∴原不等式成立.(2)要证2sin2α≤cot 2α,由0<α<π知sinα〉0,只需证2sinα·sin2α≤1+cosα,即证明4sin 2αcosα-(1+cosα)≤0,也就是证(1+cosα)[4(1—cosα)cosα-1]≤0,而1+cosα>0,于是只要证-4cos 2α+4cosα—1≤0,即—(2cosα—1)2≤0,就是(2cosα-1)2≥0,这是显然的。
∴2sin2α≤cot 2α,等号在2cosα=1,α=3π时取得。
各个击破类题演练1若a ,b,c 三数均大于1,且ab=10,求证:log a c+log b c≥4lgc.证明:由于a>1,b 〉1,要证log a c+log b c≥4lgc,需证b ca clg lg lg lg +≥4lgc,而lgc>0, 因此只要证b a lg 1lg 1+≥4,即证b a b a lg lg lg lg +≥4。
∵ab=10,有lga+lgb=1,于是只需证lga·lgb≤41, 而lga·lgb≤(2lg lg b a +)2=41。
∴不等式log a c+log b c≥4lgc 成立.变式提升1已知a>0,b 1—a 1>1,求证:ba ->+111。
人教课标版高中数学选修4-5:《综合法与分析法》教案-新版
2.2 课时6 综合法与分析法一、教学目标(一)核心素养通过对综合法与分析法的学习,体会数学证明的基本思想及逻辑思路.(二)学习目标1.结合已经学过的数学实例,了解直接证明的综合法.2.了解直接证明分析法,注意格式规范.2.了解分析法和综合法的思考过程.(三)学习重点会用综合法证明问题;了解综合法的思考过程.(四)学习难点根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第23页至第25页,思考:什么是综合法?什么是分析法?(2)想一想:两种方法有什么区别与联系?2.预习自测(1)综合法又叫顺推证法,它的特点是.【知识点】综合法【数学思想】【解题过程】由因到果【思路点拨】了解综合法的原理【答案】由因到果(2)分析法的特点是.【知识点】分析法【数学思想】【解题过程】执果索因.【思路点拨】了解分析法的原理【答案】执果索因(32+<,最好用什么方法? 【知识点】分析法 【数学思想】2+<,只需证22(2<+,只需证<<,只需证1820<,显然成立,原命题成立. 【思路点拨】分析法由果寻因,证明问题很方便 【答案】分析法 (二)课堂设计 1.知识回顾(1)如果,a b ∈R ,那么222a b ab +≥,当且仅当a b =时,等号成立.(2)如果,0a b >,那么2a b+≥,当且仅当a b =时,等号成立. (3)如果,a b c d >>,那么a c b d +>+;如果0,0a b c d >>>>,那么ac bd >. 2.问题探究探究一 综合法与分析法 ●活动① 综合法与分析法的定义综合法和分析法是数学中常用的两种直接证明方法,也是不等式证明中的基本方法.由于两者在证明思路上存在着明显的互逆性,这里将其放在一起加以认识、学习,以便于对比研究两种思路方法的特点.所谓综合法,即从已知条件出发,根据不等式的性质或已知的不等式,逐步推导出要证的不等式.而分析法,则是由结果开始,倒过来寻找原因,直至原因成为明显的或者在已知中.前一种是“由因及果”,后一种是“执果索因”.打一个比方:张三在山里迷了路,救援人员从驻地出发,逐步寻找,直至找到他,这是“综合法”;而张三自己找路,直至回到驻地,这是“分析法”.以前得到的结论,可以作为证明的根据.特别的,AB B A 222≥+是常常要用到的一个重要不等式.例1 b a ,都是正数,求证:.2≥+abb a【知识点】综合法;基本不等式 【数学思想】【解题过程】证明:由重要不等式AB B A 222≥+可得.22=≥+ab b a a b b a 【思路点拨】基本不等式:一正二定三取等 【答案】见解析同类训练 证明:当1x >时, 1+31x x ≥-. 【知识点】综合法;基本不等式 【数学思想】【解题过程】证明:因为1x >,所以11+(1)++11)+1=3111x x x x x =-≥---. 【思路点拨】配凑定值,用基本不等式可证 【答案】见解析例2 设0,0>>b a ,求证.2233ab b a b a +≥+ 【知识点】综合法;分析法 【数学思想】【解题过程】证法一 综合法ab b ab a b ab a b a ≥+-⇒≥+-⇒≥-22222020)(,注意到0,0>>b a ,即0>+b a ,由上式即得)())((22b a ab b ab a b a +≥+-+,从而2233ab b a b a +≥+成立.证法二 分析法要证2233ab b a b a +≥+成立.只需证)())((22b a ab b ab a b a +≥+-+成立, 又因0>+b a ,只需证ab b ab a ≥+-22成立,又需证0222≥+-b ab a 成立, 即需证0)(2≥-b a 成立.而0)(2>-b a 显然成立. 由此命题得证. 【思路点拨】因式分解化简不等式. 【答案】见解析同类训练 求证2252(2)a b a b ++≥- 【知识点】综合法;分析法【数学思想】【解题过程】证法一 综合法因为22(2)(1)0a b -++≥,所以224250a b a b +-++≥,所以2252(2)a b a b ++≥-. 证法二 分析法要证2252(2)a b a b ++≥-,只需证22542a b a b ++≥-,只需证224250a b a b +-++≥,只需证22(2)(1)0a b -++≥,显然成立,所以原不等式成立.【思路点拨】一元二次,配方. 【答案】见解析议一议:根据上面的例证,你能指出综合法和分析法的主要特点吗? 【设计意图】理解和掌握综合法与分析法. 探究二 综合法与分析法的特点 ●活动① 综合法与分析法的特点如果用Q P ⇒或P Q ⇐表示命题P 可以推出命题Q (命题Q 可以由命题P 推出),那么采用综合法的证法一就是).1()2()3()4(⇒⇒⇒采用分析法的证法二就是).4()3()2()1(⇐⇐⇐如果命题P 可以推出命题Q ,命题Q 也可以推出命题P ,即同时有P Q Q P ⇒⇒,,那么我们就说命题P 与命题Q 等价,并记为.Q P ⇔例3 证明:ca bc ab c b a ++≥++222. 【知识点】综合法;分析法 【数学思想】化归与转化思想【解题过程】证法一 因为ab b a 222≥+,bc c b 222≥+,ca a c 222≥+ 所以三式相加得)(2)(2222ca bc ab c b a ++≥++, 两边同时除以2即得ca bc ab c b a ++≥++222. 证法二 因为,0)(21)(21)(21)(222222≥-+-+-=++-++a c c b b a ca bc ab c b a 所以ca bc ab c b a ++≥++222成立.【思路点拨】基本不等式,不等式的可加性. 【答案】见解析同类训练 求证:222222222a b b c c a a bc ab c abc ++≥++. 【知识点】综合法;分析法 【数学思想】化归与转化思想【解题过程】证明:因为222222a b b c ab c +≥,222222b c c a abc +≥,222222c a a b a bc +≥ 所以三式相加得2222222222()2()a b b c c a a bc ab c abc ++≥++, 两边同时除以2即得222222222a b b c c a a bc ab c abc ++≥++. 【思路点拨】基本不等式,不等式的可加性. 【答案】见解析例4 证明:.)())((22222bd ac d c b a +≥++ 【知识点】分析法【数学思想】化归与转化思想 【解题过程】证明 要证.)())((22222bd ac d c b a +≥++只需证0)())((22222≥+-++bd ac d c b a只需证0)2(222222222222≥++-+++d b abcd c a d b d a c b c a 只需证022222≥-+abcd d a c b 只需证 0)(2≥-ad bc ,显然成立,原不等式成立. 此时显然成立.因此.)())((22222bd ac d c b a +≥++成立. 【思路点拨】化简,配方. 【答案】见解析同类训练 已知1m n >>,求证:2m n mn m +>+. 【知识点】分析法【数学思想】化归与转化思想【解题过程】证明 要证2m n mn m +>+,只需证2()()0m m n mn -+->,只需证(1)(1)0m m n m -+->,只需证(1)()0m m n -->,因为1m n >>,所以(1)()0m m n -->.【思路点拨】化简,因式分解. 【答案】见解析【设计意图】体会综合法与分析法在证明不等式时的异同. 探究三 巩固提升 ●活动① 巩固提升例5 已知c b a ,,都是正数,求证.3333abc c b a ≥++并指出等号在什么时候成立? 【知识点】综合法【数学思想】化归与转化思想【解题过程】证明 abc c b a 3333-++=))((222ca bc ab c b a c b a ---++++ =].)()())[((21222a c c b b a c b a -+-+-++由于c b a ,,都是正数,所以.0>++c b a 而0)()()(222≥-+-+-a c c b b a ,可知03333≥-++abc c b a ,即abc c b a 3333≥++(等号在c b a ==时成立)【思路点拨】本题可以考虑利用因式分解公式))((3222333ca bc ab c b a c b a abc c b a ---++++=-++着手. 【答案】见解析同类训练 已知0,0,0a b c >>>,且1abc =,111+a b c≤+. 【知识点】综合法【数学思想】化归与转化思想【解题过程】证明 由1abc =,得111+=ab bc ac a b c +++,又由基本不等式及0,0,0a b c >>>得ab bc +≥=bc ac +≥=,ab ac +≥=,111+a b c+≤+ 【思路点拨】基本不等式. 【答案】见解析同类训练 如果将不等式abc c b a 3333≥++中的333,,c b a 分别用c b a ,,来代替,并在两边同除以3,会得到怎样的不等式?并利用得到的结果证明不等式:27)1)(1)(1(>++++++a c c b b a ,其中c b a ,,是互不相等的正数,且1=abc .【知识点】基本不等式;综合法 【数学思想】【解题过程】,,0)3a b c a b c ++≥>,当且仅当a b c ==时取等号. ,31,31,31333ac a c bc c b ab b a ≥++≥++≥++三式相乘的,得 127)1)(1)(1(32=>++++++)(abc a c c b b a ,所以27)1)(1)(1(≥++++++a c c b b a ,当且仅当⎪⎩⎪⎨⎧======c a c b b a 111,即1===c b a 时取等号,因为c b a ,,是互不相等的正数,所以27)1)(1)(1(>++++++a c c b b a .【思路点拨】注意取等三个正数的均值不等式的条件 【答案】见解析【设计意图】掌握用综合法与分析法证明不等式. 3. 课堂总结 知识梳理(1)解不等式时,在不等式的两边分别作恒等变形,在不等式的两边同时加上(或减去)一个数或代数式,移项,在不等式的两边同时乘以(或除以)一个正数或一个正的代数式,得到的不等式都和原来的不等式等价。
北师大版高中数学选修2-2第一章第2节《综合法与分析法》课件(灵璧一中 裴恒永)
明格式为:因为×××,所以×××,所以××ׄ„
所以×××成立. 2.分析法证明问题时,是从“未知”看“需知”,执 果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立 的充分条件.它的证明格式:要证×××,只需证
×××,只需证×××……因为×××成立,所以
×××成立.
[例 1]
1 1 已知 a,b 是正数,且 a+b=1,求证:a+b≥4.
2 0 ≤ ( a b ) 只要证
a b 2 ab ≥ 0 a b ≥ 2 ab ab ≥ 2 ab
因为最后一个不等式成 立,故结论成立。
综合法
分析法
表达简洁!
目的性强,易于探索!
1.综合法是从“已知”看“可知”逐步推向未知,由 因导果通过逐步推理寻找问题成立的必要条件.它的证
已知
1 1 x>0,y>0,x+y=1,求证:1+x 1+y ≥9.
【精彩点拨】 证明.
解答本题可由已知条件出发,结合基本不等式利用综合法
【自主解答】 1 所以 xy≤ . 4
法一:因为 x>0,y>0,1=x+y≥2 xy,
1 1 1 1 1 所以 1+x 1+y =1+x +y +xy
8 7 5 10.
8 7 5 10,
( 8 7 )2 ( 5 10)2 .
8 7 2 56 5 10 2 50.
.
只需证 2 56 2 50,即56 50. 故不等式成立. 注:从求证的结论出发,逐步寻求使结论成立的条件。
分析法
(1)含义:从求证的 结论 出发,一步一步地探索保证 前一个结论成立的 充分条件 ,直到归结为这个命题的 条件 ,或者归结为 定义、公理、定理 等.这种证明问 题的思维方法称为分析法(又称倒推证法).
高中数学第二讲证明不等式的基本方法综合法与分析法
2。
2.1 综合法课堂导学三点剖析一,利用综合法证明不等式【例1】 (1)若a>0,b 〉0,求证:ab b a 22+≥a+b.思路分析:主要利用不等式2ba +≥ab 和a 2+b 2≥2ab。
证明:由a 2+b 2≥2ab,∴2(a 2+b 2)≥a 2+b 2+2ab,即2(a 2+b 2)≥(a+b)2。
∴ab b a 22+≥b a b a b a b a ++≥++222)()(2=a+b.(2)设a ,b ,c 都是正数,求证:2222222≥+++++a c c b b a (a+b+c ).思路分析:主要利用不等式2)(2222y x y x +≥+。
证明:由不等式a 2+b 2≥2)(22222b a ab b a +=++. ∴22b a +≥2ba +. 同理,2,22222ac a c cb c b +≥++≥+2)222(2222222=+++++=+++++∴ca cb ba a c cb b a (a+b+c )各个击破类题演练1已知a,b,c∈(0,+∞),且a ,b ,c 成等比数列,求证:a 2+b 2+c 2≥(a—b+c)2。
证明:左边-右边=2(ab+bc-ac)。
∵a,b ,c 成等比数列,∴b 2=ac.又∵a,b,c∈(0,+∞),∴0〈b=ac ≤2ca +〈a+c 。
∴a+c—b 〉0。
∴2(ab+bc —ac )=2(ab+bc —b 2)=2b(a+c —b )〉0,∴a 2+b 2+c 2>(a —b+c )2.变式提升1若a,b,c 是正数,能确定b a c c a b c b a +++++222与2c b a ++的大小吗? 解析:∵cb a +24+(b+c )≥4a, ac b +24+(c+a)≥4b, ba c +24+(a+b)≥4c , ∴c b a +24+a c b +24+ba c +24≥2(a+b+c ), 即b a c a c b c b a +++++222≥2c b a ++. 二、用综合法证明条件不等式【例2】 已知a,b ,c 〉0,且abc=1,求证:c b a ++≤a 1+b 1+c 1。
高中数学—综合法与分析法
∵∴即a2>(aab->-1bcb),(+b-bc-1)c(c+-ca)-1<a0, 0 成立.
5. 已知 m, nR+,
求证
m
+ 2
n
m+n
mnnm
.
证明: ∵ m, nR+,
要证
m+ 2
n
m+n
mnnm
,
只需证
(
m+ 2
n
)m+n
mnnm
,
(
m+ 2
n
)m+n
(
mn )m+n ,
∴只需证 ( mn)m+n mnnm,
b3+c3=(b+c)(b2-bc+c2) ≥(b+c)bc, c3+a3=(c+a)(c2-ca+a2) ≥(c+a)ca, ∴2(a3+b3+c3)≥(a+b)ab+(b+c)bc+(c+a)ca
=a2b+ab2+b2c+bc2+c2a+ca2 =a2(b+c)+b2(a+c)+c2(a+b).
配方计算得 (a-b)2+(b-c)2+(c-a)2>0,
∵a, b, c互不相等, ∴(a-b)2+(b-c)2+(c-a)2>0 成立, ∴原不等式成立.
4. 已知 a>b>c,
求证
1 a-b
+
1 b-c
+
1 c-a