有限元法的直接刚度法梁单元40页PPT
合集下载
《梁的刚度分析》课件

截面形状的影响
矩形截面
矩形截面的梁在垂直于长边方向上刚 度较低,容易发生弯曲变形。
工字形截面
工字形截面的梁在垂直于腹板方向上 刚度较高,抗弯能力较强。
梁的跨度与支撑的影响
跨度大小
梁的跨度越大,其自由端处的转角和 挠度越大,刚度越小。
支撑条件
支撑条件如简支、固支等对梁的刚度 也有影响。例如,简支梁在跨中受到 集中载荷时,跨中挠度较大,刚度较 小。
案例三:实际工程中的梁刚度问题解决
总结词:实际应用
详细描述:在实际工程中,梁的刚度问题可能涉及到多种因素,如载荷、支撑条件、材料特性等。解决实际工程中的梁刚度 问题需要综合考虑多种因素,采用理论分析和实验验证相结合的方法。
外部载荷的影响
载荷大小
随着外部载荷的增大,梁的变形量增加,刚度减小。
载荷分布
集中载荷或分布载荷对梁的刚度有不同影响。例如,集中载荷可能导致梁在载 荷作用点处产生较大的局部变形。
03
梁的刚度分析方法
弹性分析
弹性分析方法基于弹性力学理论,通过求解弹性 方程得到梁的变形和应力分布。
弹性分析适用于材料处于弹性阶段的情形,能够 给出梁在受力过程中的变形和应力分布。
VS
详细描述
在梁的刚度设计中,应优先选择具有高弹 性模量和强度的材料,如钢铁、合金钢和 优质木材等。这些材料能够提供更好的抗 弯和抗剪切性能,从而提高梁的刚度。
截面形状优化建议
总结词
合理的截面形状可以有效地提高梁的刚度,常见的优化截面形状包括矩形、工字形和圆形等。
详细描述
根据梁所承受的载荷和跨度大小,可以选择不同的截面形状进行优化。例如,对于承受较大载荷的梁 ,可以选择工字形截面以提高抗弯刚度;对于跨度较大的梁,可以选择圆形截面以增强抗扭刚度。
有限元经典PPT第4章

Pii Kiiui
Ki1u1 Ki2u2 Kiiui K u i,i1 i1
ui
n
Kiiui Kiiui
Kiju j
4.1.2 平面应力问题有限元的基本思想和瑞雷-里兹法
v3 f3y
3
u3
f3x
f1y v1 u1
1 f1x
v2 f2y u2
2 f2x
给定一个三角形单元和作用在角点上 的六个力,要求得六个角点的位移。 或者是要求三角形角点发生指定的位 移,在三角形三个角点如何加力?
很显然,问题的精确解很困难。采用 瑞雷-里兹法求近似式解
e号单元的三个节点I,j,k的力对应的 力的平衡方程是第2i-1,2i;2j-1,2j;2k1,2k个平衡方程
e号单元的三个节点I,j,k的位移是第 2i-1,2i;2j-1,2j;2k-1,2k个未知数
弹性模量:E 横截面积:A
1
1 L
2
2L
3
局部系单元刚度阵:
k
1
EA L
1 -1
-1
1
2 集成总刚:
0 1
解得:
ux uy
L EA
3.8284L
EA
i
j
第一类位移条件:
Ki1u1 Ki2u2 Kiiui Ki1ui1
ui 0
令: Kij 0 i j
m
vi 0
Kii 1
um 0
Pi 0
ui 0
第二类位移条件:um um
大数
充大数法: Kii Kii
第一步:求转换矩阵
k2
EA 1 2L -1
-1
1
P
cos 0
T sin
有限元梁单元课件

详细描述
在桥梁结构的有限元分析中,梁单元被广泛用于模拟桥梁的横梁、纵梁等结构构件。通过将桥梁离散 化为一系列的梁单元,可以计算出各梁单元的应力、应变等力学参数,从而评估桥梁的整体性能和安 全性。
建筑结构的有限元分析
总结词
建筑结构的有限元分析是有限元梁单元的又一重要应用,通 过模拟建筑的受力行为,可以优化建筑设计并提高建筑的安 全性和稳定性。
拓展有限元梁单元的应用范围 ,将其应用于更广泛的工程领 域,如海洋工程、地质工程等 。
结合智能优化算法和机器学习 技术,实现有限元梁单元的自 动建模和参数优化,提高设计 效率。
加强与实验研究的结合,通过 实验验证有限元梁单元的准确 性和可靠性,为工程实际提供 更加可靠的依据。
THANKS
01
梁单元是一种常见的有限元单元,用于模拟具有弯曲和剪切行 为的杆件。
02
在有限元梁单元的离散化过程中,将梁划分为一系列小的单元
,每个单元具有节点和内部点。
离散化后的梁可以被表示为一组节点的位移和内力的函数,通
03
过节点间的位移关系和内力平衡关系建立方程。
有限元梁单元的刚度矩阵与质量矩阵
刚度矩阵和质量矩阵是有限元分析中的两个重要概念 ,分别描述了结构的刚度和质量特性。
03 有限元梁单元的实现
有限元方法概述
有限元方法是一种数值分析方法,通过将复杂的连续结构离散化为有限个 小的单元,来近似求解复杂的工程问题。
有限元方法具有灵活性和通用性,可以应用于各种形状和类型的结构分析 。
有限元方法的基本步骤包括离散化、单元分析、整体分析、求解和后处理 等。
有限元梁单元的离散化
研究梁在稳定性问题下的承载能力和 失稳过程。
梁的剪切理论
在桥梁结构的有限元分析中,梁单元被广泛用于模拟桥梁的横梁、纵梁等结构构件。通过将桥梁离散 化为一系列的梁单元,可以计算出各梁单元的应力、应变等力学参数,从而评估桥梁的整体性能和安 全性。
建筑结构的有限元分析
总结词
建筑结构的有限元分析是有限元梁单元的又一重要应用,通 过模拟建筑的受力行为,可以优化建筑设计并提高建筑的安 全性和稳定性。
拓展有限元梁单元的应用范围 ,将其应用于更广泛的工程领 域,如海洋工程、地质工程等 。
结合智能优化算法和机器学习 技术,实现有限元梁单元的自 动建模和参数优化,提高设计 效率。
加强与实验研究的结合,通过 实验验证有限元梁单元的准确 性和可靠性,为工程实际提供 更加可靠的依据。
THANKS
01
梁单元是一种常见的有限元单元,用于模拟具有弯曲和剪切行 为的杆件。
02
在有限元梁单元的离散化过程中,将梁划分为一系列小的单元
,每个单元具有节点和内部点。
离散化后的梁可以被表示为一组节点的位移和内力的函数,通
03
过节点间的位移关系和内力平衡关系建立方程。
有限元梁单元的刚度矩阵与质量矩阵
刚度矩阵和质量矩阵是有限元分析中的两个重要概念 ,分别描述了结构的刚度和质量特性。
03 有限元梁单元的实现
有限元方法概述
有限元方法是一种数值分析方法,通过将复杂的连续结构离散化为有限个 小的单元,来近似求解复杂的工程问题。
有限元方法具有灵活性和通用性,可以应用于各种形状和类型的结构分析 。
有限元方法的基本步骤包括离散化、单元分析、整体分析、求解和后处理 等。
有限元梁单元的离散化
研究梁在稳定性问题下的承载能力和 失稳过程。
梁的剪切理论
有限元梁单元课件

06
有限元梁单元的应用案例
案例一:简单的桥梁模型分析
总结词
简单、实用、高效
详细描述
有限元梁单元在桥梁模型分析中应用广泛,可对桥梁的强度、刚度和稳定性进行 准确评估。这种模型通常采用简化的几何形状和载荷条件,具有较高的计算效率 和实用性。
案例二:复杂的建筑结构模型分析
总结词
复杂、精确、全面
详细描述
对于复杂的建筑结构,有限元梁单元可实现更精确、全面的分析。通过对建筑物的整体结构进行离散化,有限元 梁单元能够模拟各种材料属性和边界条件,从而对建筑物在不同载荷和环境条件下的性能进行全面评估。
案例三:机械零件的强度分析
总结词
详细描述
THANKS
感谢观看
剪切变形 扭转变形
梁的有限元模型
梁单元的节点 梁单元的刚度矩阵
04
有限元梁单元的实现
梁单元的节点和自由度
节点
自由度
梁单元的总自由度数是两个节点的自 由度数之和,即每个节点有三个自由 度,总共有六个自由度。
梁单元的形函数
形函数
形函数的选取
梁单元的质量矩阵和刚度矩阵
质量矩阵 刚度矩阵 质量矩阵和刚度矩阵的建立
有限元梁单元课件
contents
目录
• 引言 • 有限元方法基础 • 梁单元的基本理论 • 有限元梁单元的实现 • 有限元梁单元的程序实现 • 有限元梁单元的应用案例
01
引言
背景介 绍
有限元法是一种广泛应用于工程分析的数值计算方法,具有广泛的应用价值。
梁是工程中常见的一种结构形式,研究梁的有限元分析对于理解结构分析具有重要 的意义。
通过有限元方法,我们可以将 一个复杂的问题分解为多个简 单的子问题,从而降低了问题 的求解难度。
直梁的有限元分析ppt课件

f1,1, f2,2, f3,3, f4,4 T
26
K 为结构的整体刚度矩阵,也称总刚度矩阵
12 6l 12 6l
0
0 0 0
6l
4l 2
6l
2l 2
0
0
0
0
12 6l 12 12 6l 6l 12 6l 0 0
K
2EI l3
6l 0
2l2 6l 6l 4l2 4l2 0 12 6l
1
1
2
单元编号 1 节点:1,2
2
2
3
单元编号 2 节点:2,3
3
3
4
单元编号 3
节点:3,4
7
划分单元的原则(设置节点的原则)
M
1
2
1
2
3
4
3
• 几何形状发生改变处 • 外载荷规律发生改变处(含约束) • 边界点 • 计算关心的位置 • 单元尺寸要均匀
8
二、单元分析
M
1
2
1
2
3
4
3
截面法:
qi i
6l 2l 2 6l 3l 4l 2 2l 2 3l l2
0 0 6 3l 6 3l
0 0 3l l2 3l 2l 2
f
f2 2 f3 3 4 4
0
Z
24 0 12 6l 0 f2
m0
0
2EI l3
0
12
6l
8l 2 6l 2l 2
4l 2
6l
2l 2
0
0
0 0 f1 0
0
0
0
1
0
MZZ223
Z M 0
M3
26
K 为结构的整体刚度矩阵,也称总刚度矩阵
12 6l 12 6l
0
0 0 0
6l
4l 2
6l
2l 2
0
0
0
0
12 6l 12 12 6l 6l 12 6l 0 0
K
2EI l3
6l 0
2l2 6l 6l 4l2 4l2 0 12 6l
1
1
2
单元编号 1 节点:1,2
2
2
3
单元编号 2 节点:2,3
3
3
4
单元编号 3
节点:3,4
7
划分单元的原则(设置节点的原则)
M
1
2
1
2
3
4
3
• 几何形状发生改变处 • 外载荷规律发生改变处(含约束) • 边界点 • 计算关心的位置 • 单元尺寸要均匀
8
二、单元分析
M
1
2
1
2
3
4
3
截面法:
qi i
6l 2l 2 6l 3l 4l 2 2l 2 3l l2
0 0 6 3l 6 3l
0 0 3l l2 3l 2l 2
f
f2 2 f3 3 4 4
0
Z
24 0 12 6l 0 f2
m0
0
2EI l3
0
12
6l
8l 2 6l 2l 2
4l 2
6l
2l 2
0
0
0 0 f1 0
0
0
0
1
0
MZZ223
Z M 0
M3
第二章 有限元法的直接刚度法

Qi
=[Qi Mi ]
T
=[ fi θi ]
T
Mi
f-挠度(上为正)θ-转角(逆时针为正); Fy-外部集中力Mz-外部扭矩
qj f j
i e j
qi fi
mi θi
单元特性- 每个单元2个节点,每个
X’
mj θ
j
节点2个位移即2个自由度。则每个单元共 4个自由度
节点力-单元与节点之间的作用力 pi=
l2 l
kjj -6EA 4EA
l2 l
l
3
l
2
e 单元刚度矩阵[K] 的子矩阵块[ k i j ] 表示: 当 j 节点发生
单位位移,且其他节点位移为0时,对应于 i 节点的节点力
2.1.4
直梁总体刚度矩阵
有限元法是把一个连续体,简化为由有限个离散单元 组合而成的等效离散模型进行求解的。
F A B C M D
i
e
j
X’
单元
2.1.1
划分单元
划分单元的原则: 杆件的交点、界面变化处、支撑点 和自由端、集中载荷处、欲求位移 处、单元大小尽量一致。
2.1.2 直梁节点位移,力与载荷
Y
Qi f i
Mi θi
Fy 1 ① Mz 2 ② 3 ③ 4 X
节点载荷 -节点处所受的外力
节点位移δi=
y’
fi θi
Qi=
内力Q-剪力M-弯矩
qi
mi
=[ qi mi ]
T
一、度量梁变形的两个基本位移量
1.挠度:横截面形心沿垂直于轴线方向的线位移。用w表示。 与 y 同向为正,反之为负。 y C w C1
P
x
有限元法PPT课件

和时间。
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。
有限元分析基础ppt课件

a. 单元位移函数的项数,至少应等于单元的自由度 数。它的阶数至少包含常数项和一次项。至于高次项要 选取多少项,则应视单元的类型而定。
32
第三章 杆系结构静力分析的有限单元法
b. 单元的刚体位移状态和应变状态应当全部包含在
位移函数中。
c. 单元的位移函数应保证在单元内连续,以及相邻
单元之间的位移协调性。 由单元结点位移,确定待定系数项
17
第二章 结构几何构造分析
②超静定结构——自由度大于零的几何不变结构。其特 性:
a. 超静定结构仅仅满足静力平衡条件的解有无穷多 个,但同时满足结构变形协调条件的解仅有一个。
b. 超静定结构的内力及支反力不仅与载荷有关,而 且与林料的力学性能和截面尺寸有关。
c. 超静定结构在非载荷因素作用下,如温度变化、 支座沉陷、制造误差等而产生的位移会受到多余约束的 限制,结构内必将产生内力。
33
第三章 杆系结构静力分析的有限单元法
3.2.2 梁单元平面弯曲的位移函数
梁单元平面弯曲仅考虑结点的四个位移分
量 i, i , j , j ,由材料力学知,各截面的转角:
v x
故梁单元平面弯曲的位移表达式可分为仅包含四个 待定系数 1, 2, 3, 4的多项式 v(x) 1 2 x 3 x 2 4 x3
全为零。 d. 若静定结构在载荷作用下, 结构中的某一部分
能不依靠于其它部分, 独立地与载荷保持平衡时,则 其它部分的内力为零。
e. 当将一平衡力系作用于静定结构的一个几何不 变部分时,结构的其余部分都无内力产生。
f. 当静定结构中的一个内部几何不变部分上的载 荷作等效变换时,其余部分的内力不变。
g. 当静定结构中的一个内部儿何不变部分作构造 改变时,其余部分的内力不变。
32
第三章 杆系结构静力分析的有限单元法
b. 单元的刚体位移状态和应变状态应当全部包含在
位移函数中。
c. 单元的位移函数应保证在单元内连续,以及相邻
单元之间的位移协调性。 由单元结点位移,确定待定系数项
17
第二章 结构几何构造分析
②超静定结构——自由度大于零的几何不变结构。其特 性:
a. 超静定结构仅仅满足静力平衡条件的解有无穷多 个,但同时满足结构变形协调条件的解仅有一个。
b. 超静定结构的内力及支反力不仅与载荷有关,而 且与林料的力学性能和截面尺寸有关。
c. 超静定结构在非载荷因素作用下,如温度变化、 支座沉陷、制造误差等而产生的位移会受到多余约束的 限制,结构内必将产生内力。
33
第三章 杆系结构静力分析的有限单元法
3.2.2 梁单元平面弯曲的位移函数
梁单元平面弯曲仅考虑结点的四个位移分
量 i, i , j , j ,由材料力学知,各截面的转角:
v x
故梁单元平面弯曲的位移表达式可分为仅包含四个 待定系数 1, 2, 3, 4的多项式 v(x) 1 2 x 3 x 2 4 x3
全为零。 d. 若静定结构在载荷作用下, 结构中的某一部分
能不依靠于其它部分, 独立地与载荷保持平衡时,则 其它部分的内力为零。
e. 当将一平衡力系作用于静定结构的一个几何不 变部分时,结构的其余部分都无内力产生。
f. 当静定结构中的一个内部几何不变部分上的载 荷作等效变换时,其余部分的内力不变。
g. 当静定结构中的一个内部儿何不变部分作构造 改变时,其余部分的内力不变。
第2章_有限元法的直接刚度法_平面刚架

0 0 1 0 0
0 0 0 cos 0
0 0 0 sin cos 0
0 sin
0 ui 0 vi 0 i u 0 j 0 v j 1 j
i 0 i 分块形式为 0 j j
{
单元:6个 节点:4个
结构自由度
{ 4 3 12
的矩阵。
每个节点3个自由度
个自由度
结构的整体刚度矩阵是一个
12 12
二、单元刚度矩阵 1、单元的节点力、节点位移 任取一个单元,设单元号为 e,两个节点分别为i、j。 局部坐标:局部坐标只对 该单元有效,每一个单元 有一个局部坐标。以下对 该单元所进行的分析都在 这个局部坐标系下进行。 在局部坐标系下,两个 节点的节点位移为:
6 EI l 2 f 2 EI i l i 6 EI f j 2 l j 4 EI l
(3)刚架单元的节点力和节点位移之间的关系——单元刚度矩阵 刚架单元的所有节点力和节点位移之间的关系为:
EA 0 l 12EI Ti 0 q l3 i 6 EI 0 2 mi l EA T j 0 qj l 12EI 0 m j l3 6 EI 0 l2 0 6 EI l2 4 EI l 0 6 EI l2 2 EI l EA l 0 0 EA l 0 0 0 12EI l3 6 EI 2 l 0 12EI l3 6 EI 2 l 6 EI i 2 l f 2 EI i i l j 0 f j 6 EI 2 l j 4 EI l 0
梁的有限元分析原理-PPT文档资料

2019
1
福州大学研究生课程-有限元程序设计
§1. 介绍. 框架结构,例如桁架、桥梁 轴力构件 axial elements 杆
Evaluation only. 受弯构件 flexural elements 梁 d with Aspose.Slides for .NET 3.5 Client Profile 5 Copyright 2019-2019 Aspose Pty Ltd. 平面梁单元 plane beam element
where k —— 曲率 M, Q —— 弯矩,剪力
I —— 惯性矩
Chapter 5 Bernoulli-Euler Beam
4
福州大学研究生课程-有限元程序设计
最小势能原理
典型 C 1 连续问题 通常梁分析中常用2节点Hermite单元
Evaluation only. d with Aspose.Slides for .NET 3.5 Client Profile 5 Copyright 2019-2019 Aspose Pty Ltd.
假设变形场的整体势能为:
Chapter 5 Bernoulli-Euler Beam
12
福州大学研究生课程-有限元程序设计
Chapter 5 Bernoulli-Euler Beam
8
福州大学研究生课程-有限元程序设计
β( x) 相应给出沿着中线剪切角 γxz
其中 ψ (x) 为只考虑梁弯曲理论中的线性单元转角.
only. d with Aspose.Slides for .NET 3.5 Client Profile 5 弯曲产生的位移: Copyright 2019-2019 Aspose Pty Ltd.
1
福州大学研究生课程-有限元程序设计
§1. 介绍. 框架结构,例如桁架、桥梁 轴力构件 axial elements 杆
Evaluation only. 受弯构件 flexural elements 梁 d with Aspose.Slides for .NET 3.5 Client Profile 5 Copyright 2019-2019 Aspose Pty Ltd. 平面梁单元 plane beam element
where k —— 曲率 M, Q —— 弯矩,剪力
I —— 惯性矩
Chapter 5 Bernoulli-Euler Beam
4
福州大学研究生课程-有限元程序设计
最小势能原理
典型 C 1 连续问题 通常梁分析中常用2节点Hermite单元
Evaluation only. d with Aspose.Slides for .NET 3.5 Client Profile 5 Copyright 2019-2019 Aspose Pty Ltd.
假设变形场的整体势能为:
Chapter 5 Bernoulli-Euler Beam
12
福州大学研究生课程-有限元程序设计
Chapter 5 Bernoulli-Euler Beam
8
福州大学研究生课程-有限元程序设计
β( x) 相应给出沿着中线剪切角 γxz
其中 ψ (x) 为只考虑梁弯曲理论中的线性单元转角.
only. d with Aspose.Slides for .NET 3.5 Client Profile 5 弯曲产生的位移: Copyright 2019-2019 Aspose Pty Ltd.
直接刚度法ppt课件

3
0 K K(1) (2) jj ii
K (2) ij
04
0
K (2) ji
K K(3) (4) jj ii K (2) jj
K (4) ij
5
K (5) ji
0
K (4) ji
K K (4) (5)
jj
jj
6
4
总刚度矩阵的特点
• 总刚度矩阵是一个对称矩阵;即处于与矩阵主对角线对称 位置的两个元素是相等的,即kij=kji 。
1
2
K (1) ii
0
0
K (3) ii
单元的子块搬入
00
K 总刚度矩阵中的
位置,完全取决 于结构结点编号。 对同一结构,如 果改变了结点的
K (1) ji
0
0
K (3) ji
编号,则总刚度 矩阵完全不同。
00
3
4
0
K (1) ij
00
K (5) ii
0
5
0
K (3) ij
0
6
0
1
2
0
K (5) ij
5
12 3
g
子块行 1
2
“
3
子总
块刚
搬度 g
K (e) ii
家矩
,阵
对的
号集 h 入成
K (e) ji
座
”
n
h
n
K (e) ij
K (e) jj
• 每个单元的刚度矩阵都经过如上扩展和对号入座后,总刚度 矩阵的各个子块经过简单的叠加即可得到最终的总刚度矩阵。
2
如:图示平面刚架的总刚度矩阵的集成
1 2