高三数学 第8讲 函数与方程

合集下载

山东高三数学知识点

山东高三数学知识点

山东高三数学知识点一、函数与方程1. 函数的概念与性质1.1 函数的定义1.2 函数的图像与性质1.3 函数的分类与常见函数2. 方程与不等式2.1 一元一次方程与不等式2.2 一元二次方程与不等式2.3 二元一次方程与不等式二、数列与数列极限1. 数列的定义与性质1.1 数列的定义1.2 数列的通项公式1.3 数列的性质与分类2. 数列的求和与极限2.1 数列的部分和与求和公式2.2 数列的极限与收敛性2.3 数列极限的计算与应用三、三角函数1. 基本概念与性质1.1 三角函数的定义与图像1.2 三角函数的性质与关系1.3 三角函数的周期与对称性2. 三角函数的计算与应用2.1 三角函数的基本公式2.2 三角函数的合并与拆分2.3 三角函数在几何和物理中的应用四、立体几何1. 空间直线与平面1.1 空间直线的方程与相关概念 1.2 平面的方程与相关性质1.3 直线与平面的位置关系2. 空间点与多面体2.1 空间点的坐标与平移2.2 多面体的分类与性质2.3 多面体的体积与表面积计算五、解析几何1. 直线与圆的方程1.1 直线的点斜式与一般式1.2 圆的标准方程与一般方程 1.3 直线与圆的位置关系2. 曲线的参数方程与一般方程2.1 曲线的参数方程的定义与应用2.2 曲线的一般方程与性质2.3 曲线与直线的位置关系六、概率与统计1. 概率的基本概念与性质1.1 概率的定义与运算法则1.2 条件概率与独立事件1.3 事件的排列与组合2. 统计的基本概念与应用2.1 样本数据的收集与整理2.2 统计量与频率分布2.3 抽样与统计推断以上是山东高三数学的主要知识点,希望能给同学们提供一个简要的概览。

在学习过程中,建议同学们深入理解每个知识点的定义、性质与应用,进行大量的练习与解题,巩固基础,并在考试前做好知识点的回顾与总结,加深对数学的理解与掌握。

祝同学们在数学学习中取得好成绩!。

(浙江专用)2020版高考数学复习第二章函数概念与基本初等函数第8讲函数与方程练习(含解析)

(浙江专用)2020版高考数学复习第二章函数概念与基本初等函数第8讲函数与方程练习(含解析)

第8讲 函数与方程[基础达标]1.(2019·浙江省名校联考)已知函数y =f (x )的图象是连续不断的曲线,且有如下的对应值表:则函数y A .2个 B .3个 C .4个D .5个解析:选B.依题意,f (2)>0,f (3)<0,f (4)>0,f (5)<0,根据零点存在性定理可知,f (x )在区间(2,3),(3,4),(4,5)上均至少含有一个零点,故函数y =f (x )在区间[1,6]上的零点至少有3个.2.(2019·温州十校联考(一))设函数f (x )=ln x +x -2,则函数f (x )的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)解析:选B.法一:因为f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0,所以f (1)·f (2)<0,因为函数f (x )=ln x +x -2的图象是连续的,所以函数f (x )的零点所在的区间是(1,2).法二:函数f (x )的零点所在的区间为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的区间,作出两函数的图象如图所示,由图可知,函数f (x )的零点所在的区间为(1,2).3.已知函数f (x )=⎝ ⎛⎭⎪⎫12x-cos x ,则f (x )在[0,2π]上的零点个数为( )A .1B .2C .3D .4解析:选C.作出g (x )=⎝ ⎛⎭⎪⎫12x与h (x )=cos x 的图象如图所示,可以看到其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3,故选C.4.已知函数f (x )=⎝ ⎛⎭⎪⎫1e x-tan x ⎝ ⎛⎭⎪⎫-π2<x <π2,若实数x 0是函数y =f (x )的零点,且0<t <x 0,则f (t )的值( )A .大于1B .大于0C .小于0D .不大于0解析:选B.y 1=⎝ ⎛⎭⎪⎫1e x是减函数,y 2=-tan x 在⎝ ⎛⎭⎪⎫-π2,π2上也是减函数,可知f (x )=⎝ ⎛⎭⎪⎫1e x-tan x 在⎝ ⎛⎭⎪⎫-π2,π2上单调递减. 因为0<t <x 0,f (t )>f (x 0)=0.故选B.5.(2019·兰州模拟)已知奇函数f (x )是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A .14 B .18 C .-78D .-38解析:选C.因为函数y =f (2x 2+1)+f (λ-x )只有一个零点,所以方程f (2x 2+1)+f (λ-x )=0只有一个实数根,又函数f (x )是定义在R 上的奇函数,所以f (-x )=-f (x ),所以f (2x 2+1)+f (λ-x )=0⇔f (2x 2+1)=-f (λ-x )⇔f (2x 2+1)=f (x -λ)⇔2x 2+1=x -λ,所以方程2x 2-x +1+λ=0只有一个实数根,所以Δ=(-1)2-4×2×(1+λ)=0,解得 λ=-78.故选C.6.(2019·宁波市余姚中学期中检测)已知函数f (x )=|x |x +2-kx 2(k ∈R )有四个不同的零点,则实数k 的取值范围是( )A .k <0B .k <1C .0<k <1D .k >1解析:选D.分别画出y =|x |x +2与y =kx 2的图象如图所示,当k <0时,y =kx 2的开口向下,此时与y =|x |x +2只有一个交点,显然不符合题意; 当k =0时,此时与y =|x |x +2只有一个交点,显然不符合题意, 当k >0,x ≥0时, 令f (x )=|x |x +2-kx 2=0, 即kx 3+2kx 2-x =0, 即x (kx 2+2kx -1)=0, 即x =0或kx 2+2kx -1=0,因为Δ=4k 2+4k >0,且-1k<0,所以方程有一正根,一负根,所以当x >0时,方程有唯一解.即当x ≥0时,方程有两个解.当k >0,x <0时,f (x )=|x |x +2-kx 2=0, 即kx 3+2kx 2+x =0,kx 2+2kx +1=0,此时必须有两个解才满足题意,所以Δ=4k 2-4k >0,解得k >1, 综上所述k >1.7.(2019·金丽衢十二校高三联考)设函数f (x )=⎩⎪⎨⎪⎧tan[π2(x -1)],0<x ≤1ln x ,x >1,则f (f (e))=________,函数y =f (x )-1的零点为________.解析:因为f (x )=⎩⎪⎨⎪⎧tan[π2(x -1)],0<x ≤1ln x ,x >1, 所以f (e)=ln e =1,f (f (e))=f (1)=tan 0=0,若0<x ≤1,f (x )=1⇒tan[π2(x -1)]=1, 方程无解;若x >1,f (x )=1⇒ln x =1⇒x =e. 答案:0 e 8.已知函数f (x )=23x+1+a 的零点为1,则实数a 的值为________. 解析:由已知得f (1)=0,即231+1+a =0,解得a =-12. 答案:-129.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则函数g (x )=f (x )-12的零点所构成的集合为________.解析:令g (x )=0,得f (x )=12,所以⎩⎪⎨⎪⎧x ≤0,2x =12或⎩⎪⎨⎪⎧x >0,|log 2x |=12,解得x =-1或x =22或x =2,故函数g (x )=f (x )-12的零点所构成的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2. 答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2 10.(2019·杭州学军中学模拟)已知函数f (x )=|x 3-4x |+ax -2恰有2个零点,则实数a 的取值范围为________.解析:函数f (x )=|x 3-4x |+ax -2恰有2个零点即函数y =|x 3-4x |与y =2-ax的图象有2个不同的交点.作出函数y =|x 3-4x |的图象如图,当直线y =2-ax 与曲线y =-x 3+4x ,x ∈[0,2]相切时,设切点坐标为(x 0,-x 30+4x 0),则切线方程为y -(-x 30+4x 0)=(-3x 20+4)(x -x 0),且经过点(0,2),代入解得x 0=1,此时a =-1,由函数图象的对称性可得实数a 的取值范围为a <-1或a >1.答案:a<-1或a >111.设函数f (x )=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,求实数a 的取值范围. 解:(1)当a =1,b =-2时,f (x )=x 2-2x -3,令f (x )=0,得x =3或x =-1. 所以函数f (x )的零点为3和-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根,所以b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值范围是(0,1).12.已知函数f (x )=-x 2-2x ,g (x )=⎩⎪⎨⎪⎧x +14x ,x >0,x +1,x ≤0.(1)求g (f (1))的值;(2)若方程g (f (x ))-a =0有4个实数根,求实数a 的取值范围. 解:(1)利用解析式直接求解得g (f (1))=g (-3)=-3+1=-2.(2)令f (x )=t ,则原方程化为g (t )=a ,易知方程f (x )=t 在t ∈(-∞,1)内有2个不同的解,则原方程有4个解等价于函数y =g (t )(t <1)与y =a 的图象有2个不同的交点,作出函数y =g (t )(t <1)的图象(图略),由图象可知,当1≤a <54时,函数y =g (t )(t <1)与y =a 有2个不同的交点,即所求a 的取值范围是⎣⎢⎡⎭⎪⎫1,54. [能力提升]1.(2019·杭州市富阳二中高三质检)已知函数f (x )=⎩⎪⎨⎪⎧e x-2(x ≤0)ln x (x >0),则下列关于函数y =f [f (kx )+1]+1(k ≠0)的零点个数的判断正确的是( )A .当k >0时,有3个零点;当k <0时,有4个零点B .当k >0时,有4个零点;当k <0时,有3个零点C .无论k 为何值,均有3个零点D .无论k 为何值,均有4个零点 解析:选C.令f [f (kx )+1]+1=0得,⎩⎪⎨⎪⎧f (kx )+1≤0,e f (kx )+1-2+1=0或⎩⎪⎨⎪⎧f (kx )+1>0ln[f (kx )+1]+1=0, 解得f (kx )+1=0或f (kx )+1=1e ;由f (kx )+1=0得,⎩⎪⎨⎪⎧kx ≤0,e kx -2+1=0或⎩⎪⎨⎪⎧kx >0ln (kx )=-1; 即x =0或kx =1e ;由f (kx )+1=1e得,⎩⎪⎨⎪⎧kx ≤0,e kx -2+1=1e 或⎩⎪⎨⎪⎧kx >0ln (kx )+1=1e ; 即e kx=1+1e (无解)或kx =e 1e -1;综上所述,x =0或kx =1e 或kx =e 1e -1;故无论k 为何值,均有3个解,故选C.2.(2019·宁波市高三教学评估)设函数f (x )=ax 2+bx +c (a ,b ,c ∈R 且a >0),则“f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫-b 2a <0”是“f (x )与f (f (x ))都恰有两个零点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选C.由已知a >0,函数f (x )开口向上,f (x )有两个零点,最小值必然小于0,当取得最小值时,x =-b2a ,即f ⎝ ⎛⎭⎪⎫-b 2a <0,令f (x )=-b2a ,则f (f (x ))=f ⎝ ⎛⎭⎪⎫-b 2a ,因为f ⎝ ⎛⎭⎪⎫-b 2a <0,所以f (f (x ))<0,所以f (f (x ))必有两个零点.同理f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫b 2a <0⇒f ⎝ ⎛⎭⎪⎫-b 2a <0⇒x =-b2a ,因为x =-b2a 是对称轴,a >0,开口向上,f ⎝ ⎛⎭⎪⎫-b 2a <0,必有两个零点所以C 选项正确.3.(2019·瑞安市龙翔高中高三月考)若关于x 的不等式x 2+|x -a |<2至少有一个正数解,则实数a 的取值范围是________.解析:不等式为2-x 2>|x -a |,则0<2-x 2.在同一坐标系画出y =2-x 2(y ≥0,x ≥0)和y =|x |两个函数图象,将绝对值函数y =|x |向左移动,当右支经过(0,2)点时,a =-2;将绝对值函数y =|x |向右移动让左支与抛物线y =2-x 2(y ≥0,x ≥0)相切时,由⎩⎪⎨⎪⎧y -0=-(x -a )y =2-x2,可得x 2-x +a -2=0, 再由Δ=0解得a =94.数形结合可得,实数a 的取值范围是⎝ ⎛⎭⎪⎫-2,94. 答案:⎝⎛⎭⎪⎫-2,944.已知函数f (x )=⎝ ⎛⎭⎪⎫12x,g (x )=log 12x ,记函数h (x )=⎩⎪⎨⎪⎧g (x ),f (x )≤g (x ),f (x ),f (x )>g (x ),则函数F (x )=h (x )+x -5的所有零点的和为________.解析:由题意知函数h (x )的图象如图所示,易知函数h (x )的图象关于直线y =x 对称,函数F (x )所有零点的和就是函数y =h (x )与函数y =5-x 图象交点横坐标的和,设图象交点的横坐标分别为x 1,x 2,因为两函数图象的交点关于直线y =x 对称,所以x 1+x 22=5-x 1+x 22,所以x 1+x 2=5.答案:55.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e2x(x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根. 解:(1)法一:因为g (x )=x +e 2x≥2e 2=2e ,等号成立的条件是x =e , 故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,则y =g (x )-m 就有零点. 所以m 的取值范围是[2e ,+∞).法二:作出g (x )=x +e2x(x >0)的大致图象如图:可知若使y =g (x )-m 有零点,则只需m ≥2e,即m 的取值范围是[2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e2x(x >0)的大致图象.因为f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. 所以其图象的对称轴为x =e ,开口向下, 最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.所以m 的取值范围是(-e 2+2e +1,+∞).6.(2019·绍兴一中高三期中)已知函数f (x )=x |x -a |+bx . (1)当a =2,且f (x )是R 上的增函数,求实数b 的取值范围;(2)当b =-2,且对任意a ∈(-2,4),关于x 的方程f (x )=tf (a )有三个不相等的实数根,求实数t 的取值范围.解:(1)f (x )=x |x -2|+bx =⎩⎪⎨⎪⎧x 2+(b -2)x ,x ≥2-x 2+(b +2)x ,x <2,因为f (x )连续,所以f (x )在R 上递增等价于这两段函数分别递增, 所以⎩⎪⎨⎪⎧2-b2≤22+b 2≥2,解得,b ≥2.(2)f (x )=x |x -a |-2x =⎩⎪⎨⎪⎧x 2-(a +2)x ,x ≥a -x 2+(a -2)x ,x <a ,tf (a )=-2ta ,当2≤a <4时,a -22<a +22≤a ,f (x )在⎝ ⎛⎭⎪⎫-∞,a -22上单调递增,在⎝ ⎛⎭⎪⎫a -22,a 上单调递减,在(a ,+∞)上单调递增,所以f (x )极大值=f ⎝ ⎛⎭⎪⎫a -22=a 24-a +1, f (x )极小值=f (a )=-2a ,所以⎩⎪⎨⎪⎧-2a <-2ta ,a 24-a +1>-2ta 对2≤a <4恒成立,解得0<t <1,当-2<a <2时,a -22<a <a +22,f (x )在⎝ ⎛⎭⎪⎫-∞,a -22上单调递增,在⎝ ⎛⎭⎪⎫a -22,a +22上单调递减,在⎝ ⎛⎭⎪⎫a +22,+∞上单调递增,所以f (x )极大值=f ⎝ ⎛⎭⎪⎫a -22=a 24-a +1, f (x )极小值=f ⎝ ⎛⎭⎪⎫a +22=-a 24-a -1,所以-a 24-a -1<-2ta <a 24-a +1对-2<a <2恒成立,解得0<t <1,综上所述,0<t <1.。

函数的零点与方程的解+课件——2025届高三数学一轮复习

函数的零点与方程的解+课件——2025届高三数学一轮复习
f(c)=0,这个 c 也就是方程 f(x)=0 的根.
注意:①根据该定理,能确定 f(x)在(a,b)内有零点,但零点不一定唯一.
②若 f(x)在[a,b]上的图象是连续的,且是单调函数,f(a)f(b)<0 ,则 f(x)在
(a,b)内有唯一零点.
③零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点
函数的零点与方程的解
小太阳☀7232
2024.06.11
目录
Contents
01
02
课前准备
理论基础
▪ 掌握函数图像的绘制
▪ 零点存在性定理
▪ 二分法
03
04
基础题型
综合运用
▪ 一元二次函数以及由常见函数组成的分段函数
▪ 由两个基本初等函数加减组成的函数
▪ 参变分离
▪ 分类讨论
01
课前准备
常函数
飘带函数
反比例函数
一元二次函数
一次函数
对勾函数

分段函数
幂函数
指数函数
掌握函数图像的画法
平移变换
对数函数
伸缩变换
正弦函数
对称
翻折
余弦函数
正切函数
求导
02
理论基础
1.函数的零点
(1)函数零点的定义
对于函数y=f(x),我们把使
f(x)=0
的实数x叫作函数y=f(x)
的零点.
注意:函数y=f(x)的零点是一个实数,是方程f(x)=0的实
数根,也是函数y=f(x)的图象与x轴的交点的横坐标.
(2)几个等价关系
方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴 有交点⇔函数
y=f(x)有 零点 .

2.8函数的零点与方程的解课件高三数学一轮复习

2.8函数的零点与方程的解课件高三数学一轮复习

角度 2:根据零点所在区间求参数 【例 3】 (2022·黑龙江省实验中学月考)若函数 f(x)=4x-m·2x+m+3 有两个不同的 零点 x1,x2,且 x1∈(0,1),x2∈(2,+∞),则实数 m 的取值范围为( C ) A.(-∞,-2) B.(-∞,-2)∪(6,+∞) C.(7,+∞) D.(-∞,-3) 【思路探索】 令 t=2x,通过换元转化为二次函数零点分布问题,再数形结合求解.
(2)令 f(x)=|lgx|-kx-2=0,得|lgx|=kx+2, 令 g(x)=|lgx|,h(x)=kx+2,所以 f(x)的零点个数即函数 g(x)与 h(x)图象的交点个数.当 k=0 时,如图 a,g(x)与 h(x)的图象有两个交点,则 f(x)有两个零点,故①正确;当 k>0 时, 如图 b,存在 h(x)=k0x+2 的图象与函数 g(x)=lgx(x>1)的图象相切,此时 h(x)与 g(x)的图 象有两个交点,当 0<k<k0 时,g(x)与 h(x)的图象有三个交点,则 f(x)有三个零点,故④正 确;当 k<0 时,如图 c,g(x)与 h(x)的图象最多有两个交点,g(x)与 h(x)相切时有一个交点, 如图 d,故②正确,③不正确.综上,正确结论的序号为①②④.
【解析】 ∵对任意 x∈R,都有 f(2-x)=f(x+2),∴函数 f(x)的图象关于直线 x=2 对称.
又∵当 x∈[-2,0]时,f(x)=2-x-1,且函数 f(x)是定义在 R 上的偶函数,∴可作出 f(x) 的图象,如图所示.
当 a>1 时,关于 x 的方程 f(x)-loga(x+2)=0 恰有三个不同的实数根,则函数 y=f(x) 与 y=loga(x+2)的图象有三个不同的交点.

高中数学专题函数方程教案

高中数学专题函数方程教案

高中数学专题函数方程教案
一、教学目标
1. 了解函数方程的定义和基本概念;
2. 掌握函数方程的解法和计算方法;
3. 提高学生对函数方程的理解和运用能力。

二、教学重点和难点
重点:函数方程的定义和基本概念;
难点:解决函数方程的方法及计算过程。

三、教学准备
1. 教材:高中数学教材;
2. 工具:黑板、彩色粉笔、教学PPT等。

四、教学过程
1. 引入:通过几个实际问题引导学生认识函数方程的概念,引出本节课的主题;
2. 学习:结合具体例题,介绍函数方程的定义和基本性质,讲解解决函数方程的常见方法;
3. 练习:组织学生进行练习,巩固所学知识,培养学生的解题能力;
4. 拓展:引导学生应用函数方程解决更复杂的问题;
5. 总结:对本节课的内容进行总结,强调重点和难点,梳理知识结构,加深学生印象。

五、课后作业
1. 完成课后习题,巩固所学知识;
2. 总结本节课的重点内容,准备下节课的学习。

六、教学反思
教师根据学生学习情况和反馈,及时调整教学方法和内容,确保教学效果。

函数与方程课件-2025届高三数学一轮复习

函数与方程课件-2025届高三数学一轮复习

D.(0,2)
答案 (1)C
目录
目录
目录
变式训练
若函数f(x)=2ax2-x-1在(0,1)内恰有一个零点,则实数a的取值范围

.

答案:(1,+∞)
目录
|解题技法|
利用函数零点求参数(范围)的方法
目录




答案:(3)√
(4)只要函数有零点,我们就可以用二分法求出零点的近似值.
答案:(4)×
目录
函数零点的判定
目录
函数零点的判定
目录
目录
1
(2)函数f(x)=|x-4|- 的零点的个数为(

A.0
B.1
C.2

D.3
1

1

解析 (2)令f(x)=|x-4|- =0得|x-4|= ,在同一坐标系下分
(b) < 0,那么,函数y=f(x)在区间(a,b)内 至少 有一个零点,


即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.
提醒 函数零点存在定理只能判断函数在某个区间上的变号零点,而不能判断
函数的不变号零点,而连续函数在一个区间的端点处函数值异号是这个函数在
这个区间上存在零点的充分不必要条件.
第十节
函数与方程

1.结合学过的函数图象,了解函数零点与方程解的关系.
2.结合具体连续函数及其图象的特点,了解函数零点存在性定理,并能简
单应用.
3.了解用二分法求方程的近似解的步骤.
参考答案:
例11.D
: 2.B .C 2.A 3.A
学习评测:
1.D 2.A 3.C 4.B 5.(-1,)

【金榜教程】高考数学总复习 第8章 第8讲曲线与方程配套课件 理 新人教A

【金榜教程】高考数学总复习 第8章 第8讲曲线与方程配套课件 理 新人教A
中 x1>0,x2>0,则xy==xx11-+22 xx22.,②① ∵△OAB 的面积பைடு நூலகம்定值 2, ∴S△OAB=12OA·OB=12( 2x1)( 2x2)=x1x2=2. ①2-②2 得 x2-y2=x1x2,而 x1x2=2,∴x2-y2=2. 由于 x1>0,x2>0,∴x>0. 即所求点 M 的轨迹方程为 x2-y2=2(x>0).
例2 [2013·西安调研]已知定点A(0,7)、B(0,-7)、C(12, 2),以C为一个焦点作过A、B的椭圆,求另一焦点F的轨迹方 程.
[审题视点] 由于椭圆过A,B两点,且以C、F为焦点,所 以可利用椭圆的定义寻找点F所满足的关系.
[解] 设 F(x,y)为轨迹上的任意一点, ∵A、B 两点在以 C、F 为焦点的椭圆上, ∴|FA|+|CA|=2a,|FB|+|CB|=2a(其中 a 表示椭圆的长 半轴长). ∴|FA|+|CA|=|FB|+|CB|. ∴|FA|-|FB|=|CB|-|CA| = 122+92- 122+-52=2.
当 x=1 时,直线 MB 的斜率不存在. 于是 x≠1 且 x≠-1, 此时,MA 的斜率为x+y 1,MB 的斜率为x-y 1, 由题意,有x+y 1·x-y 1=4,化简可得,4x2-y2-4=0. 故动点 M 的轨迹 C 的方程为 4x2-y2-4=0(x≠1 且 x≠ -1).
奇思妙想:平面内与两定点A1(-a,0)、A2(a,0)(a>0)连线的 斜率之积等于非零常数m的点的轨迹,加上A1、A2两点所成的 曲线C可以是圆、椭圆或双曲线.求曲线C的方程,并讨论C的
限时规范特训
15、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。

高三数学一轮复习 函数与方程、函数模型及应用课件 新人教B版

高三数学一轮复习 函数与方程、函数模型及应用课件 新人教B版

• 四、实系数一元二次方程ax2+bx+c=0(a≠0)的实根的 符号与系数之间的关系 • 1.方程有两个不相等的正实数根⇔
• 2.方程有两个不相等的负实根⇔
• 五、一元二次方程f(x)=ax2+bx+c=0(a≠0)的区间根问 题 • 研究一元二次方程的区间根,一般情况下需要从以下三 个方面考虑: • 1.一元二次方程根的判别式; • 2.对应二次函数区间端点函数值的正负;
(3)若f(x0)· f(b0)<0,则方程f(x)=0的一个根位于区间 (x0,b0)中,令a1=x0,b1=b0. 1 第四步:取区间(a1,b1)的中点x1= 2 (a1+b1),重复第 二、第三步,……直到第n次,方程f(x)=0的一个根总在 区间(an,bn)中. 第五步:当|an-bn|<ε,(ε是规定的精确度)时,区间 (an,bn)内的任何一个值就是方程f(x)=0的一个近似根. 注意:二分法只适用于求函数f(x)的变号零点.
解析:(1)设投资x万元时,A产品的利润为f(x)万 元,B产品的利润为g(x)万元. 由题设f(x)=k1x,g(x)=k2 x, 1 1 由图知f(1)=4,∴k1=4. 5 5 又g(4)=2,∴k2=4. 1 5 从而f(x)= x(x≥0),g(x)= x(x≥0). 4 4
• 解析:(1)当0<x≤100时,f(x)=60; • 当100<x≤600时,f(x)=60-(x-100)×0.01=61- 0.01x.
60 ∴f(x)= 61-0.01x
0<x≤100 . 100<x≤600
• • • • •
(2)设利润为y元,则0<x≤100时, y=60x-50x=10x, ∴x=100时,ymax=1000元. 当100<x≤600时, y=(61-0.01x)·x-50x=11x-0.01x2

高三数学一轮复习专题:函数与方程

高三数学一轮复习专题:函数与方程

函数与方程一.课标要求:1.结合二次函数的图像,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系;2.根据具体函数的图像,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

二.命题走向函数与方程的理论是高中新课标教材中新增的知识点,特别是“二分法”求方程的近似解也一定会是高考的考点。

从近几年高考的形势来看,十分注重对三个“二次”(即一元二次函数、一元二次方程、一元二次不等式)的考察力度,同时也研究了它的许多重要的结论,并付诸应用。

高考试题中有近一半的试题与这三个“二次”问题有关。

三.要点精讲1.方程的根与函数的零点(1)函数零点概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

函数零点的意义:函数)(x f y =的零点就是方程0)(=x f 实数根,亦即函数)(x f y =的图象与x 轴交点的横坐标。

即:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴有交点⇔函数)(x f y =有零点。

二次函数)0(2≠++=a c bx ax y 的零点:1)△>0,方程02=++c bx ax 有两不等实根,二次函数的图象与x 轴有两个交点,二次函数有两个零点;2)△=0,方程02=++c bx ax 有两相等实根(二重根),二次函数的图象与x 轴有一个交点,二次函数有一个二重零点或二阶零点;3)△<0,方程02=++c bx ax 无实根,二次函数的图象与x 轴无交点,二次函数无零点。

零点存在性定理:如果函数)(x f y =在区间],[b a 上的图象是连续不断的一条曲线,并且有0)()(<b f a f ,那么函数)(x f y =在区间),(b a 内有零点。

既存在),(b a c ∈,使得0)(=c f ,这个c 也就是方程的根。

2.二分法二分法及步骤:对于在区间a [,]b 上连续不断,且满足)(a f ·)(b f 0<的函数)(x f y =,通过不断地把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精度ε,用二分法求函数)(x f 的零点近似值的步骤如下: (1)确定区间a [,]b ,验证)(a f ·)(b f 0<,给定精度ε; (2)求区间a (,)b 的中点1x ; (3)计算)(1x f :①若)(1x f =0,则1x 就是函数的零点;②若)(a f ·)(1x f <0,则令b =1x (此时零点),(10x a x ∈); ③若)(1x f ·)(b f <0,则令a =1x (此时零点),(10b x x ∈); (4)判断是否达到精度ε;即若ε<-||b a ,则得到零点零点值a (或b );否则重复步骤2~4。

高三数学集体备课记录《函数与方程》.docx

高三数学集体备课记录《函数与方程》.docx

高三数学(理)集体备课记录课题:函数与方程时间地点2016年9月19日主持人赵纯金参与者张泽成、黄翼备课设想教材分析本节是普通高中课程标准实验教科书数学必修1的一节,是在学生学习函数的基本性质和指、对、幕三种基本初等函数基础上的后续,展现函数图象和性质的应用。

本节重点是使学生体会函数的零点与方程根之间的联系,形成用函数观点处理问题的意识。

考情分析本节是高考数学的重要内容,常常会考查函数的零点、方程的根和两函数图像交点之间的等价转化思想和数形结合思想.有时与函数的单调性、奇偶性、周期性结合研究方程根的分布区间或者零点的存在性、零点的个数问题考查;有时通过对方程根的分布情况的研究,综合考查不等式的求解、函数的图像与性质等问题,既有小题也有解答题。

复习目标知识与能力目标:1.了解方程的根、相应函数图象与X轴的交点横坐标以及相应函数零点的关系;2.正确理解函数零点存在性定理;了解图象连续不断的意义及作用;知道定理只是函数存在零点的一个充分条件;3.能利用函数图象和性质判断某些函数的零点个数;4.能顺利将一个方程求解问题转化为一个函数零点问题,写111与方程对应的函数;并会判断存在零点的区间。

情感目标:让学生体会事物间相互转化以及特殊到一般的辨证思想,体验数学语言的严谨性,数学思想方法的科学性,进一步受到数学思想方法的熏陶,激发学生的学习热情。

思想方法:数形结合、化归转化、函数方程的基本数学思想。

教学方法采用“以问题为中心”的探究式的教学模式,rti特殊到一般,激发学生学习兴趣,体现学生的主体地位。

所选教学方法主要是引导启发式教法。

重点难点 1.重点是:函数零点的概念、求法和函数零点存在性定理。

;2.难点是:函数零点存在性定理的掌握与运用。

教学策略L重视多种教法的有效整合;2.重视提出问题与解决问题策略指导;3.重视加强对交汇知识密切联系的发掘;4.知识加强数学实践能力的培养;5.注意避免繁琐的形式化训练;6.教学过程体现“实践一认识一实践”。

高三数学一轮复习精品教案2:2.8函数与方程教学设计

高三数学一轮复习精品教案2:2.8函数与方程教学设计

第八节函数与方程1.函数零点(1)定义:对于函数y=f(x)(x∈D),把使f(x)=0成立的实数x叫做函数y=f(x)(x∈D)的零点.(2)函数零点与方程根的关系:方程f(x)=0有实根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)零点存在性定理:如果函数y=f(x)在区间『a,b』上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在x0∈(a,b),使得f(x0)=0.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系续表3.二分法对于在区间『a,b』上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.1.(人教A 版教材习题改编)用二分法求函数y =f (x )在区间(2,4)上的近似解,验证f (2)·f (4)<0,给定精确度ε=0.01,取区间(2,4)的中点x 1=2+42=3,计算得f (2)·f (x 1)<0,则此时零点x 0所在的区间为( )A .(2,4)B .(3,4)C .(2,3)D .(2.5,3)『解析』 由零点存在性定理知x 0∈(2,3),故选C. 『答案』 C2.在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( ) A .(-14,0) B .(0,14)C .(14,12)D .(12,34)『解析』 显然f (x )=e x +4x -3的图象连续不间断,又f (12)=e -1>0,f (14)=4e -2<0.∴由零点存在定理知,f (x )在(14,12)内存在零点.『答案』 C3.若函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是( ) A .0,2 B .0,12C .0,-12D .2,-12『解析』 由题意知2a +b =0, 即b =-2a .令g (x )=bx 2-ax =0得x =0或x =a b =-12,故选C.『答案』 C4.(2012·北京高考)函数f (x )=x 12-(12)x 的零点的个数为( )A .0B .1C .2D .3『解析』 在同一平面直角坐标系内作出y 1=x 12与y 2=(12)x 的图象如图所示,易知,两函数图象只有一个交点.因此函数f (x )=x 12-(12)x 只有1个零点.『答案』 B5.(2013·德州调研)已知函数f (x )=x 2+x +a 在区间(0,1)上有零点,则实数a 的取值范围是________.『解析』 函数f (x )=x 2+x +a 在(0,1)上递增. 由已知条件f (0)f (1)<0,即a (a +2)<0,解得-2<a <0. 『答案』 (-2,0)(1)(2012·天津高考)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( ) A .0 B .1 C .2 D .3(2)(2013·湛江模拟)设函数y =x 3与y =(12)x -2的图象的交点为(x 0,y 0),则x 0所在的区间(端点值为连续整数的开区间)是________.『思路点拨』 (1)先根据零点存在性定理证明有零点,再根据函数的单调性判断零点的个数.(2)画出两个函数的图象寻找零点所在的区间.『尝试解答』 (1)因为f ′(x )=2x ln 2+3x 2>0,所以函数f (x )=2x +x 3-2在(0,1)上递增,且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0,所以有1个零点.(2)设f (x )=x 3-(12)x -2,则x 0是函数f (x )的零点.在同一坐标系下画出函数y =x 3与y =(12)x-2的图象,如图所示. ∵f (1)=1-(12)-1=-1<0,f (2)=8-(12)0=7>0∴f (1)f (2)<0, ∴x 0∈(1,2).『答案』 (1)B (2)(1,2),确定函数f (x )零点所在区间的常用方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,再看求得的根是否落在给定区间上;(2)利用函数零点的存在性定理:首先看函数y =f (x )在区间『a ,b 』上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.(1)函数f (x )=x -cos x 在『0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点(2)(2013·汕头模拟)函数f (x )=ln(x -2)-2x 的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)『解析』 (1)令f (x )=x -cos x =0,则x =cos x ,设函数y =x 和y =cos x ,在同一坐标系下做出它们在『0,+∞)的图象,显然两函数的图象的交点有且只有一个,所以函数f (x )=x -cos x 在『0,+∞)内有且仅有一个零点.(2)由题意知函数f (x )的定义域为{x |x >2},∴排除A. ∵f (3)=-23<0,f (4)=ln 2-12>0,f (5)=ln 3-25>0,∴f (3)·f (4)<0,f (4)·f (5)>0,∴函数f (x )的零点在(3,4)之间,故选C.『答案』(1)B(2)C若函数f(x)=x3+x2-2x-2的一个正数零点附近的函数值用二分法计算,参考数据如下:那么方程x3+x2-2x-2=0的一个近似根(精确度0.1)为()A.1.25B.1.375C.1.406 25 D.1.5『思路点拨』(1)二分法求近似零点,需将区间一分为二,逐渐逼近;(2)必须满足精确度要求,即|a-b|<0.1.『尝试解答』根据题意知函数的零点在1.406 25至1.437 5之间,又|1.437 5-1.406 25|=0.031 25<0.1,故方程的一个近似根可以是1.406 25.『答案』C,1.解答本题一要从图表中寻找数量信息,二要注意“精确度”的含义,切不可与“精确到”混淆.2.(1)用二分法求函数零点的近似解必须满足①y=f(x)的图象在『a,b』内连续不间断,②f (a )·f (b )<0.(2)在第一步中,尽量使区间长度缩短,以减少计算量及计算次数.在用二分法求方程x 3-2x -1=0的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可断定该根所在的区间为________.『解析』 在(1,2)内取中点x 0=32,令f (x )=x 3-2x -1,∵f (32)=278-4<0,f (2)=8-4-1>0,f (1)<0,∴f (x )=0的根在(32,2)内.『答案』 (32,2)(2013·临沂模拟)已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0). (1)若g (x )=m 有实数根,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.『思路点拨』 解答(1)可用基本不等式求出最值或数形结合法求解,(2)转化为两个函数f (x )与g (x )有两个交点,从而数形结合求解.『尝试解答』 (1)法一 ∵g (x )=x +e 2x ≥2e 2=2e ,等号成立的条件是x =e ,故g (x )的值域是『2e ,+∞),因此,只需m ≥2e ,则g (x )=m 就有零点.故当g (x )=m 有实数根时,m 的取值范围为『2e ,+∞). 法二 作出g (x )=x +e 2x(x >0)的大致图象如图:可知若使g (x )=m 有零点,则只需m ≥2e.故当g (x )=m 有实数根时,m 的取值范围为『2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e 2x(x >0)的大致图象.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2,∴其图象的对称轴为x =e ,开口向下,最大值为m -1+e 2,故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.(2013·淮南模拟)函数f (x )=⎩⎪⎨⎪⎧|x 2+2x -1|,x ≤0,2x -1+a , x >0有两个不同的零点,则实数a 的取值范围为________.『解析』 由于当x ≤0,f (x )=|x 2+2x -1|时图象与x 轴只有1个交点,即只有1个零点,故由题意只需方程2x -1+a =0有1个正根即可,变形为2x =-2a ,结合图形只需-2a >1⇒a <-12即可.『答案』 a <-12一个口诀用二分法求函数零点近似值的口诀为:定区间,找中点,中值计算两边看.同号去,异号算,零点落在异号间.周而复始怎么办?精确度上来判断.两个防范1.函数的零点不是点,是方程f (x )=0的实根.2.函数零点的存在性定理只能判断函数在某个区间上的变号零点,而不能判断函数的不变号零点,而且连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分不必要条件.三种方法函数零点个数的判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间『a ,b 』上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.从近两年高考试题看,函数的零点、方程的根的问题是高考的热点,题型以客观题为主,主要考查学生转化与化归及函数与方程的思想.思想方法之五 用函数与方程思想解决图象公共点问题(2012·山东高考)设函数f (x )=1x,g (x )=ax 2+bx (a ,b ∈R ,a ≠0).若y =f (x )的图象与y =g (x )的图象有且仅有两个不同的公共点A (x 1,y 1),B (x 2,y 2),则下列判断正确的是( )A .当a <0时,x 1+x 2<0,y 1+y 2>0B .当a <0时,x 1+x 2>0,y 1+y 2<0C .当a >0时,x 1+x 2<0,y 1+y 2<0D .当a >0时,x 1+x 2>0,y 1+y 2>0『解析』 由题意知函数f (x )=1x ,g (x )=ax 2+bx (a ,b ∈R ,a ≠0)的图象有且仅有两个公共点A (x 1,y 1),B (x 2,y 2),等价于方程1x =ax 2+bx (a ,b ∈R ,a ≠0)有两个不同的根x 1,x 2,即方程ax 3+bx 2-1=0有两个不同非零实根x 1,x 2,因而可设ax 3+bx 2-1=a (x -x 1)2(x -x 2),即ax 3+bx 2-1=a (x 3-2x 1x 2+x 21x -x 2x 2+2x 1x 2x -x 2x 21),∴b =a (-2x 1-x 2), x 21+2x 1x 2=0,-ax 2x 21=-1,∴x 1+2x 2=0,ax 2>0,当a >0时,x 2>0,∴x 1+x 2=-x 2<0,x 1<0, ∴y 1+y 2=1x 1+1x 2=x 1+x 2x 1x 2>0.当a <0时,x 2<0,∴x 1+x 2=-x 2>0,x 1>0, ∴y 1+y 2=1x 1+1x 2=x 1+x 2x 1x 2<0.『答案』 B易错提示:(1)不能把函数图象的交点问题转化为方程的根的问题,找不到解决问题的切入点.(2)不能把方程根的情况与相应函数的极值大小联系起来,思维受阻,无法解答. 防范措施:(1)明确函数图象的交点、方程的根与函数的零点三者之间的关系是解决问题的关键所在.(2)方程的根的情况与函数的极值的大小有密切的关系,求解时应注意寻找它们之间的关系.1.(2012·湖北高考)函数f (x )=x cos x 2在区间『0,4』上的零点个数为( ) A .4 B .5 C .6 D .7『解析』 根据x 2的范围判断y =cos x 2在区间『0,4』上的零点个数.当x =0时,f (x )=0.又因为x ∈『0,4』,所以0≤x 2≤16.因为5π<16<11π2,所以函数y=cos x 2在x 2取π2,3π2,5π2,7π2,9π2时为0,此时f (x )=0,所以f (x )=x cos x 2在区间『0,4』上的零点个数为6.『答案』 C2.(2013·威海模拟)设方程log 4x -(14)x =0,log 14x -(14)x =0的根分别为x 1、x 2,则( )A .0<x 1x 2<1B .x 1x 2=1C .1<x 1x 2<2D .x 1x 2≥2『解析』 在同一坐标系内画出函数y =(14)x ,y =log 4x ,y =log 14x 的图象,如图所示,则x 1>1>x 2>0,由log 4x 1=(14)x 1,log 14x 2=(14)x 2得log 4x 1x 2=(14)x 1-(14)x 2<0,∴0<x 1x 2<1,故选A. 『答案』 A。

高考数学一轮复习第8讲 函数与方程

高考数学一轮复习第8讲 函数与方程

第8讲函数与方程1.函数的零点(1)函数零点的定义对于函数y=f(x)(x∈区间D),把使01f(x)=0的实数x叫做函数y=f(x)(x∈区间D)的零点.(2)三个等价关系方程f(x)=0有实数根⇔函数y=f(x)的图象与02x轴有交点⇔函数y=f(x)有03零点.(3)函数零点的判定(零点存在定理)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有04 f(a)·f(b)<0,那么,函数y=f(x)在区间05(a,b)内有零点,即存在c∈(a,b),使得06f(c)=0,这个07c也就是方程f(x)=0的根.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ>0Δ=0Δ<0 二次函数y=ax2+bx+c(a>0)的图象与x轴的交点08(x0),(x2,0)09(x1,0)无交点1,零点个数102111120有关函数零点的结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.(4)函数的零点是实数,而不是点,是方程f(x)=0的实根.(5)由函数y=f(x)(图象是连续不断的)在闭区间[a,b]上有零点不一定能推出f(a)·f(b)<0,如图所示,所以f(a)·f(b)<0是y=f(x)在闭区间[a,b]上有零点的充分不必要条件.1.(2020·云南玉溪一中二调)函数f(x)=2x+3x的零点所在的一个区间是() A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)答案 B解析易知函数f(x)=2x+3x在定义域上单调递增,且f(-2)=2-2-6<0,f(-1)=2-1-3<0,f(0)=1>0,所以由函数零点存在定理得,零点所在的区间是(-1,0).故选B.2.已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表:x 12345 6y 124.433-7424.5-36.7-123.6 则函数y=f(x)在区间[1,6]上的零点至少有()A.2个B.3个C.4个D.5个答案 B解析∵f(2)·f(3)<0,f(3)·f(4)<0,f(4)·f(5)<0,故函数f(x)在区间[1,6]上至少有3个零点.3.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( ) A .0 B .1 C .2 D .3答案 C解析 作出函数y =|x -2|与g (x )=ln x 的图象,如图所示.由图象可知两个函数的图象有两个交点,即函数f (x )在定义域内有2个零点.故选C .4.函数f (x )=e x +3x 的零点有________个. 答案 1解析 ∵f (x )=e x +3x 在R 上单调递增,且f (-1)=e -1-3<0,f (0)=1>0,∴函数f (x )有1个零点.5.(2020·河南信阳调研)若函数f (x )=3mx -4在[-2,0]上存在x 0,使f (x 0)=0,则实数m 的取值范围是________.答案 ⎝⎛⎦⎥⎥⎤-∞,-23解析 由已知得f (-2)·f (0)=(-6m -4)·(-4)≤0,解得m ≤-23,故实数m 的取值范围为⎝⎛⎦⎥⎥⎤-∞,-23.6.若函数f (x )=⎩⎪⎨⎪⎧ex ,x≤0,x2-1,x >0,则函数y =f (x )-1的零点是________.答案 0或2解析 要求函数y =f (x )-1的零点,则令y =f (x )-1=0,即f (x )=1,又因为f (x )=⎩⎪⎨⎪⎧ex ,x≤0,x2-1,x >0,①当x ≤0时,f (x )=e x ,由e x =1,解得x =0.②当x >0时,f (x )=x 2-1,由x 2-1=1,解得x =2(负值舍去).综上可知,函数y =f (x )-1的零点是0或2.考向一 函数零点所在区间的判断例1 (1)(2020·济南模拟)已知f (x )=x 3+x -4,则函数f (x )的零点所在区间是( ) A .(-1,0) B .(0,1) C .(1,2) D .(2,3)答案 C解析 由函数f (x )=x 3+x -4在定义域上单调递增,且f (1)=1+1-4=-2<0,f (2)=8+2-4=6>0,再根据函数零点存在定理可得零点所在区间是(1,2),故选C .(2)(2020·长春模拟)设函数f (x )=log 4x -⎝ ⎛⎭⎪⎪⎫14x ,g (x )=log x -⎝ ⎛⎭⎪⎪⎫14x 的零点分别是x 1,x 2,则( )A .x 1x 2=1B .0<x 1x 2<1C .1<x 1x 2<2D .x 1x 2>2 答案 B解析 由题意可得x 1是函数y =log 4x 的图象和y =⎝ ⎛⎭⎪⎪⎫14x 的图象的交点的横坐标,x 2是y =log x 的图象和函数y =⎝ ⎛⎭⎪⎪⎫14x 的图象的交点的横坐标,且x 1,x 2都是正实数,如图所示:故有log x 2>log 4x 1,故log 4x 1-log x 2<0,∴log 4x 1+log 4x 2<0,∴log 4(x 1x 2)<0,∴0<x 1x 2<1,故选B .判断函数零点所在区间的常用方法(1)定义法:利用函数零点存在定理,首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )上必有零点.(2)解方程法:当对应方程易解时,可通过解方程确定方程是否有根落在给定区间上.(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.1.已知函数f (x )=ln x +3x -8的零点x 0∈[a ,b ],且b -a =1,a ,b∈N *,则a +b =( )A .0B .2C .5D .7答案 C解析 ∵f (2)=ln 2+6-8=ln 2-2<0,f (3)=ln 3+9-8=ln 3+1>0,且函数f (x )=ln x +3x -8在(0,+∞)上单调递增,∴x 0∈[2,3],即a =2,b =3,∴a +b =5.2.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内答案 A解析 函数y =f (x )是图象开口向上的二次函数,最多有两个零点,由于a <b <c ,则a -b <0,a -c <0,b -c <0,因此f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.所以f (a )f (b )<0,f (b )f (c )<0,即f (x )在区间(a ,b )和区间(b ,c )内各有一个零点.考向二 函数零点个数的讨论例2 (1)(2020·青岛模拟)已知图象连续不断的函数f (x )的定义域为R ,f (x )是周期为2的奇函数,y =|f (x )|在区间[-1,1]上恰有5个零点,则f (x )在区间[0,2020]上的零点个数为( )A .5050B .4041C .4040D .2020答案 B解析 因为图象连续不断的函数f (x )的定义域为R ,f (x )是周期为2的奇函数,y =|f (x )|在区间[-1,1]上恰有5个零点,所以f (0)=0,f (1)=0,x ∈(0,1)时,函数有1个零点,所以x ∈(0,1]时,函数有2个零点,所以x ∈(0,2020]时,函数有4040个零点,则f (x )在区间[0,2020]上的零点个数为4041.故选B .(2)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x <0,x2+12x ,x≥0,则函数y =f (f (x ))-1的零点个数为( )A .2B .3C .4D .5答案 B解析 由题意,令f (f (x ))-1=0,得f (f (x ))=1,令f (x )=t ,由f (t )=1,得t =-1或t =-1+174,作出函数f (x )的图象,如图所示,结合函数f (x )的图象可知,f (x )=-1有1个解,f (x )=-1+174有2个解,故y =f (f (x ))-1的零点个数为3,故选B .确定函数零点个数的方法及思路(1)解方程法:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)函数零点存在定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点值所具有的性质.(3)数形结合法:转化为两个函数的图象的交点个数问题.先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.3.函数f (x )=x 2-⎝ ⎛⎭⎪⎪⎫12|x |的零点个数为( )A .0B .1C .2D .3答案 C解析 由f (x )=x 2-⎝ ⎛⎭⎪⎪⎫12|x |,得f (-x )=(-x )2-⎝ ⎛⎭⎪⎪⎫12|-x |=f (x ),∴f (x )为偶函数,且在(0,+∞)上单调递增,又f (0)·f (1)<0,∴f (x )在(0,+∞)上有且仅有1个零点.∴函数f (x )的零点个数为2,故选C .4.函数f (x )=2x |log 0.5x |-1的零点个数为( ) A .1 B .2 C .3D .4答案 B解析 由2x |log 0.5x |-1=0得|log 0.5x |=⎝ ⎛⎭⎪⎪⎫12x ,作出y =|log 0.5x |和y =⎝ ⎛⎭⎪⎪⎫12x 的图象,如图所示,则两个函数图象有两个交点,故函数f (x )=2x |log 0.5x |-1有两个零点.多角度探究突破考向三 函数零点的应用 角度1 利用零点比较大小例3 (1)已知a 是函数f (x )=2x -log x 的零点,若0<x 0<a ,则f (x 0)的值满足( ) A .f (x 0)=0 B .f (x 0)>0 C .f (x 0)<0D .f (x 0)与0的大小关系不确定 答案 C解析 在同一平面直角坐标系中作出函数y =2x ,y =log x 的图象(图略),由图象可知,当0<x 0<a 时,有2x 0<log x 0,即f (x 0)<0.(2)已知函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是( )A .x 2<x 1<x 3B .x 1<x 2<x 3C .x 1<x 3<x 2D .x 3<x 2<x 1答案 B解析 令y 1=2x ,y 2=ln x ,y 3=-x -1,因为函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则y 1=2x ,y 2=ln x ,y 3=-x -1与y =-x 的图象的交点的横坐标分别为x 1,x 2,x 3,在同一平面直角坐标系内分别作出函数y 1=2x ,y 2=ln x ,y 3=-x -1及y =-x 的图象如图,结合图象可得x 1<x 2<x 3,故选B .在同一平面直角坐标系内准确作出已知函数的图象,数形结合,对图象进行分析,找出零点的范围,进行大小比较.5.已知函数f (x )=⎝ ⎛⎭⎪⎪⎫15x -log 3x ,若实数x 0是方程f (x )=0的解,且x 0<x 1,则f (x 1)的值( )A .恒为负B .等于零C .恒为正D .不大于零答案 A解析 由于函数f (x )=⎝ ⎛⎭⎪⎪⎫15x -log 3x 在定义域内是减函数,于是,若f (x 0)=0,当x 0<x 1时,一定有f (x 1)<0.故选A .6.已知x 0是函数f (x )=2x+11-x的一个零点.若x 1∈(1,x 0),x 2∈(x 0,+∞),则( )A .f (x 1)<0,f (x 2)<0B .f (x 1)<0,f (x 2)>0C .f (x 1)>0,f (x 2)<0D .f (x 1)>0,f (x 2)>0答案 B解析 在同一平面直角坐标系内作出函数y =2x和函数y =1x -1的图象,如图所示.由图象可知函数y =2x和函数y =1x -1的图象只有一个交点,即函数f (x )=2x +11-x只有一个零点x 0,且x 0>1.因为x 1∈(1,x 0),x 2∈(x 0,+∞),则由函数图象可知,f (x 1)<0,f (x 2)>0.角度2 由函数零点存在情况或个数求参数范围 例4 (1)(2020·海南省新高考诊断性测试)已知函数 f (x )=⎩⎪⎨⎪⎧-x2-4x +1,x≤0,2-2-x ,x>0,若关于x 的方程[f (x )-1]·[f (x )-m ]=0恰有5个不同的实根,则m 的取值范围为( )A .(1,2)B .(1,5)C .(2,3)D .(2,5)答案 A解析 由[f (x )-1][f (x )-m ]=0,得f (x )=1或f (x )=m ,作出y =f (x )的图象,如图所示.由图可知,方程f (x )=1有2个实根,故方程f (x )=m 有3个实根,故m 的取值范围为(1,2).(2)(2020·天津高考)已知函数f (x )=⎩⎪⎨⎪⎧x3,x≥0,-x ,x <0.若函数g (x )=f (x )-|kx 2-2x |(k ∈R )恰有4个零点,则k 的取值范围是( )A .⎝ ⎛⎭⎪⎪⎫-∞,-12∪(22,+∞)B .⎝ ⎛⎭⎪⎪⎫-∞,-12∪(0,22)C .(-∞,0)∪(0,22)D .(-∞,0)∪(22,+∞)答案 D解析 注意到g (0)=0,所以要使g (x )恰有4个零点,只需方程|kx -2|=错误!恰有3个实根即可,令h (x )=错误!,即y =|kx -2|与h (x )=错误!的图象有3个不同交点.因为h (x )=错误!=错误!当k =0时,y =2,如图1,y =2与h (x )=错误!的图象有1个交点,不满足题意;当k <0时,如图2,y =|kx -2|与h (x )=错误!的图象恒有3个不同交点,满足题意;当k >0时,如图3,当y =kx -2与y =x 2的图象相切时,联立方程得x 2-kx +2=0,令Δ=0得k 2-8=0,解得k =22(负值舍去),所以k >22.综上,k的取值范围为(-∞,0)∪(22,+∞).故选D .已知函数零点求参数范围的常用方法(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,作出函数的图象,然后数形结合求解.7.当x ∈[1,2]时,若函数y =12x 2与y =a x (a >0)的图象有交点,则a 的取值范围是________.答案 ⎣⎢⎢⎡⎦⎥⎥⎤12,2 解析 当a =1时,显然成立.当a >1时,如图①所示,使得两个函数图象有交点,需满足12×22≥a 2,即1<a ≤2;当0<a <1时,如图②所示,要使两个函数图象有交点,需满足12×12≤a 1,即12≤a <1,综上可知,a ∈⎣⎢⎢⎡⎦⎥⎥⎤12,2. 8.若函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,则实数a 的取值范围是________. 答案 -14,2解析 因为函数f (x )=4x -2x -a ,x ∈[-1,1]有零点,所以方程4x -2x -a =0在[-1,1]上有解,即方程a =4x -2x 在[-1,1]上有解.方程a =4x -2x 可变形为a =⎝ ⎛⎭⎪⎪⎫2x -122-14,因为x ∈[-1,1],所以2x∈12,2,所以⎝ ⎛⎭⎪⎪⎫2x -122-14∈-14,2.所以实数a 的取值范围是-14,2.一、单项选择题1.已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)答案 C解析 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).故选C .2.(2021·长郡中学高三月考)设函数f (x )=x +log 2x -m ,则“函数f (x )在⎝ ⎛⎭⎪⎪⎫12,4上存在零点”是“m ∈(1,6)”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 函数f (x )=x +log 2x -m 在区间(0,+∞)上单调递增,由函数f (x )在⎝ ⎛⎭⎪⎪⎫12,4上存在零点,得f ⎝ ⎛⎭⎪⎪⎫12=-12-m <0,f (4)=6-m >0,解得-12<m <6,故“函数f (x )在⎝ ⎛⎭⎪⎪⎫12,4上存在零点”是“m ∈(1,6)”的必要不充分条件.故选B . 3.(2020·北京市大兴区一模)下列函数中,在区间(0,+∞)上单调递增且存在零点的是( )A .y =e xB .y =x +1C .y =-log xD .y =(x -1)2答案 C解析 函数y =e x >0恒成立,不存在零点,即A 不符合题意;函数y =x +1>0恒成立,不存在零点,即B 不符合题意;函数y =-log x =log 2x 在(0,+∞)上单调递增,且当x =1时,y =0,所以函数的零点为x =1,即C 正确;函数y =(x -1)2在(0,1)上单调递减,在(1,+∞)上单调递增,即D 不符合题意.故选C .4.函数f (x )=x -cos x 在[0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点答案 B解析 当x ∈(0,1]时,因为f ′(x )=12x+sin x ,x >0,sin x >0,所以f ′(x )>0,故f (x )在[0,1]上单调递增,且f (0)=-1<0,f (1)=1-cos1>0,所以f (x )在[0,1]内有唯一零点.当x >1时,f (x )=x -cos x >0,故函数f (x )在[0,+∞)上有且仅有一个零点,故选B .5.函数f (x )=x cos2x 在区间[0,2π]上的零点的个数为( ) A .2 B .3 C .4 D .5答案 D解析 f (x )=x cos2x =0⇒x =0或cos2x =0,又cos2x =0在[0,2π]上的根有π4,3π4,5π4,7π4,共4个,故f (x )有5个零点. 6.若x 0是方程⎝ ⎛⎭⎪⎪⎫12x =x 的解,则x 0属于区间( )A .⎝ ⎛⎭⎪⎪⎫23,1B .⎝ ⎛⎭⎪⎪⎫12,23C .⎝ ⎛⎭⎪⎪⎫13,12D .⎝⎛⎭⎪⎪⎫0,13答案 C解析令g (x )=⎝ ⎛⎭⎪⎪⎫12x ,f (x )=x ,则g (0)=1>f (0)=0,g ⎝ ⎛⎭⎪⎪⎫12=⎝ ⎛⎭⎪⎪⎫12<f ⎝ ⎛⎭⎪⎪⎫12=⎝ ⎛⎭⎪⎪⎫12,g ⎝ ⎛⎭⎪⎪⎫13=⎝ ⎛⎭⎪⎪⎫12>f ⎝ ⎛⎭⎪⎪⎫13=⎝ ⎛⎭⎪⎪⎫13,所以由图象关系可得13<x 0<12.7.f (x )=3x -log 2(-x )的零点的个数是( ) A .0 B .1 C .2 D .3答案 B解析 f (x )的定义域为(-∞,0),且f (x )在(-∞,0)上单调递增,f (-1)=13>0,f (-2)=-89<0,所以函数f (x )=3x -log 2(-x )有且仅有1个零点,故选B .8.[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5,已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( )A .1B .2C .3D .4答案 B解析 作出函数f (x )与g (x )的图象如图所示,发现有两个不同的交点,故选B .二、多项选择题9.(2020·山东德州高三模拟)已知函数f (x )=e |x |+|x |.则关于x 的方程f (x )=k 的根的情况,下列结论正确的是( )A .当k =1时,方程有一个实根B .当k >1时,方程有两个实根C .当k =0时,方程有一个实根D.当k≥1时,方程有实根答案ABD解析方程f(x)=k化为e|x|=k-|x|,设y1=e|x|,y2=k-|x|.y2=k-|x|表示斜率为1或-1的平行折线系,折线与曲线y1=e|x|恰好有一个公共点时,k=1.如图,若关于x 的方程f(x)=k有两个不同的实根,则实数k的取值范围是(1,+∞).故选ABD.10.(2021·湖南郴州高三质检)已知函数f(x)=|2x-2|+b的两个零点分别为x1,x2(x1>x2),则下列结论正确的是()A.1<x1<2 B.x1+x2<1C.x1+x2<2 D.x1<1答案AC解析函数f(x)=|2x-2|+b有两个零点,即y=|2x-2|的图象与直线y=-b有两个交点,交点的横坐标就是x1,x2(x1>x2),在同一平面直角坐标系中画出y=|2x-2|与y =-b的图象如图所示,可知1<x1<2,2x1-2+2x2-2=0,即4=2x1+2x2>22x1×2x2=22x1+x2,所以2x1+x2<4,所以x1+x2<2.11.(2020·海南中学高三月考)在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并构成一般不动点定理的基石.布劳威尔不动点定理得名于荷兰数学家鲁伊兹·布劳威尔(L.E.J.Brouwer),简单地讲就是对于满足一定条件的连续函数f (x ),存在一个点x 0,使得f (x 0)=x 0,那么我们称该函数为“不动点”函数,下列为“不动点”函数的是( )A .f (x )=2x +xB .f (x )=x 2-x -3C .f (x )=⎩⎪⎨⎪⎧2x2-1,x≤1,|2-x|,x >1D .f (x )=1x-x答案 BCD解析 根据定义可知,若f (x )有不动点,则f (x )=x 有解.对于A ,令2x +x =x ,所以2x =0,此时无解,故f (x )不是“不动点”函数;对于B ,令x 2-x -3=x ,所以x =3或x =-1,所以f (x )是“不动点”函数;对于C ,当x ≤1时,令2x 2-1=x ,所以x =-12或x =1,所以f (x )是“不动点”函数;对于D ,令1x -x =x ,所以x =±22,所以f (x )是“不动点”函数.故选BCD .12.(2020·山东临沂高三模拟)定义域和值域均为[-a ,a ]的函数y =f (x )和y =g (x )的图象如图所示,其中a >c >b >0,给出下列四个结论,其中正确的是( )A .方程f (g (x ))=0有且仅有三个解B .方程g (f (x ))=0有且仅有四个解C .方程f (f (x ))=0有且仅有八个解D .方程g (g (x ))=0有且仅有一个解 答案 AD解析 由图象可知对于函数y =f (x ),当-a ≤y <-c 时,方程有一解,当y =-c 时,方程有两解,当-c <y <c 时方程有三解,当y =c 时,方程有两解,当c <y ≤a时,方程有一解,对于函数y =g (x ),由图象可知,函数g (x )为单调递减函数,当-a ≤y ≤a 时,方程有唯一解.对于A ,设t =g (x ),则由f (g (x ))=0,即f (t )=0,此时t =-b 或t =0或t =b ,即t =g (x )有三个不同的值,又由函数g (x )为单调递减函数且a >c >b >0,所以方程f (g (x ))=0有三个不同的解,所以是正确的;对于B ,设t =f (x ),则由g (f (x ))=0,即g (t )=0,此时只有唯一的解t =b ,即方程b =f (x ),此时有三解,所以不正确;对于C ,设t =f (x ),则由f (f (x ))=0,即f (t )=0,此时t =-b 或t =0或t =b ,当t =-b,0或b 时,方程t =f (x )均有三个不同的解,则f (f (x ))=0有九个解,所以不正确;对于D ,设t =g (x ),则由g (g (x ))=0,即g (t )=0,此时t =b ,对于方程b =g (x ),只有唯一的解,所以是正确的.故选AD .三、填空题13.函数f (x )=ax +1-2a 在区间(-1,1)上存在一个零点,则实数a 的取值范围是________.答案 ⎝ ⎛⎭⎪⎪⎫13,1解析 ∵函数f (x )的图象为直线,由题意可得f (-1)f (1)<0,∴(-3a +1)(1-a )<0,解得13<a <1,∴实数a 的取值范围是⎝ ⎛⎭⎪⎪⎫13,1.14.已知f (x )=⎩⎪⎨⎪⎧xln x ,x>0,x2-x -2,x≤0,则其零点为________.答案 -1,1解析 当x >0时,由f (x )=0,即x ln x =0得ln x =0,解得x =1;当x ≤0时,由f (x )=0,即x 2-x -2=0,也就是(x +1)(x -2)=0,解得x =-1或x =2.因为x ≤0,所以x =-1.综上,函数的零点为-1,1.15.已知函数f (x )=⎩⎪⎨⎪⎧|x|,x≤m,x2-2mx +4m ,x>m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实根,则m 的取值范围是________.答案 (3,+∞)解析 f (x )的图象如图所示,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的实根,只需4m -m 2<m ,解得m >3或m <0,又m >0,所以m >3.16.(2020·聊城二模)已知f (x )=⎩⎪⎨⎪⎧1-ln x ,0<x≤1,-1+ln x ,x>1,若f (a )=f (b ),则1a +1b的最小值为________.答案 1+1e2解析 已知分段函数f (x )在两段区间内都是单调函数,若f (a )=f (b ),则必然分属两段内,不妨设0<a ≤1,b >1,则f (a )=1-ln a ,f (b )=-1+ln b ,即1-ln a =-1+ln b ⇒ln a +ln b =ln (ab )=2⇒ab =e 2.当1a +1b =be2+1b =1e2⎝ ⎛⎭⎪⎪⎫b +e2b 时,令g (b )=1e2⎝ ⎛⎭⎪⎪⎫b +e2b ,b ∈(1,+∞),由双勾函数性质可知g (b )在区间(1,e)上单调递减,在区间(e ,+∞)上单调递增,所以g (b )min =g (e)=2e ,此时a =e(不符合题意),当1a +1b =1a +ae2=1e2⎝ ⎛⎭⎪⎪⎫a +e2a 时,令h (a )=1e2⎝ ⎛⎭⎪⎪⎫a +e2a ,a ∈(0,1],由双勾函数性质可知h (a )在区间(0,1]上单调递减,所以h (a )min =h (1)=1+1e2,此时a =1,b =e 2.故1a +1b的最小值为1+1e2.四、解答题17.函数f(x)的定义域为实数集R,且f(x)=错误!对任意的x∈R都有f(x+2)=f(x-2).若在区间[-5,3]上函数g(x)=f(x)-mx+m恰好有三个不同的零点,求实数m的取值范围.解因为对任意的x∈R都有f(x+2)=f(x-2),所以函数f(x)的周期为4.由在区间[-5,3]上函数g(x)=f(x)-mx+m有三个不同的零点,知函数f(x)与函数h(x)=mx-m 的图象在[-5,3]上有三个不同的交点.在同一平面直角坐标系内作出函数f(x)与h(x)在区间[-5,3]上的图象,如图所示.由图可知1-0-1-1≤m<1-0-5-1,即-12≤m<-16.21 / 21。

函数与方程及函数的综合应用课件——高三数学一复习

函数与方程及函数的综合应用课件——高三数学一复习
-1 200,已知每千件商
2
x 1
品售价为50万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;
(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
解析 (1)当0<x<50时,L(x)=50x- 1 x 2 10 x -200=- 1 x2+40x-200,
6
4 3
3 2
6
2
函数f(x)的一个零点位于 , 内,即x0∈ , .故选C.


6 4
答案 C


6 4
考法二 已知函数有零点(方程有根)求参数值(或取值范围)
1.直接法:利用零点构建关于参数的方程(组)或不等式(组),直接求解.
2.参数分离法:将参数与自变量分离,转化为求函数的最值或值域.
2
2

当x≥50时,L(x)=50x-52x- 7 200 +1 200-200=1 000- 2 x 7 200 ,
x 1
1 2
x 40 x 200,0 x 50,
所以L(x)= 2

1 000 2 x 7 200 , x 50.
3.5专题三、函数与方程及
函数的综合应用
知识梳理
基础篇
考点一 函数的零点
1.函数的零点
1)函数零点的定义:对于一般函数y=f(x),把使f(x)=0的实数x叫做函数y=
f(x)的零点.
注意:零点不是点,是满足f(x)=0的实数x.
2)三个等价关系:方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的

2020届高三数学复习 函数与方程、不等式 讲座 课件(共20张PPT)

2020届高三数学复习 函数与方程、不等式  讲座 课件(共20张PPT)
借助函数图象的分布,转化为求函数在区间上的最 值或值域问题
借助于二次函数的图像特征来求解
尝试分离参数的方法,来回避分类讨论
总结
01 函数思想是一种思维习惯,要用变量和函数的
观点来思考问题
02 求 y f (x) 的零点和解 f (x) 0 求根是一致的,但方法是多样的,
特别要注意数形结合的使用。
如果要判断函数有几个零点,则必须结合其图像与性质(单调性、奇偶性)。
02 函数 f (x) 在[a,b]上是连续不断的曲线,且 f (a) f (b) 0 ,满足这些条件一定有零点。 但不满足这些条件也不能说一定没有零点。
产品介绍 Product introduction
关于零点存在性定理
如图:
已知 x, y 0 ,则有: x y 2 xy (当且仅当 x y 等号成立)
若 x y S (和为定值),
则当 x y 时,积 xy 取得最大值 S 2 ; 4
即: xy ( x+y)2 = S 2 24
若 xy P (积为定值)
则当 x y 时,和 x y 取得最小值 2 P
则 f (x) a fmin (x) a
因为 x 0 ,由平均值不等式: x+ 1 2(当且仅当 x 1 ,即: x 1时等号成立),
x
x
所以: f (x)min 2 故: a 2
产品介绍 Product
introduction 函数与不等式
【例 3.】变式:关于 x 的不等式 x+ 1 a 0 对 x [2, ) 恒成立, x
【例 1】关于 x 的一元二次方程 x2 ax 3 a 0 ,求当 a 为何值时,分别有以下的结论:

备战高考数学复习考点知识与题型讲解8---函数的概念及其表示

备战高考数学复习考点知识与题型讲解8---函数的概念及其表示

备战高考数学复习考点知识与题型讲解第8讲函数的概念及其表示考向预测核心素养以基本初等函数为载体,考查函数的表示法、定义域,分段函数以及函数与其他知识的综合是高考热点,题型既有选择题、填空题,又有解答题,中档偏上难度.数学抽象、数学运算一、知识梳理1.函数的有关概念2.函数的三要素:定义域、值域、对应关系.3.函数的表示法表示函数的常用方法有:解析法、图象法、列表法.[注意] 函数图象的特征:与x轴垂直的直线与其最多有一个公共点.利用这个特征可以判断一个图形能否作为一个函数的图象.4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.[注意] 分段函数是一个函数,而不是几个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.常用结论1.几种常见函数的定义域(1)f(x)为分式型函数时,定义域为使分母不为零的实数集合.(2)f(x)为偶次根式型函数时,定义域为使被开方式非负的实数的集合.(3)f(x)为对数式时,函数的定义域是使真数为正数、底数为正且不为1的实数集合.(4)若f(x)=x0,则定义域为{x|x≠0}.(5)f(x)为指数式时,函数的定义域是使底数大于0且不等于1的实数集合.2.直线x=a(a是常数)与函数y=f(x)的图象有0个或1个交点.3.判断两个函数相等的依据是两个函数的定义域和对应关系完全一致.二、教材衍化1.(人A必修第一册P66例3改编)下列函数中,与函数y=x+1是同一个函数的是( )A.y=(x+1)2 B.y=3x3+1C.y=x2x+1 D.y=x2+1答案:B2.(人A必修第一册P73习题3.1 T11改编)函数y=f(x)的图象如图所示,则f(x)的定义域是________;值域是________;其中只有唯一的x值与之对应的y值的范围是________.答案:[-3,0]∪[2,3] [1,5] [1,2)∪(4,5]3.(人A必修第一册P72习题3.1 T1(4))函数f(x)=4-xx-1的定义域为________.答案:{}x|x≤4且x≠1一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)函数f (x )=x 2-2x 与g (t )=t 2-2t 是同一个函数.( )(2)若两个函数的定义域与值域相同,则这两个函数是同一个函数.( ) (3)函数f (x )的图象与直线x =1最多有一个交点.( ) (4)分段函数是由两个或几个函数组成的.( ) 答案:(1)√ (2)× (3)√ (4)× 二、易错纠偏1.(多选)(函数的概念理解易错)下列图形中可以表示以M ={x |0≤x ≤1}为定义域,N ={y |0≤y ≤1}为值域的函数的图象是( )解析:选BC.A 选项中的值域不满足,D 选项不是函数的图象,由函数的定义可知选项B ,C 正确.2.(易忽视两个函数相等的条件)在函数中,f (x )与g (x )表示同一个函数的是( )A .f (x )=x -1,g (x )=x 2-1x +1B .f (x )=|x +1|,g (x )=⎩⎨⎧x +1,x ≥-1,-1-x ,x <-1C .f (x )=1,g (x )=(x +1)0D .f (x )=3x 3,g (x )=(x )2解析:选B.对于A ,函数f (x )的定义域为R ,g (x )的定义域为{x |x ≠-1},f (x )与g (x )的定义域不相同,则不是同一个函数;对于B ,函数f (x )的定义域为R ,g (x )的定义域为R ,f (x )与g (x )的定义域相同,f (x )=|x +1|=⎩⎨⎧x +1,x ≥-1,-1-x ,x <-1,对应关系相同,即f (x )与g (x )是同一个函数;对于C ,函数f (x )的定义域为R ,g (x )的定义域为{x |x ≠-1},f (x )与g (x )的定义域不相同,则不是同一个函数;对于D ,函数f (x )的定义域为R ,g (x )的定义域为{x |x ≥0},f (x )与g (x )的定义域不相同,则不是同一个函数.故选B.3.(忽略抽象函数定义域致误)已知函数f (x +1)的定义域为[1,3],则f (2x )的定义域为( )A .[1,2] B.[1,3] C.[2,4] D.[2,6]解析:选 A.因为函数f (x +1)的定义域为[1,3],所以函数f (x )的定义域为[2,4].要求f (2x )的定义域,只需2≤2x ≤4,解得1≤x ≤2.考点一 函数的定义域(多维探究)复习指导:学习用集合与对应的语言来刻画函数,了解构成函数的要素,会求一些简单函数的定义域.角度1 求函数的定义域(1)(链接常用结论1)函数y =-x 2+2x +3lg (x +1)的定义域为( )A .(-1,3] B.(-1,0)∪(0,3] C .[-1,3]D.[-1,0)∪(0,3](2)(2022·重庆市高三摸底)已知函数f (x )的定义域为(0,+∞),则函数F (x )=f (x +2)+3-x 的定义域为( )A .(-2,3] B.[-2,3] C.(0,3]D.(0,3)【解析】(1)要使函数有意义,x 需满足⎩⎨⎧-x 2+2x +3≥0,x +1>0,x +1≠1,解得-1<x <0或0<x ≤3,所以函数的定义域为(-1,0)∪(0,3]. (2)函数F (x )=f (x +2)+3-x 需满足⎩⎨⎧x +2>0,3-x ≥0,解得-2<x ≤3.【答案】 (1)B (2)A求函数定义域的两种方法方法 解读适合题型直接法构造使解析式有意义的不等式(组)求解 已知函数的具体解析式,求f (x )的定义域转移法若y =f (x )的定义域为(a ,b ),则解不等式a <g (x )<b 即可求出y =f (g (x ))的定义域 已知f (x )的定义域,求f (g (x ))的定义域若y =f (g (x ))的定义域为(a ,b ),则求出g (x )在(a ,b )上的值域即得f (x )的定义域已知f (g (x ))的定义域,求f (x )的定义域[提醒]定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.角度2 已知函数的定义域求参数(2022·广州白云中学高一期中)已知y =1ax 2+(a -1)x +14的定义域是R ,则实数a 的取值范围是( )A.⎝⎛⎭⎪⎫0,3+52 B.⎝ ⎛⎭⎪⎫3-52,1C.⎝ ⎛⎭⎪⎫3-52,3+52 D.⎝ ⎛⎭⎪⎫-∞,3-52∪⎝ ⎛⎭⎪⎫3+52,+∞ 【解析】 由题意可知,ax 2+(a -1)x +14>0的解集为R ,①当a =0时,易知-x +14>0,即x <14,这与ax 2+(a -1)x +14>0的解集为R 矛盾;②当a ≠0时,则由题意得⎩⎨⎧a >0,Δ=(a -1)2-a <0,解得3-52<a <3+52, 综上,实数a 的取值范围是⎝ ⎛⎭⎪⎫3-52,3+52. 【答案】 C已知函数的定义域求参数的取值范围,通常是根据已知的定义域将问题转化为方程或不等式恒成立的问题,然后求得参数的值或范围.|跟踪训练|1.(2022·河北顺平月考)函数y =1-x2x 2-3x -2的定义域为( )A .(-∞,1] B.⎝ ⎛⎭⎪⎫-∞,-12C .(-∞,2]D.⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎦⎥⎤-12,1解析:选D.由题意得⎩⎨⎧1-x ≥0,2x 2-3x -2≠0.解得x ≤1且x ≠-12,故所求定义域为⎝⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎦⎥⎤-12,1.2.如果函数f (x )=ln(-2x +a )的定义域为(-∞,1),那么实数a 的值为( ) A .-2 B.-1 C .1D.2解析:选D.因为-2x +a >0, 所以x <a 2,所以a2=1,所以a =2.3.(2022·宁夏银川一中第一次月考)已知函数y =f (x )的定义域是[-2,3],则y =f (2x -1)的定义域是________.解析:由题意可得出-2≤2x -1≤3,解得-12≤x ≤2,因此,函数y =f (2x -1)的定义域为⎣⎢⎡⎦⎥⎤-12,2.答案:⎣⎢⎡⎦⎥⎤-12,2考点二 函数的解析式(自主练透)复习指导:在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.1.已知函数f (x )满足f (2x +1)=4x 2-6x +5,则f (x )=________. 解析:方法一(换元法):令2x +1=t (t ∈R ), 则x =t -12,所以f (t )=4⎝ ⎛⎭⎪⎫t -122-6·t -12+5=t 2-5t +9(t ∈R ),所以f (x )=x 2-5x +9(x ∈R ).方法二(配凑法):因为f (2x +1)=4x 2-6x +5=(2x +1)2-10x +4=(2x +1)2-5(2x +1)+9,所以f (x )=x 2-5x +9(x ∈R ).答案:x 2-5x +9(x ∈R )2.已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,则f (x )=________.解析:设f (x )=ax 2+bx +c (a ≠0), 由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)+2-ax 2-bx -2=x -1,即2ax +a +b =x -1,所以⎩⎨⎧2a =1,a +b =-1,即⎩⎪⎨⎪⎧a =12,b =-32.所以f (x )=12x 2-32x +2.答案:12x 2-32x +23.定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.解析:因为-1≤x ≤0,所以0≤x +1≤1,所以f (x )=12f (x +1)=12(x +1)[1-(x +1)]=-12x (x +1).故当-1≤x ≤0时,f (x )=-12x (x +1).答案:-12x (x +1)4.已知f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x -1,则f (x )=________.解析:已知2f (x )+f ⎝ ⎛⎭⎪⎫1x =3x -1,①以1x代替①中的x (x ≠0),得2f ⎝ ⎛⎭⎪⎫1x +f (x )=3x -1,②①×2-②,得3f (x )=6x -3x-1,故f (x )=2x -1x -13(x ≠0).答案:2x -1x -13(x ≠0)求函数解析式的四种方法考点三 分段函数(多维探究)复习指导:通过具体实例,了解简单的分段函数,并能简单应用. 角度1 求分段函数的函数值(1)已知函数f (x )=⎩⎨⎧3x +1,x <2,x 2+ax ,x ≥2,若f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫23=-6,则实数a =________,f (2)=________.(2)已知函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫13x ,x ≥3,f (x +1),x <3,则f (2+log 32)的值为________.【解析】 (1)由题意得,f ⎝ ⎛⎭⎪⎫23=3×23+1=3,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫23=f (3)=9+3a =-6,所以a =-5,f (2)=4-5×2=-6.(2)因为2+log 31<2+log 32<2+log 33,即2<2+log 32<3,所以f (2+log 32)=f (2+log 32+1)=f (3+log 32),又3<3+log 32<4,所以f (3+log 32)=⎝ ⎛⎭⎪⎫133+log 32=⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫13log 32=127×(3-1)log 32=127×3-log 32=127×3log312=127×12=154,所以f (2+log 32)=154.【答案】 (1)-5 -6 (2)154关于分段函数求值问题的解题思路(1)求函数值:先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)求自变量的值:先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验.角度2 分段函数与方程、不等式问题(1)设f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1,若f (a )=f (a +1),则f ⎝ ⎛⎭⎪⎫1a =( )A .2 B.4 C.6D.8(2)设函数f (x )=⎩⎨⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1] B.(0,+∞) C .(-1,0)D.(-∞,0)【解析】 (1)因为当0<x <1时,f (x )=x 为增函数, 当x ≥1时,f (x )=2(x -1)为增函数, 又f (a )=f (a +1),所以a =2(a +1-1), 所以a =14.所以f ⎝ ⎛⎭⎪⎫1a =f (4)=6.(2)因为f (x )=⎩⎨⎧2-x,x ≤0,1,x >0,所以函数f (x )的图象如图所示.由图可知,当x +1≤0且2x ≤0时,函数f (x )为减函数,故f (x +1)<f (2x )转化为x +1>2x .此时x ≤-1.当2x <0且x +1>0时,f (2x )>1,f (x +1)=1, 满足f (x +1)<f (2x ). 此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0). 【答案】 (1)C (2)D解有关分段函数不等式问题,要按照分段函数的“分段”进行分类讨论,从而将问题转化为简单的不等式组来解.|跟踪训练|1.(2022·山西太原三中模拟)设函数f (x )=⎩⎨⎧x 2-1,x ≥2,log 2x ,0<x <2,若f (m )=3,则f ⎝ ⎛⎭⎪⎫52-m =________. 解析:当m ≥2时,m 2-1=3, 所以m =2或m =-2(舍去);当0<m <2时,log 2m =3,所以m =8(舍去). 所以m =2.所以f ⎝ ⎛⎭⎪⎫52-m =f ⎝ ⎛⎭⎪⎫12=log 212=-1.答案:-12.已知函数f (x )=⎩⎨⎧x 2+x ,x ≥0,-3x ,x <0,若a [f (a )-f (-a )]>0,则实数a 的取值范围为________.解析:由题意知,a ≠0,当a >0时,不等式a [f (a )-f (-a )]>0可化为a 2+a -3a >0,解得a >2.当a <0时,不等式a [f (a )-f (-a )]>0可化为-a 2-2a <0,解得a <-2.综上所述,a 的取值范围为(-∞,-2)∪(2,+∞).答案:(-∞,-2)∪(2,+∞)考点四 函数的新定义问题(综合研析)复习指导:能从函数的新定义中得到函数的概念或性质,求解有关问题.(多选)(2022·广东深圳3月模拟)在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,若函数f (x )的图象恰好经过n (n ∈N *)个整点,则称函数f (x )为n 阶整点函数.下列函数是一阶整点函数的是( )A .f (x )=sin 2x B.g (x )=x 3 C .h (x )=⎝ ⎛⎭⎪⎫13xD.φ(x )=ln x【解析】 对于函数f (x )=sin 2x ,它的图象(图略)只经过一个整点(0,0),所以它是一阶整点函数;对于函数g (x )=x 3,它的图象(图略)经过整点(0,0),(1,1),…,所以它不是一阶整点函数;对于函数h (x )=⎝ ⎛⎭⎪⎫13x,它的图象(图略)经过整点(0,1),(-1,3),…,所以它不是一阶整点函数;对于函数φ(x )=ln x ,它的图象(图略)只经过一个整点(1,0),所以它是一阶整点函数.【答案】 AD(1)函数新定义问题的一般形式是由命题者先给出一个新的概念、新的运算法则,或者给出一个抽象函数的性质等,然后让学生按照这种“新定义”去解决相关的问题.(2)解决函数新定义问题的关键是紧扣新定义,学会语言的翻译和新旧知识的转化,可以培养学生的数学抽象的核心素养.|跟踪训练|若函数f (x )同时满足下列两个条件,则称该函数为“优美函数”: (1)∀x ∈R ,都有f (-x )+f (x )=0;(2)∀x 1,x 2∈R 且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2<0.以下三个函数中是“优美函数”的为________.(填序号) ①f (x )=sin x ;②f (x )=-2x 3;③f (x )=1-x .解析:由条件(1),得f (x )是R 上的奇函数,由条件(2),得f (x )是R 上的单调递减函数.对于①,f (x )=sin x 在R 上不单调,故不是“优美函数”;对于②,f (x )=-2x 3既是奇函数,又在R 上单调递减,故是“优美函数”;对于③,f (x )=1-x 不是奇函数,故不是“优美函数”.答案:②[A 基础达标]1.函数f (x )=1(log 2x )2-1的定义域为( ) A.⎝⎛⎭⎪⎫0,12 B.(2,+∞)C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞)D.⎝⎛⎦⎥⎤0,12∪[2,+∞)解析:选C.由题意可知x 满足(log 2x )2-1>0,即log 2x >1或log 2x <-1,解得x >2或0<x <12,故所求函数的定义域是⎝⎛⎭⎪⎫0,12∪(2,+∞).2.(2022·安徽合肥模拟)若二次函数g (x )满足g (1)=1,g (-1)=5且图象过原点,则g (x )的解析式为( )A .g (x )=2x 2-3x B.g (x )=3x 2-2x C .g (x )=3x 2+2x D.g (x )=-3x 2-2x解析:选B.设g (x )=ax 2+bx (a ≠0),可得⎩⎨⎧a +b =1,a -b =5,解得a =3,b =-2,所以二次函数g(x)的解析式为g(x)=3x2-2x.3.(2022·哈尔滨九中高一第一次验收)若函数y=f(x)的定义域是[1,2],则函数y=f(x)的定义域是( )A.[1,2] B.[1,4]C.[1,2]D.[2,4]解析:选B.若函数y=f(x)的定义域是[1,2],则1≤x≤2,解得1≤x≤4,故函数y=f(x)的定义域是[1,4].4.(多选)(2022·山东济宁调研)下列四组函数中,f(x)与g(x)相等的是( ) A.f(x)=ln x2,g(x)=2ln xB.f(x)=x,g(x)=(x)2C.f(x)=x,g(x)=3x3D.f(x)=x,g(x)=log a a x(a>0且a≠1)解析:选CD.对于A,f(x)的定义域为{x|x≠0},g(x)的定义域为{x|x>0},两个函数的定义域不相同,不是相等函数;对于B,f(x)的定义域为R,g(x)的定义域为{x|x≥0},两个函数的定义域不相同,不是相等函数;对于C,g(x)=3x3=x(x∈R),两函数的定义域和对应关系相同,是相等函数;对于D,g(x)=log a a x=x,x∈R,两个函数的定义域和对应关系相同,是相等函数.5.(2022·日照高三第一次适应性联考)老舍在《济南的冬天》中写到“济南的冬天是没有风声的,济南的冬天是响晴的,济南真得算个宝地.”济南市某一天内的气温Q(t)(单位:℃)与时刻t(单位:时)之间的关系如图所示,令C(t)表示时间段[0,t]内的温差(即时间段[0,t]内最高温度与最低温度的差),下列图象能表示C(t)与t之间的函数关系的是( )解析:选D.由题意C (t ),从0到4逐渐增大,从4到8不变,从8到12逐渐增大,从12到20不变,从20到24又逐渐增大,从4到8不变,是常数,该常数为2,只有D 满足.6.(2022·山西省高三八校联考)已知函数f (x )=⎩⎨⎧-x 2+x ,x ≤0,ln (x +1),x >0,则不等式f (6-x 2)>f (5x )的解集是( )A .(-∞,-6)∪(1,+∞) B.(-∞,-1)∪(6,+∞) C .(-1,6)D.(-6,1)解析:选D.因为y =-x 2+x ,在 (-∞,0]上单调递增,y =ln(x +1)在(0,+∞)上单调递增,又因为f (0)=0 ,所以f (x )在R 上单调递增, 又不等式f (6-x 2)>f (5x ), 所以6-x 2>5x , 解得-6<x <1.7.已知函数f (x )的定义域为(0,+∞),且f (x )=3x ·f ⎝ ⎛⎭⎪⎫1x +1,则f (x )=________.解析:在f (x )=3x ·f ⎝ ⎛⎭⎪⎫1x +1中,将x 换成1x ,则1x 换成x ,得f ⎝ ⎛⎭⎪⎫1x =31x·f (x )+1,将该方程代入已知方程消去f ⎝ ⎛⎭⎪⎫1x ,得f (x )=-38x -18(x >0).答案:-38x -18(x >0)8.已知函数f (x )=⎩⎨⎧2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值为________.解析:因为f (1)=2,且f (1)+f (a )=0,所以f (a )=-2<0,故a ≤0.依题知a +1=-2,解得a =-3.答案:-39.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=________. 解析:令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2,② 联立①②得,f (1)=2. 答案:210.(2022·海南调研改编)已知函数f (x )=⎩⎨⎧2-x,x ≤-1,x +1,x >-1.则f [f (-2)]的值为________;不等式f (x )≥2的解集为________.解析:由题意可得f (-2)=22=4,则f [f (-2)]=f (4)=4+1=5. 由不等式f (x )≥2,可得⎩⎨⎧x ≤-1,2-x ≥2①或⎩⎨⎧x >-1,x +1≥2,②解①得x ≤-1,解②得x ≥1,故不等式的解集为(-∞,-1]∪[1,+∞). 答案:5 (-∞,-1]∪[1,+∞)[B 综合应用]11.(2022·浙江杭州学军中学期中)定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y )+2xy (x ,y ∈R ),f (1)=3,则f (-3)=( )A .3 B.8 C.9D.24解析:选A.由题意,令x =y =0,得f (0)=f (0)+f (0)+2×0×0,所以f (0)=0;令x =y =1,得f (2)=f (1)+f (1)+2×1×1=8;令x =2,y =1,得f (3)=f (2)+f (1)+2×2×1=15;令x =3,y =-3,得f (0)=f (3)+f (-3)+2×3×(-3),即0=15+f (-3)-18,所以f (-3)=3.12.已知函数f (x )=⎩⎨⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,则实数a 的取值范围是( )A .(-∞,-1]B.⎝⎛⎭⎪⎫-1,12C.⎣⎢⎡⎭⎪⎫-1,12D.⎝⎛⎭⎪⎫0,12解析:选C.由题意知y =ln x (x ≥1)的值域为[0,+∞),故要使f (x )的值域为R ,则必有y =(1-2a )x +3a 为增函数,即⎩⎨⎧1-2a >0,1-2a +3a ≥0,解得-1≤a <12.13.(2022·马鞍山模拟)已知函数f (x )=⎩⎨⎧x -2,x ≥1,-1,x <1,若f (5a -2)>f (2a 2),则实数a 的取值范围为________.解析:由题意,得当x <1时,f (x )=-1;当x ≥1时,f (x )单调递增.所以f (x )≥-1.对于f (5a -2)>f (2a 2),若5a -2≤1,即a ≤35时,2a 2<1,可得f (5a -2)=f (2a 2)=-1,不成立,则5a -2>1,即a >35,且由5a -2>2a 2,解得12<a <2,所以35<a <2.答案:⎝ ⎛⎭⎪⎫35,214.设函数f (x )的定义域为D ,若对任意的x ∈D ,都存在y ∈D ,使得f (y )=-f (x )成立,则称函数f (x )为“美丽函数”,下列所给出的几个函数:①f (x )=x 2;②f (x )=1x -1; ③f (x )=ln(2x +3);④f (x )=2sin x -1. 其中是“美丽函数”的为________.(填序号)解析:由题意,只有当函数的值域关于原点对称时才会满足“美丽函数”的条件. ①中函数的值域为[0,+∞),值域不关于原点对称,故①不符合题意; ②中函数的值域为(-∞,0)∪(0,+∞),值域关于原点对称,故②符合题意; ③中函数的值域为(-∞,+∞),值域关于原点对称,故③符合题意;④中函数的值域为[-3,1],不关于原点对称,故④不符合题意.故本题正确答案为②③.答案:②③。

(艺术生专用)高考数学总复习 第二章 函数、导数及其应用 第8节 函数与方程课时冲关-人教版高三全册

(艺术生专用)高考数学总复习 第二章 函数、导数及其应用 第8节 函数与方程课时冲关-人教版高三全册

第8节 函数与方程1.下列图象表示的函数中能用二分法求零点的是( )解析:C [A 中函数没有零点,因此不能用二分法求零点;B 中函数的图象不连续;D 中函数在x 轴下方没有图象,故选C.]2.函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,x ≤0,-2+ln x ,x >0的零点个数为( )A .3B .2C .1D .0解析:B [当x ≤0时,由f (x )=x 2+2x -3=0,得x 1=1(舍去),x 2=-3;当x >0时,由f (x )=-2+ln x =0,得x =e 2,所以函数f (x )的零点个数为2,故选B.]3.(2020·乌鲁木齐市一模)函数f (x )=e x+2x -3的零点所在的一个区间是( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫12,1 D.⎝ ⎛⎭⎪⎫1,32 解析:C [因为f ⎝ ⎛⎭⎪⎫12=e 12-2<0,f (1)=e -1>0,所以零点在区间⎝ ⎛⎭⎪⎫12,1上,故选C.] 4.(2020·某某市模拟)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且x ∈[0,1]时,f (x )=x ,则方程f (x )=log 3|x |的解有( )A .2个B .3个C .4个D .多于4个解析:C [由f (x +2)=f (x )可得函数的周期为2, 又函数为偶函数且当x ∈[0,1]时,f (x )=x ,故可作出函数f (x )的图象.∴方程f (x )=log 3|x |的解个数等价于y =f (x )与y =log 3|x |图象的交点个数, 由图象可得它们有4个交点,故方程f (x )=log 3|x |的解的个数为4,故选C.] 5.(2020·某某市模拟)定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),当x ∈[0,1]时,f (x )=-2x +1,设函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-1<x <3),则函数f (x )与g (x )的图象所有交点的横坐标之和为( )A .2B .4C .6D .8解析:B [∵f (x +1)=-f (x ), ∴f (x +2)=-f (x +1)=f (x ), ∴f (x )的周期为2.∴f (1-x )=f (x -1)=f (x +1), 故f (x )的图象关于直线x =1对称.又g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-1<x <3)的图象关于直线x =1对称,作出f (x )和g (x )的函数图象如图所示:由图象可知两函数图象在(-1,3)上共有4个交点, ∴所有交点的横坐标之和为2×2=4.故选B.] 6.已知函数f (x )=23x+1+a 的零点为1,则实数a 的值为 ________ . 解析:由已知得f (1)=0,即231+1+a =0,解得a =-12.答案:-127.已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n = ________ .解析:∵2<a <3<b <4,∴f (1)=log a 1+1-b =1-b <0,f (2)=log a 2+2-b <0,f (3)=log a 3+3-b ,又∵log a 3>1,-1<3-b <0,∴f (3)>0,即f (2)f (3)<0,故x 0∈(2,3),即n =2. 答案:28.已知函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则函数g (x )=f (x )-12的零点所构成的集合为________ .解析:令g (x )=0,得f (x )=12,所以⎩⎪⎨⎪⎧x ≤0,2x =12或⎩⎪⎨⎪⎧x >0,|log 2x |=12,解得x =-1或x =22或x =2,故函数g (x )=f (x )-12的零点所构成的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2.答案:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫-1,22,2 9.设函数f (x )=ax 2+bx +b -1(a ≠0). (1)当a =1,b =-2时,求函数f (x )的零点;(2)若对任意b ∈R ,函数f (x )恒有两个不同零点,某某数a 的取值X 围. 解:(1)当a =1,b =-2时,f (x )=x 2-2x -3, 令f (x )=0,得x =3或x =-1. ∴函数f (x )的零点为3或-1.(2)依题意,f (x )=ax 2+bx +b -1=0有两个不同实根, ∴b 2-4a (b -1)>0恒成立,即对于任意b ∈R ,b 2-4ab +4a >0恒成立,所以有(-4a )2-4×(4a )<0⇒a 2-a <0,解得0<a <1,因此实数a 的取值X 围是(0,1).10.设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b 且f (a )=f (b )时,求1a +1b的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值X 围. 解:(1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x =⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数. 由0<a <b 且f (a )=f (b ),得0<a <1<b 且1a -1=1-1b,∴1a +1b=2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8讲 函数与方程
基础巩固题组 (建议用时:40分钟)
一、填空题
1.(·无锡调研)函数f (x )=e x +3x 的零点个数是________.
解析 由已知得f ′(x )=e x +3>0,所以f (x )在R 上单调递增,又f (-1)=e -1-3<0,f (1)=e +3>0,所以f (x )的零点个数是1. 答案 1
2.在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为________. ①⎝ ⎛⎭⎪⎫-14,0;②⎝ ⎛⎭⎪⎫0,14;③⎝ ⎛⎭⎪⎫14,12;④⎝ ⎛⎭⎪⎫12,34. 解析 ∵f (x )=e x +4x -3,∴f ′(x )=e x +4>0. ∴f (x )在其定义域上是单调递增函数. ∵f ⎝ ⎛⎭⎪⎫-14=
-4<0,f (0)=e 0+4×0-3=-2<0,
F ⎝ ⎛⎭
⎪⎫14= -2<0,f ⎝ ⎛⎭
⎪⎫
12=1
2e -1>0,
∴f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫12<0,故选③.
答案 ③
3.若函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的取值为________. 解析 当a =0时,函数f (x )=-x -1为一次函数,则-1是函数的零点,即函数仅有一个零点;
当a ≠0时,函数f (x )=ax 2-x -1为二次函数,并且仅有一个零点,则一元二次方程ax 2-x -1=0有两个相等实根. ∴Δ=1+4a =0,解得a =-1
4.
综上,当a =0或a =-1
4时,函数仅有一个零点.
答案 0或-1
4
4.(·朝阳区期末)函数f (x )=2x -2
x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是________.
解析 因为函数f (x )=2x -2x -a 在区间(1,2)上单调递增,又函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则有⎩⎨⎧
f (1)<0,f (2)>0,,所以0<a <3.
答案 (0,3)
5.已知函数f (x )=x +2x ,g (x )=x +ln x ,h (x )=x -x -1的零点分别为x 1,x 2,x 3,则x 1,x 2,x 3的大小关系是________.
解析 依据零点的意义,转化为函数y =x 分别和y =-2x ,y =-ln x ,y =x +1的交点的横坐标大小问题,作出草图,易得x 1<0<x 2<1<x 3. 答案 x 1<x 2<x 3
6.若函数f (x )=ax +b (a ≠0)有一个零点是2,那么函数g (x )=bx 2-ax 的零点是________.
解析 由已知条件2a +b =0,即b =-2a , g (x )=-2ax 2-ax =-2ax ⎝ ⎛⎭⎪⎫
x +12,
则g (x )的零点是x =0,x =-1
2. 答案 0,-1
2
7.函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________. 解析 求函数f (x )=3x -7+ln x 的零点,可以大致估算两个相邻自然数的函数值,如f (2)=-1+ln 2,由于ln 2<ln e =1,所以f (2)<0,f (3)=2+ln 3,由于ln 3>1,所以f (3)>0,所以函数f (x )的零点位于区间(2,3)内,故n =2. 答案 2
8.已知函数f (x )=⎩⎨⎧
2x -1,x >0,
-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实
数m 的取值范围是________.
解析 画出f (x )=
⎩⎨⎧
2x -1,x >0,-x 2-2x ,x ≤0
的图象,如图. 由函数g (x )=f (x )-m 有3个零点,结合图象得:0<m <1,即m ∈(0,1). 答案 (0,1) 二、解答题
9.函数f (x )=x 3-3x +2. (1)求f (x )的零点;
(2)求分别满足f (x )<0,f (x )=0,f (x )>0的x 的取值范围. 解 f (x )=x 3-3x +2=x (x -1)(x +1)-2(x -1)= (x -1)(x 2+x -2)=(x -1)2(x +2).
(1)令f (x )=0,函数f (x )的零点为x =1或x =-2. (2)令f (x )<0,得x <-2;
所以满足f (x )<0的x 的取值范围是(-∞,-2); 满足f (x )=0的x 的取值集合是{1,-2};
令f (x )>0,得-2<x <1或x >1,满足f (x )>0的x 的取值范围是(-2,1)∪(1,+∞).
10.若关于x 的方程3x 2-5x +a =0的一个根在(-2,0)内,另一个根在(1,3)内,求a 的取值范围. 解 设f (x )=3x 2-5x +a ,
则f (x )为开口向上的抛物线(如图所示). ∵f (x )=0的两根分别在区间(-2,0),(1,3)内,
∴⎩⎨⎧
f (-2)>0,
f (0)<0,f (1)<0,f (3)>0,
即⎩⎨⎧
3×(-2)2-5×(-2)+a >0,
a <0,3-5+a <0,
3×9-5×3+a >0,
解得-12<a <0.
∴所求a 的取值范围是(-12,0).
能力提升题组 (建议用时:25分钟)
一、填空题
1.(·烟台模拟)如图是函数f (x )=x 2+ax +b 的图象,则函数g (x )=ln x +f ′(x )的零点所在区间是________. ①⎝ ⎛⎭⎪⎫14,12;②(1,2)③⎝ ⎛⎭⎪⎫12,1; ④(2,3).
解析 由f (x )的图象知0<b <1,f (1)=0,从而-2
<a <-1,g (x )=ln x +2x +a ,g (x )在定义域内单调递增,g ⎝ ⎛⎭⎪⎫
12=ln 12+1+a
<0,g (1)=2+a >0,g ⎝ ⎛⎭⎪⎫
12·g (1)<0.
答案 ③
2.(·连云港检测)已知函数y =f (x )(x ∈R )满足f (x +1)=-f (x ),且当x ∈[-1,1]时,f (x )=|x |,函数g (x )=⎩⎪⎨⎪⎧
sin (πx ),x >0,-1
x ,x <0,则函数h (x )=f (x )-g (x )在区间[-5,5]
上的零点的个数为________.
解析 函数y =f (x )(x ∈R )满足f (x +1)=-f (x ),故f (x +2)=-f (x +1)=-[-f (x )]=f (x ),即函数f (x )的周期为2,作出x ∈[-1,1]时,f (x )=|x |的图象,并利用周期性作出函数f (x )在[-5,5]上的图象,在同一坐标系内再作出g (x )在[-5,5]上的图象,由图象可知,函数f (x )与g (x )的图象有9个交点,所以函数h (x )=f (x )-g (x )在区间[-5,5]上的零点的个数为9.
答案9
3.(·天津卷改编)设函数f(x)=e x+x-2,g(x)=ln x+x2-3.若实数a,b满足f(a)=0,g(b)=0,则g(a),0,f(b)的大小关系为________.
解析由f′(x)=e x+1>0知f(x)在R上单调递增,
且f(0)=1-2<0,f(1)=e-1>0,
所以f(a)=0时,a∈(0,1).
又g(x)=ln x+x2-3在(0,+∞)上单调递增,
且g(1)=-2<0,所以g(a)<0,
由g(2)=ln 2+1>0,g(b)=0,得b∈(1,2).
又f(1)=e-1>0,∴f(b)>0.故g(a)<0<f(b).
答案g(a)<0<f(b)
二、解答题
4.(·深圳调研)已知二次函数f(x)的最小值为-4,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R}.
(1)求函数f(x)的解析式;
(2)求函数g(x)=f(x)
x-4ln x的零点个数.
解(1)∵f(x)是二次函数,且关于x的不等式f(x)≤0的解集为{x|-1≤x≤3,x∈R},
∴f(x)=a(x+1)(x-3)=ax2-2ax-3a,且a>0.
∴f(x)min=f(1)=-4a=-4,a=1.
故函数f(x)的解析式为f(x)=x2-2x-3.
(2)∵g(x)=x2-2x-3
x-4ln x=x-
3
x-4ln x-2(x>0),
∴g′(x)=1+3
x2-
4
x=
(x-1)(x-3)
x2.
当x变化时,g′(x),g(x)的取值变化情况如下:
又因为g(x)在(3,+∞)单调递增,因而g(x)在(3,+∞)上只有1个零点.故g(x)在(0,+∞)只有1个零点.。

相关文档
最新文档