《反证法》PPT课件(陕西省县级优课)

合集下载

《反证法》课件

《反证法》课件

∵l1∥l2 , l2∥l3, 则过点p就有两条直线l1、 l3都与l2平行,这与“经过直线外一点,有 且只有一条直线平行于已知直线”矛盾.
所以假设不成立,所求证的结论成立, 即 l1∥l3
定理
求证:在同一平面内,如果两条直线都和第三条
直线平行,那么这两条直线也互相平行.
l
(3)不用反证法证明
已知:如图,l1∥l2 ,l 2 ∥l 3 求证: l1∥l3
这种证明方法叫做反证法.
反证法的一般步骤:
假设
假设命题结 论反面成立
假设命题结 论不成立
推理得出 的结论
与已知条 件矛盾
与定理,定义, 公理矛盾
假设不 成立
所证命题 成立
(1)课本第87页作业题 (2)见作业本.
A 2 l1
B1
l2
证明:作直线l,分别与直线l1 ,l2 , C 3
l3
l3交于于点A,B,C。
∵l1∥l2 ,l 2∥l 3(已知) ∴∠2 =∠1 ,∠1 =∠3(两直线平行,同位角相等)
∴∠2 =∠3(等式性质)
∴ l1∥l3 (同位角相等,两直线平行)
已知:如图,直线l与l1,l2,l3 都相交,且 l1∥l2,l2∥l3,
假设“李子甜” 树在道边则李子少
与已知条件“树在道边而多子”产生矛 盾
假设 “李子甜”不成立
所以“树在道边而多子,此必为苦李” 是正确的
在证明一个命题时,人们有时
先假设命题不成立, 从这样的假设出发,经过推理得出和已知条件矛 盾,或者与定义,公理,定理等矛盾, 从而得出假设命题不成立,是错误的, 即所求证的命题正确.
当∠B是_钝__角__时,则_∠__B_+__∠__C_>__1_8_0_°

《反证法》 完整版PPT课件

《反证法》 完整版PPT课件

王戎推理方法是: 假设“李子甜”
树在道边则李子少 与已知条件 “树在道边而多子”产生矛盾
假设 “李子甜”不成立 所以“树在道边而多子,此必为苦李” 是正确的
在证明一个命题时,有时
先假设原命题不成立,
然后从这个假设出发,经过逐步推理论证,最 后推出与已知条件矛盾,或者与学过定义、公 理、定理等矛盾,
所以假设不成立,所求证的结论成立, 即 l1∥l3
反证法的一般步骤:
假设命题结论 不成立。
假设
(即命题结论反面成立) 所证命 题成立
推理得出 的结论
与已知条件 矛盾
与定理,定义, 公理矛盾
假设不 成立
从而得出假设是错误的,原结论是正确的。
这种证明方法叫做反证法。
证明:一个三角形中最多有一个直角。
A
C
B
反证法的步骤
第一步:假设命题的结论不成立。
第二步:从这个假设和其他已知条件出发,经过推理 论证,得出与学过的概念、基本事实。已证明的定理、 性质或题设条件相矛盾的结果。
第三步:由矛盾的结果,判定假设不成立,从 而说明命题的结论是正确的。
反证法
中国古代有一个叫《路边苦李》的故事:王戎7岁 时,与小伙伴们外出游玩,看到路边的李树上结满 了果子。小伙伴们纷纷去摘取果子,只有王戎站在 原地不动。有人问王戎为什么?
王戎回答说:“树在道边而多子,此必苦李。”
小伙伴摘取一个尝了一下果然是苦李。
王戎是怎样知道李子是苦的吗?他运用 了怎样的推理方法?
例: 求证:四边形中至少有一个角是钝角或直角。 已知:四边形ABCD(图4-36)。 求证:四边形ABCD中至少有一个角是钝角或直角。
图4-36 证明:假设四边形ABCD中没有一个角是钝角或直角,即 ∠A<90 °,∠B<90 °,∠ C<90 °,∠ D<90 ° , 于是∠ A+ ∠ B+ ∠ C+ ∠ D<360 °。 这与“四边形的内角和为360 °”矛盾,所以四边形ABCD中至 少有一个角是钝角或直角。

《反证法》ppt课件

《反证法》ppt课件
2.2直接证明与间接证明
2.2.2
间接证明
一、复习
1、直接证明的两种基本证法:综合法和分析法 2、这两种基本证法的推证过程和特点: 综合法 — —已知条件⇒ ⇒ ⇒ 结论 由因导果 分析法 — —结论 已知条件 执果索因
3、在实际解题时,两种方法如何运用? 通常用分析法提供思路,再由综合法写过程
二.练习
1.已知a,b,c是不全相等的正数,且0 < x < 1. 求证: a+b b+c c+a log x + log x + log x 2 2 2 < log x a + log x b + log xc
2.设a,b是异面直线,在a上任取两点A,C, 在b上任取两点B,D, 试证:AB和CD也是异面直线.
否定结论q
逻辑矛盾




注3.反证法的证明过程可以概括为: 否定结论——推出矛盾——肯定结论, 即三个步骤:反设—归谬—存真 注4.用反证法证明的步骤:
(1)假设命题结论不成立,即假设结论的反面成立 (反设) (2)从反设和已知条件出发,经过一系列正确的推理, 得出矛盾结果(归谬) (3)由矛盾结果,断定反设不真,从而肯定结论成立 (存真)
例2.已知四面体S-ABC中,SA⊥底面ABC, △ABC是锐角三角形,H是点A在面SBC上 的射影. 求证:H不可能是△SBC的垂心.
解题反思:
证明该问题的关键 是哪一步? 本题中得到的逻辑 矛盾归属哪一类?
例3:求证:正弦函数没有比2π 小的正周期.
解题反思:
证明该问题的关键是哪一步? 本题中得到的逻辑矛盾归属哪一类?
A
C a

人教A版选修(2-2)2.2.2《反证法》课件(23张ppt)品质课件PPT

人教A版选修(2-2)2.2.2《反证法》课件(23张ppt)品质课件PPT
小故事:
路边苦李
王戎7岁时,与小伙伴 们外出游玩,看到路边的 李树上结满了果子.小伙 伴们纷纷去摘取果子,只 有王戎站在原地不动.王 戎回答说:“树在道边而多 子,此必苦李.” 小伙伴摘取一个尝了一 下果然是苦李.
王戎是怎样知道李子是苦的呢?请 说明你的理由。
假如李子不是苦的,也就是说李子是甜的, 那么按照惯例长在大路边的李子应该经常会被 过路人吃掉,那么,树上的李子还会有这么多 吗?
(2)推理过程必须完整,否则不能说明命题 的真伪性;
(3)在推理过程中,要充分使用已知条件, 否则推不出矛盾,或者不能断定推出的结果是 错误的。
独立 作业
作业: 练习:学案中巩固提高
习题91页:A组
谢谢大家
长风破浪会有时,直挂云帆济沧海。努力,终会有所收获,功夫不负有心人。以铜为镜,可以正衣冠;以古为镜,可以知兴替;以人为镜,可以明得失。前进的路上 照自己的不足,学习更多东西,更进一步。穷则独善其身,达则兼济天下。现代社会,有很多人,钻进钱眼,不惜违法乱纪;做人,穷,也要穷的有骨气!古之立大 之才,亦必有坚忍不拔之志。想干成大事,除了勤于修炼才华和能力,更重要的是要能坚持下来。士不可以不弘毅,任重而道远。仁以为己任,不亦重乎?死而后已, 理想,脚下的路再远,也不会迷失方向。太上有立德,其次有立功,其次有立言,虽久不废,此谓不朽。任何事业,学业的基础,都要以自身品德的修炼为根基。饭 而枕之,乐亦在其中矣。不义而富且贵,于我如浮云。财富如浮云,生不带来,死不带去,真正留下的,是我们对这个世界的贡献。英雄者,胸怀大志,腹有良策, 吞吐天地之志者也英雄气概,威压八万里,体恤弱小,善德加身。老当益壮,宁移白首之心;穷且益坚,不坠青云之志老去的只是身体,心灵可以永远保持丰盛。乐 其乐;忧民之忧者,民亦忧其忧。做领导,要能体恤下属,一味打压,尽失民心。勿以恶小而为之,勿以善小而不为。越是微小的事情,越见品质。学而不知道,与 行,与不知同。知行合一,方可成就事业。以家为家,以乡为乡,以国为国,以天下为天下。若是天下人都能互相体谅,纷扰世事可以停歇。志不强者智不达,言不 越高,所需要的能力越强,相应的,逼迫自己所学的,也就越多。臣心一片磁针石,不指南方不肯休。忠心,也是很多现代人缺乏的精神。吾日三省乎吾身。为人谋 交而不信乎?传不习乎?若人人皆每日反省自身,世间又会多出多少君子。人人好公,则天下太平;人人营私,则天下大乱。给世界和身边人,多一点宽容,多一份担 为生民立命,为往圣继绝学,为万世开太平。立千古大志,乃是圣人也。丹青不知老将至,贫贱于我如浮云。淡看世间事,心情如浮云天行健,君子以自强不息。地 载物。君子,生在世间,当靠自己拼搏奋斗。博学之,审问之,慎思之,明辨之,笃行之。进学之道,一步步逼近真相,逼近更高。百学须先立志。天下大事,不立 川,有容乃大;壁立千仞,无欲则刚做人,心胸要宽广。其身正,不令而行;其身不正,虽令不从。身心端正,方可知行合一。子曰:“知者不惑,仁者不忧,勇者不惧 进者,不会把时间耗费在负性情绪上。好学近乎知,力行近乎仁,知耻近乎勇。力行善事,有羞耻之心,方可成君子。操千曲尔后晓声,观千剑尔后识器做学问和学 次的练习。第一个青春是上帝给的;第二个的青春是靠自己努力当眼泪流尽的时候,留下的应该是坚强。人总是珍惜未得到的,而遗忘了所拥有的。谁伤害过你,谁 要。重要的是谁让你重现笑容。幸运并非没有恐惧和烦恼;厄运并非没有安慰与希望。你不要一直不满人家,你应该一直检讨自己才对。不满人家,是苦了你自己。 久的一个人,而是心里没有了任何期望。要铭记在心;每一天都是一年中最完美的日子。只因幸福只是一个过往,沉溺在幸福中的人;一直不知道幸福却很短暂。一 看他贡献什么,而不应当看他取得什么。做个明媚的女子。不倾国,不倾城,只倾其所有过的生活。生活就是生下来,活下去。人生最美的是过程,最难的是相知, 幸福的是真爱,最后悔的是错过。两个人在一起能过就好好过!不能过就麻利点分开。当一个人真正觉悟的一刻,他放下追寻外在世界的财富,而开始追寻他内心世 若软弱就是自己最大的敌人。日出东海落西山,愁也一天,喜也一天。遇事不转牛角尖,人也舒坦,心也舒坦。乌云总会被驱散的,即使它笼罩了整个地球。心态便 明灯,可以照亮整个世界。生活不是单行线,一条路走不通,你可以转弯。给我一场车祸。要么失忆。要么死。有些人说:我爱你、又不是说我只爱你一个。生命太 了明天不一定能得到。删掉了关于你的一切,唯独删不掉关于你的回忆。任何事都是有可能的。所以别放弃,相信自己,你可以做到的。、相信自己,坚信自己的目 受不了的磨难与挫折,不断去努力、去奋斗,成功最终就会是你的!既然爱,为什么不说出口,有些东西失去了,就在也回不来了!对于人来说,问心无愧是最舒服 表明他人的成功,被人嫉妒,表明自己成功。在人之上,要把人当人;在人之下,要把自己当人。人不怕卑微,就怕失去希望,期待明天,期待阳光,人就会从卑微 存梦想去拥抱蓝天。成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。人只要不失去方向,就不会失去自己。过去的习惯,决定今天的你,所以 定你今天的一败涂地。让我记起容易,但让我忘记我怕我是做不到。不要跟一个人和他议论同一个圈子里的人,不管你认为他有多可靠。想象困难做出的反应,不是 而是面对它们,同它们打交道,以一种进取的和明智的方式同它们奋斗。他不爱你,你为他挡一百颗子弹也没用。坐在电脑前,不知道做什么,却又不想关掉它。做 让时间帮你决定。如果还是无法决定,做了再说。宁愿犯错,不留遗憾。发现者,尤其是一个初出茅庐的年轻发现者,需要勇气才能无视他人的冷漠和怀疑,才能坚 并把研究继续下去。我的本质不是我的意志的结果,相反,我的意志是我的本质的结果,因为我先有存在,后有意志,存在可以没有意志,但是没有存在就没有意志 类的福利,可以使可憎的工作变为可贵,只有开明人士才能知道克服困难所需要的热忱。立志用功如种树然,方其根芽,犹未有干;及其有干,尚未有枝;枝而后叶 的出现不是对愿望的否定,而是把愿望合并和提升到一个更高的意识无论是美女的歌声,还是鬓狗的狂吠,无论是鳄鱼的眼泪,还是恶狼的嚎叫,都不会使我动摇。 灾难,已经开始了的事情决不放弃。最可怕的敌人,就是没有坚强的信念。既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。意志若是屈 它都帮助了暴力。有了坚定的意志,就等于给双脚添了一对翅膀。意志坚强,只有刚强的人,才有神圣的意志,凡是战斗的人,才能取得胜利。卓越的人的一大优点 的遭遇里百折不挠。疼痛的强度,同自然赋于人类的意志和刚度成正比。能够岿然不动,坚持正见,度过难关的人是不多的。钢是在烈火和急剧冷却里锻炼出来的, 么也不怕。我们的一代也是这样的在斗争中和可怕的考验中锻炼出来的,学习了不在生活面前屈服。只要持续地努力,不懈地奋斗,就没有征服不了的东西。

反证法(证明) ppt课件

反证法(证明) ppt课件
若存在,求出其值,若不存在,请说明理由。
练习
求证:在任何三个整数中,必有这样的 两个数,他们的和是2的倍数
如果把9个苹果放在4个盒子里那么至少 有1个盒子中放了3个或者3个0 对于直线l : y kx 1 ,是否存在这样的
实数 k ,使得l 与双曲线 C : 3x2 y2 1
的交点A,B关于直线 y ax(a 是常数)对称?
例3 抛物线上任取四点4所组成的不可能是平行四边形。
练习
有一个4×4的方格表.先从中涂黑3个方格,然后再 将那些至少与两个已涂黑的方格相邻的方格也涂黑. 求证:无论最初涂黑哪3个方格,都不可能按这样的 规则涂黑所有的方格.
存在无限性命题与反证法
问题涉及存在多个符合某条件时,也使用反证法
反证法
反证法定义 方法的步骤 反证法的分类
反证法
反证法:通过证明命题的否定命题不真 实,从而肯定原命题成立的论证方式
包括归谬法和穷举法
反证法证题步骤
1、假设原命题不成立 2、从否定结论出发,逐层推理,得出与
公理、订立或者题设条件自相矛盾的结 论 3、根据排中律,肯定原命题成立
存在至多或者至少型命题

例8
若x, y, z 为实数,令 a x2 2y ,
2
b y2 2z , c z2 2x
3
6
求证:a,b, c 至少有一个不大于0。
例题
例8 把43人分成7各小组,总有一个小组 至少有7人
例9 把11个参加活动的名额分配给6个班, 每班至少分配1人,求证:不管怎么分, 至少有3个班的名额相等
否定性命题与反证法
否定型命题:结论中含有“不可 能……”“不是……”“不存在……”“不等于……” 等词句。这类命题通常用反证法证明。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即点P为 与 的交点,而
,这与Biblioteka 们以前学过的“过一点有且只有一条直线与已
知直线垂直”相矛盾。所以,
过同一直线上的三点不能作圆。
在证明一个命题时,人们有时
先假设命题不成立, 从这样的假设出发,经过推理得出和已知条件矛 盾,或者与定义,公理,定理等矛盾, 从而得出假设命题不成立,是错误的, 即所求证的命题正确.
平行,那么这两条直线也互相平行.
(1)你首先会选择哪一种证明方法?
(2)如果选择反证法,先怎样假设?结果和什么产生矛盾?
已知:如图,l1∥l2 ,l 2 ∥l 3
求证: l1∥l3
p
l1 l2 l3
证明:假设l1不平行l3,则l1与l3相交,设交点为p.
∵l1∥l2 , l2∥l3, 则过点p就有两条直线l1、 l3都与l2平行,这与“经过直线外一点,有 且只有一条直线平行于已知直线”矛盾.
∵l1∥l2 ,l 2∥l 3(已知) ∴∠2 =∠1 ,∠1 =∠3(两直线平行,同位角相等)
∴∠2 =∠3(等式性质)
∴ l1∥l3 (同位角相等,两直线平行)
已知:如图, 直线l1∥l2,直线L与 L1, L2相交 求证:∠1=∠2
l
1
L1
2
l2
试一试
已知:如图,直线a,b被直线c所截, ∠1 ≠ ∠2
假设“李子甜” 树在道边则李子少
与已知条件“树在道边而多子”产生矛 盾
假设 “李子甜”不成立
所以“树在道边而多子,此必为苦李” 是正确的
过同一直线上的三点不能作圆
• 已知:点A、 B、 C三点在直线 上
• 求证:过A、 B、 C三点不能作圆
• 证明:假设过A、 B、 C三点可以作一个圆。
• 设这个圆的圆心为P,那么点P既在线段AB的垂直平分线 上,又在线段BC的垂直平分线 上,
1
求证:a∥b
2
证明:假设结论不成立,则a∥b
c a b
∴∠1=∠2 (两直线平行,同位角相等)
这与已知的∠1≠∠2矛盾
∴假设不成立 ∴a∥b
延伸拓展 你能用反证法证明以下命题吗?
如图,在△ABC中,若∠C是直角, 那么∠B一定是锐角.
证明:假设结论不成立,则∠B是_直__角__或_钝__角___. 当∠B是__直__角_时,则_∠__B_+_∠__C_=__1_8_0_° 这与__三__角__形__的__三__个__内__角__和__等__于__1_8_0_°_矛盾;
这与__三_角_形_的_内_角_和_等_于_1_8_0_°___矛盾
所以假设命题__不_成_立__, 所以,所求证的结论成立.
反证法的一般步骤:
假设命题结论反面成立


假设命题结论不成立
所证命 题成立
推理得出 的结论
与已知条件 矛盾
与定理,定义, 公理矛盾
假设不 成立
求证:在同一平面内,如果两条直线都和第三条直线
这种证明方法叫做反证法.
反证法的一般步骤:
假设命题结论反面成立


假设命题结论不成立
所证命 题成立
推理得出 的结论
与已知条件 矛盾
与定理,定义, 公理矛盾
假设不 成立
所以假设不成立,所求证的结论成立, 即 l1∥l3
定理
求证:在同一平面内,如果两条直线都和第三条
直线平
行,那么这两条直线也互相平行.
l
不用反证法证明
已知:如图,l1∥l2 ,l 2 ∥l 3 求证: l1∥l3
A 2 l1
B1
l2
证明:作直线l,分别与直线l1 ,l2 , C 3
l3
l3交于于点A,B,C。
当∠B是_钝__角__时,则_∠__B_+__∠__C_>__1_8_0_°
这与__三__角__形__的__三__个__内__角__和__等__于__1_8_0_°_矛盾; 综上所述,假设不成立. ∴∠B一定是锐角.
在证明一个命题时,人们有时
先假设命题不成立, 从这样的假设出发,经过推理得出和已知条件矛 盾,或者与定义,公理,定理等矛盾, 从而得出假设命题不成立,是错误的, 即所求证的命题正确.
这种证明方法叫做反证法.
试试看!
用反证法证明(填空):在三角形的内角中,至少有一个角 大于或等于60°
已知:如图, ∠A,∠B,∠C是△ABC的内角

求证: ∠A,∠B,∠C中至少有一个角大于或等于60度
证明:

假设所求证的结论不成立,即
∠A__<60°, ∠B__<60°,∠C__<60°

则 ∠A+∠B+∠C < 180度
反证法
有人问王戎为什么,
从前有个聪明的孩
子叫王戎。他7岁时,与 小伙伴们外出游玩,看 到路边的李树上结满了 果子.小伙伴们纷纷去 摘取果子,只有王戎站 在原地不动.
王戎回答说:“树在道边而多子,此必苦李.”
小伙伴摘取一个尝了一下果然是苦李.
王戎是怎样知道李子是苦的呢?
他运用了怎样的推理方法?
王戎推理方法是:
相关文档
最新文档